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Abstract 

The problem of sequence identification or matching—determining the subset of reference sequences from a given 
collection that are likely to contain a short, queried nucleotide sequence—is relevant for many important tasks 
in Computational Biology, such as metagenomics and pangenome analysis. Due to the complex nature of such analy-
ses and the large scale of the reference collections a resource-efficient solution to this problem is of utmost impor-
tance. This poses the threefold challenge of representing the reference collection with a data structure that is efficient 
to query, has light memory usage, and scales well to large collections. To solve this problem, we describe an efficient 
colored de Bruijn graph index, arising as the combination of a k-mer dictionary with a compressed inverted index. The 
proposed index takes full advantage of the fact that unitigs in the colored compacted de Bruijn graph are monochro-
matic (i.e., all k-mers in a unitig have the same set of references of origin, or color). Specifically, the unitigs are kept 
in the dictionary in color order, thereby allowing for the encoding of the map from k-mers to their colors in as little 
as 1 + o(1) bits per unitig. Hence, one color per unitig is stored in the index with almost no space/time overhead. By 
combining this property with simple but effective compression methods for integer lists, the index achieves very 
small space. We implement these methods in a tool called Fulgor, and conduct an extensive experimental analysis 
to demonstrate the improvement of our tool over previous solutions. For example, compared to Themisto—the 
strongest competitor in terms of index space vs. query time trade-off—Fulgor requires significantly less space (up 
to 43% less space for a collection of 150,000 Salmonella enterica genomes), is at least twice as fast for color queries, 
and is 2–6× faster to construct.
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Introduction
At the core of many metagenomic and pan-genomic 
analyses is read-mapping, the atomic operation that 
assigns observed sequence reads to putative genome(s) of 
origin. A wide range of methods have been developed for 
mapping reads to large collections of reference genomes. 
Of note, alignment-based methods, though accurate [1, 

2], are relatively computationally intensive as they must 
provide the ability to locate the read on each genome and 
compute an approximate match. A queried read must, 
in fact, be matched with low edit-distance against a sub-
string of some reference genome in the collection. For 
alignment, the index is also required to report the posi-
tion of this match. As a matter of fact, there are no practi-
cal aligners in the literature that scale to large genomic 
collections efficiently.

Fortunately, alignment-free techniques have become 
popular and widespread for metagenomic analy-
ses [3–8]. These methods generally work by avoiding 
alignment altogether, and replacing it with strategies 
for matching (exactly or approximately) substrings, 
signatures, or sketches between the queries and the 
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referenced sequences. Ideally, good matching heuris-
tics can assign or match a query against the correct 
reference with high precision while also retaining high 
recall (i.e., being sensitive to sequencing error or small 
divergence between the query and the reference). One 
particular type of alignment-free method for assign-
ing reads to compatible references that has recently 
gained substantial traction is pseudoalignment  [9–12]. 
While tremendous progress has been made in support-
ing alignment-free methods for metagenomic analyses, 
continued development of ever more efficient indexing 
methods is required for such analyses to scale to tens, 
even hundreds, of thousands of bacterial reference 
genomes.

A practical data structure that is suitable for alignment-
free matching methods is the colored de Bruijn graph, 
a graph where each node corresponds to a k-mer in a 
reference collection and is annotated with a color—the 
set of references in which it occurs. Representing this 
data structure in small space while supporting efficient 
retrieval of the color of any k-mer is the goal of this work. 
An overview of our contributions is given below.

Contributions

•	 Conceptually, our data structure arises as the com-
position of a k-mer dictionary with a compressed 
inverted index: the dictionary represents all k-mers 
in the indexed collection, whereas the inverted index 
explicitly stores all distinct colors (sorted integer 
sequences). We show how this two-level layout can 
be implemented in very compact space while grant-
ing efficient random and streaming queries, by lev-
eraging recent advancements in order-preserving k
-mer dictionaries [13, 14]. Specifically, we exploit the 
order-preserving property of the k-mer dictionary 
SSHash  [13, 14] to store the k-mers in color order, 
so that consecutive k-mers have the same color. 
This allows the construction of a map from k-mers 
to colors in just 1+ o(1) bits per unitig (i.e., unary 
paths) of the underlying colored compacted de Bruijn 
graph. To further reduce space, our index makes use 
of a simple but effective hybrid compression scheme 
for the colors.

	 An important consequence of using SSHash as k-mer 
dictionary is that our index also supports very fast 
streaming queries for consecutive k-mers in a read, 
and additionally allows efficient implementation of 
skipping heuristics that have previously been sug-
gested to speed up pseudoalignment [9].

•	 We implemented our index in a C++ tool called 
Fulgor, which is available at https://​github.​com/​
jermp/​fulgor.

•	 We extensively compare Fulgor against the state 
of the art. Compared to Themisto   [15] built with 
default parameters Fulgor indexes a collection of 
150,000 Salmonella Enterica genomes in 43% less 
space, is at least twice as fast at query time, and even 
twice as fast to construct. For a subset of 100,000 
Salmonella Enterica genomes, the largest collec-
tion that we could index with MetaGraph’s most 
space efficient variant (row-diff “relaxed” BRWT), 
MetaGraph requires 10× less disk space but is also 
20× slower to query, much slower to construct than 
Fulgor, and requires significantly more memory to 
query (a more thorough discussion of MetaGraph’s 
additional optimization that trades-off increased 
memory usage for improved query speed can be 
found in "Query speed" section).

•	 Perhaps unsurprisingly, the rapid development of 
novel indexing data structures has been accompa-
nied by novel and custom strategies for matching 
and assigning reads to colors (i.e., reference sets) and 
algorithms that each make different design choices 
and trade-offs. Many of these strategies can be con-
sidered as a form of pseudoalignment. Having been 
iterated on since its introduction [9], the term “pseu-
doalignment” has come to describe a family of effi-
cient heuristics for read-to-color assignment, rather 
than a single concept or algorithm. Prior methods 
have taken either exhaustive approaches that queries 
every k-mer on a read (previously termed exact pseu-
doalignment  [12, 15]) or have implemented skipping 
based approaches that skip the query of “redundant” 
consecutive k-mers that likely map to the same set 
of reference genomes [9, 16]. To our knowledge, the 
precise details of the types of skipping heuristics 
used in the latter methods—including those adopted 
by the initial pseudoalignment method—have been 
discussed only in passing. Complete details, instead 
exist only in the source code of the corresponding 
tools. To shed light on these algorithms, we provide a 
more structured discussion of how these algorithms 
are designed. Using Fulgor, we implement two pre-
viously proposed variants and benchmark them.

Preliminaries
In this section, we first formalize the problem under 
study here. We then describe a modular indexing lay-
out that solves the problem using the interplay between 
two well-defined data structures. Lastly we describe the 
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properties induced by the problem and how these are 
elegantly captured by the notion of colored compacted de 
Bruijn graph.

Problem definition

Problem  1  (Colored k-mer indexing problem) 
Let R = {R1, . . . ,RN } be a collection of references. 
Each reference Ri is a string over the DNA alphabet 
� = {A,C ,G,T } . We want to build a data structure 
(referred to as the index) that allows us to retrieve the set 
Color(x) = {i|x ∈ Ri} as efficiently as possible for any k
-mer x ∈ �k . Note that Color(x) = ∅ if x does not occur 
in any reference.

Hence, we call the set Color(x) the color of the k-mer x.

Modular indexing layout
In principle, Problem  1 could be solved using an old 
but elegant data structure: the inverted index  [17, 18]. 
The inverted index, say L , stores explicitly the ordered 
set Color(x) for each k-mer x ∈ R . What we want is to 
implement the map x → Color(x) as efficiently as pos-
sible in terms of both memory usage and query time. 
To this end, all the distinct k-mers of R are stored in a 
dictionary data structure, D . Suppose the dictionary D 
stores n k-mers. To implement the map x → Color(x) , 
the operation that D is required to support is Lookup(x) 
which returns ⊥ if k-mer x is not found in the diction-
ary or a unique integer identifier in [n] = {1, . . . , n} if x is 
found. Problem 1 can then be solved using these two data 
structures—D and L—thanks to the interplay between 
Lookup(x) and Color(x) : logically, the index stores the 
sets {Color(x)}x∈R in compressed format in the order 
given by Lookup(x).

To our knowledge, all prior solutions proposed in the 
literature that fall under the “color-aggregative” clas-
sification [19], are incarnations of this modular index-
ing framework and, as such, require an efficient k-mer 
dictionary joint with a compressed inverted index. For 
example, Themisto  [15] makes use of the spectral BWT 
(or SBWT) data structure  [20] for its k-mer dictionary, 
whereas MetaGraph [21] implements a general scheme 
to compress metadata associated to k-mers which is, in 
essence, an inverted index.

The colored compacted de Bruijn graph and its properties
Problem 1 has some specific properties that one would 
like to exploit to implement as efficiently as possible the 
modular indexing framework described in "The colored 
compacted de Bruijn graph and its properties" section. 
First, consecutive k-mers share (k − 1)-length overlaps; 
second, co-occurring k-mers have the same color. A 

useful, standard, formalism that describes these prop-
erties is the colored compacted de Bruijn graph (abbre-
viated “ccdBG”).

Given the collection of references R , the (node-cen-
tric) de Bruijn graph (dBG) of R is a directed graph 
whose nodes are all the distinct k-mers of R and there 
is an edge connecting node u to node v if the (k − 1)

-length suffix of u is equal to the (k − 1)-length prefix 
of v. We refer to k-mers and nodes in a (node-centric) 
dBG interchangeably; likewise, a path in a dBG spells 
the string obtained by “glueing” together all the k-mers 
along the path. Thus, unary (i.e., non-branching) paths 
in the graph can be collapsed into single nodes spelling 
strings that are referred to as unitigs. The dBG arising 
from this compaction step is called the compacted dBG 
(cdBG). Lastly, the colored compacted dBG is obtained 
by logically annotating each k-mer x with its color, 
Color(x) , and only collapsing non-branching paths 
with nodes having the same color.

Below, we notate n to be the number of distinct k-mers 
of R and m to be the number of unitigs {u1, . . . ,um} of 
the ccdBG induced by the k-mers of R . The unitigs 
of the ccdBG that we consider have the following key 
properties. 

1.	 Unitigs are contiguous subsequences that spell refer-
ences in R . Each distinct k-mer of R appears once, as 
sub-string of some unitig of the cdBG. By construc-
tion, each reference Ri ∈ R can be a tiling of the unit-
igs—a sequence of unitig occurrences that spell out 
Ri [22]. Joining together k-mers into unitigs reduces 
their storage requirements. In "The k-mer dictionary: 
mapping k-mers to unitigs with SSHash" and "Map-
ping unitigs to colors" sections, we show how this 
property can be exploited to make indexes compact. 
In "Pseudoalignment algorithms" section, we show 
how this property can be exploited to make queries 
fast.

2.	 Unitigs are monochromatic. The k-mers belonging 
to the same unitig ui all have the same color. Thus, 
we shall use Color(ui) to denote the color of each k
-mer x ∈ ui . We note that this property holds only if 
one considers k-mers appearing at the start or end of 
reference sequences to be sentinel k-mers that must 
terminate their containing unitig  [23–25], and that 
such conventions are not always adopted [26, 27].

3.	 Unitigs co-occur and share colors. Unitigs often 
have the same color (i.e., occur in the same set of 
references) because they derive from conserved 
sequences in indexed references that are longer than 
the unitigs themselves. We indicate with M the num-
ber of distinct color sets C = {C1, . . . ,CM} . Note that 
M ≤ m and that in practice there are dramatically 
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more unitigs than there are distinct colors. We use 
Color- ID(ui) = j to indicate that unitig ui has color 
Cj . As a consequence, each k-mer x ∈ ui has color Cj.

In this work our goal is to design an index that takes full 
advantage of these key properties.

Index description
In this section we describe a modular index that imple-
ments a colored compacted de Bruijn graph (ccdBG) and 
fully exploits its properties described in "The colored 
compacted de Bruijn graph and its properties" section. 
We adopt the modular indexing framework from "Mod-
ular indexing layout" section—comprising a k-mer dic-
tionary D and an inverted index L—to work seamlessly 
over the unitigs of the ccdBG. We extend the ideas from 
Fan et  al.  [22] for the modular indexing of k-mer posi-
tions to k-mer colors.

Our strategy is to first map k-mers to unitigs using 
a dictionary D , and then map unitigs to their colors 
C = {C1, . . . ,CM} . By composing these mappings, we 
obtain an efficient map directly from k-mers to their 
associated colors. The colors themselves in C are stored 
in compressed form in a inverted index L . Figure 1 offers 
a pictorial overview of how we orchestrate these differ-
ent components in the index. The goal of this section is 

to describe how these mapping steps can be performed 
efficiently and in small space.

The k‑mer dictionary: mapping k‑mers to unitigs 
with SSHash
For a k-mer dictionary, we use the SSHash data struc-
ture [13, 14], which fulfills the requirement described in 
"Modular indexing layout" section, in that it implements 
the query Lookup(x) for any k-mer x efficiently and in 
compact space. This is achieved by storing the unitigs 
explicitly (i.e., as contiguous, 2-bit encoded strings) 
in some prescribed order so that a k-mer x occurring 
in some unitig ui can be quickly located using a mini-
mal perfect hash function  [28] built for the set of the 
minimizers [29] of the k-mers. Laying out unitigs in this 
principled manner also enables very efficient stream-
ing query. That is, when querying consecutive k-mers 
from input reads, the query for a given k-mer can often 
be answered very efficiently given the query result from 
its predecessor, since it often shares the same minimizer 
and frequently even occupies the very next position on 
the same unitig as its predecessor. We refer the interested 
reader to [13, 14] for a complete overview of SSHash.

Even more importantly for our purposes, a query into 
the SSHash dictionary returns, among other quanti-
ties, Unitig- ID(x) = i , the ID of the unitig containing 
the k-mer x, as a byproduct of Lookup(x) . For any k-mer 

Fig. 1  A schematic picture of the index described in "Index description" section, highlighting the interplay between the k-mer 
dictionary D , the bit-vector B, and the inverted index L . The red arrows show how the index is queried for a k-mer x, assuming that x 
occurs in unitig u6 and has color C3 . The k-mer x is first mapped by D to its unitig u6 via the query Unitig- ID(x) = 6 . Then we compute 
Color- ID(u6) = Rank1(6, B)+ 1 = 2+ 1 = 3 and lastly retrieve C3 from L
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occurring in R , Unitig- ID(x) = i is an integer in [1..m]. 
This map from k-mers to unitigs will be exploited in the 
subsequent sections.

Mapping unitigs to colors
Now that we have an efficient map from k-mers to unit-
igs, i.e., the operation Unitig- ID(x) , we must subse-
quently map unitigs to distinct colors. That is, we have to 
describe how to implement the operation Color- ID(ui) 
for each unitig ui . Since each Color- ID(ui) is an integer 
in [1..M], we could implement Color- ID(ui) just by stor-
ing Color- ID(u1), . . . ,Color- ID(um) explicitly in an 
array of ⌈log2(M)⌉-bit integers. We show how to do this 
in just 1+ o(1) bits per unitig rather than ⌈log2(M)⌉ bits 
per unitig.

We do so by exploiting another key property of 
SSHash: the unitigs it stores internally can be permuted 
in any desired order without impacting the correctness 
or efficiency of the dictionary. This was already noted and 
exploited in  [14] to compress k-mer abundances. Simi-
larly, here we sort the unitigs by Color- ID(ui) , so that all 
the unitigs having the same color are stored consecutively 
in SSHash. To compute Color- ID(ui) , all that is now 
required is a Rank1 query over a bit-vector B[1..m] where:

•	 B[i] = 1 if Color- ID(ui)  = Color- ID(ui+1) and 
B[i] = 0 otherwise, for 1 ≤ i < m;

•	 B[m] = 1.

It follows that B has exactly M bits set. The operation 
Rank1(i,B) returns the number of ones in B[1, i) and can 
be implemented in O(1) time, requiring only o(m) addi-
tional bits as overhead on top of the bit-vector  [30, 31]. 
This means that Color- ID(ui) can be computed in O(1) 
as Rank1(i,B)+ 1.

We illustrate this unitig to color ID mapping in Fig.  1. 
In this toy example, Color- ID(u6) = 3 can be computed 
with Rank1(6,B)+ 1 = 2+ 1 because there are two bits 
set in B[1,  6)—each marking where previous groups of 
unitigs with the same color end. Therefore, according 
to B, unitigs {u1,u2,u3} all have the same color as also 
{u5,u6,u7} ; u4 ’s color is not shared by any other unitig 
instead.

Compressing the colors
The inverted index L is a collection of sorted integer 
sequences {C1, . . . ,CM} , whose integers are drawn from 
a universe of size N (the total number of references in 
the collection R ). There is a plethora of different meth-
ods that may be used to compress integer sequences 
(see, e.g., the survey  [18]). Testing the many differ-
ent techniques available on genomic data is surely an 

interesting benchmark study to carry out. Here, however, 
we choose to adopt a simple strategy based on the wide-
spread observation that effective compression appears 
to require using different strategies based on the density 
of the sequence Ci to be compressed (ratio between |Ci| 
and N)  [18]. For example, for the colored k-mer index-
ing problem, Alanko et al. also observe and report highly 
skewed distributions of color densities [15].

We therefore implement the following hybrid compres-
sion scheme: 

1.	 For a sparse color set Ci where |Ci|/N < 1/4 , we 
adopt a delta-gap encoding: the differences between 
consecutive integers are computed and represented 
via the universal Elias’ δ code [32].

2.	 For a dense color set Ci where |Ci|/N > 3/4 , we first 
take the complementary set of Ci , that is, the set 
Ci = {j ∈ [1..N ]|j /∈ Ci} , and then compress Ci as 
explained in 1. above.

3.	 Finally, for a color set Ci , that does not fall into either 
above density categories, we store a characteristic 
bit-vector encoding of Ci —a bit-vector b[1..N] such 
that b[j] = 1 if j ∈ Ci and b[j] = 0 otherwise.

The compressed representations of all sequences are then 
concatenated into a single bit-vector, say sequences. An 
additional sorted sequence, offsets[1..M] , is used to record 
where each sequence begins in the bit-vector sequences, 
so that the compressed representation of the i-th 
sequence begins at the bit-position offsets[i] in sequences , 
1 ≤ i ≤ M . The offsets sequence is compressed using the 
Elias-Fano encoding [33, 34] and takes only a (very) small 
part of the whole space of L unless the sequences are very 
short.

This hybrid encoding scheme is similar in spirit to the 
one also used in Themisto which, in turn, draws inspi-
ration from Roaring bitmaps [35]. However, our choice of 
switching to the complementary set when |Ci| approaches 
N turns out to be a very effective strategy, especially for 
pan-genome data, where a striking fraction of integers in 
L are indeed covered by these extremely dense sets (see 
also Table 4 from "Results" section).

Construction
Fulgor is constructed by directly processing the output 
of GGCAT​  [27], an efficient algorithm to build ccdBGs 
using external memory and multiple threads. Importantly, 
GGCAT​ provides the ability to iterate over unitigs grouped 
by color. Therefore, Fulgor construction just requires 
a single scan of the unitigs in the order given by GGCAT​. 
SSHash is built on the set of unitigs, each distinct color is 
compressed as described in "Compressing the colors" sec-
tion, and the bit-vector B is also built during the scan.
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Algorithm 1  The Full- Intersection algorithm for a query sequence Q. The algorithm uses the three index components: D (the dictionary, 
mapping k-mers to unitigs), B (the bit-vector mapping from unitigs to colors), and L (the inverted index storing the compressed colors). As discussed 
in Section , the dictionary D can stream through the query sequence Q and collect unitig ids. The inverted index L , instead, returns an iterator 
over a color set given the color id c as Iterator(c)

Algorithm 2  The Intersect algorithm for a set of iterators I = {i1, . . . , ip} . An iterator object supports three primitive operations: Value() , 
returning the value currently pointed to by the iterator; Next() , returning the value immediately after the one currently pointed to by the iterator; 
Next- GEQ(x) , returning the smallest value that is larger-than or equal-to x. We assume that if i is an iterator over color Cj then calling i.Next() for more 
than |Cj | times will return the (invalid) reference id N + 1
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Pseudoalignment algorithms
The term pseudoalignment, originally coined by Bray 
et  al.  [9] and developed in the context of RNA-seq 
quantification, has been used to describe many differ-
ent algorithms and approaches, several of which do not 
actually comport with the original definition. Specifi-
cally, Bray et al. [9] define a “pseudoalignment of a read 
to a set of transcripts, T” as “a subset, S ⊆ T  , without 
specific coordinates mapping each base in the read to 
specific positions in each of the transcripts in S”. The 
goal of such an approach then becomes to determine, 
for a given read, the set of indexed reference sequences 
with which the read is compatible. In the most basic 
scenario, the compatibility relation can be determined 
entirely by the presence/absence of k-mers in the read 
in specific references.

Given any index of k-mer colors, a variety of different 
pseudoalignment algorithms can be implemented that 
rapidly map reads to compatible reference sequences 
according to a set of heuristics. Below, we review four 
pseudoalignment algorithms and describe their proper-
ties. Various existing tools implement a subset of these 
pseudoalignment strategies; we describe how Ful-
gor implements all four and give the corresponding 
pseudocodes.

The pseudoalignment algorithms we describe in this 
section fall into two categories: 

1.	 exhaustive methods that retrieves the color of every k
-mer on a given read (as described in [15]), and

2.	 skipping heuristics that skip or jump over k-mers 
during pseudoalignment that are likely to be unin-
formative (i.e., to have the same color as the k-mer 
that was just queried).

Exhaustive methods
For a given query sequence Q, exhaustive approaches 
return colors with respect to a set of k-mers of Q, 
K(Q), that map to a non-empty color (i.e., each k-mer 
x ∈ K (Q) if found in the dictionary D).

full-intersection The first of the two exhaus-
tive approaches, the full-intersection method, simply 
returns the intersection between all the colors of the 
k-mers in K(Q). Algorithm  1 shows how this query 
mode is implemented in Fulgor. In the current 

implementation, Fulgor has a generic intersection 
algorithm that can work over any compressed color 
sets, provided that an iterator over each color supports 
two primitives—next and Next- GEQ(x) , respectively 
returning the integer immediately after the one cur-
rently pointed to by the iterator and the smallest inte-
ger which larger-than or equal-to x. (We point the 
reader to [36] and [18] for details.)

threshold-union The second algorithm, which 
we term the threshold-union approach, relaxes the full-
intersection method to trade off precision for increased 
recall. Instead of requiring a reference to be compat-
ible with all mapped k-mers, the threshold-union 
method requires a reference to be compatible with a 
user defined proportion of k-mers. Given a parameter 
τ ∈ (0, 1] , this method returns the set of references that 
occur in at least s · τ returned (i.e., non-empty) k-mer 
colors, where s can be either chosen to be s = |K (Q)| 
(the number of positive k-mers only) or s = |Q| − k + 1 
(the total number of k-mers in Q). Themisto  [15] 
implements the variant with s = |K (Q)| (called the 
“hybrid” method), whereas both Bifrost  [26] and 
MetaGraph   [21] use s = |Q| − k + 1 . In fact, the lat-
ter approach of simply looking up all of the k-mers in 
a query, and requiring a specified fraction of them to 
match, is a long-standing strategy that predates the 
notion of pseudoalignment [3, 37]. In the following, we 
assume s = |K (Q)| is used by the threshold-union algo-
rithm, unless otherwise specified. The pseudocode for 
this query mode is given in Algorithm 3.

In practice, both the aforementioned exhaustive 
methods are efficient to compute for two reasons. First, 
intersections, thresholding, and unions are easy to 
compute because colors are encoded as monotonically 
increasing lists of reference IDs. Second, for Fulgor 
in particular, querying every k-mer for its color can 
be performed in a highly-optimized way via streaming 
queries to SSHash. In the streaming setting, SSHash 
may skip comparatively slow hashing and minimizer 
lookup operations because it stores unitig sequences 
contiguously in memory. When sequentially querying 
adjacent k-mers on a read that are also likely adjacent 
on indexed unitigs, it can rapidly lookup and check k-
mers that are cached and adjacent in memory (we refer 
the reader to [13] for more details).
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Skipping heuristics
For even faster read mapping, pseudoalignment algo-
rithms can implement heuristic skipping approaches 
that avoid exhaustively querying all k-mers on a given 
read. These skipping heuristics make the assumption 
that whenever a k-mer on a read is found to belong to 
a unitig, subsequent k-mers will likely map to the same 
unitig and can therefore be skipped, since they will be 
uninformative with respect to the final color assigned 
to the query (i.e., the intersection of the colors of the 
mapped k-mers).

Bray et al. [9] first described such an approach, where 
a successful search that returns a unitig u triggers a 
skip that moves the search position forward to either 
the end of the query or the implied distance to the end 
of u (whichever is less). Subsequent searches follow 

the same approach as new unitigs are discovered and 
traversed in the query. Later, other tools extended or 
modified the proposed skipping heuristics, and intro-
duced “structural constraints”, which take into account 
the co-linearity and spacing between matched seeds on 
the query and on the references to which they map [16]. 
In contrast to Themisto, Fulgor has rapid access to 
the topology of the ccdBG because its k-mer dictionary, 
SSHash, explicitly maps k-mers to unitig sequences 
that are stored contiguously in memory. Fulgor thus 
permits efficient implementation of pseudoalignment 
algorithms with skipping heuristics since, due to the 
underlying capabilities provided by SSHash, it can rap-
idly find k-mers bookending unitig substrings because 
SSHash can explicitly map k-mers to their offsets 
(positions) in indexed unitig sequences.

Fig. 2  Some relevant design choices for pseudoalignment with skipping heuristics that jump and skip k-mers on a given read. After k-mer x1 
is queried and found to map to a “black” unitig, an algorithm can jump to query the k-mer x2 on input read, where the number of k-mers skipped 
is given by the length of the black unitig. A In the ideal scenario, x2 maps to the black unitig sequence and k-mers x1 and x2 are found to bookend 
this unitig sequence as it appears on the read. B If x2 misses the index, an algorithm can back-off to an earlier k-mer on the read to find a k-mer 
bookending a shorter subsequence of the black unitig; or it may just query the next k-mer. C If x2 maps to a different “red” unitig, an algorithm 
has an alternative, aggressive, heuristic option to jump and find the next k-mer bookending the red unitig sequence



Page 9 of 21Fan et al. Algorithms for Molecular Biology            (2024) 19:3 	

Algorithm 3  The Threshold- Union algorithm for a query sequence Q. Differently from the full-intersection method (Algorithm 1), here U, C, and I, 
are sets of pairs. The first component of a pair is a unitig id, a color id, or an iterator, respectively if the pair is in U, C, or U. The second component, 
read by calling the method Score() in the pseudocode, is the number of positive k-mers that have a given unitig id or have a given color. The score 
of iterator i is the score of the color id c if i = L.Iterator(c) . Clearly, when deduplicating the sets U and C, the scores of equal unitig or color ids must 
be summed

Algorithm 4  The Union algorithm for a set of iterators I = {i1, . . . , ip} and minimum score t.
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In general, pseudoalignment methods that implement 
skipping heuristics must specify what steps the algorithm 
will take in all scenarios, not just what should happen 
when search proceeds as expected. In practice, imple-
mentations for resolution strategies are complicated and 
difficult to describe succinctly in prose, and prior work 
has only discussed these important details in passing. 
Here, using the depicted scenarios in Fig. 2, we provide 
a more structured (though certainly not exhaustive) 
discussion of possible design choices that can be made. 
These design choices impact the performance of the 
pseudoalignment algorithm, both in terms of how many 
k-mers it queries (and, hence, its speed), and in how 
many distinct color sets it collects (and, hence, the actual 
compatibility assignment it makes).

Jump and find k-mer in expected unitig Before 
the first matching k-mer of a read is found, there is rela-
tively little difference between exhaustive and heuristic 
pseudoalignment approaches; subsequent k-mers are 
queried until the read is exhausted or some k-mer is 
found in the index. At this point, however, heuristic skip-
ping methods diverge from the exhaustive approaches. 
At a high level, when a k-mer on a read is found to map 
to a unitig, skipping heuristics make an assumption that 
said unitig appears wholly on the read. A pseudoalign-
ment algorithm then jumps, on the read, to what would 
be the last k-mer on the unitig sequence occurring on the 
given read (i.e., a bookending k-mer). Scenario A in Fig. 2 
depicts when this assumption is correctly made. Moving 
left-to-right on a given read, if a k-mer on the left is found 
to occur on the unitig depicted in black color in the fig-
ure (referred to as the “black” unitig henceforth), an algo-
rithm can then skip a distance given by the length of the 
black unitig and jump to a k-mer to the right that also 
maps to the black unitig and bookends it. Doing so, an 
algorithm can assume that all k-mers bookended by these 
two queried k-mers map to the black unitig, avoid que-
rying k-mers in-between, and instead continue to query 
the next k-mer on the read (indicated in dashed lines in 
blue).

Jump and miss k-mer In practice however, the 
implemented skipping heuristics are not so simple. This 
is because, when skipping k-mers according to unitig 
lengths, the resulting k-mer that an algorithm jumps to 
may not necessarily map to the unitig it expects. In sce-
nario B, an algorithm jumps to a k-mer on a read, expect-
ing it to map to a black unitig, but finds that it does not 
correspond to any indexed k-mer. Here, an algorithm can 
make several choices, and in fact, current skipping heu-
ristics make two distinct choices in this scenario. It can 
ignore this missed k-mer and simply query the next k

-mer after the position that was jumped to (in blue). Or, 
it can take a more conservative approach and implement 
a back-off scheme to look for another k-mer that maps to 
the black unitig. An algorithm can back-off and jump a 
lesser distance, and such a back-off approach can happen 
once or can be recursive or iterative until some termina-
tion condition is satisfied.

Jump and find k-mer in un-expected unitig In 
scenario C, an algorithm that jumps to a k-mer but finds 
that it maps to a different (red) unitig than expected. 
Here, we suggest three choices an algorithm can make. 
Like in scenario B, an algorithm can back-off to find 
another k-mer mapping to the black unitig or it can query 
the next k-mer after the jumped position. Alternatively, it 
can take a new more aggressive approach and jump to a 
k-mer on the read where it expects to find the end of an 
occurrence of the red unitig.

In this work, we have retrofitted the pseudoalignment 
with skipping algorithms from Kallisto  [9]1 and Alevin-
fry  [16]2 to make use of Fulgor, rather than the dis-
tinct indexes atop which they were implemented in their 
original work. Using Fulgor, we compare their result-
ing pseudoalignments, along with those from the full-
intersection and threshold-union approaches, in a simple 
simulated scenario in "Comparison of pseudoalignment 
algorithms on simulated data" section.

Multi‑query optimizations
In addition to the many ways in which the actual mapping 
or pseudoalignment can be performed, it is also possible 
to further optimize query throughput—potentially at the 
cost of latency—by taking advantage of similarity among 
the query sequences themselves. One example of such 
an optimization is the batch mode of MetaGraph  [21], 
which considers “batches” of query sequences for which it 
builds a query graph to exploit shared k-mers among the 
queries and mitigate the cost of color lookup and decod-
ing in the index. On the other hand, the color-id query 
and even decoding the color itself are very fast operations 
for Fulgor. However, regardless of what index is being 
used to retrieve the colors of specific k-mers, the process 
of intersecting “large” colors (i.e., colors containing many 
references) can be a bottleneck to query. This problem 
is particularly pronounced when there are many similar 
references, and individual queries may return many refer-
ence labels.

Here, we devise and implement a simple scheme to 
accelerate query throughput, and note in "Conclusions 

1  Commit hash 0d98923 (23/12/2023): github.​com/​jermp/​fulgor/​kalli​sto_​
psa/​psa.​cpp.
2  Commit hash 0d98923 (23/12/2023): github.​com/​jermp/​fulgor/​piscem_​
psa/​hit_​searc​her.​cpp.

https://github.com/jermp/fulgor/blob/0d989234587ac962f1b43a5ae7f7936edf470417/kallisto_psa/psa.cpp
https://github.com/jermp/fulgor/blob/0d989234587ac962f1b43a5ae7f7936edf470417/kallisto_psa/psa.cpp
https://github.com/jermp/fulgor/blob/0d989234587ac962f1b43a5ae7f7936edf470417/piscem_psa/hit_searcher.cpp
https://github.com/jermp/fulgor/blob/0d989234587ac962f1b43a5ae7f7936edf470417/piscem_psa/hit_searcher.cpp
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and future work" section.   some interesting directions 
in which these ideas may be extended. Specifically, we 
develop a two-pass pseudoalignment algorithm for the 
full-intersection variant of pseudoalignment (though the 
ideas are extendable to other variants as well). The algo-
rithm is motivated by two particular observations. First 
and as already observed above, retrieving color ids via 
the the color-id query is very fast—faster than retriev-
ing and decoding the colors themselves. Second, in a 
sufficiently large collection of queries, many queries will 
share identical lists of color ids. Of course, it follows that 
any queries that share the same set of color ids will result 
in the same pseudoalignment, as the result of intersecting 
the colors associated with these ids will be the same.

Based on these observations, our two-pass algorithm 
proceeds as follows. First, we generate the list of distinct 
color ids for each query read. Let it be called the color-id 
list of the read. This step is very fast, usually taking only a 
few seconds for the high-hit workload datasets evaluated 
in this paper (see "Query speed" section). Each color-id 
list is also associated with the id of the read from which 
it was generated. Then, the color-id lists are sorted. The 
sort places consecutively all identical color-id lists, so 
that it is easy to retain the set of read ids associated with 
each distinct color-id list. Lastly, in a second pass, the dis-
tinct color-id lists are processed (i.e., their corresponding 
colors decoded and intersected) and the mapping results 
for each read group are recorded. Refer to Fig. 3 for an 
example.

This approach has at least two distinct benefits. First, 
all reads sharing duplicate color-id lists are handled 
together: rather than having to intersect the colors cor-
responding to the color-id list a number of times equal 
to the number of reads labeled with these ids, we per-
form the intersection only once—in other words, exactly 
duplicated list intersections are avoided. Second, by vir-
tue sorting the color-id lists, we tend to observe distinct 
lists that share common prefixes of color ids nearby in 
the order, potentially improving the caching behavior of 
color lookup. While this approach directly exploits only 
exact duplicate color lists, and induces some extra work 
in terms of sorting and aggregating the complete set of 
color lists, we observe that it generally reduces the over-
all query time, and in our experiments led to query per-
formance improvements of up to 40% (see "Query speed" 
section).

We briefly describe in section   some possible exten-
sions and generalizations of these ideas as interesting 
future work.

Results
In this section, we report experimental results to assess 
Fulgor ’s construction time/space, index size, and query 
speed. All results are for k = 31.

Experiments were run on a machine equipped 
with Intel Xeon Platinum 8276  L CPUs (clocked at 
2.20GHz), 500 GB of RAM running Ubuntu 18.04.6 

Fig. 3  An example of the two-pass query optimization on a set of 8 query reads (1), that are assigned ids from 1 to 8. First, the color-id lists are 
generated from the input reads (2), then sorted and collated (3) so that the set of read ids having the same color-id list is retained for each distinct 
list. For example, the reads 1, 4, and 7 all have the same color-id list [2, 4, 13, 25]. Lastly, intersections are performed for each color-id list and each 
original read is annotated with its result (4). We have four distinct color-id lists in the example, hence four results R1 , R2 , R3 , and R4 are computed. In 
the picture, the black thin arrows from (3) to (4) logically show how each original read is associated to its result Ri , i = 1, . . . , 4



Page 12 of 21Fan et al. Algorithms for Molecular Biology            (2024) 19:3 

LTS (GNU/Linux 4.15.0). Fulgor is written in C++ 
and available at https://​github.​com/​jermp/​fulgor. For 
the experiments reported here we use v1.0.0 of the soft-
ware, compiled with gcc 11.1.0.

Datasets We follow the experimental methodology 
of Alanko et al. [15] and build Fulgor over subsets of 
S. Enterica genomes (up to 150,000 genomes) from [38]
to demonstrate Fulgor ’s effectiveness when index-
ing collections of similar reference sequences. We also 
consider a collection of 3,682 E. Coli genomes from 
NCBI  [39] and a heterogeneous collection of 30,691 
genomes of bacterial species representative of the 
human gut [40] (as also benchmarked in our previous 
work [22]). We report some summary statistics for the 
indexed ccdBGs in Table 1. Links to download the data-
sets are provided in the section of this article headed 
“Availability of data and materials”.

Competitors Throughout the section, we compare 
Fulgor to the following indexes. We use the C++ 
implementations from the respective authors. All soft-
ware was compiled with gcc 11.1.0. A link to the respec-
tive libraries on GitHub can be found in the References.

•	 Themisto  [15]. This is the most recent ccdBG 
index. In their evaluation, Alanko et  al. show that 
Themisto embodies a better space/time trade-
off compared to other methods that build similarly 
capable indexes (namely Bifrost  [26] and Meta-
Graph  [21]). Specifically, we build Themisto 
indexes using option -d1 which disables the sam-
pling of k-mer colors in the SBWT for better query 
efficiency, and with option -d20 for better space 
effectiveness (this option is now the recommended 
choice). We use Themisto’s default color set repre-
sentation (i.e., without Roaring bitmaps). We use the 
shipped compiled binaries (v3.1.1).

•	 MetaGraph  [21, 41]. This is a flexible and highly 
configurable framework for indexing of reference 
sequences and metadata associated to k-mers in a 
ccdBG. In this study, we benchmark against Meta-
Graph ’s most space-efficient variant—the row-diff 

“relaxed” BRWT [21]. In brief, MetaGraph achieves 
a highly compressed on-disk representation by 
encoding differences in metadata of adjacent nodes 
in the ccdBG. Since Alanko et  al.  [15] previously 
showed that Themisto is comparable in speed 
but is significantly more space efficient than Meta-
Graph ’s uncompressed “plain” variant, we choose 
not to benchmark against it. We built the indexes 
using a workflow that we wrote with the input from 
the MetaGraph authors, available at https://​github.​
com/​theJa​sonFan/​metag​raph-​workf​lows.

•	 COBS  [42]. This is an approximate ccdBG index, in 
the sense that the pseudoalignment results may con-
tain some false positives, i.e., identifiers of references 
that are falsely reported as containing the query k-
mers. COBS represents each reference with a Bloom 
filter, which is filled with all the k-mers in the refer-
ence. The Bloom filter matrix is logically inverted, 
hence obtaining an approximate color matrix. Being 
approximate, the method completely avoids the space 
consumption of an exact k-mer dictionary and the 
space is all spent by the approximate color matrix. 
Very importantly, COBS partitions the input collec-
tion into shards of references of roughly the same size 
prior to indexing. This permits to build Bloom filters 
of different sizes: filters belonging to different shards 
have a different number of bits allocated, hence sav-
ing space compared to the case where all references 
are represented with filters of the same size. At query 
time, however, a k-mer lookup has to be resolved 
by every shard and individual results combined. 
We build COBS indexes with default parameters, as 
recommended by the authors: each filter has a false 
positive rate of 0.3 and one hash function; each shard 
contains at most 1024 references.

	 It is interesting to inspect the performance of an 
approximate method such as COBS in comparison 
to exact methods to see if and how approximation 
brings some performance advantages.

Table 1  Summary statistics for the tested collections. The row “Integers in colors” reports the total number of reference IDs that are 
required to encode all colors—i.e., the sum set sizes for all colors, 

∑
i
|Ci|

E. coli (EC) S. Enterica (SE) Gut Bacteria (GB)

Genomes 3682 5000 10,000 50,000 100,000 150,000 30,691

Distinct colors ( ×106) 5.59 2.69 4.24 13.92 19.36 23.61 227.80

Integers in colors ( ×109) 5.74 5.77 15.68 133.49 303.53 490.04 10.04

k-mers in dBG ( ×106) 170.65 104.69 239.88 806.23 1,018.69 1,194.44 13,936.86

Unitigs in dBG ( ×106) 9.31 4.95 8.24 30.64 41.16 49.60 566.39

https://github.com/jermp/fulgor
https://github.com/theJasonFan/metagraph-workflows
https://github.com/theJasonFan/metagraph-workflows
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Construction time and space
Construction time and peak RAM usage is reported in 
Table 2 for the different datasets evaluated. Both Fulgor 
and Themisto use GGCAT​ to build the ccdBG. How-
ever, Fulgor is 2− 6× faster, and typically consumes 
much less memory during construction. This is because 
Themisto spends most of its time and memory building 
the color mapping. However, the analogous component 
of Fulgor is just a bit vector, demarcating groups of 
unitigs with the same color, that is built via a linear scan 
of the unitigs produced by GGCAT​.

Figure  4 shows, instead, Fulgor’s construction time 
breakdown for some illustrative datasets. We distin-
guish between three phases in the construction: (1) run-
ning GGCAT​, (2) compressing the colors and, (3) building 
SSHash. While GGCAT​ and color compression take most 
of the construction time on the Salmonella pangenomes, 
building SSHash is the most expensive step on the Gut 
Bacteria collection. This is consistent with the statistics 
reported in Table 1. Here, there are far more integers to 
compress in the Salmonella collections whereas the Gut 
Bacteria collection contains one order of magnitude 
more k-mers. This suggests that one could achieve even 
faster construction for Fulgor if the colors are com-
pressed in parallel with the SSHash construction (cur-
rently, these two phases are sequential).

Compared to MetaGraph, Fulgor is faster to build 
across all benchmarked datasets. For example, on a col-
lection of 10,000 Salmonella genomes, Fulgor is more 
than 12× faster to build. For datasets we were able to build 
MetaGraph with uncapped memory usage, Fulgor 
could be built with an order of magnitude less memory. It 
is important to note, however, that MetaGraph is likely 
doing more work than Fulgor in terms of compres-
sion as it achieves much smaller on-disk representations. 

Unfortunately, we were also unable to build MetaGraph 
instances on our largest datasets due to outsized memory 
and disk requirements for construction.

Compared to COBS, an approximate data-structure, 
Fulgor requires comparable time and memory to 
build (or even less memory on larger datasets) across all 
benchmarked datasets, except on GB. On the latter data-
set, in fact, Fulgor spends 58% of its time in building 

Table 2  Total index construction time (elapsed time) and GB of memory (max. RSS), as reported by /usr/bin/time with option 
-v, using 48 processing threads

The reported time includes the time to serialize the index on disk and, for Fulgor and Themisto, the time taken by GGCAT​ to build the ccdBG. We did not observe 
appreciable differences in space and memory usage when building indexes for Themisto with and without k-mer sampling, except on the Gut Bacteria collection 
where sampling is very beneficial. For this reason, we report its best time and memory usage, i.e., that for Themisto-d20. MetaGraph instances marked by ∗ were 
capped to use 100 GB of memory because construction otherwise exceeds total available memory ( > 500 GB) on our machine

Fulgor Themisto MetaGraph COBS

hh:mm GB hh:mm GB hh:mm GB hh:mm GB

EC 00:06 16.89 00:19 17.18 00:46 149.38 00:03 6.39

SE-5K 00:04 12.91 00:11 12.97 00:47 190.99 00:09 8.13

SE-10K 00:09 23.60 00:25 23.58 01:50 218.76 00:17 16.15

SE-50K 01:13 43.76 02:32 96.00 14:16 ∗118.95 01:41 82.49

SE-10K 02:56 73.54 06:25 202.42 26:40 ∗103.99 02:37 83.79

SE-150K 04:36 136.94 10:00 323.10 — — 04:54 159.31

GB 02:27 115.05 06:21 183.56 10:50 ∗99.54 00:22 17.08

Fig. 4  Construction time breakdown for Fulgor 
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SSHash (Fig. 4)—the exact k-mer dictionary component 
that COBS does not require entirely.

Index size
The size of the indexes on disk is reported in Table  3. 
When indexing collections of Salmonella genomes, Ful-
gor is consistently ≈ 2× smaller than Themisto-d1 and 
≈ 1.8× smaller than Themisto-d20. For example, on the 
largest collection comprising 150,000 genomes, Fulgor 
takes 70.66 GB whereas Themisto takes 133.63 GB and 
126.74 GB (setting the sampling parameter -d to 1 and 
20, respectively).

This remarkable space improvement is primarily due 
to the more effective color compression scheme adopted 
by Fulgor. This leads to, for example, 48% less space to 
encode colors for the 150,000 collection of Salmonella 
genomes. Looking at Table  4, we highlight that for all 
indexed Salmonella reference collections, approximately 
50% of all encoded integers in the distinct colors belong 
to colors that are at least 90% dense. For such extremely 
dense colors, the complementary encoding strategy 
described in "Compressing the colors" section is very 
effective: only ≈ 0.2 bits/int (bpi) are required to encode 
them in all benchmarked indexes. In fact, even for our 
largest collection of 150,000 Salmonella genomes, encod-
ing all integers in all colors requires only 1.120 bpi.

Unsurprisingly, Fulgor also uses less space than 
Themisto to support the Color- ID operation. We 
recall from "Mapping unitigs to colors" section that 
Fulgor requires only 1+ o(1) bits per unitig by design. 
This amounts to a negligible space usage compared to 
the overall index size. For example, while Themisto 
requires 7.26 GB to map k-mers to color IDs for 150,000 
Salmonella genomes, our strategy just takes 7.75 MB.

When indexing a heterogeneous collection, e.g., 
the 30,691 bacterial genomes [40], with many more 
unique k-mers, the space advantage Fulgor has over 

Themisto is even more apparent. The overall size of 
Fulgor is 3.8× smaller (36.77 GB versus 139.41 GB) 
than Themisto without sampling of k-mer colors 
(-d1). Here, Fulgor ’s near optimal approach of map-
ping unitigs to colors instead of k-mers to colors is 
dramatically more efficient, requiring only 88 MB com-
pared to Themisto ’s 91GB. Themisto, by using the 
SBWT, organizes k-mers based on their colexicographi-
cal order and requires ⌈log2(M)⌉ bits per sampled k-mer 
to record the color IDs. Here, the SBWT must record 
colors for each of the 13.9 billion distinct k-mers and 
their reverse complement. In contrast, Fulgor uses 
SSHash that maintains k-mers in unitig order and 
requires only 1+ o(1) bits per unitig to map all k-mers 
from the same unitig to a single color.

However, Themisto can improve its space usage 
by sampling k-mers. Note that Themisto built with 
-d20 is only 49.21 GB in size (compared to 139.41 
GB without sampling). Fulgor is still smaller than 
Themisto-d20 by a large margin ( ≈ 1.8× on average). 
Especially on the Gut Bacteria collection, Themisto ’s 
sampling overcomes the inherent inefficiency of having 
to map each individual k-mer to a color

In contrast to Themisto, Fulgor efficiently maps 
each unitig (usually containing many k-mers) to a 
color—even after sampling k-mer colors, Fulgor 
encodes colors in almost half the space (15.45 GB ver-
sus 30.88 GB, respectively).
MetaGraph is the smallest on-disk representation. 

On 100,000 Salmonella genomes, the largest collec-
tion of genomes that we were able to index with Meta-
Graph, it requires 10× less space than Fulgor. On 
the heterogeneous collection of 30,691 gut bacteria 
genomes, MetaGraph requires 3.7× less space than 
Fulgor. However, as we are going to discuss in "Query 
speed" section, this remarkable space effectiveness 
comes at the price of a severe query time slowdown. 

Table 3  Index space in GB, broken down by space required for indexing the k-mers in a dBG (SSHash for Fulgor, SBWT for 
Themisto, and BOSS for MetaGraph); and data structures required to encode colors and map k-mers to colors

For COBS, we just report the total index size (that coincides with the colors’ space)

Fulgor Themisto-d1 Themisto-d20 MetaGraph COBS

dBG Colors Total dBG Colors Total Colors Total dBG Colors Total Total

EC 0.29 1.36 1.65 0.22 2.75 2.97 1.85 2.08 0.10 0.23 0.33 7.53

SE-5K 0.16 0.59 0.75 0.14 1.82 1.96 1.29 1.43 0.07 0.19 0.26 9.11

SE-10K 0.35 1.66 2.01 0.32 4.78 5.09 3.50 3.81 0.13 0.38 0.51 18.68

SE-50K 1.26 17.03 18.30 1.07 36.89 37.96 32.42 33.48 0.36 1.95 2.31 88.61

SE-100K 1.72 40.70 42.44 1.35 81.82 83.17 75.94 77.28 0.45 3.50 3.95 173.58

SE-150K 2.03 68.60 70.66 1.58 132.05 133.63 125.16 126.74 — — — 265.49

GB 21.31 15.45 36.85 18.33 121.08 139.41 30.88 49.21 5.23 4.77 10.00 21.23
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(We were unable to build MetaGraph on the collec-
tion of 150,000 Salmonella genomes because of Meta-
Graph ’s outsized memory and external disk space 
requirements.)

Query speed
To compare query speed, we benchmark Fulgor and 
Themisto using both low- and high-hit rate read-sets, 
i.e., read-sets for which we have a low and high num-
ber of positive k-mers respectively. Precisely, we use the 
files containing the first read of the following paired-end 
libraries in FASTQ format: SRR192820073 with 7.3× 106 
reads, SRR8966634 with 5.7× 106 reads, SRR8012685 
with 6.6× 106 reads, and ERR3214826 with 6.8× 106 
reads. For COBS, we report query times with the entire 
index loaded into RAM (option –load-complete.)

In Table 5 we report the result of the comparison using 
the full-intersection method (Algorithm 1). We repeated 
the same experiment using the threshold-union method 
(Algorithm 3) with parameter τ = 0.8 as this is the pre-
ferred query mode in Themisto and MetaGraph. 
However, we did not observe any appreciable difference 
compared to the full-intersection method in terms of 
query speed.

From a high-level point of view, the trend is as fol-
lows: Fulgor is consistently the fastest index to query, 

closely followed by Themisto, whereas both Meta-
Graph and COBS are much slower. We discuss details in 
the following.

In a low-hit rate workload where a small proportion of 
reads map to the indexed references, Fulgor is much 
faster than all benchmarked indexes. In this scenario, we 
expect many queried k-mers to not occur in the indexed 
references. When k-mers are absent from the index, no 
color needs to be retrieved and only the k-mer diction-
ary is queried. Here, Fulgor is faster than Themisto 
because its reliance on the fast streaming query capa-
bilities of SSHash. It is worth noting here that in any 
streaming setting where consecutive k-mers are queried, 
Fulgor can fully exploit the monochromatic property 
of unitigs in ways which Themisto cannot. Queries to 
SSHash have very good locality compared to the SBWT 
because adjacent k-mers in unitigs are stored contigu-
ously in memory. Further, streaming queries to SSHash 
can be very efficiently cached and optimized. When look-
ing up consecutive k-mers, SSHash can entirely avoid 
computing its minimal perfect hash and instead perform 
fast comparisons of k-mers stored in cached positions 
pointing to adjacent addresses in memory.

In a high-hit rate workload, Fulgor still outperforms 
all benchmarked indexes, but outperforms Themisto 
by a smaller margin since most of the time is now spent 
in performing the intersection between colors. It is inter-
esting to note that all indexes can process the workloads 
significantly faster on the Gut Bacteria collection: this is 
a direct consequence of the fact that the lists being inter-
sected are much shorter on average for the Gut Bacteria 
compared to the Salmonella collections. This is evident 

Table 4  Average bits/int (bpi) spent for representing colors whose density is (i × 10)% of N, for i = 1, . . . , 10

The first two columns for each collection, “lists” and “ints”, report the percentage of lists (i.e., colors) and integers (stored reference identifiers) that belong to all colors 
within a given density. The last row, “Total bpi”, is comprehensive of the space spent for the integer lists themselves and the space spent for the offsets delimiting the 
lists’ boundaries

Density (%) EC SE GB

N = 3, 682 N = 50, 000 N = 150, 000 N = 30, 691

lists ints bpi lists ints bpi lists ints bpi lists ints bpi

0− 10 46.72 3.90 7.96 70.96 2.62 6.00 79.23 3.27 6.32 99.99 99.99 12.05

10− 20 11.11 5.85 5.24 3.74 2.84 3.05 2.54 2.68 3.92 0.00 0.00 0.00

20− 30 8.05 7.10 4.01 2.69 3.50 3.24 2.09 3.76 3.46 0.00 0.00 0.00

30− 40 4.95 6.14 2.90 1.90 3.43 2.89 1.40 3.51 2.88 0.00 0.00 0.00

40− 50 4.56 7.34 2.23 1.81 4.25 2.22 1.29 4.19 2.23 0.00 0.00 0.00

50− 60 3.85 7.55 1.84 1.82 5.24 1.82 1.24 4.94 1.82 0.00 0.00 0.00

60− 70 4.29 10.00 1.54 2.04 6.94 1.53 1.40 6.59 1.54 0.00 0.00 0.00

70− 80 4.20 11.23 1.33 2.33 9.13 1.08 1.64 8.91 1.15 0.00 0.00 0.00

80− 90 3.65 11.12 0.91 3.03 13.43 0.56 2.09 12.95 0.66 0.00 0.00 0.00

90− 100 8.63 29.73 0.31 9.67 48.63 0.19 7.07 49.21 0.21 0.00 0.00 0.00

Total bpi 1.893 1.020 1.120 12.32

3  https://​www.​ebi.​ac.​uk/​ena/​brows​er/​view/​SRR19​28200.
4  https://​www.​ebi.​ac.​uk/​ena/​brows​er/​view/​SRR89​6663.
5  https://​www.​ebi.​ac.​uk/​ena/​brows​er/​view/​SRR80​1268.
6  https://​www.​ebi.​ac.​uk/​ena/​brows​er/​view/​ERR32​1482.

https://www.ebi.ac.uk/ena/browser/view/SRR1928200
https://www.ebi.ac.uk/ena/browser/view/SRR896663
https://www.ebi.ac.uk/ena/browser/view/SRR801268
https://www.ebi.ac.uk/ena/browser/view/ERR321482
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from Table 4: essentially all lists are just 10% dense, i.e., 
have length at most ⌈30, 691/10⌉ < 3, 070.

For high-hit rate workloads, we also apply and bench-
mark Fulgor ’s two-pass query optimization (described 
in "Multi-query optimizations" section) in which dis-
tinct color id lists are first collected and intersected 
afterwards. This scheme ensures that, for a collection of 
queried reads, the intersection between distinct color 
id list is only performed once. From Table 6, we see that 
for high-hit rate workloads where identical color id lists 
are intersected frequently, this two-pass scheme consist-
ently reduces total query times for homogeneous genome 
collections, while trading off additional memory usage. 
The fastest speedup we observe is from querying the 
Fulgor index of 50,000 Salmonella genomes where the 
two-pass scheme achieves a 40.7% speedup while using 
only 14% percent more memory. Unsurprisingly, the two-
pass scheme is only effective when indexes contain many 
similar genomes. This is evident, for instance, on the het-
erogeneous collection of 30,691 gut bacteria genomes 
where the two-pass scheme does not significantly speed 
up queries albeit using 21.5% extra memory. In this case, 

deduplicating color id lists is not effective because most 
of them are already distinct.

Our results show interesting trade-offs and design 
choices in static vs. dynamic usage of memory at query 
time. Although small on-disk—in contrast to other meth-
ods where query-time memory usage closely matches 
on-disk size—MetaGraph requires more memory when 
retrieving metadata at query-time. For low-hit work-
loads, our results show that if minimizing space is the 
priority, MetaGraph, though slower than other meth-
ods, is the most memory frugal option. However, for 
high-hit workloads, MetaGraph in its fastest “batch” 
mode query, requires significantly more memory than 
the size of the index on-disk. For this workload and an 
index of 10,000 Salmonella genomes, a MetaGraph 
index requires only 0.51 GB of disk space but uses 92.18 
GB of memory to query (hence, 180× more memory). We 
were unable benchmark MetaGraph ’s batch mode que-
ries for 50,000 and 10,000 genome collections because 
these experiments require more than 500 GB in memory.

We also note that part of the slowdown seen for 
Themisto is due to the time spent in loading the 

Table 5  Total query time (elapsed time) and memory used during query (max. RSS) as reported by /usr/bin/time -v, using 16 
processing threads

The read-mapping output is written to /dev/null for this experiment. We also report the mapping rate in percentage (fraction of mapped read over the total 
number of queried reads). Results are relative to the full-intersection query mode (Algorithm 1). All reported timings are relative to a second run of the experiment, 
when the index is loaded faster from the disk cache. The “B” query mode of MetaGraph corresponds to the batch mode (with default batch size); and the “NB” 
corresponds to the non-batch query mode. With a ∗ we mark the workloads exceeding the available memory ( > 500 GB). For the low-hit workload (a) we use the reads 
from SRR896663. For the high-hit workload (b) we use the reads from SRR1928200 for E. Coli, SRR801268 for S. Enterica, and ERR321482 for Gut Bacteria

Rate Fulgor Themisto-d1 Themisto-d20 MetaG.-B MetaG.-NB COBS

m:ss GB m:ss GB m:ss GB mm:ss GB mm:ss GB mm:ss GB

(a) low-hit

EC 4.71 0:10 1.65 0:33 3.22 0:33 2.35 7:34 2.82 3:40 0.38 10:25 28.94

SE-5K 1.27 0:09 0.77 0:32 2.27 0:30 1.77 6:48 2.76 2:55 0.31 11:50 37.64

SE-10K 13.86 0:10 2.01 0:36 5.32 0:36 4.06 7:35 3.00 4:17 0.56 14:33 75.63

SE-50K 32.61 0:25 17.91 1:05 37.45 0:56 33.07 8:33 5.05 6:47 2.42 39:33 367.34

SE-100K 34.09 0:45 41.49 1:39 81.60 1:22 75.89 9:19 7.04 7:33 4.23 48:52 ∗521.58

SE-150K 34.01 1:06 69.05 5:02 130.94 2:05 124.19 — — — — 37:40 ∗522.47

GB 11.90 0:57 36.02 2:58 136.47 1:42 48.37 11:03 12.24 11:55 9.89 30:01 192.70

Rate Fulgor Themisto-d1 Themisto-d20 MetaG.-B MetaG.-NB COBS

mm:ss GB h:mm:ss GB h:mm:ss GB mm:ss GB h:mm:ss GB h:mm:ss GB

(b) high-hit

EC 99.10 02:10 1.68 0:03:40 3.32 0:03:40 2.46 22:00 30.44 1:05:41 0.40 0:45:11 34.93

SE-5K 89.53 01:16 0.82 0:03:50 2.34 0:03:50 1.82 14:14 36:54 0:20:32 0.33 0:38:34 41.93

SE-10K 89.76 02:26 2.11 0:07:35 5.40 0:07:35 4.16 28:15 92.18 0:43:40 0.61 1:01:14 84.20

SE-50K 91.31 19:15 18.53 0:41:25 37.52 0:42:02 33.14 — — 4:30:03 2.72 3:54:18 408.82

SE-100K 91.52 27:30 42.78 1:22:14 81.67 1:22:00 75.93 — — 9:40:06 4.82 8:07:29 ∗522.56

SE-150K 91.61 42:30 70.55 2:00:08 130.98 2:00:13 124.27 — — — — 7:47:14 ∗522.63

GB 92.98 01:10 30.02 0:02:45 136.55 0:01:20 48.47 28:55 15.86 0:22:05 9.91 0:34:45 225.57
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index from disk to RAM. For collections of Salmonella 
genomes, index load times are at least twice as Fulgor’s 
because of its larger index size. In Table 7, we measure the 
average loading time of the indexes from disk to memory 
(we have omitted MetaGraph from these measurements 
since MetaGraph ’s memory usage is dynamic and is 
not accurately reflected by its on-disk size, as explained 
above). Here, we can see that both Themisto (-d1) 
and COBS impose a non-negligible time overhead due 
to loading from disk. This impacts negatively on low-
hit workloads where a significant fraction of the meas-
ured “query” time is spent in actually loading the index. 
So, while the result in Table 5 is fair since it reports the 
total query time end-to-end, Table 7 suggests that some 
indexes are only beneficial for heavy workloads where 
loading from disk is a smaller fraction of the total time. 
This is especially evident when comparing benchmarks 
on the collection of Gut Bacteria genomes for Themisto 
with and without k-mer color sampling. Here, the theo-
retically slower parameterization of Themisto (with 
-d20) completes benchmarks faster than a Themisto 
index without sampling because, though slightly slower 
to query, the smaller index is much faster to load.

Comparison of pseudoalignment algorithms on simulated 
data
To analyze the accuracy of the underlying pseudoalign-
ment algorithms, we perform additional testing with read 
sets simulated using the Mason  [43] simulator. To ana-
lyze how mapping and hit rates affect query speed, we 
simulate a varying proportion of “positive” reads from 
indexed reference sequences and generate “negative” 
reads from the human chromosome 19 from the CHM13 
v2.0 human genome assembly  [44]. We use Fulgor 
to compare the four mapping algorithms described in 
"Pseudoalignment algorithms" section.

From Table  8, we see that at various proportions of 
ground truth positive reads (simulated reads deriv-
ing from indexed references), all mapping methods 
have a true positive rate (TPR), i.e., total reads correctly 
mapped over the total ground truth positives, greater 
than 95%. This high sensitivity for all four methods is to 
be expected since all methods simply check for k-mer’s 
membership to references of origin and do not consider k
-mer positions in references. One main drawback of elid-
ing positions, heuristically avoiding “locate” queries, and 
entirely ignoring k-mers that are not present in the index, 
is also clear. All methods incur approximately a 30% false 
positive rate (FPR), i.e., total reads spuriously mapped 
over the total ground truth negatives. As is expected, 
the threshold-union method incurs a slightly higher FPR 
compared to other methods (30% compared to 27% for 
other methods) because of its less strict criteria only 
requiring references to be compatible with τ fraction of 
mapped k-mers instead of all k-mers.

In these benchmarks, we find very little difference in 
terms of TPR and FPR between the exhaustive methods 
and skipping heuristics. These results also gesture at one 
desirable and one undesirable quality of these methods. 
First, skipping heuristics correctly assume and success-
fully skip k-mers that likely occur on the same unitig 

Table 6  Total query time and memory used with Fulgor’s two-pass multi-query optimization compared to “normal” single-pass 
queries (the same as in Table 5b). Here, we benchmark high-hit workloads using 16 processing threads

We report the percentage of speedup compared to unoptimized queries as well as the additional memory usage in columns “% speedup” and “%+Mem.”, respectively

Normal Two-pass optimization

mm:ss GB mm:ss GB % speedup %+Mem.

EC 02:10 1.68 01:24 2.78 35.38 65.48

SE-5K 01:16 0.82 01:09 1.47 9.21 79.27

SE-10K 02:26 2.11 02:08 3.18 12.33 50.71

SE-50K 19:15 18.53 11:25 21.12 40.69 13.98

SE-100K 27:30 42.78 23:00 47.16 16.36 10.24

SE-150K 42:30 70.55 35:02 77.47 17.57 9.81

GB 01:10 30.02 01:09 36.47 1.43 21.49

Table 7  Average index loading time from disk to memory

Fulgor Themisto-d1 Themisto-d20 COBS

mm:ss mm:ss mm:ss mm:ss

EC 00:01 00:02 00:02 00:04

SE-5K 00:01 00:02 00:02 00:05

SE-10K 00:02 00:06 00:06 00:10

SE-50K 00:14 00:40 00:35 03:30

SE-100K 00:30 01:45 01:20 07:15

SE-150K 01:00 02:00 01:00 15:00

GB 00:30 02:00 00:30 00:09
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and have the same color. Likewise, they have the poten-
tial to be even more sensitive than the full-intersection 
method, as they do not, in general, search for every k
-mer in a query, and can thus avoid scenarios where 
variation or sequencing errors in a query cause spuri-
ous matches to the index, shrinking or eliminating the 
set of references appearing in the final color assigned to 
the query. In fact, in a small-scale test, Alanko et al. [15] 
report that Kallisto’s skipping heuristic results in a small 
but persistent increase of approximately 0.03% in the 
mapping rate. However, all four of the pseudoalignment 
methods evaluated here suffer from a high FPR and low 
precision. Better algorithms to lower FPR and improve 
precision without lowering sensitivity too much should 
be investigated in future work. Such improvements may 
be possible by adding back information about the ref-
erence positions where k-mers from the query match, 
incorporating structural constraints [16] or other such 
restrictions atop the color intersection rule. Yet, those 
approaches are more computationally involved, require 
the index to support locate queries, and also substantially 
diverge from “pseudoalignment ” as traditionally under-
stood. Regardless, we highlight here that Fulgor more 
easily enables implementing skipping and unitig-based 
heuristics compared to other methods that do not explic-
itly store unitig sequences and keep k-mers in unitig 
order. In fact, Fulgor implicitly maintains additional 
information regarding the local structural consistency of 
k-mers. For example, with Fulgor, one can easily check 
if consecutive k-mers are valid on an indexed unitig or 
check if consecutive unitigs on a read have valid overlaps, 
in an attempt to reduce the FPR.

Conclusions and future work
We introduce Fulgor, a fast and compact index for the 
k-mers of a colored compacted de Bruijn graph (ccdBG). 
Using SSHash, an order-preserving k-mer dictionary, 
Fulgor fully exploits the monochromatic property of 

unitigs in ccdBGs and implements a very succinct map 
from unitigs to colors, taking only 1+ o(1) bits per unitig. 
Further, Fulgor applies an effective hybrid compression 
scheme to represent the set of distinct colors.

Across all benchmarked scenarios, Fulgor outper-
forms Themisto— its most direct competitor—in terms 
of space and speed. Further, though not as small to repre-
sent on-disk as MetaGraph’s most space-efficient vari-
ant, Fulgor is much faster to query and build, and can 
be queried with predictable memory usage. In particular, 
it is worth comparing MetaGraph to other methods. 
Compared to Themisto and Fulgor that specialize in 
indexing the colors of a ccdBG, MetaGraph is a frame-
work for indexing reference sequences and can be more 
complicated to build. From our experiments, we argue 
that Fulgor is the most practical index to use because 
it is fast to query and its memory usage at query time is 
frugal and predictable—Fulgor does not dynamically 
decompress metadata at query-time. There is still room 
for improvement in future work. We discuss some prom-
ising directions below.

In terms of speed, we remark that when processing a 
high-hit workload, the overall runtime is dominated by 
the time required to intersect the colors. As explained in 
"Exhaustive methods" section, Fulgor currently imple-
ments a generic intersection algorithm that only requires 
two primitive operations, namely next and Next- GEQ 
(see also "Pseudoalignment algorithms" section). But this 
is not the only paradigm available for efficient intersec-
tion. We could, for example, try approaches that exploit 
different indexing paradigms, such as Roaring  [35] and 
Slicing [45], that are explicitly designed for fast intersec-
tions. These alternative approaches may be significantly 
faster especially on the high-hit workloads.

Another possible optimization is to implement a cach-
ing scheme for frequently occurring and/or recently 
intersected colors. Caching the uncompressed or inter-
section-optimized versions of frequently occurring color 

Table 8  Quality of pseudoalignment algorithms querying 100,000 simulated reads against 50,000 Salmonella genomes indexed with 
Fulgor 

We vary the percentage of positive reads simulated from indexed Salmonella genomes by diluting queried read sets with negative reads simulated from a reference 
human transcriptome. We consider a mapped positive read (deriving from indexed references) to be a true positive if the reference of origin is in the returned set of 
compatible references; and a mapped negative read (deriving from human chromosome 19) to be a false positive. We denote true and false positive rates (%) to be TPR 
and FPR, respectively. For the threshold-union method, we use τ = 0.8

% Positive Full-intersection Threshold-union Kallisto Alevin-fry

TPR FPR TPR FPR TPR FPR TPR FPR

90 95.0 27.0 97.7 30.0 95.0 27.0 95.1 27.0

70 95.1 27.0 97.7 30.0 95.1 27.0 95.1 27.0

25 95.1 27.0 97.7 30.0 95.2 27.0 95.2 27.0

10 95.5 27.0 97.8 30.0 95.5 27.0 95.5 27.0
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sets, or previously computed intersections, could speed 
up query processing substantially when many reads map 
to the same set of colors.

For example, as we observed, our two-pass query 
scheme increased query throughput, sometimes con-
siderably, by avoiding completely redundant color 
intersections. Yet, such an approach, which consists of 
first collecting color-id lists, then sorting and aggregat-
ing identical lists, is simple and only takes advantage of 
exactly duplicated color-id lists. We note, however, that 
generalizations of such approaches may be much more 
powerful and efficient. In general, one can consider 
ways to take advantage of redundancy and replication 
in the color-id lists so as to avoid redundant intersec-
tions. Specifically, because the intersection operation 
distributes over sub sets, the intersection over a list of 
color ids can be decomposed into the intersection of the 
result of applying the intersection operation to the sub-
lists that compose the overall list. For example, the inter-
section A ∩ B ∩ C ∩ D ∩ E = (A ∩ B ∩ C) ∩ (D ∩ E) =

A ∩ B ∩ C ∩ D ∩ E = (A ∩ B ∩ C) ∩ (D ∩ E) = , etc.
This observation leads to the general question of how 

best to decompose the intersection over a multi-set of 
lists (i.e., the color-id lists taken over all queries) into a 
collection of redundant sub-problems whose results 
can be computed once and reused many times. We note 
similarities to the frequent itemset mining problem [46], 
where one seeks to find subsets of elements that fre-
quently co-occur (in our case, we would be interested 
in color ids that frequently co-occur in the lists corre-
sponding to queries). However, fully understanding and 
exploiting the structure of repeated and/or similar pat-
terns in the color lists, and finding “good” factorizations 
to minimize the computation required to answer the 
queries, is an interesting and largely unsolved problem 
in its own regard. We leave the question of how best to 
approach this problem, and, in general, how to optimize 
different pseudoalignment algorithms for multiple query 
patterns rather than considering each query indepen-
dently, to future work.

In terms of space, one property that Fulgor does not 
exploit in this work is the fact that many unitigs in the 
ccdBG share similar colors—i.e., co-occur in many refer-
ence sequences. This is so because unitigs arising from 
conserved genomic sequences will share similar occur-
rence patterns. We point out that we have recently pro-
posed a method to take advantage of this redundancy 
in a related line of research  [47]. Other works have 
also explored this possibility. For example, Almoradesi 
et  al.  [48] developed a method that efficiently com-
presses distinct, but highly-correlated colors, through 
a variant of referential encoding. Specifically, they com-
pute a minimum spanning tree (MST) on a sub-graph 

of the color graph induced by the ccdBG, and encode a 
color by recording its differences with respect to its par-
ent in the MST. This vastly reduces the space required to 
encode the color set when many similar colors exist, as 
we would expect in a pangenome, and fast query speed 
can be retained through color caching. Another related 
approach would be to resort to clustering similar colors 
and encoding all colors within a cluster with respect to 
a cluster representative color  [49]. Likewise, although 
not specifically designed to compress colors, Meta-
Graph and its variants can exploit similarity between 
colors using a general compression scheme that records 
differences in stored metadata (in this case, the colors) 
between adjacent k-mers [21]. We lastly note that, since 
the colored k-mer indexing problem is modular ("Mod-
ular indexing layout" section), novel relational com-
pression techniques for the set of distinct colors can be 
developed and optimized independently of the other 
components of the index.

Finally, in our experiments with simulated data ana-
lyzing the quality of pseudoalignment algorithms from 
"Comparison of pseudoalignment algorithms on simu-
lated data" section, we find higher than desirable false 
positive rates. This suggests that, at least for the metagen-
omic and pangenomic reference collections where many 
references share similar k-mer content, better read-map-
ping heuristics and algorithms that improve specificity 
(i.e., reduce the spurious mapping of reads not arising 
from indexed references) without trading-off too much 
recall are still sorely needed. Here, it will be desirable to 
search for methods that can improve specificity without 
the need to retain reference positions or issue locate que-
ries for all k-mers. We suggest that there may be several 
promising directions. For example, one may consider 
enforcing local structural consistency among matched k
-mers to potentially reduce spurious mapping. Likewise, 
one may consider filtering repetitive and low-complexity 
k-mers from contributing to the final pseudoalignment 
result. Finally, by analogy to BLAST [50], one may con-
sider evaluating the likelihood that a pseudoalignment 
result is spurious by comparing the matching rate against 
against some null or background expectation to account 
for the fact that, in very large reference databases, a very 
small number of (potentially correlated) k-mers may be 
insufficient evidence to consider a query as compatible 
with a subset of references.
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