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Abstract 

Cancer progression and treatment can be informed by reconstructing its evolutionary history from tumor cells. 
Although many methods exist to estimate evolutionary trees (called phylogenies) from molecular sequences, 
traditional approaches assume the input data are error-free and the output tree is fully resolved. These assump-
tions are challenged in tumor phylogenetics because single-cell sequencing produces sparse, error-ridden data 
and because tumors evolve clonally. Here, we study the theoretical utility of methods based on quartets (four-leaf, 
unrooted phylogenetic trees) in light of these barriers. We consider a popular tumor phylogenetics model, in which 
mutations arise on a (highly unresolved) tree and then (unbiased) errors and missing values are introduced. Quar-
tets are then implied by mutations present in two cells and absent from two cells. Our main result is that the most 
probable quartet identifies the unrooted model tree on four cells. This motivates seeking a tree such that the number 
of quartets shared between it and the input mutations is maximized. We prove an optimal solution to this problem 
is a consistent estimator of the unrooted cell lineage tree; this guarantee includes the case where the model tree 
is highly unresolved, with error defined as the number of false negative branches. Lastly, we outline how quartet-
based methods might be employed when there are copy number aberrations and other challenges specific to tumor 
phylogenetics.
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Introduction
Cancer progression and treatment can be informed by 
reconstructing the evolutionary history of tumor cells [1]. 
Although many methods exist to estimate evolutionary 
trees (called phylogenies) from molecular sequences, tra-
ditional approaches assume the input data are error-free 
and the output tree is fully resolved. These assumptions 

are challenged in tumor phylogenetics because single-
cell sequencing produces sparse, error-ridden data and 
because tumors evolve clonally so the underlying tree is 
highly unresolved [2, 3]. Here, we study the theoretical 
utility of methods based on quartets (four-leaf, unrooted 
phylogenetic trees) and triplets (three-leaf rooted phylo-
genetic trees) in light of these barriers.

A quartet is an unrooted, phylogenetic tree with four 
leaves. Quartets have long been used as the building 
blocks for reconstructing the evolutionary history of 
species [4]. The reason quartet-based methods have gar-
nered such success in species phylogenetics is their good 
statistical properties under the Multi-Species Coalescent 
( MSC ) model [5, 6]. An MSC model species tree generates 
gene trees (note that a gene tree reflects the genealogical 
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history of a gene, which is passed down from ancestor to 
descendant, whereas the species tree governs the pool of 
potential ancestors). Arguably, one of the most important 
theoretical results from the last decade of systematics is 
that the most probable unrooted gene tree under the MSC 
is topologically equivalent to the unrooted model spe-
cies tree when considering four species [7]. For trees with 
more than four leaves, the most probable unrooted gene 
tree can be topologically discordant with the unrooted 
model species tree [8]. In such situations, the model spe-
cies tree is said to be in the anomaly zone or the offend-
ing gene tree is said to be anomalous. It is now widely 
recognized that anomalous gene trees can challenge tra-
ditional species tree estimation methods [9, 10].

The statistical theory described above has motivated 
the development of quartet-based methods (e.g., [11, 12]) 
and is central to their proofs of statistical consistency 
under the MSC. ASTRAL [12], in particular, has become 
a gold standard approach to multi-locus species tree 
estimation. Moreover, new and improved quartet-based 
methods are continually being developed [13–18]. Simi-
lar theory and methodology has been given for triplets: 
three-leaf, rooted, phylogenetic trees [19–21].

Inspired by these efforts, we study the utility of quar-
tets and triplets for estimating cell lineage trees under a 
popular tumor phylogenetics model [2, 22–24], in which 
mutations arise on a (highly unresolved) cell lineage tree 
according to the infinite sites model and then errors and 
missing values are introduced to the resulting mutation 
data in an unbiased fashion. The idea is that deviations 
from a perfect phylogeny can be attributed to sequenc-
ing errors, as data produced by single-cell protocols are 
notoriously error-prone and sparse. Although the infi-
nite sites plus unbiased error and missingness ( IS+UEM ) 
model generates mutations rather than gene trees, quar-
tets (or triplets) are implied by mutations that are present 
in two cells and absent from two cells (or one cell).

Our main result is that there are no anomalous quar-
tets under the IS+UEM model; this motivates seeking a 
cell lineage tree such that the number of quartets shared 
between it and the input mutations is maximized. We 
prove an optimal solution to this problem is a consist-
ent estimator of the unrooted cell lineage tree; this guar-
antee extends to the case of highly unresolved model 
trees, with error defined as the number of false nega-
tive branches. Somewhat surprisingly, our positive find-
ing for quartets does not extend to triplets, as there can 
be anomalous triplets under the IS+UEM model under 
reasonable conditions. These results generalize to any 
model of 2-state character evolution for which there are 
no anomalous quartets or triplets. An example of such 
a model is the infinite sites plus neutral Wright-Fisher 
( IS+nWF ) model [25, 26] and its approximations [46]. 

Under IS+nWF , mutations follow the IS assumption but 
evolve within a species tree, so deviations from a perfect 
phylogeny are due to genetic drift. Nevertheless, there are 
no anomalous triplets (see Additional file 1 of [47]) and 
no anomalous quartets (Theorem 1 in [48]; also see [49]), 
motivating the application of quartet-based methods to 
estimate species trees from low-homoplasy retroelement 
insertion presence/absence patterns [48, 50]. However, 
our work is largely motivated by tumor phylogenetics, 
so we conclude by outlining how quartet-based methods 
might be employed in this setting, given other important 
challenges like copy number aberrations  (CNAs) and 
doublets.

Background
We now provide some background on phylogenetic trees, 
models of evolution, and statistical consistency.

Phylogenetic trees
A phylogenetic tree is defined by the triple (g ,X ,φ) , where 
g is a connected acyclic graph, X is a set of labels (often 
representing species or cells), and φ is a bijection between 
the labels in X and leaves (i.e., vertices with degree 1) of g. 
Phylogenetic trees can be either unrooted or rooted, and 
we use u(T) to denote the unrooted version of a rooted 
tree T. Edges in an unrooted tree are undirected, whereas 
edges in a rooted tree are directed away from the root, 
a special vertex with in-degree 0 (all other vertices have 
in-degree 1). Vertices that are neither leaves nor the root 
are called internal vertices, and edges incident to only 
internal vertices are called internal edges (otherwise they 
are referred to as terminal edges). An interval vertex with 
degree greater than 3 (called a polytomy) can be intro-
duced to a tree by contracting one of its edges (i.e., delet-
ing the edge and identifying its endpoints). A refinement 
of a polytomy is the opposite of a contraction. If there 
are no polytomies in T, we say that T is binary or fully 
resolved; otherwise, we say that T is non-binary. We use 
the phrase highly unresolved to indicate that T contains 
many polytomies and/or that the polytomies in T have 
high degrees.

As previously mentioned, many methods for spe-
cies tree estimation are based on quartets. A quartet 
is an unrooted, binary tree with four leaves. We denote 
the three possible quartets on X = {A,B,C ,D} as 
q1 = A,B|C ,D , q2 = A,C|B,D , and q3 = A,D|B,C . A 
set of quartets can be created from an unrooted tree T 
by restricting T to every possible subset of four leaves 
(i.e., deleting the other leaves from T and then suppress-
ing vertices of degree 2). The resulting set Q(T) is called 
the quartet encoding of T, and we say that T displays 
quartet q if q ∈ Q(T ) . Importantly, if T contains polyto-
mies, restricting T to some subsets of four labels will not 
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produce a (binary) quartet. Some selections will produce 
star trees, which do not provide any topological informa-
tion. We use T |S to denote T restricted to label set S (note 
that if branch parameters are associated with T, they are 
added together when suppressing vertices of degree 2). 
The concepts described above for quartets extend to tri-
plets. A triplet is a rooted, binary tree with three leaves, 
and we denote the three possible triplets on X = {A,B,C} 
as tA = A|B,C , tB = B|A,C , and tC = C|A,B . Lastly, 
a bipartition or split of label set X partitions it into two 
disjoint subsets. It is easy to see that each edge in an 
unrooted tree induces a bipartition, and we use Bip(T) to 
denote the set of bipartitions induced by all edges in T.

Mutations and models of evolution
A mutation matrix M is an n× k matrix, where n is the 
number of rows (representing cells or species) and k is 
the number of columns (representing mutations). Col-
umns are also referred to as characters or site patterns. 
Our focus here is on 2-state characters, with Mi,j = 0 
indicating that mutation j is absent from cell i and 
Mi,j = 1 indicating that mutation j is present in cell i. In 
tumor phylogenetics, mutations are called in reference to 
a healthy cell, which is the root of the cell lineage tree; 
thus, 0 represents the ancestral state and 1 represents 

mutant/derived state (note that this interpretation of 
states 0 and 1 will only be important when looking at tri-
plets and not quartets).

Throughout this paper, we assume the mutation matrix 
D is generated under a hierarchical model with two steps 
(Fig. 1). 

1. A mutation matrix G is generated under some model 
M , parameterized by a rooted phylogenetic tree 
topology σ and a set � of associated numeric param-
eters. Importantly, model M given (σ ,�) defines a 
probability distribution on mutation patterns, and we 
assume mutations in G are independent and identi-
cally distributed (i.i.d.) according to this model. For 
simplicity of notation, we typically omit the depend-
ence on the numeric parameters in �.

2. Errors and/or missing values are introduced to the 
ground truth matrix G according to the UEM model 
(described below). This result of this process is the 
observed matrix D.

Hierarchical models of this form, denoted M+UEM , 
define a probability distribution on mutation patterns 
given their parameters. Thus, if we say that D is gen-
erated under the M+UEM model, then we assume the 
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Fig. 1 The schematic shows a model cell lineage tree, where the dashed lines and circles are “fake” edges and vertices, respectively. If we assume 
a mutation occurs on any non-fake edges with equal probability (as in [24]), then the probability of a mutation on any solid edge will be 1/11. 
Mutations cannot occur on any of the dashed edges. Data are generated from this model cell lineage tree in two steps. First, mutations arise 
on the tree under the IS model, producing data matrix G. Second, false positives (0 flips to 1; shown in red), false negatives (1 flips to 0; shown 
in blue), and missing values (0/1 flips to ?; shown in grey) are introduced to G under the UEM model, producing data matrix D 
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mutations in D are i.i.d. according to this model. We 
now describe the data generation steps in greater detail 
for a popular tumor phylogenetics model [2, 22–24].

Step 1: Infinite Sites (IS) model. For tumor phyloge-
netics, we take M to be the infinite sites (IS) model, so 
the mutation matrix G is generated under the IS model 
given a rooted cell lineage tree σ and a set � of edge 
probabilities that sum to 1. Specifically, every edge e in 
σ is associated with a numeric value p(e) ∈ � , indicat-
ing the probability that a mutation occurs on e. When a 
mutation occurs on e, all cells on a directed path from e 
to any of the leaves of σ are set to state 1; all other cells 
are set to state 0. Thus, a mutation corresponds to the 
bipartition induced by the branch on which it occurred. 
Internal edges on which mutations cannot occur are 
contracted, so that the probability of a mutation on any 
edge in σ is strictly greater than zero. Terminal edges 
on which mutations cannot  occur are not contracted; 
however, we refer to these edges and (the leaves inci-
dent to them) as “fake”.

Step 2: Unbiased Error and Missingness (UEM) model. 
If mutation matrix G is generated under the IS model 
given (σ ,�) , then reconstructing σ is trivial. However, for 
tumor phylogenetics, false positives and false negatives 
are introduced to G, producing the observed matrix D. 
This is done according to Eq. 1:

where 0 ≤ α < 1 and 0 ≤ β < 1 are the probability of 
false positives and false negatives, respectively. Simulta-
neously, missing values are introduced to G with proba-
bility 0 ≤ γ < 1 ; this can be incorporated into the model 
by multiplying each of the cases in Eq. 1 by (1− γ ).

Our goal is to estimate cell lineage trees under the 
IS+UEM model. An important property for phylogeny 
estimation methods is whether they are statistically con-
sistent under the model of interest.

Definition 1 (Statistical Consistency; see Section 1.1 of 
[27]) Let A be some model that generates mutations, and 
let D be a mutation matrix, with n rows (cells or species) 
and k columns (mutations), generated under A given 
rooted tree σ and numerical parameters � . We say that 
an estimation method is statistically consistent under A 
if for any ǫ > 0 , there exists a constant K > 0 such that 
when D contains at least K mutations, the method given 
D returns (the unrooted version of ) σ with probability at 
least 1− ǫ . Alternatively, we might say that the error in 

(1)

P(Di,j = x|α,β ,Gi,j = y) =











(1− α) if Di,j = 0 and Gi,j = 0

α if Di,j = 1 and Gi,j = 0

β if Di,j = 0 and Gi,j = 1

(1− β) if Di,j = 1 and Gi,j = 1

the tree estimated from D is zero with probability at least 
1− ǫ.

The idea is that as the number k of mutations goes 
towards infinity, the error in the estimated tree is zero 
with high probability. Tree error is typically defined as 
the number of false negative branches (i.e., branches in σ 
that are missing from the estimated tree) plus the num-
ber of false positive branches (i.e.,  branches in the esti-
mated tree that are missing from σ).

No anomalous quartets under an unbiased error 
and missingness model
To begin, we assume that the rooted cell lineage tree σ 
has four leaves; therefore, it must have one of five tree 
shapes shown in Fig. 2. Two of them display a star when 
unrooted, and the other three correspond to a quartet 
when unrooted. If mutations are generated i.i.d. under 
some model A given σ , there are 16 possible patterns on 
four cells, denoted {A,B,C ,D} . A quartet is implied by 
two cells being in state 1 and two cells being in state 0. 
Therefore, two patterns ( ABCD = 0011 and 1100) sup-
port quartet q1 = A,B|C ,D , two patterns (0101 and 1010) 
support quartet q2 = A,C|B,D , two patterns (0110 and 
1001) support quartet q3 = A,D|B,C , and the other 10 
patterns do not provide topological information. Hence-

forth, we denote the probability of quartets under model 
A given σ as PA(q1|σ) = PA(1100|σ)+ PA(0011|σ) , 
PA(q2|σ) = PA(1010|σ)+ PA(0101|σ) , and PA(q3|σ) =

PA(1001|σ)+ PA(0110|σ) . Now we consider quartet-
informative patterns generated from a model tree with 
more than four leaves.

Definition 2 (No anomalous quartets) We say that 
there are no anomalous quartets under model A given 
rooted tree σ if the following inequalities hold for every 
subset S of four species in σ . Let q1, q2, q3 denote the 
three quartets on S, and let i index {1, 2, 3} . 

1. If u(σ )|S = qi , PA(qi|σ) > PA(qj|σ) for all 
j ∈ {1, 2, 3} such that i  = j.

2. If u(σ )|S is a star, PA(q1|σ) = PA(q2|σ) = PA(q3|σ).

This brings us to the main result of this section.
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Theorem 1 There are no anomalous quartets under the 
IS+UEM model, assuming α + β �= 1.

The statement above directly follows from Lemma  1 
and Corollary 1.

Lemma 1 There are no anomalous quartets under the 
IS model. Moreover, all quartet-informative patterns 
have zero probability except for one or both of the patterns 
corresponding to u(σ ) when u(σ ) is not a star.

If σ has more than four leaves, we can restrict σ to 
any subset of four leaves and get a valid sub-model (i.e., 
a sub-model for which the probability of the mutation 
patterns on four cells is the same as under the larger 
model tree). For the IS model, the sub-model is formed 
by deleting the other leaves and adding branch param-
eters together when suppressing vertices of degree 2. 
The mutation pattern probabilities for the four cells 
under this sub-model will be the same as the larger 
tree because addition represents an or condition (i.e., 
a mutation occurring on this branch or on that branch 
will produce the same pattern when looking at only a 
subset of cells). Thus, it suffices to verify that there are 
no anomalous quartets for σ with four leaves. This can 
be done by considering a mutation occurring on each of 
the internal branches of all possible rooted tree shapes 

with four leaves (Fig.  2) and comparing the resulting 
pattern to the unrooted tree shape; see Additional file 1 
for details.

The following two lemmas will also be useful later.

Lemma 2 Let 0 ≤ α < 1 and 0 ≤ β < 1 . Then,

for α + β �= 1 . If α + β = 1 , the inequality in Eq.  2 
becomes an equality.

The statement above follows from expanding the polyno-
mials; see the Additional file 1 for details.

Lemma 3 If there are no anomalous quartets under 
model M , then there are no anomalous quartets under 
the M+UE model, assuming α + β �= 1.

Proof Taking any subset of four leaves, there are 16 
possible mutation patterns that may occur under model 
M . These are the two invariant patterns (0000 and 1111), 
the eight variant but quartet-uninformative patterns 
(1000, 0100, 0010, 0001, 0111, 1011, 1101, 1110), and 
the six quartet-informative patterns (1100, 0011, 0101, 
1010, 0110, 1001). For each pattern g listed above, we 

(2)

(

(1− β)2(1− α)2 + β2α2
)

− 2β(1− β)α(1− α)

=
(

1− (α + β)
)2

> 0

51 2 3 4

Quartet

Five possible rooted tree shapes with four leaves

Two possible unrooted tree shapes with four leaves

Select four leaves
from extended cell 
lineage tree 

Star

Fig. 2 There are five possible tree shapes with four leaves. Three of these tree shapes ( S1 , S2 , and S3 ) have a non-trivial unrooted topology (quartet). 
The other two tree shapes ( S4 and S5 ) have a trivial unrooted topology (star). Looking at Fig. 1, tree shapes S1–S5 are observed by sampling cells 
X1 = {1, 4, 10, 11} , X2 = {1, 7, 10, 11} , X3 = {1, 2, 10, 11} , X4 = {1, 9, 10, 11} , and X5 = {0, 1, 2, 3} , respectively
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enumerate all possible ways of introducing errors (false 
positives and false negatives); this gives us the prob-
ability of each of the 16 mutation patterns under the UE 
model given (α,β) . Now we need to put this informa-
tion together to get the probability of quartets under 
the M+UE model. First, we compute the probability of 
observing any quartet q from errors (false positives and 
false negatives) being introduced to the invariant and 
variant but quartet-uninformative characters; see Eq. 3.

(3)

f (α,β , σ) =
(

2α2(1− α)2
)

· PM(0000|σ)+
(

2β2(1− β)2
)

· PM(1111|σ)

+

(

(

α(1− α)2(1− β)
)

+
(

α2(1− α)β
)

)

·
(

PM(0001|σ)+ PM(0010|σ)+ PM(0100|σ)+ PM(1000|σ)
)

+

(

(

β(1− β)2(1− α)
)

+
(

β2(1− β)α
)

)

· (PM(1110|σ)+ PM(1101|σ)+ PM(1011|σ)+ PM(0111|σ));

see Additional file 1: Tables S1–S4 for details. Second, we 
repeat this calculation for the quartet-informative pat-
terns; see Table 1 and Additional file 1: Tables S5–S6 for 
details. Putting it all together gives us the probability of 
each quartet under the M+UE model

Table 1 List of mutation patterns with four cells {A, B, C ,D} that can be generated by introducing false positives and false negatives to 
pattern #12 ( G∗,j = 1100 ) and pattern #3 ( G∗,j = 0011 ) as well as their probabilities under the UE model

# of # of D∗,j derived from Quartet

FP FN PUE(D∗,j |α, β,G∗,j) G∗,j = 1100 G∗,j = 0011 supported by D∗,j

0 0 (1− β)2(1− α)2 1100 0011 A,B|C,D

0 1 β(1− β)(1− α)2 0100 0001 none

1000 0010 none

0 2 β2(1− α)2 0000 0000 none

1 0 (1− β)2α(1− α) 1110 1011 none

1101 0111 none

1 1 β(1− β)α(1− α) 0110 1001 A,D|B,C

0101 1010 A,C|B,D

1010 0101 A,C|B,D

1001 0110 A,D|B,C

1 2 β2α(1− α) 0010 1000 none

0001 0100 none

2 0 (1− β)2α2 1111 1111 none

2 1 β(1− β)α2 0111 1101 none

1011 1110 none

2 2 β2α2 0011 1100 A,B|C,D

The red values indicate a false positive introduced to G∗,j by flipping 0 to 1. The blue values indicate a false negative introduced to G∗,j by flipping 1 to 0. Similar tables 
for the other 14 patterns are provided in Additional file 1
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for i, j, k ∈ {1, 2, 3} such that i  = j  = k . Now we can com-
pute the difference in probabilities between quartets qi 
and qj under the M+UE model for any i, j ∈ {1, 2, 3} such 
that i  = j . By Lemma 1, we have

Assuming α + β �= 1 , this quantity is zero if 
PM(qi|σ) = PM(qj|σ) and greater than zero if 
PM(qi|σ) > PM(qj|σ) . Because there are no anomalous 
quartets under model M , the former will be the case if 
u(σ ) is a star; the latter will be the case if u(σ ) = qi . It fol-
lows there are no anomalous quartets under the M+UE 
model.  �

Note that the quantity α + β is unlikely to equal 1 in 
practice, as both probabilities should be less than 0.5. We 
now extend the result above to address unbiased missing 
values, in addition to errors.

Corollary 1 If there are no anomalous quartets under 
model M , then there are no anomalous quartets under 
the M+UEM model, assuming that α + β �= 1.

Proof If one or more of the values in a mutation pat-
tern is missing, then no quartet is displayed. Thus, 
unbiased missingness can be accounted for in the 
proof of Lemma  3 simply by updating PM(x|σ) to 
(1− γ )4 · PM(x|σ) . In this case, Eq. 5 becomes

which does not change our argument.  �

This concludes the derivation of the main result of this 
section (Theorem  1). Before moving on to triplets, we 
note that the difference in quartet probabilities (Eq.  6) 
depends on (1) the probability of false positives and 
negatives (specifically how close their sum is to one), 
(2) the probability of missing values, and (3) the prob-
ability of observing quartet-informative patterns under 
model M given σ . In the simulations performed by [24], 
the largest values of α , β , and γ were 0.001, 0.2, and 0.05, 
respectively. In this scenario with u(σ ) = qi , we have 
PIS+UEM(qi|α,β , γ , σ)− PIS+UEM(qj |α,β , γ , σ) = 0.52 · PIS(qi|σ) 

(4)

PM+UE(qi|α,β , σ) = f (α,β , σ)

+
(

(1− α)2(1− β)2 + α2β2
)

· PM(qi|σ)

+ 2αβ(1− α)(1− β) ·
(

PM(qj|σ)+ PM(qk |σ)
)

(5)
PM+UE(qi|α,β , σ)− PM+UE(qj|α,β , σ)

=
(

1− (α + β)
)2

·
(

PM(qi|σ)− PM(qj|σ)
)

.

(6)

PM+UEM(qi|α,β , γ , σ)− PM+UEM(qj|α,β , γ , σ)

=
(

1− (α + β)
)2

· (1− γ )4 ·
(

PM(qi|σ)− PM(qj|σ)
)

for any i, j ∈ {1, 2, 3} such that i  = j . The magnitude of 
PIS(qi|σ) depends on the lineage tree and the four cells 
sampled from it. We discuss sampling further in the con-
text of triplets; for now, we note that, in practical settings, 
PIS(qi|σ) may have a greater impact on the difference in 
quartet probabilities under the IS+UEM model than α , β , 
or γ.

Anomalous triplets under an unbiased error 
and missingness model
We now derive related results for triplets. To begin, we 
assume the rooted cell lineage tree σ has three leaves; 
therefore, it must have one of two topologies: binary 
or non-binary (Additional File 1: Fig  S1). If mutations 
are generated i.i.d. under some model A given σ , there 
are 8 possible patterns on three cells, denoted {A,B,C} . 
A triplet is implied by two cells being in state 1 (i.e., 
the mutant/derived state) and one cell being in state 0 
(i.e., the ancestral state) because the two cells harbor-
ing the mutation must have descended from a common 
ancestor cell also harboring the mutation. One pattern 
( ABC = 110 ) supports triplet tC = C|A,B , one pattern 
(101) supports triplet tB = B|A,C , one pattern (011) 
supports triplet tA = A|B,C , and the other five patterns 
do not provide topological information. Henceforth, we 
denote the probability of triplets under model A given σ 
as PA(tA|σ) = PA(011|σ) , PA(tB|σ) = PA(101|σ) , and 
PA(tC |σ) = PA(110|σ) . Now we consider triplet-inform-
ative patterns generated from a model tree with more 
than three leaves.

Definition 3 (No anomalous triplets) We say that there 
are no anomalous triplets under model A if the following 
inequalities hold for every subset S =  {X, Y, Z} of three 
species in σ . Let tX , tY , tZ denote the three triplets on S, 
and let i index {X, Y, Z}. 

1. If σ |S = ti , PA(ti|σ) > PA(tj|σ) for all j ∈ {X ,Y ,Z} 
such that i  = j.

2. If σ |S is non-binary, PA(tX |σ) = PA(tY |σ) = PA(tZ |σ).

This brings us to the main result of this section.

Theorem  2 There are no anomalous tri-
plets under the IS+UEM model, assuming one of 
two conditions: (1) α = 0 or (2) α + β �= 1 and 
PIS(100|σ) = PIS(010|σ) = PIS(001|σ) . Otherwise, there 
can be anomalous triplets under the IS+UEM model.
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The statement above directly follows from Lemma  4 
and Corollary 2.

Lemma 4 There are no anomalous triplets under the 
IS model. Moreover, all triplet-informative patterns have 
zero probability except for the pattern corresponding to σ 
when σ is not non-binary.

If σ has more than three leaves, we can restrict σ to 
any subset of three leaves and get a valid sub-model 
(i.e., a sub-model for which the probability of the muta-
tion patterns on three cells is the same as under the 
larger model tree, as discussed for quartets). Thus, it 
suffices to verify that there are no anomalous triplets 
for σ with three leaves. This can be done by considering 
a mutation occurring on each of the internal branches 
of all possible rooted tree shapes with three leaves 
(Additional File 1: Fig  S1) and comparing the result-
ing pattern to the tree shape; see Additional File 1 for 
details.

Lemma 5 If there are no anomalous triplets under model 
M , then there are no anomalous triplets under the M+UE 
model, assuming one of two conditions: (1) α = 0 or (2) 
α + β �= 1 and PM(100|σ) = PM(010|σ) = PM(001|σ) . 
Otherwise, there can be anomalous triplets under the 
M+UE model.

Proof Taking any subset of three leaves, there are 8 
possible mutation patterns that may occur under model 
M . These are the two invariant patterns ( ABC = 000 and 
111), the three variant but triplet-uninformative patterns 
(100, 010, 001), and the three triplet-informative pat-
terns (110, 101, 011). For each pattern g listed above, we 
enumerate all possible ways of introducing errors (false 
positives and false negatives); this gives us the probability 
of mutation patterns under the UE model given (α,β , g) ; 
see Additional file  1: Tables  S7–S14. Putting everything 
together, we find the probability of triplet tC under the 
M+UE model is

Similar probabilities can be computed for tB and tA . To 
provide a general formula, we define

(7)

PM+UE(tC |α,β , σ)

= α2(1− α) · PM(000|σ)+ β(1− β)2 · PM(111|σ)

+ α2β · PM(001|σ)

+ α(1− α)(1− β) ·
(

PM(100|σ)+ PM(010|σ)
)

+ (1− α)(1− β)2 · PM(110|σ)

+ αβ(1− β) ·
(

PM(101|σ)+ PM(011|σ)
)

and set xA = 100 , xB = 010 , and xC = 001 . This allows us 
to write the probability of any triplet as

where i, j, k ∈ {A,B,C} with i  = j  = k . Now we can com-
pute the differences in probabilities between ti and tj 
under the M+UE for any i, j ∈ {A,B,C} such that i  = j . 
We find

Assuming that either condition (1) α = 0 or condition 
(2) α + β �= 1 and PM(xi|σ) = PM(xj|σ) , this quantity 
is zero if PM(ti|σ) = PM(tj|σ) and is greater than zero 
if PM(ti|σ) > PM(tj|σ) . Because there are no anomalous 
triplets under M , the former will be the case if σ is non-
binary; the latter will be the case if σ = ti . It follows there 
are no anomalous triplets under the M+UE model, pro-
vided one of the two conditions hold. If these conditions 
do not hold and σ  = tj , triplet tj is anomalous when

for i, j ∈ {A,B,C} such that i  = j .  �

The result above extends easily to the case with unbi-
ased missing values, in addition to unbiased error (see 
Corollary 1).

Corollary 2 If there are no anomalous triplets 
under model M , then there are no anomalous tri-
plets under the M+UEM model, assuming that one 
of the two conditions: (1) α = 0 or (2) α + β �= 1 and 

(8)
g(α,β , σ) = α2(1− α) · PM(000|σ)+ β(1− β)2 · PM(111|σ)

(9)

PM+UE(ti|α,β , σ) = g(α,β , σ)

+ α2β · PM(xi|σ)

+ α(1− α)(1− β) ·
(

PM(xj|σ)+ PM(xk |σ)
)

+ (1− α)(1− β)2 · PM(ti|σ)

+ αβ(1− β) ·
(

PM(tj|σ)+ PM(tk |σ)
)

(10)

PM+UE(ti|α,β , σ)− PM+UE(tj|α,β , σ)

= α2β ·
(

PM(xi|σ)− PM(xj|σ)
)

+ α(1− α)(1− β) ·
(

PM(xj|σ)− PM(xi|σ)
)

+ (1− α)(1− β)2 ·
(

PM(ti|σ)− PM(tj|σ)
)

+ αβ(1− β) ·
(

PM(tj|σ)− PM(ti|σ)
)

=
(

α2β − α(1− α)(1− β)
)

·
(

PM(xi|σ)− PM(xj|σ)
)

+
(

(1− α)(1− β)2 − αβ(1− β)
)

·
(

PM(ti|σ)− PM(tj|σ)
)

= α
(

1− (α + β)
)

·
(

PM(xj|σ)− PM(xi|σ)
)

+ (1− β)
(

1− (α + β)
)

·
(

PM(ti|σ)− PM(tj|σ)
)

(11)

α

(1− β)
·
(

PM(xi|σ)− PM(xj|σ)
)

−
(

PM(ti|σ)− PM(tj|σ)
)

> 0
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PM(100|σ) = PM(010|σ) = PM(001|σ) . Otherwise, 
there can be anomalous triplets under the M+UEM model.

This concludes the derivation of the main result of this 
section (Theorem 2). Before moving onto phylogeny esti-
mation, we consider whether anomalous triplets should 
be expected in the context of tumor phylogenetics, so 
setting M to be the IS model. As previously mentioned, 
in the simulations performed by Kizilkale et  al. [24], 
the largest values of α and β were 0.001 and 0.2, respec-
tively. This would put α/(1− β) = 0.00125 in Eq.  11, 
so PM(xi|σ)− PM(xj|σ) would need to be 800 times 
greater than PM(ti|σ)− PM(tj|σ) for tj to be anoma-
lous under the M+UE model (note the terms for miss-
ing values will cancel out in Eq. 11). Although this seems 
drastic, it could occur when σ is created by restricting a 
larger model tree to a subset three leaves. Consider the 
cell lineage tree in Fig.  1 but with 1000 additional cells 
added between cell 9 and cell 10, and suppose that we 
sample cells {1, 4, 10} , so the resulting sub-model, σ has 
rooted topology t10 = 10|1, 4 . This submodel defines the 
following probability distribution on mutations, assum-
ing mutations occur on all non-fake edges with equal 
probability. For the variant but triplet-uninformative pat-
terns, we have PIS(x1|σ) = 0 , PIS(x4|σ) = 1/1012 , and 
PIS(x10|σ) = 1009/1012 , and for triplet-informative 
patterns, we have PIS(t1|σ) = 0 , PIS(t4|σ) = 0 , and 
PIS(t10|σ) = 1/1012 . Now looking at Eq.  11, we find 
that triplets t1 and t4 are anomalous under the IS + UEM 
model. Based on this analysis, we conjecture that triplets 
are less robust to error than quartets when sampling cells 
from a larger cell lineage tree.

Phylogeny estimation from quartets
Because there are no anomalous quartets under the 
IS+UEM model under reasonable assumptions (i.e., 
α + β �= 1 ), we now consider the utility of quartet-based 
methods for estimating cell lineage trees from mutation 
data. By quartet-based methods, we mean heuristics for 
the Maximum Quartet Support Supertree (MQSS) prob-
lem ( [4]; also see Section 7.7 in [27]).

Definition 4 (Maximum Quartet Support Supertrees) 
The MQSS problem is defined by

Input: A set of unrooted trees P = {T1,T2, . . . ,Tk} , with 
tree Ti on leaf label set Xi

Output: A unrooted, binary tree B on leaf label set ∪k
i=1

Xi 
that maximizes QSD(B) =

∑

q∈Q(B) wP(q) , where wP(q) 
is the number of input trees in P that display q

When all input trees are on the same leaf label set, 
MQSS becomes weighted quartet consensus (WQC). 
An optimal solution to WQC is a consistent estima-
tor of the unrooted species tree topology under the 
MSC model (Theorem 2 in [12]). Although MQSS and 
WQC are NP-hard [28, 29], fast and accurate heuristics 
have been developed, with the most well-known being 
ASTRAL [12]. Since version 2 [13, 14], ASTRAL allows 
the input trees to be incomplete and is statistically con-
sistent under the MSC model, provided some assump-
tions on missing data (see [30] for details).

There are two notable differences when using quartet-
based methods to reconstruct cell lineage trees, rather 
than species trees. The first difference is that input 
are mutations rather than unrooted (gene) trees. This 
issue was addressed by Springer et  al. [31], who treat 
mutations as unrooted trees with at most one internal 

Step 1. Represent characters as unrooted
trees with at most 1 internal branch.

Step 2. Reconstruct the unrooted tree using 
heuristic for weighted quartet consensus.

A

B EC 

D 

0000?
0110

110

00001
D

C

B

A

E

AC

B
D

E

A

C
B

D

E

AC

B
D

E

BA

C
D

E

AC

BE

Fig. 3 This figure shows a mutation matrix with one false negative (in blue), one false positive (in red), and one missing entry. The first 
step indicates how each mutation (column in the matrix) corresponds to an unrooted tree with at most one internal branch. The second 
step is to estimate the phylogeny by applying a quartet-based method. This approach is motivated by there being no anomalous quartets 
under the IS+UEM model, assuming α + β �= 1 (Theorem 1)
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branch (Fig. 3). Given this transformation of the input, 
it is possible to run ASTRAL and other quartet-based 
methods on mutation data. The second difference is 
that ASTRAL outputs a binary tree. Our next result 
suggests that MQSS/WQC are useful problem formu-
lations, even when data are generated from non-binary 
trees.

Theorem  3 Let σ be a rooted tree with at least one 
internal branch when unrooted (so it can be non-binary), 
and let D be an n× k mutation matrix generated under 
the IS+UEM model given (α,β , γ , σ) with α + β �= 1 and 
0 ≤ α,β , γ < 1 . Then, an optimal solution to MQSS given 
D is a consistent estimator of u(σ ) under the IS+UEM 
model, with tree error defined as the number of false nega-
tive branches. If in addition 0 < α,β ,< 1 , ASTRAL given 
D is statistically consistent under the IS+UEM model, 
with tree error defined as the number of false negative 
branches.

The first statement above follows from Theorem 1 and 
Lemma  6. The second statement follows from Theo-
rem 1, Corollary 3, and the observation that every com-
plete mutation pattern is possible under the IS+UEM 
model when 0 < α,β < 1.

Lemma 6 Let σ be a rooted tree with at least one inter-
nal branch when unrooted (so it can be non-binary), and 
let D be an n× k mutation matrix generated under model 
A given σ . If there are no anomalous quartets under A , an 
optimal solution to MQSS given D is a consistent estima-
tor of u(σ ) under model A , with tree error defined as the 
number of false negative branches.

Proof Let B be an unrooted, binary tree on the same 
label set as u(σ ) . The number of false negative branches 
between B and u(σ ) is zero if B is a refinement of u(σ ) , 
meaning that B can be obtained from u(σ ) in a sequence 
of refinement operations (this sequence has length zero 
if σ is binary). Thus, to prove consistency with tree error 
defined as the number of false negative branches, we 
revise Definition 1 to say that for any ǫ > 0 , there exists 
a constant K > 0 such that when D contains at least K 
mutations, an optimal solution to MQSS given D is a 
refinement of u(σ ) with probability at least 1− ǫ . The 
remainder of the proof follows from Lemma 7.  �

Lemma 7 Suppose the conditions of Lemma 6 hold. Let 
L(σ ) be the label set of σ , and let B and T be unrooted, 
binary trees on L(σ ) . Suppose that B is a refinement of 
u(σ ) and that T is NOT. Then, for any pair B and T and 
for any ǫ > 0 , there exists a constant K > 0 such that 

when D contains at least K mutations, QSD(B) > QSD(T ) 
with probability at least 1− ǫ.

Proof To begin, we restate the inequality as

where X  is the set of all possible subsets of four elements 
from L(σ ) and wD(q) is the number of mutations in D 
that imply quartet q.

Claim 1: First, we claim that as k → ∞ , wD/k converges 
to its expectation F∗ under model A given σ with prob-
ability 1. Claim 1 holds by the strong law of large num-
bers, as noted in the proofs of consistency for quartet 
and triplet-based methods under the MSC model (see [20] 
for an example). Let qS1 , qS2 , qS3 denote the three possible 
quartets on S. Then, we can re-state claim 1 as follows. As 
k → ∞ , wD(q

S
i )/k converges to F∗(qSi ) = PA(q

S
i |σ) with 

probability 1 for all i ∈ {1, 2, 3} and for all S ∈ X .

Claim 2: Second, we claim there exists a δ such that 
whenever �wD/k − F∗�∞ < δ , Eq.  12 holds. We show 
claim 2 is true for δ = π/2|X | , where

There are three cases to consider.

Case 1: Let W ⊂ X  include all S ∈ X  such that B|S and 
T |S are the same quartet. Then, wD(B|S) = wD(T |S) for 
all S ∈ W , giving us

Now suppose that B and T restricted to S display dif-
ferent quartets, denoted qS1 and qS2 , respectively. If 
qS2 ∈ Q(u(σ )) , it must also be in Q(B) as Q(u(σ )) ⊆ Q(B) . 
Therefore, qS2 /∈ Q(u(σ )) . This gives us two additional 
cases to consider.

Case 2: Let Y ⊂ X  include all S ∈ X  such that B|S and 
T |S are different quartets, denoted qS1 and qS2 , respectively, 
with qS1 ∈ Q(u(σ )) and qS2 /∈ Q(u(σ )) . Then, for all S ∈ Y , 
F∗(qS1 ) > F∗(qS2 ) and F∗(qS1 ) > F∗(qS3 ) because there are 
no anomalous quartets under A (Definition 2). Therefore, 
whenever �wD/k − F∗�∞ < π/2 , wD(B|S) > wD(T |S) for 
all S ∈ Y , giving us

(12)

QSD(B)− QSD(T ) =
∑

S∈X

wD(B|S)−
∑

S∈X

wD(T |S) > 0

(13)
π = min

>0,S∈X
{|F∗(qS1 )− F∗(qS2 )|, |F

∗(qS1 )

− F∗(qS3 )|, |F
∗(qS2 )− F∗(qS3 )|}.

(14)
∑

S∈W

(

wD(B|S)

k
−

wD(T |S)

k

)

= 0.
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Case 3 (only needed for non-binary σ ): Let Z ⊂ X  include 
all S ∈ X  such that B|S and T |S are different quartets, 
denoted qS1 and qS2 , respectively, with qS1 , q

S
2 /∈ Q(u(σ )) . 

By our assumptions on B, σ |S is a star. Then, because 
there are no anomalous quartets under A (Defini-
tion  2), F∗(qS1 ) = F∗(qS2 ) = F∗(qS3 ) . However, even as 
k → ∞ , we are not guaranteed to get an exact equality 
wD(q

S
1 ) = wD(q

S
2 ) = wD(q

S
3 ) . Thus, we need to put an 

upper bound δ on �wD/k − F∗�∞ so that Eq.  12 holds 
even when wD(B|S) < wD(T |S) for all S ∈ Z . This hap-
pens for δ = π/2|X | . When �wD/k − F∗�∞ < π/2|X | , we 
have

because (|Y| + |Z|)/|X | ≤ 1 and 1 ≤ |Y| . If not, either T 
is a refinement of u(σ ) or u(σ ) has no internal branches, 
contradicting our assumptions.

Putting the cases together: If u(σ ) is binary, then W|Y is 
a partition X  , so we can combine equations 14 and 15 to 
get Eq. 12. If u(σ ) is non-binary, then W|Y|Z is a parti-
tion of X  , so we can combine Eqs. 14 and 16 to get Eq. 12.

Wrap up. By claim 1, for any ǫ > 0 , there exists a con-
stant K > 0 such that when D contains at least K muta-
tions, �wD/k − F∗�∞ < π/2|X | with probability at least 
1− ǫ . Then, by claim 2, for any ǫ > 0 , when D contains at 
least K mutations, QSD(B) > QSD(T ) with probability at 
least 1− ǫ .  �

Corollary 3 Suppose the conditions of Lemma  6 hold. 
If there are no anomalous quartets under model A and 
every complete mutation pattern occurs with non-zero 
probability under A , then ASTRAL given D is statistically 
consistent under A , with tree error defined as the number 
of false negative branches.

Proof ASTRAL solves MQSS exactly within a con-
strained version of the solution space, denoted � . Its 
algorithm has two main steps: first, form � so that it con-
tains all bipartitions induced by the input “trees” (i.e., 
mutations in D), and second find a solution B to MQSS 
such that Bip(B) ⊆ � . Because all complete mutation 

(15)
∑

S∈Y

(

wD(B|S)

k
−

wD(T |S)

k

)

> 0.

(16)

∑

S∈Z

∣

∣

∣

∣

wD(B|S)

k
−

wD(T |S)

k

∣

∣

∣

∣

< |Z| ·
π

|X |
< |Y| ·

(

π −
π

|X |

)

<
∑

S∈Y

(

wD(B|S)

k
−

wD(T |S)

k

)

patterns have non-zero probability under the model A , 
for any ǫ1 > 0 , there exists a constant K1 > 0 such that 
when k ≥ K1 , � will contain all bipartitions induced by at 
least one refinement of u(σ ) with probability 1− ǫ1 . By 
Lemma 7, for any ǫ2 > 0 , there exists a constant K2 > 0 
such that when k ≥ K2 , QSD(B) > QSD(T ) for any pair 
B and T of unrooted binary trees on L(σ ) such that B is 
a refinement of u(σ ) and T is NOT. Now let ǫ > 0 and 
select ǫ1, ǫ2 > 0 such that ǫ1 + ǫ2 < ǫ . Then, when D 
contains at least max{K1,K2} mutations, ASTRAL given 
D returns a refinement of u(σ ) with probability at least 
(1− ǫ1)(1− ǫ2) > (1− ǫ) . It follows the number of false 
negative branches is zero with probability at least 1− ǫ . �

Lastly, we note that related results can be derived for 
triplets by viewing mutations as a rooted trees with at 
most one internal branch (Additional file 1: Fig. S2).

Theorem  4 Suppose that the conditions of Theorem  3 
hold but that α = 0 (instead of α + β �= 1 ). Then, an 
optimal solution to Maximum Triplet Support Supertree 
(MTSS) problem given D is a consistent estimator of σ 
under the IS+UEM model, with tree error defined as the 
number of false negative branches.

This result follows from Theorem  2 and Lemma  6 
but replacing “quartet” with “triplet” and “rooted” with 
“unrooted”. Code for transforming ordered 2-state char-
acters into rooted trees (as shown in Additional file  1: 
Fig. S2) is available as part of Dollo-CDP [32]; see the − k 
option on Github: https:// github. com/ molloy- lab/ Dollo- 
CDP. These “rooted trees” can be given as input to quar-
tet-based methods, like ASTRAL or ASTER [18], which 
will effectively ignore the root (note that any “tree” on 
fewer than four cells must be removed prior to running 
ASTRAL).

Discussion
Quartet-based approaches have garnered much suc-
cess for estimating species phylogenies under the Multi-
Species Coalescent [12–14]. Here, we considered their 
application for estimating cell lineage trees, focusing 
on two differences between estimating cell lineage trees 
compared to species trees. First, errors and missing val-
ues can arise from single-cell sequencing and thus are 
typically modeled. Second, the model cell lineage tree 
may be highly unresolved because tumors evolve clon-
ally. To address these issues, we first show that there 
are no anomalous quartets under the infinite sites ( IS ) 
plus unbiased error and missingness ( UEM ) model, 
which is widely used in tumor phylogenetics (this is 

https://github.com/molloy-lab/Dollo-CDP
https://github.com/molloy-lab/Dollo-CDP
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an identifiability result). We then show that under the 
IS+UEM model, an optimal solution to the Maximum 
Quartet Support Supertree (MQSS) problem is a refine-
ment of the model cell lineage tree (this is a consistency 
result when tree error is defined as the number of false 
negative branches). Lastly, we consider the case of tri-
plets, showing that there can be anomalous triplets when 
the probability of false positive errors is greater than zero. 
Our result suggests that quartets may be more robust to 
error than triplets when reconstructing cell lineage trees.

Overall, our results suggest the potential of quartet-
based methods for reconstructing trees from noisy muta-
tion data, provided that the tree can be rooted and that 
false positive branches in the output tree can be effec-
tively handled. The former is often doable because the 
tree can be rooted on the edge incident to the healthy cell 
with no mutations. The latter is related to mapping muta-
tions onto branches in the cell lineage tree (see [33]) as 
well as identifying which cells are members of the same 
clone or subclone (see [34]). These tasks are also relevant 
to likelihood-based methods designed for cell lineage tree 
reconstruction, as such methods also return binary trees. 
Examples include ScisTree [23], SiFit [35], and CellPhy 
[33] (note that of these methods ScisTree makes the IS 
assumption but the other two do not).

In general, likelihood-based methods require explic-
itly estimating numeric parameters, like α and β , as well 
as exploring the space of cell lineage trees, which grows 
exponentially in the numbers of cells. In contrast, quar-
tet-based approaches allow for error implicitly (without 
explicit estimation of α and β ) and are often based on 
algorithmic techniques, like divide-and-conquer, that 
are quite fast in practice. That being said, quartet-based 
methods have been designed for species phylogenet-
ics, where the number of leaves (species) is typically 
much less than the number of gene trees or characters. 
In tumor phylogenetics, the number of leaves (cells) can 
be much greater than than characters. This will likely to 
have consequences for runtime and accuracy (just con-
sider that our consistency guarantees is in the limit of 
infinite mutations). Corollary  3 sheds light on a poten-
tial issue when using ASTRAL, namely the construc-
tion of the constrained solution space � may not be very 
successful for mutation data, especially if the number of 
mutations is small. However, there are other high quality 
heuristics for MQSS, including wQMC [36–38], wQFM 
[16, 39], and TREE-QMC [17]. Moreover, even when the 
number of characters is small compared to the number 
of cells, the underlying model tree is likely to be highly 
unresolved. In this case, sampling different cells around 
the same branch may be a means of providing more data 

for estimation (this observation has already been lever-
aged by Kizilkale et al. [24]).

Although quartet-based methods, as presented here, 
may be robust to noise, they fail to address doublets and 
copy number aberrations (CNAs), which also challenge 
cell lineage tree reconstruction. A doublet is a sequenc-
ing artifact where data provided for a single cell is really 
a mixture of two cells. This “hybrid” cell challenges the 
notion of tree-like evolution, motivating the development 
of methods for correcting doublets [40]. If doublets can 
be effectively corrected, then their impact on quartet-
based methods would be minimal. Alternatively, quar-
tets may be useful for detecting doublets. CNAs include 
duplications and losses of large sections of chromosomes 
(see review on methods for detecting CNAs by Mallory 
et  al. [41]). CNA losses, in particular, have motivated 
the development of many new methods for reconstruct-
ing tumor phylogenies [42–44]. Some of these methods 
view CNA losses as false negatives (although these false 
negatives will be biased towards particular cells and 
mutations). In contrast, SCARLET [44] reconstructs a 
CNA tree and then uses it to constrain phylogeny recon-
struction with the mutation data. Constraints have also 
been leveraged in species phylogenetics, including with 
ASTRAL [45]. Thus, the output of quartet-based meth-
ods could similarly be forced to obey the constraints of a 
CNA tree. To summarize, there are practical limitations 
to quartet-based methods for tumor phylogenetics, sev-
eral of which apply to existing methods that do not han-
dle CNAs and doublets, for example.

Looking beyond cell lineage tree reconstruction, our 
results generalize beyond the IS model to any model of 
2-state character evolution for which there are no anom-
alous quartets or triplets. A consequence of our study 
is that quartet-based methods, like ASTRAL, are con-
sistent under the IS+nWF model, even when unbiased 
errors and missing values are introduced. This statement 
follows from combining Corollaries  1 and  3 with Theo-
rem 1 in [48]. Thus, our work addresses an open question 
from [48] about the utility of such methods on imper-
fect data and gives a positive result for recent systematic 
studies leveraging quartet-based methods on retroele-
ment insertion presence/absence patterns for placental 
mammals [51], bats [52], and birds [53]. Missing values, 
in particular, are prevalent in these data sets (e.g., the 
data set from [54] has 18% missing/ambiguous values). 
Future work should investigate this issue further, looking 
at error and missingness biased towards particular spe-
cies or (orthologous) positions of the genome (related 
questions would also be of interest in the context of cell 
lineage tree estimation). Similarly, while unbiased errors 
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(false positives and false negatives) may be appropriate 
for modeling sequencing error, it may not be appropriate 
in this other setting if error is biased towards particular 
species or genes when calling retroelement insertions. 
Lastly, species trees are typically assumed to be binary; 
however, there could be hard polytomies, in which case 
the model tree would be non-binary. Our results for con-
sistency with error defined as the number of false nega-
tives (Lemma  6 and Corollary  3) extend to the other 
models, like MSC , suggesting the utility of quartet-based 
methods in the case of hard polytomies.
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