
López Sánchez and Lafond
Algorithms for Molecular Biology (2024) 19:6
https://doi.org/10.1186/s13015-023-00242-2

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Algorithms for
Molecular Biology

Predicting horizontal gene transfers
with perfect transfer networks
Alitzel López Sánchez1* and Manuel Lafond1

Abstract

Background Horizontal gene transfer inference approaches are usually based on gene sequences: parametric
methods search for patterns that deviate from a particular genomic signature, while phylogenetic methods use
sequences to reconstruct the gene and species trees. However, it is well-known that sequences have difficulty iden-
tifying ancient transfers since mutations have enough time to erase all evidence of such events. In this work, we ask
whether character-based methods can predict gene transfers. Their advantage over sequences is that homologous
genes can have low DNA similarity, but still have retained enough important common motifs that allow them to have
common character traits, for instance the same functional or expression profile. A phylogeny that has two separate
clades that acquired the same character independently might indicate the presence of a transfer even in the absence
of sequence similarity.

Our contributions We introduce perfect transfer networks, which are phylogenetic networks that can explain
the character diversity of a set of taxa under the assumption that characters have unique births, and that once a char-
acter is gained it is rarely lost. Examples of such traits include transposable elements, biochemical markers and emer-
gence of organelles, just to name a few. We study the differences between our model and two similar models: perfect
phylogenetic networks and ancestral recombination networks. Our goals are to initiate a study on the structural
and algorithmic properties of perfect transfer networks. We then show that in polynomial time, one can decide
whether a given network is a valid explanation for a set of taxa, and show how, for a given tree, one can add transfer
edges to it so that it explains a set of taxa. We finally provide lower and upper bounds on the number of transfers
required to explain a set of taxa, in the worst case.

Keywords Horizontal gene transfer, Tree-based networks, Perfect phylogenies, Character-based, Gene-expression,
Indirect phylogenetic methods

Introduction
Evolution has historically been seen as a tree-like process
in which genetic material is inherited through vertical
descent. However, it is now established that co-existing
species from most kingdoms of life, if not all, have
exchanged genetic material laterally through hybridation

or horizontal gene transfer (HGT). The latter is well-
known to occur routinely between procaryotes [1, 2],
but is believed to have affected eucaryotes as well [3, 4].
HGT is also known to occur between viruses and their
hosts [5], between mitochondria and the nucleus [6], and
between tumor cells [7].

Since HGTs play a significant role in shaping evolu-
tion, several bioinformatics approaches have been devel-
oped to identify them. Most of these can be classified as
either parametric or phylogenetic. Parametric methods
are based on the sequence of one genome of interest and
attempt to find DNA regions that exhibit a signature that

*Correspondence:
Alitzel López Sánchez
alitzel.lopez.sanchez@usherbrooke.ca
1 Department of Computer Science, Université de Sherbrooke,
Sherbrooke, Canada

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-023-00242-2&domain=pdf

Page 2 of 19López Sánchez and Lafond Algorithms for Molecular Biology (2024) 19:6

is different from the rest of the genome (see [8]). Phylog-
eny-based methods consist of taking a set of taxa (e.g.
genes and/or species), reconstructing their phylogenetic
tree, and inferring the unseen transfer locations on the
tree. A common way of achieving this is through recon-
ciliation, which aims to explain the discrepancies between
a gene tree and a species tree by finding where the gene
duplication, loss, or transfer events occurred [9–12]. Find-
ing a most parsimonious reconciliation under this model
is NP-hard [13–15], mainly because the inferred transfer
locations need to be time-consistent, meaning that they
must occur between species that may have co-existed.
In addition, recent fundamental approaches propose to
identify pairwise gene relationships to infer transfers.
For instance, irregularities in the pairwise gene distances
can pinpoint to possible transfers [16], or predictions of
orthlogs, paralogs, and xenologs can help reconstructing
a gene tree and a species network that explain these rela-
tionships [17–20].

The above approaches are all based on gene sequences
in one way or another, either to reconstruct the phylog-
enies or to infer pairwise relationships. However, it is
well-known that sequences have their limits for predict-
ing HGT, especially in the case of ancient transfers [21].
In this work, we ask whether character-based approaches
can instead be used to predict HGT on a phylogeny. A
character is a generic term to denote a trait that a taxa
may possess or not, which can be morphological or
molecular. A common example of character-based data is
gene expression, where a trait corresponds to whether a
species expresses a gene or not in a condition of interest
[22–24]. A major advantage of using gene expression pro-
files, and possibly other character traits, over sequence
data comes when highly divergent sequences are
involved. In [25], the authors used expression to recover
phylogenetic signals better than using only sequence
similarity measures. This could be because the neces-
sary information to coordinate the folding or function of
proteins is encoded in a small number of conserved frag-
ments, in which case the two homologous proteins can
share a small percentage of sequence similarity. This can
be leveraged to detect HGTs that are hard to find using
sequences, since one could hypothesize that two clades
that started expressing the same gene independently
could have acquired this behavior by transfer.

The task in this setting is, given a set of characters
C and a set of taxa S that each possess a subset of C ,
to explain the diversity of S in a phylogeny. Ideally, S
can be explained by a tree in which taxa that possess a
common character form a clade, in which case the tree is
called a perfect phylogeny [26–29]. When no such perfect
phylogeny exists, transfers may be required to explain
the data. We point out that recently, character-based

methods have resurfaced in tumor phylogenetics, where
they are used to represent whether a tumor clone has
acquired a somatic mutation or not [30–33].

Before gene expression and other character-based
data can be used to predict HGT, appropriate models
and algorithmic frameworks need to be devised. To our
knowledge, character-based approaches have mostly
been used to detect hybridation events, where two
or more species recombinate to produce an hybrid
offspring. In the most popular models, a set of taxa is
explained by an ancestral recombination graph (ARG),
which is a acyclic directed graph in which nodes with
multiple parents represent hybrids, and nodes with a
single parent represent vertical descent [34–36]. The task
of finding recombination events is different from that of
finding HGTs. Recombinations create offsprings whose
genetic content is merged from the parents without
vertical descent being involved directly. As a result,
there is no donor/recipient relationship. In the case of
transfers, it is important to distinguish which traits were
acquired vertically from the parent, and which traits were
given by a donor.

Another model called perfect phylogenetic networks
(PPN) was also introduced in [37, 38] to study the
evolution of languages, but can also be used for biological
characters. To our knowledge, this is the first model that
attempts to extend the notion of perfect phylogenies to
networks. PPNs belong to the class of tree-based networks
[39, 40] which capture the idea of an underlying tree
on which a set of transfer highways are “attached”. The
base tree indicates where vertical descent occurred and
the attached transfer edges clearly show where genetic
material could have been exchanged. In this model, the
characters can have multiple states and a character is
compatible if the network contains a tree in which the
character is convex (i.e. the subgraph induced by nodes
with the same state is connected).

Let us also mention that in [41], the authors propose
a framework to explain gene evolution using HGT on
general networks, in order to minimize the number of
genes present in the same ancestral species.

Our contributions. We introduce perfect transfer
networks (PTN), which are tree-based networks that can
explain how each character was acquired/transferred in
a given set of taxa. Our model is a direct generalization
of perfect phylogenies to networks, as we use the same
set of evolutionary rules. That is, we require that in the
network, a character acquired by an ancestral species is
never lost by its vertical descendants as in the Camin-
Sokal parsimony model [42], and that each character
has a unique origin. Additionally, a character can only be
transferred horizontally on the edges that are explicitly
labeled as transfers. It is worth mentioning that in [43],

Page 3 of 19López Sánchez and Lafond Algorithms for Molecular Biology (2024) 19:6

the authors study an HGT inference framework in which
characters that admit a perfect phylogeny are ignored,
whereas characters that do not are treated as evidence of
transfers. Our work can be seen as an effort to formalize
this idea.

We then study the structural and algorithmic
aspects of PTNs. We first show that PTNs have two
equivalent definitions that are both generalizations of
perfect phylogenies. We then distinguish PTNs from
recombination networks and from perfect phylogenetic
networks by showing that some taxa sets are explained by
different networks depending on the model.

As for the algorithmic aspects, we study three different
problems. First, we ask whether a given tree-based
network can explain the characters of a set of taxa and
provide a simple, polynomial-time algorithm for the
problem. Second, we study the tree completion problem
where, given a tree, we are asked to add transfers to it
so that it explains the input taxa. We show that any tree
can explain any set of taxa, even if the characters at the
ancestral nodes of the tree are constrained by the input.
Third, we study the reconstruction problem, where only
the taxa are known and we must reconstruct a tree-
based network with a minimum number of transfers
that explains them. The algorithmic classification of this
problem remains open, but we provide nearly exponential
lower and upper bounds on the number of transfers
required in the worst case, with respect to the number of
characters. We then conclude with a discussion on open
problems, including the problem of adding a minimum
number of transfers to a tree to make it explain a set of
taxa.

Preliminaries
In this section, we describe the standard phylogenetic
notions used in the paper, and then define our perfect
transfer network model.

Phylogenetic Networks and tree‑based networks
For an integer n, we use the notation [n] = {1, . . . , n} . All
graphs in this work are directed and loopless. A directed
graph G is connected if the underlying undirected graph
of G is connected. A binary phylogenetic network, or
simply a network for short, is a directed acyclic graph
G = (V ,E) such that either |V | = 1 , or such that G satis-
fies the following conditions:

• there is a set of vertices with in-degree 1 and out-
degree 0, called leaves.

• there is a unique vertex with in-degree 0 and out-
degree 2, called the root.

• every other vertex has either in-degree 1 and out-
degree 2 (tree nodes), in-degree 2 and out-degree 1

(reticulation nodes), or in-degree 1 and out-degree 1
(subdivision nodes).

We say that (u, v) ∈ E is a tree edge if v is a tree node or a
leaf. Note that the usual definition of a network forbids
subdivision nodes. We allow them only because it simpli-
fies some of the definitions and proofs.

For a network G, we write ρ(G) for the root of G and
L(G) for the leaves. If |V (G)| = 1 , then we define ρ(G) as
the single vertex of G and consider that L(G) = {ρ(G)} .
If σ is a bijection from L(G) to a set S , we call σ an S-
map for G, or just an S-map if G is understood. Now
suppose that G is a directed graph, network or not. We
say that u ∈ V (G) reaches a node v ∈ V (G) if there exists
a directed path from u to v in G. We denote by Ru(G)
the set of nodes that u reaches in G, and we note that
u ∈ Ru(G) . For a subset W of V(G), we denote by G[W]
the subgraph of G induced by W. We will also denote
by G −W the graph obtained by the removal of W
from V(G) and all of its incident edges. In other words,
G −W = G[V (G) \W].

A tree T is a network whose underlying undirected
graph has no cycles. We say that W ⊆ V (T) forms a sub-
tree of T if T[W] is a tree. We say that a vertex v ∈ V (T)
is an ancestor of u ∈ V (T) if v is on the path from ρ(T) to
u. In this case, we will call u a descendant of v. Note that v
is an ancestor and descendant of itself. The ancestor order
�T is a partial order in a tree T. When u ≺T v we say that
v is an ancestor of v and u is considered a descendant of
v. In this partial order we have that the root ρ of T is the
unique maximal element. We say that two nodes u and
v are comparable if u �T v or v �T u . We say that they
are incomparable otherwise. We will drop the subscript
T when T is clear from the context. For v ∈ V (T) , we will
use T(v) to refer to the subtree of T rooted at v (that is,
T(v) contains v and all of its descendants).

A network G = (V ,E) is a tree-based network [44] if G
has no subdivision nodes, and there is a partition {ES ,ET }
of E such that the subgraph TG := (V ,ES) is a tree with
the same set of leaves as G, which is called the support
tree of G. The edges in ES are called support edges and
the edges in ET are called transfer edges. Note that TG
contains subdivision nodes, unless ET is empty. The tree
obtained from TG by suppressing its subdivision nodes is
called the base tree of G (suppressing a subdivision node
u with parent p and child v consists of removing u and
adding an edge from p to v). Roughly speaking, a tree-
based network G can be obtained by starting with a tree
and inserting transfer edges into it. Note that in most
cases, the partition of the edges into ES and ET will be
known (whereas tree-based networks merely require
these to exist). When these edge sets are given, the net-
work is sometimes called an LGT network , see [59].

Page 4 of 19López Sánchez and Lafond Algorithms for Molecular Biology (2024) 19:6

As mentioned in the introduction, networks should be
biologically-feasible in terms of time. We define a time
consistent map over a tree-based network G with support
edges ES and transfer edges ET as a function τ : V → R
such that:

• for every (u, v) ∈ ES , τ (u) > τ(v).
• for every (u, v) ∈ ET , τ (u) = τ (v).

We say that G is a time-consistent tree-based network if
there exists a time consistent map for G [45]. Note that
the existence of a time-consistent map on a network
implies that it is tree-based [46] (but the converse does
not necessarily hold). In the following sections, we
will assume that all the tree-based networks are time-
consistent without explicit mention.

Perfect transfer networks
We now propose to extend the perfect phylogeny model
to tree-based networks. Let S = {S1, S2, . . . , Sn} be a set
of taxa and C = {c1, c2, . . . , cm} a set of characters. We
view a taxa Si as the set of characters that it possesses,
so that for each i ∈ [n] , Si is a subset of C . Our goal is to
explain the character diversity of S using its evolution-
ary history. Given a tree-based network G with S-map
σ , we want to know where each character appeared in
G under the conditions that each character has a single
origin, that it cannot be lost once acquired, and that it
can be transferred. Throughout the phylogenetic litera-
ture, requiring a single origin is called the homoplasy-free
assumption (or sometimes the “no parallel evolution” or
“no convergent evolution”), which states that characters
cannot arise independently in unrelated lineages [47, 48].
HGT is not considered to be a cause of homoplasy, but
of course homoplasy can occur even in the presence of
HGT. Nonetheless, this assumption has historically been

used as a first step towards more complex models (see
e.g. [49]).

To formalize this, given a tree-based network G, a C
-labeling of G is a function l : V (G) → 2C that maps each
node of G to the subset of characters that it possesses
(here, 2C represents the powerset of C). For a character
c ∈ C , we will denote by Vc(l) = {v ∈ V (G) : c ∈ l(v)} the
set of nodes that possess character c, and we denote by
V c(l) = V (G) \ Vc(l) the nodes that do not have it. If l is
clear from the context, then we may simply write Vc and
V c.

Our evolutionary requirements are encapsulated in the
following definition.

Definition 1 (Perfect transfer networks) Let S be a set
of taxa on characters C , let G = (V ,ES ∪ ET) be a tree-
based network, and let σ be an S-map for G. We say that
a C-labeling l of G explains S if the following conditions
hold:

• for each v ∈ L(G) , l(v) = σ(v);
• for each support edge (u, v) ∈ ES , c ∈ l(u) implies

that c ∈ l(v) (never lost once acquired);
• for each c ∈ C , there exists a unique node v ∈ Vc(l)

that reaches every node of Vc(l) in G[Vc(l)] (single
origin).

Furthermore, we call the pair (G, σ) a perfect transfer
network (PTN) for S if there exists a C-labeling of G that
explains S.

See Fig. 1.2 for an example of a PTN. Later on
in Theorem 2, we will show that Definition 1 is
similar, though slightly different, to a connectedness
requirement known as convexity on each character,
see [36]. Notice that if G is a tree, then every edge
is a support edge and Definition 1 coincides with

Fig. 1 1 A species tree T with a set of taxa S on characters C = {a, b, c} . 2 A PTN with T as base tree that explains S . Red arrows represent transfer
edges. 3 Another PTN with T as base tree that also explains S . Note that this PTN requires two less transfers. 4 A tree-based network G with S−map
σ for which no labeling can explain S

Page 5 of 19López Sánchez and Lafond Algorithms for Molecular Biology (2024) 19:6

the definition of a perfect phylogeny from [36].
If G = (V ,ES ∪ ET) is a tree-based network, the
definition does not explicitly state what can or cannot
be done with transfer edges. The way to see this is
that the definition does not forbid ancestral taxa from
using transfer edges. That is, if (u, v) ∈ ET , then u can
transmit any subset of its characters to v horizontally.
The motivation behind the requirements of Definition
1 is to model the presence and absence of traits that
have unique origins and cannot be lost throughout
evolutionary processes. Examples of such traits
include transposable elements (TEs) which are unique
genomic sequences that have integrated into the
genome and are rarely lost [50], biochemical markers
such as metabolites which are small molecules that
function as intermediates and products of metabolic
processes [51], and emergence of organelles such
as mitochondria or chloroplasts that results from
endosymbiotic events and is irreversible [6, 52]. It
is worth highlighting that the horizontal transfer
of TEs between species is a prevalent phenomenon
that significantly contributes to their sustained
viability over time [53]. As for metabolites, it has
been previously shown that HGT plays a role in the
generation of new metabolic pathways in bacteria [54].

We are interested in the following algorithmic
problems:

• The PTN-recognition problem: given a tree-
based network G with S-map σ , is (G, σ) a PTN
for S ? That is, does there exist a C-labeling of G
that explains S ? See Fig. 1.4 for an example of a
network that is not a PTN.

• The tree-completion problem: given a tree T with
S-map σ , does there exist a PTN (G, σ) for S such
that T is the base tree of G? See Fig. 1.2.

 We are also interested in the minimization variant
of this problem, where we require that (G, σ) has a
minimum number of transfer edges. See Fig. 1.3.

• The PTN-reconstruction problem: given a set of
characters C and a set of taxa S , find a PTN (G, σ)
for S with a minimum number of transfer edges.

We show that the recognition problem can be solved
in time O(|C||V (G)|2) . For the tree-completion prob-
lem, we provide a more general result: any tree with
any given pre-labeling can explain any set of taxa. To
be more specific, for any given tree T and any C-labe-
ling of T that satisfies the never lost once acquired con-
dition, one can always explain S by adding transfers in
a time-consistent manner while preserving the given
labeling. This motivates the need for the minimiza-
tion variant, which leads to several open problems. For

the tree reconstruction problem, we give exponential
lower and upper bounds on the number of transfers
required by a set of k characters, in the worst case.

Properties of the perfect transfer model
Before delving into the algorithms, we study our model
a bit more in-depth. First, we provide an alternate
definition of perfect transfer networks in terms of
character connectedness. This definition is sometimes
easier to deal with in our proofs, and is akin to perfect
phylogenies that also admit a similar equivalent
definition. Second, we ensure that our model does not
reinvent the wheel by explicitly stating its differences
with other models.

Theorem 2 Let G = (V ,ES ∪ ET) be a tree-based net-
work with S-map σ . Then a C-labeling l of G explains S if
and only if the following conditions hold:

• for each v ∈ L(G) , l(v) = σ(v);
• for each c ∈ C , G[Vc(l)] is connected and contains a

unique node of in-degree 0;
• for each c ∈ C , either V = Vc(l) , or TG[V c(l)] is con-

nected and contains ρ(G).

Proof (⇒) Suppose that l is a C-labeling of G that
explains S , according to Definition 1. We argue that the
three conditions stated in the theorem are true. By Defi-
nition 1, l(v) = σ(v) for each v ∈ L(G) holds. For the
other conditions, let c ∈ C . Let v be the unique node of
Vc(l) that reaches every node in G[Vc(l)] , which is guaran-
teed to exist by Definition 1. Because G[Vc(l)] is acyclic,
no node other than v can reach v in G[Vc(l)] . This implies
that v has in-degree 0 in G[Vc(l)] . Moreover, G[Vc(l)]
is connected since v reaches all of its nodes. If V c(l) is
empty, then the third condition also holds, so assume this
is not the case. Let us now focus on TG[V c(l)] . Observe
that because characters are never lost once acquired, l
satisfies the property that for every (u,w) ∈ ES , w ∈ V c(l)
implies that u ∈ V c(l) . This in turn implies that for any
u ∈ V c(l) , every ancestor of u in TG is in V c(l) , including
the root ρ(G) . Since we assume that V c(l) is non-emtpy,
it follows that ρ(G) ∈ V c(l) . It also follows that TG[V c(l)]
is connected because all of its nodes have a path to ρ(G).
(⇐) Suppose that l satisfies all the conditions of the theo-
rem. We show that all properties of Definition 1 hold. For
each v ∈ L(G) , we know that l(v) = σ(v) . For the other
conditions, let c ∈ C . First suppose for contradiction that
there is a support edge (u, v) ∈ ES such that u ∈ Vc(l) but
v ∈ V c(l) . Thus V c(l) is not empty, in which case G[V c(l)]
is connected and contains ρ(G) . The path in the support

Page 6 of 19López Sánchez and Lafond Algorithms for Molecular Biology (2024) 19:6

tree TG from ρ(G) to v goes through u. But ρ(G) ∈ V c(l) ,
which is a contradiction since TG[V c(l)] is connected, but
here u disconnects ρ(G) from v in TG . Thus the condi-
tion of never losing acquired characters holds. Now let
v be the unique node of Vc(l) of in-degree 0 in G[Vc(l)] .
Assume that there is some u ∈ Vc(l) that v does not reach
in G[Vc(l)] . Let Pu be the set of nodes of Vc(l) that reach
u in G[Vc(l)] . Because G[Vc(l)] is acyclic, Pu must con-
tain a node w of in-degree 0, contradicting that v is the
unique node of in-degree 0. Thus v reaches every node in
G[Vc(l)] and, because it has in-degree 0, it is the unique
such node. Thus the single origin condition is satisfied. �

Perfect transfer networks versus perfect phylogenetic
networks
Before we move on, it is important to put our model in
perspective with Perfect Phylogenetic Networks (PPN),
which, to our knowledge, are the closest to our work. The
idea of a PPN is that a network contains several evolu-
tionary trees, and a character could evolve in any one of
those trees. More specifically, in the PPN model, char-
acters are multi-state, so that a character can be in any
of the set of possible states Z. A character c is compat-
ible with a tree T whose leaves are labeled by the states
of c if there is a state-labeling of the internal nodes of T
such that, for each z ∈ Z , the nodes in state z form a con-
nected subgraph of T. Given a network G and a tree T,
we say that T is displayed by G if T can be obtained by
successively removing reticulation edges and suppressing
subdivision nodes. A tree-based network G is a PPN for
a set of characters C if each character is compatible with
some tree displayed by G. In terms of character evolution,
for PPNs every state is subject to the same evolutionary
constraints. In contrast, the character evolution model
implied by PTNs represents “presence” and “absence” of
a trait, and these two states have different behavior. This

difference plays an important role for transfer edges.
The PTN model explicitly prohibits the transfer of an
“absence” state, whereas for PPNs any state is allowed to
be transferred. See Fig. 2 for an example of a tree-based
network that is a PPN, but not a PTN (if the state 0 is
interpreted as absence).

Also note that it is NP-hard to decide whether a given
network G is a PPN for a given set of characters C [38].
Later on, we will show that the analogous recognition
problem for PTNs can be solved in polynomial time.
However, our result holds for binary character states and
the hardness proof for PPNs relies on the character states
being non-binary, and it is unclear whether the hardness
is preserved for binary character states.

Perfect transfer networks versus recombination networks
Another model with goals that are similar to ours are
recombination networks. In this model, the indices of
the characters C = {c1, . . . , cm} determine an ordering
of the characters. For a string B, B[j] denotes its j-th
character and B[i..j] its substrings containing positions
from i to j. Each taxa Si ⊆ C can be represented as an
m-bit string β(Si) in which β(Si)[j] = 1 if and only if Si
possesses character cj . Given an m-bit string B and an
odd integer d, we say that B is a d-crossover of two other
m-bit strings X and Y if there are indices i1, . . . , id such
that B = X[1..i1]Y [i1 + 1..i2]X[i2 + 1..i3] . . .Y [id + 1..n] .
If d is even, the definition of a d-crossover is the same
except that the last substring is X[id + 1..n] . Note that
the roles of X and Y are interchangeable. For a network
G and S-map σ , a binary C-labeling of G is a function f
in which f(v) is an m-bit binary string for each v ∈ V (G) ,
such that f (ρ(G)) only contains 0s. A binary C-labeling f
of G explains S with d-crossovers if f (v) = β(σ(v)) for
each v ∈ L(G) , and the following holds:

Fig. 2 a A PPN network with one character c with two states {0, 1} . b A tree displayed by G that admits a labeling such that every state forms
a connected component. Note that this tree can be obtained by the removal of the green edge and suppression of the resulting subdivision node.
The interpretation of this scenario is that state 0 was transferred using the birectional edge. On the other hand, a solution for PTNs would forbid
the transfer of state absence, and would also disregard the removal of the green edge, in which case no C-labeling is possible

Page 7 of 19López Sánchez and Lafond Algorithms for Molecular Biology (2024) 19:6

• for each reticulation node v with parents u and w, f(v)
is a d-crossover of f(u) and f(w);

• for each tree edge (u, v), f(v) is obtained from f(u) by
flipping some 0 positions to 1 (we may decide to flip
none);

• for each i ∈ [m] , there is at most one tree edge (u, v)
with f (u)[i] = 0 but f (v)[i] = 1.

We say that (G, σ) is an ancestral recombination
graph (ARG) for S with d-crossovers if there
exists a binary C-labeling of G that explains S with
d-crossovers. We denote by ARGd(S) the set of
all ARGs for S with d-crossovers. We also denote
ARG∞(S) =

⋃∞
d=1 ARGd(S).

In the literature, single crossovers are modeled with
d = 1 and have been studied extensively. The d = 2 case
is often referred to as double crossovers and can also
model gene conversion. It was stated in [36] that d > 6
is rarely considered in practice.

The most obvious difference between ARGs
and PTNs is that ARGs were introduced to model
hybridation events, whereas we created PTNs to model
horizontal gene transfer. More specifically, ARGs do not
differentiate between the two parents of a reticulation
node, whereas in our model, one parent only transmits
genetic content via vertical descent whereas the other
does so via HGT. In fact, ARGs do not need to be
tree-based networks. Although this is a fundamental
difference, it is also interesting to ask whether, among
the class of tree-based networks, the data explanation
depends on the model.

To formalize this, we write PTN (S) for the set of per-
fect transfer networks for S . The next result shows that
ARGs with d-crossovers are incomparable with PTNs
unless we allow an arbitrary number of crossovers. We
emphasize that even though infinite crossovers can
emulate transfers, they still cannot distinguish vertical
from horizontal inheritance.

Proposition 3 The following relationships between
PTNs and ARGs hold:

• for any fixed d ≥ 1 , there exists a set of taxa S on
d + 2 characters such that PTN (S)\ARGd(S) is non-
empty;

• there exists a set of taxa S on two characters such that
ARG1(S) \ PTN (S) is non-empty;

• for any set of taxa S , PTN (S) ⊆ ARG∞(S).

Proof For (1), consider the network G in Fig. 3.1.
For any C , the labeled network shows that (G, σ) is in
PTN (S) . Put C = {c1, . . . , cd+2} . We argue that (G, σ) is
not in ARGd(S) . Note that in any binary C-labeling of G
that explains S , the parent of each ∅ leaf taxa must be the
string 00 . . . 0 , as otherwise they would need to transmit
a 1 to these leaves. Likewise, the parent of the upper C
leaf taxon must be 11 . . . 1 . If not, there would be a 0− 1
flip on the edge leading to the upper C . But, we would
also need another 0− 1 flip somewhere on the path to
the lower C taxon, which is not allowed in ARGs. So, the
parents of the single reticulation have labels 00 . . . 0 and
11 . . . 1 . Moreover, the root is labeled 00 . . . 0 , and thus
all the possible 0− 1 flips occur between the root and
its right child. We cannot have any new 0− 1 flip, and so
the reticulation must be labeled 0101 . . . 01 to be able to
transmit the required characters to the odd-characters
leaf (or the last character is 0 if d is even). Whether d
is odd or even, there are d + 2 characters and we must
alternate each of them between the parents. This requires
d + 1 crossovers, and so (G, σ) /∈ ARGd(S).

For (2), consider the network G in Fig. 3.2. There are
only two characters c1, c2 . The right side of the figure
shows that G can be explained under single crossovers.
However, we can argue that (G, σ) is not a perfect trans-
fer network. This is because if there is a C-labeling l that

Fig. 3 (1) Left: a network G with 5 taxa at the leaves. The fat red edge is a transfer edge. Two taxa have no character, two have all characters of C ,
and one has only the odd numbered taxa (we assume odd d in the figure). Right: a C-labeling that explains G (the reticulation receives the odd
characters from the transfer edge). This network has no explanation with d-crossovers. (2) Left: a network G with 5 taxa on character set C = {c1, c2} .
Right: a binary C-labeling with single crossovers that explains G. This network is not a PTN

Page 8 of 19López Sánchez and Lafond Algorithms for Molecular Biology (2024) 19:6

explains the taxa at the leaves, the parent of each c1 leaf
must contain c1 . But by the never lose once acquired
condition, c1 should then be transmitted vertically to
the leaf that has no character, a contradiction. Thus
(G, σ) /∈ PTN (S).

For (3), let (G, σ) ∈ PTN (S) . Let l be a C-labeling of
G that explains S . To show that (G, σ) ∈ ARG∞(S) , we
need to modify l slightly. Specifically, we ensure that
characters never have their first-appearance on a reticu-
lation node. Let v be a reticulation node of G with par-
ents u, w such that (u, v) is a support edge and (w, v) is
a transfer edge. Suppose that there is cj ∈ C such that
cj /∈ l(u), cj /∈ l(w) , but cj ∈ l(v) . It follows from Theo-
rem 2 that v is the unique node of in-degree 0 in G[Vcj (l)] .
Consider the labeling l′ obtained by taking l, but apply-
ing l′(v) = l(v)\{cj} . Let v′ be the unique child of v. One
can easily see that G[Vcj (l

′)] is connected and that v′ is
its unique node of in-degree 0. Moreover, TG[V cj (l

′)] is
the same as TG[V cj (l)] but with v added. It is still con-
nected since v is a child of u ∈ V cj (l) , and it still contains
the root. Hence by Theorem 2, l′ also explains S.

By applying the above argument to every character, we
obtain a labeling l that explains S such that for any char-
acter cj , the first-appearance of cj under l does not occur
at a reticulation node. Assume that l has this property.

Consider the binary C-labeling f of G in which, for each
v ∈ V (G) , we put f (v)[j] = 1 if and only if cj ∈ l(v) . We
claim that f explains S with m-crossovers, where m = |C| .
First consider a reticulation node v with parents u and
w, where (u, v) is a support edge and (w, v) is a transfer
edge. We must argue that f(v) is an m-crossover of f(u)
and f(w). Because under l, no character first-appears
on a reticulation, we have that for each cj ∈ l(v) , either
cj ∈ l(u) or cj ∈ l(w) . Moreover, for each cj /∈ l(v) , we
must have cj /∈ l(u) (by the never lost once acquired con-
dition). In terms of f, this means that for each j ∈ [m] , if
f (v)[i] = 1 then one of u or w also has a 1 in position j,
and if f (v) = 0 , then f (u)[j] = 0 . It follows that f(v) can
be obtained with at most m crossovers from its parents.

Next, we argue that for each character cj , there is at
most one tree edge (u, v) that flips cj from 0 to 1 under f.
If there were two such edges, then under l, there would
be two trees nodes that possess cj but not their (unique)
parent. Thus G[Vcj (l)] would have two nodes of in-degree
0, contradicting Theorem 2. Third, the condition that
characters are not lost after being acquired implies that,
for every tree edge (u, v), f(v) can be obtained from f(u) by
flipping 0s to 1s, but not vice-versa (this follows from the
fact that tree edges are support edges). Thus, f explains S
and we conclude that (G, σ) ∈ ARG∞(S) . �

Algorithmic problems
We now study the algorithmic aspects of recognition,
completion, and recontruction of PTNs.

Recognizing perfect transfer networks
The first problem in this section is analogous to the
perfect phylogeny problem, where we must find a labeling
of all the inner nodes so that the network correctly
represents the evolution of a given set of species. This
is not as trivial as in the tree case, since their may be
multiple options for the originator of a character c ∈ C.

The PTN recognition problem
Input. A set of taxa S on characters C and a tree-based

network G = (V ,ES ∪ ET) with S-map σ.
Output. A C-labeling of G that explains S , if one exists.
Importantly, the above problem formulation lets us

assume that we have knowledge of support and transfer
edges. We first need some intermediate results (recall
that TG is the support tree of G).

Lemma 4 Let G = (V ,ES ∪ ET) be a tree-based network
with S-map σ , and let l be a C-labeling of G that explains
S . Let u ∈ V c(l) . Then for each ancestor v of u in TG , we
have v ∈ Vc(l) as well.

Proof Suppose that u ∈ V c(l) has an ancestor v in TG
such that v ∈ Vc(l) . Consider the unique path of TG from
v to u, namely the sequence (v, v1, v2, . . . , vk ,u) . Due to
the never lost once acquired requirement of Definition 1
{v1, v2, . . . , vk} ⊆ Vc(l) . In this way the edge (vk ,u) will
represent the loss of character c, a contradiction. �

In other words, any node that has at least one descendant
in Vc(l) should be in Vc(l) in every possible C−labeling l that
explains S . Since we must have l(v) = σ(v) for each leaf v,
we can already deduce that if v is a leaf such that c /∈ σ(v) ,
then no ancestor of v in the support tree can possess c.
This is a property similar to character state changes in the
Camin-Sokal parsimony method [55]. We thus define the
following subset of nodes that are forced to not have c:

If G and σ are clear from the context, we will write Fc
instead of Fc(G, σ) . Recall that for a network G, Rv(G)
denotes the set of nodes reachable from v. The following
characterization of PTNs will let us recognize them easily.

Lemma 5 Let G be a tree-based network with S-map σ .
Then (G, σ) is a perfect transfer network for S if and only
if for every character c ∈ C , G − Fc contains a node v such
that Rv(G − Fc) contains every leaf in L(G − Fc).

Fc(G, σ) = {v ∈ V (G) : ∃w ∈ L(TG(v)) such that c /∈ σ(w)}

Page 9 of 19López Sánchez and Lafond Algorithms for Molecular Biology (2024) 19:6

Proof (⇒) Let l be a C−labeling of G that explains S ,
and let c ∈ C . By Lemma 4, we must have Fc ⊆ V c(l) .
The resulting graph G − Fc thus contains all the nodes in
Vc(l) . Due to the single origin requirement of our defini-
tion, G − Fc contains a node v that is able to reach all the
leaves in Vc(l) , which includes all the leaves of G − Fc.
(⇐) To show the converse, we build a C−labeling l in the
following way: for every c ∈ C , let v be a node such that its
reachable set in G − Fc contains every leaf in L(G − Fc) ,
and let us call v the origin of c. Then for u ∈ V (G) , we put
c ∈ l(u) if and only if u ∈ Rv(G − Fc) . That is, the origin
of c is v and it is transmitted to every node that v reaches
in G − Fc . We claim that l satisfies all the conditions of
Theorem 2.

Let u ∈ L(G) and let us first argue that l(u) = σ(u) . Let
c ∈ C and let v be the chosen origin of c in l. If c /∈ σ(u) ,
then u ∈ Fc and v does not reach u in G − Fc (because u is
simply not in G − Fc), and by our construction, c /∈ l(u) .
If c ∈ σ(u) , then u /∈ Fc and v reaches u in G − Fc , in
which case we put c ∈ l(u) . It follows that l(u) = σ(u).

We now argue on the connectedness requirements
of the G[Vc(l)] subgraphs. Again, let c ∈ C and let v be
the chosen origin of c in l. Since Vc(l) consists of nodes
reachable from v, it is evident that v will be the only
node in G[Vc(l)] whose in-degree is 0. It is also evident
that (G − Fc)[Vc(l)] is connected, since Vc(l) only con-
tains nodes reachable from v in G − Fc . This implies that
G[Vc(l)] is also connected, since we cannot disconnect
the Vc(l) subgraph by putting back the nodes of Fc.

It remains to argue the third condition of Theorem 2.
First assume that the origin v of c is equal to ρ(G) . Then
every leaf must possess c, as otherwise if some leaf u
would satisfy c /∈ σ(c) , then u ∈ Fc and the root would
also be in Fc , by its definition. It follows that Fc is empty.
Then our construction puts Vc(l) = V (G) since ρ(G)
reaches every node in G − Fc = G . In this case, the third
condition of the theorem holds. So we may assume that
v = ρ(G) . In this case, v does not reach ρ(G) in G − Fc
since no node reaches the root (except the root itself).
Thus we may assume that V c(l) = ∅ and contains the
root. Suppose for a contradiction that TG[Vc(l)] is dis-
connected, i.e. there exist some node u ∈ V c(l) that ρ(G)
cannot reach in G[V c(l)] . Then in TG , u has an ancestor
w ∈ Vc(l) , which implies that the origin, v, can reach w
in G − Fc . This implies that w /∈ Fc , which in turn implies
that no node from w to u in TG can be in Fc . This means
that the path from w to u exists in G − Fc . Thus in G − Fc ,
v reaches u through w, and so our construction of l would

have put c ∈ l(u) , a contradiction. Hence, TG[Vc(l)] is
connected and contains ρ(G) . �

The proof of the previous lemma implies the following
verification algorithm:

Algorithm 1 Check if a given tree-based network G explains S.

Theorem 6 Algorithm 1 correctly solves the PTN rec-
ognition problem in time O(|C||V (G)|2).

Proof We first argue that the algorithm is correct. By
Lemma 5, it suffices to check, for every c ∈ C , that some
node v reaches every leaf in G − Fc . Moreover, when this
is the case, the proof of Lemma 5 shows that we can add
c to every node in Rv(G − Fc) to obtain a labeling that
explains S . If the algorithm finds such a v, this is exactly
the labeling that it applies. So we must argue that when
such a v exists, the algorithm will find it.
For that, we claim that the verification in line 12 of Algo-
rithm 1 is enough to find the node required by Lemma
5. That is, we do not need to check every node v of
Ĝc = G − Fc , but only those in the set X, i.e. the nodes of in-
degree 0. Suppose that there is y ∈ V (Ĝc) that reaches every
leaf in L(Ĝc) . If y ∈ X , we are done. Otherwise, because
Ĝc is acyclic, there must be v ∈ X that reaches y (it can be
found by following by iteratively following in-neighbors
starting from y until such a node is reached). It follows that
Ry(Ĝc) ⊆ Rv(Ĝc) and that v also reaches every leaf. Thus, it
suffices to check every source in Ĝc.

Let us now argue the complexity. For a character c ∈ C ,
computing Fc can be done in a post-order traversal of TG

Page 10 of 19López Sánchez and Lafond Algorithms for Molecular Biology (2024) 19:6

in time O(|V(G)|). Checking whether the resulting net-
work is connected or not can be done in linear time too.
Finding the nodes of in-degree 0 takes linear-time and,
for each O(|V(G)|) of these nodes, computing Rv(Ĝc)
takes time O(|V(G)|). Thus each character requires time
O(|V (G)|2) , and thus our algorithm solves the problem in
O(|C||V (G)|2) . �

The tree‑completion problem
We now turn to the problem of predicting transfer loca-
tions on a given species tree. As mentioned in [44], species
trees depict vertical inheritance and thus serve as basis for
our networks, and HGT events can be seen as additional
evolutionary events that happen on the way. This moti-
vates the feasibility question: given a set of taxa S and a
species tree T on S , can we add transfer arcs to T so that
the resulting network explains S ? Moreover, can we do
this so that the resulting network is time-consistent? One
possibility is that a universal tree-based network, which
contains all phylogenetic trees on a given set of n leaves
[56], could explain any set of characters. However, a base
tree needs to be specified in our model, and it is not clear
that such a choice always exists in a universal network.

Nevertheless, it turns out that there is no feasibility
problem. Indeed, it is relatively easy to show that, for a
set of taxa S , any tree T on S can be complemented with
transfers to become a PTN. One way to achieve this is to
add a transfer edge between the parent edge of every pair
of leaves, from which point it can be argued that the net-
work is a PTN. In fact, we can show a stronger statement:
if T is “pre-labeled” in any way that acquired characters
are never lost, then we can add transfers to T to explain S
while preserving the given pre-labeling.

Formally, for a tree T, a C-labeling � of T is called a
no-loss C-labeling if, for any edge (u, v) ∈ E(T) and any
c ∈ C , it holds that c ∈ l(u) implies c ∈ l(v) . Recall that
if G is a tree-based network, then the base tree T of G
is obtained by removing transfer arcs and suppressing
subdivision nodes. Hence, V (T) ⊆ V (G) , and we use
V (G) ∩ V (T) to explicitly refer to the nodes of G that are
also in the base tree. We have the following problem.

The Pre-labeled Tree Completion problem
Input. A set of taxa S on characters C , a tree T with

S-map σ , and a no-loss C−labeling � of T such that
�(v) = σ(v) for each v ∈ L(T).

Output. A time-consistent tree-based network G
such that T is the base tree of G, and a C-labeling l of
G that explains S and such that l(v) = �(v) for every
v ∈ V (G) ∩ V (T).

We will now prove that this is always possible, even
with the time-consistency constraint.

One interest of allowing a pre-labeling is that one can start
with any hypothesis on where the characters appeared on a
tree, and transfers can explain that hypothesis. Perhaps the
most natural pre-labeling is the Fitch-like labeling where, for
each character c, we add c in every maximal subtree whose
leaves have the character. To be more specific, if v is a leaf,
�(v) = σ(v) and otherwise, let u, w be the children of v, then
�(v) = �(u) ∩ �(w) . This corresponds to the reasonable
hypothesis that characters always appear at maximal clades
that have it, and we provide and algorithm that can explain
this. Again, this is one example of a possible pre-labeling,
and our algorithm can explain any other that has the no-loss
property, even if characters are again after the lowest com-
mon ancestor of the leaves that have this character.

We define a transfer operation between two nodes u and v
on a tree-based network G. We write G�(u, v) to denote the
tree-based network obtained by subdividing the respective
incoming edges of u and v in TG , thereby creating new parent
u′ for u and v′ for v, and adding the transfer edge (u′, v′).

It is important to point out that in a no-loss labeling, there
can be multiple ancestral species that acquire a specific
character that for the first time. In our algorithm, this
property will also be maintained in the constructed network,
and we will use the following notion:

Definition 7 Let G be a tree-based network with a no-loss
C−labeling � . Let (u, v) be an edge of TG . We will say that v
is a first-appearance node for c under � if it holds that
u ∈ Vc(l) and every descendant of v in TG belongs to Vc(l).

We may say first-appearance for c if � is clear from the
context. Note that if � is a no-loss labeling, a first-appear-
ance node for c cannot have a first-appearance node for
c as a descendant, and hence first-appearance nodes are
pairwise incomparable.

We can now describe our algorithm. The first step is to
make G a copy of the given tree T, and then we add transfer
edges to G. Note that in our problem, the given tree has no
time map, and deciding where to put the transfers on T in
a time-consistent manner becomes surprisingly complicated.
For this reason, before adding any transfer, we start by con-
structing a time consistent map τ for G. It is easy to do this in
such a way that no two vertices have the same time.

From that point, we look at each character c and their
set of first-appearance nodes a1, . . . , ak , ordered in
decreasing order of age, and we greedily connect them
using transfers. The τ that we constructed dictates the

Page 11 of 19López Sánchez and Lafond Algorithms for Molecular Biology (2024) 19:6

order of connections, in the sense that each ai is assumed
to transfer c to the younger ai+1 node. This is achieved
by finding a descendant of ai that could have co-existed
between ai+1 and its parent. The τ map is also used to
assign a time to the nodes created by transfers (Fig. 4).

1 function TransferAdditionGreedy(T, S, λ)
2 Let G = (V,ES ∪ ET) be the tree-based network such that V (G) = V (T), ES = E(T)

and ET = ∅.
3 Let l be the C-labeling in which l(v) = λ(v) for all v ∈ V (G).
4 Let τ be a time-consistent map for G in which every leaf v has τ(v) = 0 and every internal

node has a distinct time.
5 for c ∈ C do
6 Compute Ac, the set of first-appearance nodes of character c in TG.
7 Let Xc = (a1, a2, . . . , ak) be the ordering of Ac such that τ(ai) ≥ τ(ai+1) for all

i ∈ [k − 1].
8 for i ∈ [k − 1] do
9 Let a′i be the parent of ai in TG
10 Let a′i+1 be the parent of ai+1 in TG.
11 if a′i has no descendant w in TG such that (w, a′i+1) ∈ ET then
12 Look for (w′, w) ∈ E(TG(a′i)) such that τ(w′) > τ(ai+1) and

τ(w) ≤ τ(ai+1)
13 Apply the transformation G�(w, ai+1).
14 Let ŵ and âi+1 be the new parents of w and ai+1, respectively, in TG
15 Set l(ŵ) = (l(w) ∩ l(w′)) ∪ {c} and l(âi+1) = (l(a′i+1) ∩ l(ai+1)) ∪ {c}.

16 Set τ(ŵ) = τ(âi+1) =
min(τ(w′), τ(a′i+1)) + τ(ai+1)

2
17 else
18 Add c to l(w) and l(a′i+1) if not already present, where w is a descendant of

a′i in TG such that (w, a′i+1) ∈ ET

19 return(G, l)

Algorithm 2 Place an edge between all the first-appearance trees.

Lemma 8 The network returned by Algorithm 2 is time-
consistent under the time map τ.

Proof We argue that at any moment during the execution
of the algorithm, τ is a time-consistent map of G. We prove
this by induction on the number of iterations undertaken.

Fig. 4 An example of a solution that will be given by our greedy algorithm (1) The given instance T with C = {a, b, c} . Triangles represent subtrees

and colors represent the characters that can be found on them (2) One possible solution output by Algorithm 2. The green arrow joins the first two

subtrees that contain {a, b} , the yellow arrows joins the second subtree with the subtree that contains only {a} and the final arrow connects two

subtrees that contain only {c}

Page 12 of 19López Sánchez and Lafond Algorithms for Molecular Biology (2024) 19:6

and

 �

Lemma 9 Let G and l be the network and C-labeling
returned by Algorithm 2, respectively, on input T ,S , and
� . Then T is the base tree of G. Furthermore, l explains S
and satisfies l(v) = �(v) for every v ∈ V (G) ∩ V (T).

Proof Let G = (V ,ES ∪ ET) be the network returned by
the algorithm and let l be the returned labeling. To see
that l(v) = �(v) for every node v in the base tree, it suf-
fices to note that the algorithm never changes the labe-
ling of a node initially present in T: it only assigns sets of
characters to nodes created by transfer insertion opera-
tions. It is also easy to see that T is the base tree of G,
since we start with a copy of T and only attach transfer
edges to it.
We will argue that the returned C−labeling l explains
S using the conditions required by Definition 1. First,
by requirement on the input � , we know that for every
v ∈ L(G) , l(v) = �(v) = σ(v).

Let us next show that for every character c ∈ C there
exists a unique node v ∈ Vc(l) that reaches every node
in G[Vc(l)] . It is not hard to see that after handling a
particular c ∈ C in the algorithm, this property will
be satisfied for Vc(l) . However, it is not obvious that
the subsequent iterations on other characters will not
“break” this property for c. We thus prove the following

τ (âi+1) >
τ(ai+1)+ τ (ai+1)

2
> τ(ai+1)

Notice that as a base case, the statement is initially true
before entering the main for loop. Now assume that we
have inserted j − 1 transfer edges and that τ is time-consist-
ent for G after these insertions. Consider the j-th transfer
edge inserted into G. This transfer edge is (ŵ, âi+1) , which
are created between w and its parent w′ in the support tree
T ′ , and between ai+1 and its parent a′i+1 in T ′ , respectively.

We first claim that (w′,w) as used in the algorithm
exists in the subtree T (ai) , where ai is the node that pre-
cedes ai+1 in Xc . We know that τ (ai) ≥ τ (ai+1) . Suppose
that τ (ai) = τ (ai+1) . Let a′i be the parent of ai , then by
induction hypotesis, since the network is time consist-
ent we have that τ (a′i) > τ(ai) = τ (ai+1) and so w′ = a′i
and w = ai . In this case, we do have τ (w′) > τ(ai+1) and
τ (w) ≤ τ (ai+1) . Now, suppose that τ (ai) > τ(ai+1) . Note
that we can always order the vertices of T (ai) with respect
to τ in such a way that τ (ai) ≥ v for all v ∈ V (T (ai)) . By
induction hypothesis, every time we pick a descendant y
of ai , τ (y) < τ(ai) , so w can be found by iteratively fol-
lowing the descendants of ai and choosing the first one
whose time is at most τ (ai+1) (which exists since all
leaves have thesame timing).

Note that by adding the transfer edge (ŵ, âi+1) , the
times τ of every edge have remained unchanged and still
satisfy the time-consistency definition, with the excep-
tion of the edges linking w′, ŵ , and w, those linking
a′i+1, âi+1 , and ai+1 , as well as the new transfer edge. Since
τ (ŵ) = τ (âi+1) is made explicit on line 16, to conclude
the proof it suffices to show that τ (w′) > τ(ŵ) > τ(w)
and that τ (a′i+1) > τ(âi+1) > τ(ai+1) . By induction we
know that τ (w′) > τ(w) and that τ (a′i+1) > τ(ai+1) (this
holds before and after the transfer insertion because they
were not changed). Using these inequalities we have that:

τ (âi+1) =
min(τ (w′), τ (a′

i+1
))+ τ (ai+1)

2
<

τ(a′
i+1

)+ τ (a′
i+1

)

2
= τ (a′i+1)

statement. Assume that the algorithm handles the char-
acters of C in order c1, . . . , cm in the main while loop.
Then we claim that in the network G obtained after fin-
ishing the i-th iteration and handling c1, c2, . . . , ci , for
every j ≤ i , there exists a unique node v ∈ Vcj (l) that
reaches every node in G[Vcj (l)] . This shows the desired
property since it will hold for j = m , i.e. for every char-
acter. As a base case, consider i = 0 . Then it is true that
for j ≤ i , the desired node v exists (because there is no cj

τ
(
ŵ
)
=

min
(
τ
(
w′
)
, τ
(
a′i+1

))
+ τ (ai+1)

2
<

τ
(
w′
)
+ τ

(
w′
)

2
= τ

(
w
′
)

since min(τ (w′), τ (a′i+1)) ≤ τ (w′) and τ (ai+1) < τ(w′)
both hold. Note that it is also true that

since min(τ (w′), τ(a′
i+1

)) > τ(ai+1) (because τ(w′) > τ(ai+1)
and τ (a′i+1) > τ(ai+1) both hold). Using the same argu-
ments, we have

τ (ŵ) >
τ(ai+1)+ τ (ai+1)

2
= τ (ai+1) ≥ τ (w)

Page 13 of 19López Sánchez and Lafond Algorithms for Molecular Biology (2024) 19:6

to satisfy). Now, assume that i > 0 and that before enter-
ing the i-th iteration, the statement holds for every cj with
j ≤ i − 1.

After we are done handling ci on the i− th iteration
we know that there exists a vertex a1 ∈ Xci such that
τ (a1) ≥ τ (ah) for all ah ∈ Xci . In particular, when equal-
ity holds for some ah , it must be that τ (a1) = τ (a2) . In
this case, when the algorithm iterates on a1 , we get
(w′,w) = (a′1, a1) and the corresponding transformation
yields G�(a1, a2) . In this case, we claim that the vertex
â1 created by the subdivision of the edge (a′1, a1) ∈ Es
will remain as the unique source for Vci(l) . To see this
first note that a1 has no incoming edge from Vc(l) at the
start of the iteration, because if that was not the case then
c ∈ l(a′1) and so a1 would not have been a first-appear-
ance node in the first place. This in turn implies that â1
has no incoming edge after the i-th iteration, since all
other transfer heads are added above a2, . . . , ak . Addi-
tionally, â1 will become the first-appearance node for its
corresponding subtree. After applying G�(a1, a2) , â1 now
reaches the new parent â2 of a2 and all its descendants in
TG . Subsequently, we will now choose a descendant w of
a2 from which we will add a new transfer to the parent
node â3 of a3 . In this way, â1 will also reach a3 and all of
its descendants. We will continue adding transfer oper-
ations in this way so that finally â1 will be able to reach
the last vertex of Xcj , ak and all of its descendants. Note
that any node of Vci(l) is reachable by an element of Aci ,
thus after the i− th iteration â1 reaches every node in the
G[Vci(l)] subgraph.

On the other hand, when we have the strict inequality,
i.e. when τ (a1) > τ(a2) , then the first chosen w is distinct
from a1 , and using the same arguments, we see that a1 is
the unique origin for Vci(l).

We must also argue that the i-th iteration does not
“break” a cj with j < i . Consider such a cj . By induction,
before the i-th iteration, G[Vcj (l)] had a unique origin v.
Suppose that during the i− th iteration of the main loop
we created some transformation G�(w, ah) after which
some node, say z, that possesses cj cannot be reached by
v in the transformed graph. Let w′, a′h be the parents of
w and ah , respectively, before the addition of the transfer.
Also let ŵ and âh be the nodes which were created by this
transformation.

First assume that z = ŵ . Then cj /∈ l(w′) , as otherwise
if cj ∈ l(w′) , by induction, v would reach w′ and thus also
reach ŵ = z . But because cj /∈ l(w′) , cj /∈ l(w′) ∩ l(w) and
so the algorithm would not have put cj in ŵ = z , a contra-
diction. By the same argument, z = âh . Thus, z was pre-
sent in G before the insertion of the transfer.

Next, assume that cj /∈ l(ŵ) and cj /∈ l(âh) . If v can-
not reach z anymore, every path from v to z in G[Vcj (l)]

must have been going through (w′,w) or (a′h, ah) before
the transfer insertion. But then, cj ∈ l(w′) ∩ l(w) and
cj ∈ l(a′h) ∩ l(ah) , and the algorithm would have put
cj ∈ l(ŵ) and cj ∈ l(âh) , a contradiction.

Then either cj ∈ l(ŵ) , cj ∈ l(âh) or cj ∈ l(ŵ) ∩ l(âg) .
Assume cj ∈ l(ŵ) . By line 15, we know that this would
only be possible if cj ∈ l(w′) ∩ l(w) . So any path from v
to z in Vcj (l) that used the (w′,w) edge can now use the
edges (w′, ŵ), (ŵ,w) to reach z. If cj ∈ l(âh) as well, the
same idea applies, and we get that any path from v to z is
still usable, albeit with either ŵ or âh as an additional ver-
tex. So it must be that cj /∈ l(âh) , and that all paths used
(a′h, ah) . As before, this means that cj ∈ l(a′h) ∩ l(ah) and
that we should have cj ∈ l(âh) , a contradiction. This cov-
ers the case cj ∈ l(ŵ) . The case cj ∈ l(âh) can be handled
in the same manner.

We then show that for each support edge
(u, v) ∈ ES , c ∈ l(u) implies that c ∈ l(v) . We argue that
this property holds before and after any transfer edge is
inserted. Notice that initially, when G is just a copy of T
and l a copy of � , c ∈ l(u) implies c ∈ l(v) because � is a
no-loss labeling. Now suppose inductively that the prop-
erty holds before we insert some transfer (ŵ, âi+1) by
line 13. It suffices to argue that the property holds on the
support edges (w′, ŵ), (ŵ,w), (a′i+1, âi+1) , and (âi+1, ai+1) ,
as defined in the algorithm, because no other support
edge is modified. Let c′ ∈ l(w′) (we distinguish c′ from c,
the latter being the c the algorithm is currently iterating
on). Then by assumption that the property held before
the transfer addition, we must have c′ ∈ l(w) and, because
c′ ∈ l(w) ∩ l(w′) , c′ will be added to l(ŵ) , as desired. The
same argument holds for c′ ∈ l(a′i+1) and the fact that
c′ ∈ l(âi+1) . Now let c′ ∈ l(ŵ) . We want to argue that
c′ ∈ l(w) . If c′ ∈ l(w′) , then again by assumption we have
c′ ∈ l(w) as well and our property holds. So suppose that
c′ /∈ l(w′) . The algorithm puts l(ŵ) = (l(w) ∩ l(w′)) ∪ {c}
where c is the character of the current iteration, which
means that only c = c′ is possible. Notice that the algo-
rithm chooses the edge (w,w′) in the subtree TG(a′i) ,
where a′i has child ai that is a first-appearance node for
c. By assumption, every descendant of ai in the support
tree possesses c, so only w′ = a′i is possible. Thus w = ai
and c ∈ l(ai) = l(w) , as desired. Finally, let c′ ∈ l(âi+1) .
If c′ ∈ a′i+1 , by assumption c′ ∈ l(ai+1) and we are done.
Otherwise, as the previous case we must have c′ = c and,
since ai+1 is a first-appearance for c, we have c ∈ l(ai+1)
as desired. �

Theorem 10 Algorithm 2 solves the Pre-labeled Tree
Completion problem correctly in time O(|C|2|S| + |C||S|2).

Page 14 of 19López Sánchez and Lafond Algorithms for Molecular Biology (2024) 19:6

Proof By Lemma 8, the network G output by the algo-
rithm has T as its base tree and is time-consistent. Then
by Lemma 9, the output labeling l preserves the pre-labe-
ling � and explains S . Thus, the output is correct.
As for the running time, the complexity is dominated by
the main while loop over c ∈ C . Note that first-appear-
ance nodes partition the leaves of G[Vc(l)] , and so each
Ac has at most |S| elements and, for each c we add at
most |S| transfers. It follows that the final network G
output by the algorithm has at most O(|C||S| + |V (T)|)
nodes. Let us denote n = |V (G)| ≤ |C||S| + |V (T)| .
For a given c ∈ C , computing the first-appearance
nodes can be done in time O(n) and sorting them takes
time O(n log n) . Then for each of the O(n) nodes in Xc ,
we must find a descendant w in time O(n). The other
operations take constant time. Thus, each iteration of
the main loop takes time O(n log n+ n2) = O(n2) . This
is repeated O(|C|) times, and thus the complexity is
O(|C|n2) = O(|C| · (|C||S| + |V (T)|)) . The claimed com-
plexity follows from |V (T)| ∈ O(|S|) since T is a tree on
leafset S . �

On minimizing the number of transfers in a completion
We have shown that any tree whose leaves are mapped to
S can explain S . The tree completion therefore becomes
more interesting in the minimization variant:

The Minimum Perfect Transfer Completion problem
Input. A set of taxa S on characters C , a tree T with S

-map σ.
Output. A PTN (G, σ) for S whose base tree is T that

contains a minimum number of transfer edges.
Note that the above problem does not impose a pre-

labeling of T. However, one such labeling � that is natural
is the one where maximal subtree containing a charac-
ter are assigned that character, which we call the Fitch
labeling.

Definition 11 Let T be a tree with S-map σ , where S
are on characters C . The Fitch-labeling of T is the labe-
ling � of T such that, for each c ∈ C , we put c ∈ �(v) if and
only if all leaves descending from v contain c.

The Fitch-labeling can be combined with Algorithm 2
to obtain basic bounds on the number of transfers
required.

Proposition 12 Let T be a tree with S-map σ , where S
is on characters C . Let � be the Fitch labeling for T, and for
c ∈ C , let Ac be the set of first-appearance nodes of c under
� . Then

• any PTN for S with base tree is T requires at least
maxc∈C(|Ac| − 1) transfer edges;

• there exists a PTN for S with base tree T with at most ∑
c∈C(|Ac| − 1) transfer edges. Moreover, Algorithm 2

returns such a PTN when given pre-labeling �.

Proof Let (G, σ) be a PTN for S with base tree T. Let
c ∈ C be such that the number of first-appearance nodes
in Ac is maximum. Notice that all nodes of V (G) ∩ V (T)
that do not descend from a first-appearance node in Ac
cannot contain c in any labeling of G by Lemma 4 (since
they have a descendant not possessing c, such a node is
in Fc). Therefore, any solution for T must add at least
|Ac| − 1 transfers to T to be able to connect the first-
appearance subtrees. Thus G requires at least |Ac| − 1
transfers.

Now consider the output of Algorithm 2 on pre-labe-
ling � . For each c ∈ C , the algorithm adds at most |Ac| − 1
transfer arcs when it considers c in its while loop (not-
ing that the number of first-appearance nodes for c
never increases in the algorithm). By Theorem 10, the
algorithm correctly returns a PTN, which has at most ∑

c∈C(|Ac| − 1) transfers. �

Corollary 13 Suppose that Algorithm 2 is given T ,S ,
and the Fitch-labeling � . Then it is a |C|-approximation,
i.e. it outputs a PTN with at most |C| times more transfers
than an optimal solution.

Proof Using the notation of Proposition 12, it states
that an optimal PTN needs at least |Ac| − 1 , and Algo-
rithm 2 adds at most |C|(|Ac| − 1) transfers. �

Do note that Algorithm 2 does not always output an
optimal solution to the Minimum Perfect Transfer Com-
pletion problem. To see that Algorithm 2 can be subop-
timal, consider Fig. 5 and the explanation in the caption.

The cases in which Algorithm 2 is suboptimal appear
to have a common cause. The algorithm tends to add
transfers as high as possible in the tree, whereas the opt-
mal solution would add more transfers lower in the tree,
but with the advantage of being reusable by more char-
acters. For instance in Fig. 5, a is greedily transferred by
itself and two more separate transfers are required for b,
whereas the optimal solution reuses the same transfers
for both a and b. It appears difficult to determine when to
add more transfers lower and when not to, which leads us
conjecture that the Minimum Perfect Transfer Comple-
tion is NP-hard.

We must reckon that a |C|-approximation is far from
interesting. We conclude by suggesting a candidate

Page 15 of 19López Sánchez and Lafond Algorithms for Molecular Biology (2024) 19:6

approximation algorithm that combines both algorithms
presented here. Suppose that, given T and Fitch-labeling
� , we obtain G and l from Algorithm 2. A simple heu-
ristic post-processing step can then be applied to detect
unneeded transfers. That is, for each transfer edge (u, v)
of G, consider the network G − (u, v) obtained by remov-
ing (u, v) and the resulting subdivision nodes. Then, run
Algorithm 1 to check if G − (u, v) is a PTN for S . If so,
we know that (u, v) can safely be removed and we repeat.
We try every such transfer edge until all of them are nec-
essary. With this modified algorithm, we were unable to
generate instances with more than twice as many trans-
fers as the optimal solution. This suggests that it might
not be far from optimal. We conjecture that Algorithm 2,
combined with the above post-processing step, achieves a
constant factor approximation.

The PTN reconstruction problem
We now study the variant in which only S and C are
known, and no tree is given. Note that by Theorem 10,
there is no feasibility problem, since a solution always
exists. That is, we can take any tree T with any S-map
σ , run Algorithm 2 using the Fitch-labeling, and obtain
a PTN for S . The minimization variant has more appeal.

The Minimum Perfect Transfer Reconstruction
problem

Input. A set of taxa S on characters C;
Output. A PTN (G, σ) for S with a minimum number

of transfer edges.
This does not appear to be an easy algorithmic prob-

lem. Proposition 12 suggests a (seemingly) simple
approach: find a tree that minimizes the total number of
first-appearance nodes, over all characters. This does not
guarantee that the resulting network will minimize trans-
fers, and even finding a tree that minimizes the number
of first-appearance nodes appears hard to find. We con-
jecture that both problems are NP-hard, i.e. finding a
PTN (G, σ) for S with a minimum number of transfers,

and finding a tree with S-map σ with a minimum number
of first-appearance nodes.

In the following, we instead focus on providing bounds
on the number of transfers required if k := |C| characters
are present, in the worst case. It should be intuitive that
the taxa set that will require the most transfers is when
S = 2C , i.e. S is the power set of C . When this is the case,
we show that, up to a linear factor, an exponential number
of transfers (with respect to k) is required and sufficient.

Lemma 14 Any set of taxa S on a character set C of k
characters can be explained by a tree-based network G
that has at most 2k − (k − 1) transfers.

Proof Let S be a set of taxa on characters
C = {c1, c2, . . . , ck} . We will assume that no two elements
of S are identical (as two identical taxa can use the same
transfers). We will further assume that S = 2C contains
every subset of C . Note that if we can explain S with at
most 2k − (k − 1) transfers, then we can explain any
S ′ ⊆ S with at most that many transfers. We will first
show how to construct a base tree T for G from which we
will then derive G. Let T be a rooted complete binary tree
with exactly 2k leaves and root ρ . Let lb : V (T) → {0, 1}
be a labeling such that for every inner node u ∈ V (T)
with v, w as children we have that lb(v) = 0 and lb(w) = 1
(the label of the root is not important). For an example of
this construction, see Fig. 6.
Let L = {L1, L2, . . . , Lk} be a partition of V (T) \ {ρ} such
that a vertex u ∈ Li with i ∈ [k] if and only if the unique
path from u to the root contains exactly i edges. We will
call each Li a level of T.

Consider the C-labeling l such that, for each i ∈ [k] and
u ∈ Li with lb(u) = 1 , u is a first-appearance of ci . Note
that such a C-labeling can be achieved by adding charac-
ter ci to each node descending from every such u, and not
adding ci to any other node. For each ci ∈ C , we denote by
Ai its set of first-appearance nodes under l. Notice that

Fig. 5 The greedy Algorithm 2 can add more transfers than the minimum. 1 A network G whose leaves are on two characters a and b. 2 One
possible solution output by Algorithm 2. The left clade is chosen to originate a and a transfer is greedily added above all the a’s on the right side.
Then, the left clade is also chosen to originate b, but for that two more separate transfers are added. 3 A solution that is somewhat less natural,
but with one less transfer

Page 16 of 19López Sánchez and Lafond Algorithms for Molecular Biology (2024) 19:6

|Ai| = 2i−1 , since Li has exactly 2i nodes and, by defini-
tion, there exist 2i−1 nodes labeled as 1.

We argue that under l, the leaves of T are in bijection
with S , and that l can serve as the S-map for T. There are
2k = |S| leaves, so it suffices to show that for any distinct
u, v ∈ L(T) , l(u) = l(v) . Let z = lca T (u, v) and let z1, z2
be the two children of z. Note that z1, z2 are in the same
level, say Li for some i ∈ [k] . Moreover, lb(z1) = lb(z2) ,
implying that one of u has ci and the other does not. Then
l(u) = l(v).

Finally, we will create a set of transfer edges ET for T in
the following way: we use Algorithm 2 and give it l as a
pre-labeling.

Recall that for each character ci , the algorithm adds
at most |Ai| − 1 = 2i−1 − 1 transfer edges. Since
2i−1 − 1 transfers will be added to T per level Li with
i ∈ {1, 2, . . . , k} , this results in at most

added transfers. �

Lemma 15 Let C be a set of k characters. Then there
exists a set of taxa S on characters C such that any PTN
for S has at least 2k/(3k)− 1 transfer edges.

Proof Let S = 2C be the power set of C . Let (G, σ) be a
PTN for S and let T be the base tree of G. Let � be Fitch-
labeling of T. In what follows, all first-appearance nodes
of T are assumed to be with respect to �.

k∑

i=1

(2i−1 − 1) = 2
k − k − 1

Let A(T) be the set of nodes of T that are a first-appear-
ance node of at least one character of C . We argue that
|A(T)| ≥ 2k/3 . To achieve this, we describe a partial
injective function f : L(T) → A(T) that maps some
leaves of T to a first-appearance node. By partial injec-
tive function, we mean that perhaps not all leaves are
mapped, but no two mapped leaves map to the same
node. A cherry of T is a pair of leaves that have the same
parent. A non-cherry leaf is a leaf that is not in a cherry.
Note that since L(T) is in bijection with S we will refer to
the leaves of T as taxa, with the understanding that leaves
are subsets of C.

First let x, y be leaves that form a cherry in T. Then
since all taxa are distinct, x, y disagree on at least one
character c, and hence one of x or y is a first-appearance
node of c, let us say x without loss of generality. Then we
put f (x) = x (and leave f(y) undefined). Now let N ′ be
the set of non-cherry leaves of T. For each x ∈ N ′ such
that x is a first-appearance node for some character, put
f (x) = x.

Next let N = N ′ \ A(T) , i.e. N contains non-cherry
leaves that are not a first-appearance node, for any char-
acter. For x ∈ N , denote by px the parent of x in T. Let
us denote the set of nodes {px : x ∈ N } as marked nodes.
For two distinct marked nodes px, py , we say that py is a
closest marked descendant of px if py ≺ px and there is
no marked node on the path between px and py , except
px and py themselves. Suppose that x ∈ N is such that px
has at least one closest marked descendant, say py . We
argue that there is a first-appearance node z satisfying
py � z ≺ px . This situation is illustrated in Fig. 7.

To see this, notice that px is marked because x is not
a first-appearance. This means that for every c in x, all

Fig. 6 An illustration of T with k = 3 and |S| = 8 . Each color corresponds to a distinct character. Each node labeled as 1 is a first-appearance
of the character associated with that color. Notice that each level has its corresponding character

Page 17 of 19López Sánchez and Lafond Algorithms for Molecular Biology (2024) 19:6

descending leaves of px contain c. This includes y, and so
x ⊆ y . Since x and y have distinct characters, there must
be a character c′ such that c′ is in y but c′ is not in x. Since
y is not a first-appearance of c′ , all descendants of py have
c′ . Hence, there is a first-appearance node z of c′ that is
an ancestor of py , but a strict descendant of px (because
not all descendants of px have c′). We put f (x) = z . Note
that there may be multiple choices for z, in which case
we choose arbitrarily. The important property is that
whichever choice is made, z is a strict descendant of px ,
and not a strict descendant of any marked py ≺ px . This
completes the description of f.

Suppose that px, px′ are distinct marked nodes that
both have a closest marked descendant. Notice that
f(x) and f (x′) must be distinct. Indeed, if px and px′ are
incomparable, this is obvious since f(x) and f (x′) are
strict descendants of px and px′ , respectively. If instead
px ≺ px′ , then f(x) is a strict descendant of px , whereas
f (x′) is either a closest marked descendant of px′ , or
an ancestor of one of those nodes, implying that f (x′)
cannot be a strict descendant of px . One can thus see
that f is injective, since it either maps leaves to them-
selves, or children of marked nodes to distinct internal
nodes.

Now consider the set of leaves x ∈ N such that px has
no marked descendants. Note that all these marked px
nodes are pairwise incomparable. Moreover, any such
px has a leaf child x, and another child with at least two
leaves (if the other child was a single leaf, px would form
a cherry and x would not be in N ′). Since any tree with at
least two leaves has a cherry, px has a descending cherry,
and in fact each px is the ancestor of a distinct cherry. It
follows that the number of px with no marked descend-
ant is at most the number of cherries.

We can finally relate the number of first-appearances
to the number of taxa as follows. Let C be the number
of cherries of T; let NA be the number of non-cherry

leaves that are first-appearances; let NM be the number of
leaves in N whose parent has a marked descendant; and
let NX be the number of leaves in N whose parent has no
marked descendant. Then

and, owing to our partial injection f,

We have argued just above that NX ≤ C , and so we can
infer the chain of inequalities

and we get |A(T)| ≥ |L(T)|/3 = 2k/3.

Each node of A(T) is a first-appearance of some c ∈ C .
Therefore, by the generalized pigeonhole principle, some
character c of C must have at least |A(T)|/|C| ≥ 2k/(3k)
first-appearance nodes in T. By Proposition 12, at least
that many transfers, minus 1, need to be added to T to
explain S . �

Open problems
We conclude this section with some open problems
regarding all problems mentioned in this paper.

• Our algorithm for the recognition problem takes
time O(|C||V (G)|2) . Can this be improved to
O(|C||V (G)|) , or even O(|C| + |V (G)|)?

• Is the minimum tree completion problem NP-hard?
• Does the greedy Algorithm 2 achieve a constant fac-

tor approximation, with the post-processing men-
tioned in the tree completion section?

• Is the minimum perfect transfer reconstruction
NP-hard?

• Suppose that the taxa set is S = 2C for characters C .
Then what exactly is the minimum number of trans-
fers of a PTN for S?

• How can our model be extended to characters with
multiple states? And would the underlying recogni-
tion problem be easy?

|L(T)| = 2C + NA + NM + NX

|A(T)| ≥ C + NA + NM

C + NA + NM =
2C

3
+ NA + NM +

C

3

≥
2C

3
+ NA + NM +

NX

3

≥
1

3
(2C + NA + NM + NX)

≥
1

3
|L(T)|

Fig. 7 An illustration of f (x) = z for a marked node px that has a
closest marked descendant py . Here, the characters of x must
be a subset of the characters of y, as otherwise x would be a first
appearance. We can then argue that a character of y \ x has its first
appearance between px and py

Page 18 of 19López Sánchez and Lafond Algorithms for Molecular Biology (2024) 19:6

Conclusion
In this contribution, we have introduced perfect transfer
networks (PTNs) as a model that aims to combine the
structural properties of tree-based networks with the
classical notion of perfect characters. In the absence of
HGT events, PTNs coincide with the notion of perfect
phylogenies. To better understand these, we studied
their properties, stated the main differences between
them and recombination networks as well as perfect
phylogeny networks which is to our knowledge the closest
model related to ours. Additionally, we explored several
algorithmic challenges that result from this model with
potential applications for HGT inference methods using
character-based information that does not rely on sequence
similarities. To the best of our knowledge, this is the initial
theoretical endeavor employing the “once acquired never
lost” principle through tree-based networks for inferring
HGT events. While we acknowledge the simplicity of this
model, it represents an initial stride towards incorporating
additional conditions. Our intention is to develop more
intricate models that better align with the complexity of
biological systems.

Although widely used throughout the literature, perfect
characters impose strong restrictions for our model, since
each character is allowed to change of state at most once.
A potential extension of our model would be to include
different models for character state changes as in Dollo
parsimony [57]. This model allows losing an acquired
character but not gaining it twice. This assumption has been
shown to be more suitable for complex characters such as
restriction sites and introns [55]. Another possible extension
of our model would be to include expression levels of the
different characters instead of discrete changes which is a
problem similar to that of multi-state perfect phylogenies
[58].

Several other questions seem to be appealing for future
work. Most importantly, since finding experimental
datasets that use gene expression seems like a
challenging task, the generation of in-silico datasets to
test our algorithms seems to be a pertinent solution.
Nevertheless, to our knowledge there is no simulation
framework that combines evolutionary histories with
gene expression data. Therefore, a future direction for
this project could also be the design of a simulation
environment that is able to generate this type of data.

Acknowledgements
The authors would like to thank the reviewers for their helpful comments and
for pointing out paper [37].

Author contributions
 Both authors contributed equally for the development of this article.

Funding
Alitzel López Sánchez acknowledges financial support from the programme
de bourses d’excellence en recherche from the University of Sherbrooke.

Manuel Lafond acknowledges financial support from the Natural Sciences
and Engineering Research Council (NSERC) and the Fonds de Recherche du
Québec Nature et technologies (FRQNT)

Availability of data and materials
not applicable.

Declarations

 Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 31 March 2023 Accepted: 25 October 2023

References
 1. Koonin EV, Makarova KS, Aravind L. Horizontal gene transfer in

prokaryotes: quantification and classification. Ann Rev Microbiol.
2001;55(1):709–42.

 2. Thomas CM, Nielsen KM. Mechanisms of, and barriers to, horizontal gene
transfer between bacteria. Nat Rev Microbiol. 2005;3(9):711–21.

 3. Keeling PJ, Palmer JD. Horizontal gene transfer in eukaryotic evolution.
Nat Rev Genet. 2008;9(8):605–18.

 4. Hotopp JCD. Horizontal gene transfer between bacteria and animals.
Trends Genet. 2011;27(4):157–63.

 5. Irwin NA, Pittis AA, Richards TA, Keeling PJ. Systematic evaluation of
horizontal gene transfer between eukaryotes and viruses. Nat Microbiol.
2022;7(2):327–36.

 6. Anselmetti Y, El-Mabrouk N, Lafond M, Ouangraoua A. Gene tree and spe-
cies tree reconciliation with endosymbiotic gene transfer. Bioinformatics.
2021;37:120–32.

 7. Trejo-Becerril C, Pérez-Cárdenas E, Taja-Chayeb L, Anker P, Herrera-
Goepfert R, Medina-Velázquez LA, Hidalgo-Miranda A, Pérez-Montiel D,
Chávez-Blanco A, Cruz-Velázquez J, et al. Cancer progression mediated by
horizontal gene transfer in an in vivo model. PloS ONE. 2012;7(12):52754.

 8. Ravenhall M, Škunca N, Lassalle F, Dessimoz C. Inferring horizontal gene
transfer. PLoS Comput Biol. 2015;11(5):1004095.

 9. Bansal MS, Alm EJ, Kellis M. Efficient algorithms for the reconciliation
problem with gene duplication, horizontal transfer and loss. Bioinformat-
ics. 2012;28(12):283–91.

 10. Doyon J-P, Scornavacca C, Gorbunov KY, Szöllősi GJ, Ranwez V, Berry V.
An efficient algorithm for gene/species trees parsimonious reconcili-
ation with losses, duplications and transfers. In: RECOMB International
Workshop on Comparative Genomics. Springer; 2010. 93–108.

 11. Hellmuth M, Huber KT, Moulton V. Reconciling event-labeled gene trees
with mul-trees and species networks. J Math Biol. 2019;79(5):1885–925.

 12. Delabre M, El-Mabrouk N, Huber KT, Lafond M, Moulton V, Noutahi E,
Castellanos MS. Evolution through segmental duplications and losses: a
super-reconciliation approach. Algorithm Mol Biol. 2020;15(1):1–15.

 13. Tofigh A, Hallett M, Lagergren J. Simultaneous identification of duplica-
tions and lateral gene transfers. IEEE/ACM Trans Comput Biol Bioinform.
2010;8(2):517–35.

 14. Kordi M, Bansal MS. On the complexity of duplication-transfer-loss
reconciliation with non-binary gene trees. IEEE/ACM Trans Comput Biol
Bioinform. 2015;14(3):587–99.

 15. Jacox E, Weller M, Tannier E, Scornavacca C. Resolution and reconciliation
of non-binary gene trees with transfers, duplications and losses. Bioinfor-
matics. 2017;33(7):980–7.

 16. Schaller D, Lafond M, Stadler PF, Wieseke N, Hellmuth M. Indirect identifi-
cation of horizontal gene transfer. J Math Biol. 2021;83(1):1–73.

Page 19 of 19López Sánchez and Lafond Algorithms for Molecular Biology (2024) 19:6

 17. Geiß M, Anders J, Stadler PF, Wieseke N, Hellmuth M. Reconstructing gene
trees from fitch’s xenology relation. J Math Biol. 2018;77(5):1459–91.

 18. Hellmuth M, Seemann CR, Stadler PF. Generalized fitch graphs II: sets of
binary relations that are explained by edge-labeled trees. Discret Appl
Math. 2020;283:495–511.

 19. Lafond M, Hellmuth M. Reconstruction of time-consistent species trees.
Algorithm Mol Biol. 2020;15(1):1–27.

 20. Jones M, Lafond M, Scornavacca C. Consistency of orthology and paral-
ogy constraints in the presence of gene transfers. Peer Community in
Mathematical and Computational Biology. 2012.

 21. Boto L. Horizontal gene transfer in evolution: facts and challenges. Proc
Royal Soc B Biol Sci. 2010;277(1683):819–27.

 22. De Jong G. Phenotypic plasticity as a product of selection in a variable
environment. Am Nat. 1995;145(4):493–512.

 23. Rawat A, Seifert GJ, Deng Y. Novel implementation of conditional co-reg-
ulation by graph theory to derive co-expressed genes from microarray
data. BMC Bioinform. 2008. https:// doi. org/ 10. 1186/ 1471- 2105-9- S9- S7.

 24. Pontes B, Giráldez R, Aguilar-Ruiz JS. Configurable pattern-based
evolutionary biclustering of gene expression data. Algorithm Mol Biol.
2013;8(1):1–22.

 25. Alexander PA, He Y, Chen Y, Orban J, Bryan PN. The design and characteri-
zation of two proteins with 88% sequence identity but different structure
and function. Proc Natl Acad Sci. 2007;104(29):11963–8.

 26. Bodlaender HL, Fellows MR, Warnow TJ. Two strikes against perfect
phylogeny. In: Kuich W, editor. International colloquium on automata,
languages, and programming. Berlin: Springer; 1992. p. 273–83.

 27. Fernández-Baca D. The perfect phylogeny problem. In: Cheng X, Du DZ,
editors. Steiner trees in industry. Berlin: Springer; 2001. p. 203–34.

 28. Bafna V, Gusfield D, Lancia G, Yooseph S. Haplotyping as perfect phylog-
eny: a direct approach. J Comput Biol. 2003;10(3–4):323–40.

 29. Iersel LV, Jones M, Kelk S. A third strike against perfect phylogeny. Syst
Biol. 2019;68(5):814–27.

 30. Della Vedova G, Patterson M, Rizzi R, Soto M. Character-based phylogeny
construction and its application to tumor evolution. In: Conference on
Computability in Europe. Springer; 2017.3–13.

 31. Pradhan D, El-Kebir M. On the non-uniqueness of solutions to the perfect
phylogeny mixture problem. In: RECOMB International Conference on
Comparative Genomics. Springer; 2018. 277–293.

 32. Malikic S, Mehrabadi FR, Ciccolella S, Rahman MK, Ricketts C, Haghshenas
E, Seidman D, Hach F, Hajirasouliha I, Sahinalp SC. Phiscs: a combina-
torial approach for subperfect tumor phylogeny reconstruction via
integrative use of single-cell and bulk sequencing data. Genome Res.
2019;29(11):1860–77.

 33. Sashittal P, Zaccaria S, El-Kebir M. Parsimonious clone tree reconciliation
in cancer. In: Leibniz International Proceedings in Informatics, LIPIcs.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik; 2021. 201:9

 34. Wang L, Zhang K, Zhang L. Perfect phylogenetic networks with recombi-
nation. J Comput Biol. 2001;8(1):69–78.

 35. Gusfield D, Eddhu S, Langley C. Optimal, efficient reconstruction of phy-
logenetic networks with constrained recombination. J Bioinform Comput
Biol. 2004;2(01):173–213.

 36. Gusfield D. ReCombinatorics: the algorithmics of ancestral recombination
graphs and explicit phylogenetic networks. Cambridge: MIT press; 2014.

 37. Nakhleh L, Ringe D, Warnow T. Perfect phylogenetic networks: a new
methodology for reconstructing the evolutionary history of natural
languages. Language. 2005;81(2):382–420.

 38. Nakhleh L. Phylogenetic networks. PhD thesis, The University of Texas at
Austin. 2004.

 39. Francis AR, Steel M. Which phylogenetic networks are merely trees with
additional arcs? Syst Biol. 2015;64(5):768–77.

 40. Pons JC, Semple C, Steel M. Tree-based networks: characterisations,
metrics, and support trees. J Math Biol. 2019;78(4):899–918.

 41. van Iersel L, Semple C, Steel M. Quantifying the extent of lateral
gene transfer required to avert a genome of eden. Bull Math Biol.
2010;72:1783–98.

 42. Camin JH, Sokal RR. A method for deducing branching sequences in
phylogeny. Evolution. 1965;19(3):311. https:// doi. org/ 10. 2307/ 24064 41.

 43. Avni E, Snir S. A new phylogenomic approach for quantifying horizontal
gene transfer trends in prokaryotes. Sci Rep. 2020;10(1):1–14.

 44. Pons JC, Semple C, Steel M. Tree-based networks: characterisations,
metrics, and support trees. J Math Biol. 2018;78(4):899–918. https:// doi.
org/ 10. 1007/ s00285- 018- 1296-9.

 45. Francis A, Semple C, Steel M. New characterisations of tree-based net-
works and proximity measures. Adv Appl Math. 2018;93:93–107. https://
doi. org/ 10. 1016/j. aam. 2017. 08. 003.

 46. Murakami Y. On phylogenetic encodings and orchard networks. PhD
thesis, TU Delft. 2021.

 47. Sanderson MJ, Hufford L. Homoplasy: the recurrence of similarity in
evolution. Amsterdam: Elsevier; 1996.

 48. Semple C, Steel M. Tree reconstruction from multi-state characters. Adv
Appl Math. 2002;28(2):169–84.

 49. Ringe D, Warnow T, Taylor A. Indo-european and computational cladistics.
Trans Philol Soc. 2002;100(1):59–129.

 50. Bourque G, Burns KH, Gehring M, Gorbunova V, Seluanov A, Hammell M,
Imbeault M, Izsvák Z, Levin HL, Macfarlan TS, Mager DL, Feschotte C. Ten
things you should know about transposable elements. Genome Biol.
2018. https:// doi. org/ 10. 1186/ s13059- 018- 1577-z.

 51. Altaf-Ul-Amin M, Kanaya S, Mohamed-Hussein Z-A. Investigating
metabolic pathways and networks encyclopedia of bioinformatics and
computational biology. Amsterdam: Elsevier; 2019. p. 489–503. https://
doi. org/ 10. 1016/ b978-0- 12- 809633- 8. 20140-4.

 52. Zachar I, Boza G. Endosymbiosis before eukaryotes: mitochondrial
establishment in protoeukaryotes. Cell Mol Life Sci. 2020;77(18):3503–23.
https:// doi. org/ 10. 1007/ s00018- 020- 03462-6.

 53. Wells JN, Feschotte C. A field guide to eukaryotic transposable elements.
Ann Rev Genet. 2020;54(1):539–61. https:// doi. org/ 10. 1146/ annur
ev- genet- 040620- 022145.

 54. Goyal A. Horizontal gene transfer drives the evolution of dependencies in
bacteria. iScience. 2022;25(5): 104312. https:// doi. org/ 10. 1016/j. isci. 2022.
104312.

 55. Felsenstein J. Inferring phylogenies. Sunderland: Sinauer Associates; 2004.
 56. Bordewich M, Semple C. A universal tree-based network with the mini-

mum number of reticulations. Discrete Appl Math. 2018;250:357–62.
 57. Farris JS. Phylogenetic analysis under Dollo’s Law. Syst Biol. 1977;26(1):77–

88. https:// doi. org/ 10. 1093/ sysbio/ 26.1. 77.
 58. Gusfield D. The multi-state perfect phylogeny problem with missing and

removable data: solutions via integer-programming and chordal graph
theory. J Comput Biol. 2010;17(3):383–99. https:// doi. org/ 10. 1089/ cmb.
2009. 0200.

 59. Cardona, Gabriel, Pons, Joan Carles, Rosselló Francesc. A reconstruction
problem for a class of phylogenetic networks with lateral gene transfers.
Algorithms for Molecular Biology. BioMed Central. 2015;10(1):1–15.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1186/1471-2105-9-S9-S7
https://doi.org/10.2307/2406441
https://doi.org/10.1007/s00285-018-1296-9
https://doi.org/10.1007/s00285-018-1296-9
https://doi.org/10.1016/j.aam.2017.08.003
https://doi.org/10.1016/j.aam.2017.08.003
https://doi.org/10.1186/s13059-018-1577-z
https://doi.org/10.1016/b978-0-12-809633-8.20140-4
https://doi.org/10.1016/b978-0-12-809633-8.20140-4
https://doi.org/10.1007/s00018-020-03462-6
https://doi.org/10.1146/annurev-genet-040620-022145
https://doi.org/10.1146/annurev-genet-040620-022145
https://doi.org/10.1016/j.isci.2022.104312
https://doi.org/10.1016/j.isci.2022.104312
https://doi.org/10.1093/sysbio/26.1.77
https://doi.org/10.1089/cmb.2009.0200
https://doi.org/10.1089/cmb.2009.0200

	Predicting horizontal gene transfers with perfect transfer networks
	Abstract
	Background
	Our contributions

	Introduction
	Preliminaries
	Phylogenetic Networks and tree-based networks
	Perfect transfer networks

	Properties of the perfect transfer model
	Perfect transfer networks versus perfect phylogenetic networks
	Perfect transfer networks versus recombination networks

	Algorithmic problems
	Recognizing perfect transfer networks
	The tree-completion problem
	On minimizing the number of transfers in a completion
	The PTN reconstruction problem
	Open problems

	Conclusion
	Acknowledgements
	References

