
Bohnenkämper
Algorithms for Molecular Biology (2024) 19:8
https://doi.org/10.1186/s13015-024-00253-7

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Algorithms for
Molecular Biology

Recombinations, chains and caps: resolving
problems with the DCJ-indel model
Leonard Bohnenkämper1*

Abstract

One of the most fundamental problems in genome rearrangement studies is the (genomic) distance problem. It
is typically formulated as finding the minimum number of rearrangements under a model that are needed to trans-
form one genome into the other. A powerful multi-chromosomal model is the Double Cut and Join (DCJ) model.
While the DCJ model is not able to deal with some situations that occur in practice, like duplicated or lost regions, it
was extended over time to handle these cases. First, it was extended to the DCJ-indel model, solving the issue of lost
markers. Later ILP-solutions for so called natural genomes, in which each genomic region may occur an arbitrary num-
ber of times, were developed, enabling in theory to solve the distance problem for any pair of genomes. However,
some theoretical and practical issues remained unsolved. On the theoretical side of things, there exist two disparate
views of the DCJ-indel model, motivated in the same way, but with different conceptualizations that could not be
reconciled so far. On the practical side, while ILP solutions for natural genomes typically perform well on telomere
to telomere resolved genomes, they have been shown in recent years to quickly loose performance on genomes
with a large number of contigs or linear chromosomes. This has been linked to a particular technique, namely cap-
ping. Simply put, capping circularizes linear chromosomes by concatenating them during solving time, increasing
the solution space of the ILP superexponentially. Recently, we introduced a new conceptualization of the DCJ-indel
model within the context of another rearrangement problem. In this manuscript, we will apply this new conceptu-
alization to the distance problem. In doing this, we uncover the relation between the disparate conceptualizations
of the DCJ-indel model. We are also able to derive an ILP solution to the distance problem that does not rely on cap-
ping. This solution significantly improves upon the performance of previous solutions on genomes with high num-
bers of contigs while still solving the problem exactly and being competitive in performance otherwise. We demon-
strate the performance advantage on simulated genomes as well as showing its practical usefulness in an analysis
of 11 Drosophila genomes.

Keywords Comparative genomics, Genome rearrangement, Double-cut-and-join, Indels, Integer linear
programming, Capping

Introduction
In genome rearrangement studies, genomes are analyzed
on a high level. Most often, the basic unit used is there-
fore not nucleotides, but oriented genetic markers, such
as genes. The most fundamental problem in theoretical
studies of genome rearrangements is the distance prob-
lem, which asks to provide the minimum number of rear-
rangements needed to transform one genome into the

*Correspondence:
Leonard Bohnenkämper
lbohnenkaemper@techfak.uni-bielefeld.de
1 Faculty of Technology and Center for Biotechnology (CeBiTec), Bielefeld
University, Universitätsstraße 25, 33615 Bielefeld, NRW, Germany

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-024-00253-7&domain=pdf

Page 2 of 19Bohnenkämper Algorithms for Molecular Biology (2024) 19:8

other under a restricted set of operations, also called a
model.

In early approaches, such as the inversion model [1],
solutions to the distance problem focused primarily on
unichromosomal data, in which each marker appeared
exactly once in each genome. These assumptions lim-
ited the applications of the models to real biological data,
which often contained multiple chromosomes and a wide
variety of marker distributions. Since then, researchers
have sought to enable models to handle more realistic
data. A major breakthrough was the DCJ-model intro-
duced by Yancopoulos et al. in 2005 [2], a simple model
that was nonetheless capable of handling multiple chro-
mosomes. In 2010, Braga, Willing and Stoye extended
the DCJ-model to the DCJ-indel model, enabling it to
handle markers unique to one genome [3]. An independ-
ent, equivalent conceptualization of the same DCJ and
indel operations was developed by Compeau in 2012 [4],
although the precise relationship of the two conceptual-
izations remained unclear [5]. We refer to these views as
the BWS- and Compeau-conceptualization respectively.

In 2021, previous results by Shao et al. [6] were com-
bined with the BWS-conceptualization in [7] to yield the
performant ILP solution ding for genome pairs with
arbitrary distributions of markers, the so called natural
genomes. In theory, ding enables the computation of the
rearrangement distance between any pair of genomes
available today.

However, ding uses a technique known as capping,
which transforms linear chromosomes into circular
ones during solving time. As described in [8], capping
increases the solution space of ILPs like ding super-
exponentially in the number of linear chromosomes.
Since many assemblies available today are not resolved
on a chromosome level and instead fragment into some-
times thousands of contigs, this renders distance com-
putation infeasible yet again for many available genomes
today. In [8], Rubert and Braga develop a heuristic

solution to reduce the search space spanned by capping.
Nonetheless, no exact solutions for the DCJ-indel dis-
tance problem of natural genomes avoiding capping exist
as of yet.

In this work, we apply a new view on the DCJ-indel
model developed in [9] to the distance problem. Using
this, we are able to bridge the gap between the BWS-
and Compeau conceptualizations in the "Relation of the
BWS- and Compeau-Conceptualization" section. Fur-
thermore, this new conceptualization lends itself to a
new distance formula (see Theorem 1), which is simple
enough to be developed into a capping-free ILP ("Cap-
ping-free Generalization to Natural Genomes" section),
which we then evaluate in the "Evaluation of the ILP" sec-
tion to show its performance advantage over ding.

Problem definition
For this work, we use the same notation as in our pre-
vious work. Therefore large parts of this section are
adapted from [9]. We conceptualize a genome G as a
graph (XG,MG ∪ AG) . Its vertices XG are the beginnings
mt and ends mh of markers m := {mt ,mh} ∈ MG . We
refer to mt ,mh as extremities. The genome’s adjacencies
AG are undirected edges {mx, ny} ∈ AG , which signify
that the extremities mx and ny are neighboring on the
same chromosome. As a shorthand notation, we write ab
for an adjacency {a, b} . We require both AG and MG to be
a matching on XG.

Because of that requirement, each path in G is sim-
ple and alternates between markers and adjacencies. A
component of a genome is thus either a linear or circular
simple path. We refer to them as linear and circular chro-
mosomes respectively. The extremities in which a linear
chromosome ends are called telomeres. Additionally, we
refer to a subpath of a chromosome that starts and ends
in a marker a chromosome segment (called a marker path
in [9]). An example of a genome is given in Fig. 1.

Fig. 1 Genome of 7 markers with one linear and one circular chromosome. Markers drawn as arrows, adjacencies drawn as double lines

Page 3 of 19Bohnenkämper Algorithms for Molecular Biology (2024) 19:8

In our model, each marker is unique, thus there are no
markers shared between genomes. Therefore, in order
to calculate a meaningful distance between genomes,
we borrow a concept from biology, namely homology.
Homology can be modeled as an equivalence relation
on the markers, i.e. m ≡ n for some m, n ∈ MG . We call
the equivalence class [m] of a marker m its family. We
also extend the equivalence relation to the extremities
with mt ≡ nt and mh ≡ nh if and only if m ≡ n . How-
ever, we require that no head is equivalent to any tail,
i.e. mt ≡n

h∀m, n ∈ MG . We can then extend the equiva-
lence relation to adjacencies as follows: ab ≡ cd if and
only if both of the extremities are equivalent, that is
a ≡ c ∧ b ≡ d or a ≡ d ∧ b ≡ c.

To illustrate our concept of homology, we introduce
the Multi-Relational Diagram (MRD), a graph data
structure that is also useful for the distance computa-
tion. We deviate from the definition in [7] by omitting
indel edges from our definition. This allows us to be
closer to the breakpoint graph definition used in [5] and
enables the use of the simpler formula in Theorem 1.

Definition 1 The MRD of two genomes A,B and a
homology relation (≡) is a graph MRD(A,B,≡) = (V ,E)
with V = XA ∪ XB and two types of edges E = Eγ ∪ Eξ ,
namely adjacency edges Eγ = AA ∪ AB and extremity
edges Eξ = {{x, y} ∈ XA × XB | x ≡ y}.

We give an example of a MRD in Fig. 2. We see that
in that example, 41 and 51 have no homologues in the
other genome respectively. We refer to such markers as
singular. Additionally, we call a circular or linear chro-
mosome consisting only of singular markers a circular
or linear singleton.

Note also that the family {21, 22, 23} in this exam-
ple has more than just one marker per genome. We

call markers of such families ambiguous. We refer to
a homology, in which no markers are ambiguous as
resolved. In order to determine the precise nature of
rearrangements occurring between two genomes, it is
helpful to find a matching between the markers of two
genomes.

Definition 2 A matching (⋆≡) on a given homology (≡)
is a resolved homology for which holds m ⋆

≡n =⇒ m ≡ n
for any pair of markers m, n.

We call two genomes A,B equal under a homology
(≡), if there is a matching (⋆≡) on (≡), such that each
marker and adjacency of A has exactly one equivalent
in B under ⋆≡) and vice versa.

We note that when the homology is resolved, in the
MRD at most one extremity edge connects to each ver-
tex. Because the adjacencies form a matching on the
extremities, the resulting MRD consists of only simple
cycles and paths. We therefore call such MRDs simple.
We note that a simple MRD fits the definition of a sim-
ple rearrangement graph as studied in Section 3 of [9].
An example of a simple MRD is given in Fig. 3.

Rearrangements in our transformation distance are
modeled by the Double-Cut-And-Join (DCJ) operation.
A DCJ operation applies up to two cuts in the genome
and reconnects the incident extremities or telomeres.
More formally, we can write as in [10]:

Definition 3 A DCJ operation transforms up to two the
adjacencies ab, cd ∈ AA or telomeres s, t of genome A in
one of the following ways:

• ab, cd → ac, bd or ab, cd → ad, bc

• ab → a, b

• ab, s → as, b or ab, s → bs, a

• s, t → st

Fig. 2 MRD for two genomes on an unresolved homology (≡1) with families {11, 12}, {21, 22, 23}, {31, 32}, {41}, {51}

Page 4 of 19Bohnenkämper Algorithms for Molecular Biology (2024) 19:8

To model markers being gained or lost, we introduce
segmental insertions and deletions.

Definition 4 An insertion of length k transforms a
genome A into A′ by adding a chromosome segment
p = p1, p2, ..., p2k−1p2k to the genome. Note that this adds
the markers (p1, p2), ..., (p2k−1, p2k) ∈ MA′ . An insertion
may additionally either add the adjacency p2kp1 ∈ AA′ ,
apply the transformation ab → ap1, p2kb for an adja-
cency ab or the transformation s → p1s for a telomere s.
A deletion of length k removes the chromosome segment
p = p1, ..., p2k and creates the adjacency ab if previously
ap1, p2kb ∈ AA.

We are now in a position to formulate the distance
problem as finding a shortest transformation of DCJ
and indel operations of one genome into the other.

Problem 1 Given two genomes, A,B and a homology
(≡), find a shortest sequence s1, ..., sk of DCJ and indel-
operations transforming A into a genome equal to B . We
call the length of k the DCJ-indel distance of A,B under
(≡) and write didDCJ (A,B,≡) = k.

The original DCJ-indel model by Braga et al. [11] only
allowed indels on chromosome segments of singular
markers to avoid scenarios that deleted and reinserted
whole chromosomes. For a resolved homology ⋆

≡ , we
call didDCJ (A,B,

⋆
≡) the restricted DCJ-indel distance if we

allow only indels of segments comprised solely of sin-
gular markers in scenarios in Problem 1.

For unresolved homologies, we can apply the same
model by just finding a matching on the original homol-
ogy. However, in order to not create a similar “free
lunch” issue, we restrict ourselves to an established
model, the Maximum Matching model [12]. We call a

matching (+≡) on a homology (≡) maximal if there are
only singular markers in one genome for every family
in (≡).

Problem 2 Given two genomes, A,B and a homol-
ogy (≡), find a maximal matching (+≡) on (≡), such that
didDCJ (A,B,

+
≡) is minimized.

A new DCJ‑indel distance formula
We note that the only maximal matching on a resolved
homology (⋆≡) is (⋆≡) itself. Thus, for resolved homolo-
gies, in any scenario for Problem 2, we know deletions
can only affect singular markers. Let us now regard the
MRD of a pair of genomes A,B for a resolved homol-
ogy (⋆≡). Since each marker has at most one homologue,
each vertex is connected to at most one extremity edge.
Since adjacency edges form a matching on the vertices,
again, the graph consists only of simple cycles and paths.
All cycles are even and we write the set of cycles as C◦ .
Paths can end either in a vertex without an extremity
edge or adjacency edges. We name the vertices, in which
a path ends in its endpoints. Vertices without extremity
edges are special, because, as we established earlier, they
are the extremities of the markers that will be part of
indels during the sorting. We therefore name them lava
vertices. The other type of vertex are vertices not con-
nected by an adjacency edges. We refer to these as tel-
omeres. Note that there is a special case wherein a lava
vertex can also be a telomere. We can then identify dif-
ferent types of paths by their endpoints. We write a or
b for a lava vertex and A or B for a telomere, depending
on whether its part of genome A or B . We then obtain
a partition of paths into 10 different subsets, namely
PA◦A,PA|B,PB◦B,PA◦a,PA|b,PB|a,PB◦b,Pa◦a,Pa|b,Pb◦b .
In order to be consistent with [9], we use ◦ and to

Fig. 3 MRD for two genomes on a resolved homology (
⋆
≡1) with families {11, 12}, {21, 22}, {23}, {31, 32}, {41}, {51} . Extremities of singular markers

(called lava vertices from "A New DCJ-Indel Distance Formula" section onward) are filled black. (
⋆
≡1) is a (maximal) matching on (≡1) of Fig. 2

Page 5 of 19Bohnenkämper Algorithms for Molecular Biology (2024) 19:8

distinguish even and odd paths respectively. Further-
more, we write px(∗)y as a shorthand for the cardinality
of Px(∗)y and Px(∗)y for a generic example of an element of
Px(∗)y.

Usually it is not necessary to think of all 10 different
sets as separate entities, because they behave very simi-
larly with respect to applied DCJ or indel operations. In
textual form we therefore often use a coarser distinction,
naming paths with two lava vertices as pontoons, paths
with a telomere and a lava vertex as piers as well as paths
with two telomeres as viaducts. An overview of this nota-
tion is given in Fig. 4.

Another notation we adopt from [9] is for a DCJ
ab, cd → ac, bd affecting the adjacencies ab and cd in
components Kab,Kcd of the MRD respectively, we can
instead view the DCJ as Kab,Kcd → Kac,Kbd trans-
forming the components Kab,Kcd into Kac,Kbd . In
combination with the generic member notation from
above, we can write operations abstractly like so:
PA◦a,PB|a → PA|B,Pa◦a . For reference, we have also
shown this DCJ operation in Fig. 5.

Based on this notation and with the help of observa-
tions from [9], it is possible to derive a new distance for-
mula. We do so in detail in Appendix A. However, this
formula is equivalent to that of Compeau and BWS as we

will see in the following subsection. We thus only state it
here.

Theorem 1 For two genomes A,B and a resolved homol-
ogy (⋆≡) for which both genomes contain no circular single-
tons, we have the distance formula

with n the number of matched markers,
n = |{(m,m′) ∈ MA ×MB | m

⋆
≡m

′}|.

Note that constraining ourselves to genomes with-
out circular singletons constitutes no serious restric-
tion, as Compeau showed that circular singletons each
require one indel operation and can thus be dealt with
in pre-processing [5].

To more easily address individual terms in the for-
mula, we use the followig shorthands,

didDCJ (A,B,
⋆
≡) = n− c◦+

⌈

pa|b +max(pA◦a, pB|a)+max(pA|b, pB◦b)− pA|B

2

⌉

F : = n− c◦ + P̃ := n− c◦ +

⌈

p̃
2

⌉

: = n− c◦ +

⌈ pa|b +max(pA◦a , pB|a)+max(pA|b , pB◦b)− pA|B
2

⌉

.

Fig. 4 All different types of components in a simple MRD. Vertices of genome A are on the top, vertices of genome B are on the bottom of each
component. Lava vertexs are filled black

Fig. 5 An example of a DCJ operation of the type PA◦a , PB|a → PA|B , Pa◦a

Page 6 of 19Bohnenkämper Algorithms for Molecular Biology (2024) 19:8

Relation of the BWS‑ and compeau‑conceptualization
We now examine how the terms in our distance for-
mula relate to both the Compeau- and BWS-concep-
tualizations of the DCJ-indel model. In doing that, we
uncover the nature of the relation between these two
views that have been perceived as entirely separate
since their conception [5].

Braga et al. [11] and Compeau [5] use the adjacency
and breakpoint graphs respectively. Both graphs are
strongly related to the MRD. In fact, one obtains the adja-
cency graph by collapsing all adjacency edges of a sim-
ple MRD and the breakpoint graph by collapsing all its
extremity edges. In order to avoid confusion, we will pre-
sent their results here as if they had been formulated on
a simple MRD. When consulting the original works in [5,
11], the reader should keep this in mind. Particularly
in [5] the length of a path is determined by its adjacency
edges instead of by its extremity edges as defined here.
Therefore, parities of viaducts and pontoons are exactly
opposite in [5] to the ones stated here.

We will compare the models by examining the chro-
mosome segments that are deleted or inserted (see
Definition 4), which we refer to as indel groups. We
say an adjacency ab or its extremities a, b are part of
an indel group p if there is a′b′ ≡ ab with a′b′ ∈ p or p
starts and ends in a′ and b′ . In terms of indel groups,
our view is closely related to the BWS-conceptualiza-
tion, because both create the indel groups implicitly
during sorting (see Appendix A). In terms of the graph,
our conceptualization is more closely related to Com-
peau’s because it essentially operates on the same type
of components (lava vertices are called open in [5],
piers are π - and γ-paths and pontoons are {π ,π} -,
{π , γ } - and {γ , γ }-paths). However, in [5], indels are
not modeled as an explicit operation, but instead
emulated by integrating or excising artificial circu-
lar chromosomes during sorting. Adding the correct

chromosomes, the completion, is therefore the main
problem solved in [5]. These additional chromosomes
are then the explicitly constructed indel groups in the
sorting. Because the homology of the markers needed
for the completion is known beforehand on a resolved
homology, the task is to find the correct new adjacen-
cies to add to the graph. Then, if an adjacency a′b′ is
found in the completion, the extremities a ≡ a′, b ≡ b′
of the originally singular markers will be part of the
same indel group. Once the completion is constructed,
there are no more lava vertices in the graph. Instead,
former piers and pontoons are joined into new compo-
nents, either bracelets, which are circular and consist
of pontoons only, or chains, which consist of two piers
and possibly pontoons. An example of a completion
can be found in Fig. 6.

In [11], lava vertices are avoided by viewing singu-
lar markers as part of adjacencies of matched markers,
called G-adjacencies. This is equivalent to connecting
the head and tail vertex of a singular marker with a
special type of edge, called indel edge as is done in [7].
Introducing indel edges concatenates components with
lava vertices. We name these concatenated component
crossings and distinguish between circular crossings
called ferries and linear crossings called bridges.

Definition 5 A pontoon bridge b1, .., bk for k ≥ 2 is a
string of components bi , such that b1, bk are piers, (bi)k−1

i=2
are pontoons and there are singular markers (mi)

k−1
i=1 with

mi = mj for i = j whose extremities are contained as
lava vertex in bi, bi+1 for all mi . A string of components
is called a bridge if it is a pontoon bridge or consists of a
single viaduct.

Definition 6 A pontoon ferry f1, ..., fl for l ≥ 1 is a
string of pontoons fi , such that here are singular markers

Fig. 6 Components resulting from a completion as in [5]. Vertices and Edges added during completion are colored in grey

Fig. 7 Path as found in [7] as another way of writing the paths in [11] by adding indel edges between lava vertices of the same gene. Indel edges
here drawn in dashed. In this work, indel edges are omitted and the collection of components arising is called a bridge

Page 7 of 19Bohnenkämper Algorithms for Molecular Biology (2024) 19:8

(mi)
l
i=1 with mi = mj for i = j whose extremities are con-

tained as lava vertices in fi, fi+1 for all mi for i < l and
the extremities of ml are contained in f1 and fl . A string
of components is called a ferry if it is a pontoon ferry or
consists of a single cycle.

Ferries and bridges are cycles and paths in [11] respec-
tively. An example of a bridge can be found in Fig. 7.
Crossings are first sorted separately in [11], so we start
our comparison by doing the same. We thus aim to find
internal operations that only involve components of the
same crossing. During sorting, we want to make sure that
the operations we apply are not only optimal in the con-
text of the crossing, but in the graph as a whole. There
are certain operations that are guaranteed to be optimal
because they reduce F in any MRD by 1, no matter which
other components are found in the graph. We call such
an operation safe. For example, extracting a cycle from
any component is safe (as �c◦ = 1), whereas recombin-
ing two even piers, such as PA◦a,PA◦a → PA◦A,Pa◦a is not
safe, because it is only optimal under the premise that
pA◦a > pB|a . There are only 7 distinct types of safe DCJ
operations. We list them in Table 1. We also note that
as in [11], instead of sorting A to B , we can sort both A
and B to a common genome. By thinking this way, we can
better exploit the symmetry of the situation.

The most obvious safe operation is the extraction of
an even cycle from another component. If one continues
to extract even cycles from an even pontoon p = x1...xk
with lava vertices x1 and xk , one arrives at the pontoon
p′ = x1xk , which consists of a single adjacency. The cor-
responding singular markers of x1 and xk can then be

dealt with with the same indel operation, meaning x1, xk
are part of the same indel group. Braga et al. notice the
same thing in [11]; they refer to markers that are only
separated by even pontoons as a run, which they notice
can be “accumulated” in this fashion. For an extensive
example, see Additional file 1: Fig. S16 in Appendix B,
Steps (a), (b). In [5], genomes are not explicitly sorted, so
there is no true equivalent to safe operations, but Com-
peau systematically finds chains and bracelets he can be
sure are optimal in any breakpoint graph (Algorithm 9,
Steps 1 to 3). We therefore call these chains and brace-
lets safe, too. In fact, the very first safe bracelet Compeau
identifies, is a 1-bracelet consisting of a single even pon-
toon (Lemma 5 in [5]). If one creates this bracelet from
the even pontoon p = x1...xk the adjacency added for
the completion is x′1x

′
k with x1 ≡ x′1 and xk ≡ x′k . Thus,

here too, x1xk are part of the same indel group. This way
of constructing the indel groups is shown in Additional
file 1: Appendix B, Fig. S17 with Bracelets (a), (b). Notice
also that the safe operations sorting the two adjacent lava
vertices of an even pontoon together remain optimal in a
bracelet like this (see Fig. 8).

The next safe bracelet Compeau finds, is joining two
odd pontoons together. He shows that it is safe by rul-
ing out all other uses of two pontoons as at best co-opti-
mal (Lemma 6, Proof of Thm 8 and Step 2 of Algorithm 9
in [5]). An example can be found as Bracelet (c) of Addi-
tional file 1: Fig. S17. This again, corresponds to a safe oper-
ation, namely Pa|b,Pa|b → Pa◦a,Pb◦b . In fact, all safe chains
and bracelets of two components correspond directly
to safe operations. We have visualized this fact in Fig. 9.
Note that the corresponding safe operation again remains

Table 1 All safe types of DCJ operations

Each reduces the F by 1, no matter the number of other components in the graph. Above are all safe operations in a pure DCJ scenario. The operations below can also
function as safe deletions if one of the resultants in brackets is removed. For reference: F = n− c◦ +

⌈

(pa|b +max(pA◦a , pB|a)+max(pA|b , pB◦b)− pA|B)/2
⌉

Safe operation −�c◦ �pa|b �max(pA◦a, pB|a) �max(pA|b, pB◦b) −�pA|B

K → K
′ + C◦ − 1 0 0 0 0

PA◦A → PA|B , PA|B 0 0 0 0 − 2

PB◦B → PA|B , PA|B 0 0 0 0 − 2

PA◦A , PB◦B → PA|B , PA|B 0 0 0 0 − 2

Pa|b , Pa|b → (Pa◦a)
∗ , (Pb◦b)

∗ 0 − 2 0 0 0

PA◦a , PB|a → PA|B , (Pa◦a)
∗ 0 0 − 1 0 − 1

PA|b , PB◦b → PA|B , (Pb◦b)
∗ 0 0 0 − 1 − 1

Fig. 8 Safe DCJ operations accumulating markers separated by even pontoons (in [11] called a run) remain optimal in the safe bracelet joining
the extremities of these markers

Page 8 of 19Bohnenkämper Algorithms for Molecular Biology (2024) 19:8

optimal in the safe chain or bracelet. Because of this more
direct correspondence between the Compeau-conceptual-
ization and our formula, we focus more on the correspond-
ence between the BWS-conceptualization and our formula
in the following. Braga et al. identify the same operation
by noticing that the number of runs can be reduced by 2 if
one applies cuts in between between runs of A and B (see
Proposition 3 in [11]). This is of course precisely a DCJ
with two odd pontoons as sources in our model. Because
the resultants of this operation are the two even pontoons
Pa◦a,Pb◦b , these can in turn be reduced to single adjacen-
cies by excising even cycles. Again, the implication for
indel groups in all models is that for two odd pontoons
p1 = a1x1, ..., xkb1, p2 = a2xk+1, ..., xlb2 , the adjacency
a1a2 can be part of the same indel group if b1b2 is part of
the same indel group and vice versa. This equivalence is
further illustrated by comparing the effects of Steps (c)
and (d) of Additional file 1: Fig. S16 to Bracelet (c) of Addi-
tional file 1: Fig. S17 of Appendix B.

Dealing in this fashion with all pontoons of a crossing, we
reduce all but possibly one odd pontoon to single adjacency
edges, which can then be dealt with in a single indel opera-
tion. Because ferries must contain an even number of odd
pontoons, they can be sorted entirely by safe operations in
this way. To quantify the number of operations needed,
Braga et al. define the indel potential �(X) of a crossing X as
the number of indel operations obtained in a DCJ-optimal
sorting [11]. Since it is possible to trade off indel and DCJ
operations, this definition is not easily reflected in the other
conceptualizations. However, as they show that sorting a
crossing X separately needs didDCJ (X) = dDCJ(X)+ �(X)
steps, we can also think of the indel potential as the over-
head introduced by the singular markers if we sort the
crossing separately. In [11], it is shown that
�(X) =

⌈

�(X)+1
2

⌉

 with �(X) the number of runs for a
crossing X. If a ferry contains at least two runs, we can find
a bijection between runs and odd pontoons. Denoting q(X)
as the contribution to quantity q by crossing X. We can
thus write �(X) = pa|b(X) for a ferry with at least two

runs. Therefore, we find for a ferry X with at least two runs,
their formula translates to ours,

Similarly, this equivalence can be shown if there is only 1
run in X. By the Compeau method, if there are d singu-
lar markers, d markers are added as part of completion
chromosomes, so the number of markers after comple-
tion is N = n+ d . Meanwhile, each Pa◦a and Pb◦b creates
a bracelet. Each pair Pa|b,Pa|b also forms a bracelet. Since
d = pa|b + pa◦a + pb◦b , we have

which is precisely the Compeau formula if no piers or
viaducts are involved. We see that our formula acts as a
sort of missing link between the two other formulas here.
Since ferries can be dealt with entirely with internal safe
operations, this formula can even be generalized to the
whole graph for circular genomes. In fact, this has been
done in [7], yielding our formula for this specific case.

Using this way of examining the contribution of
individual crossings, we were also able to re-calculate
the indel potential with our formula for all 10 types of
bridges in [11]. The results can be found in Additional
file 1: Table S4 of Appendix B. Notably, when sort-
ing a bridge independently, one can also first exhaust
all safe operations. After this, only the piers and pos-
sibly a single odd pontoon might be “left over” (see

n(X)− c(X)+ �(X) = n(X)− c(X)+
⌈

�(X)+ 1
2

⌉

= n(X)− 1+
�(X)+ 2

2

= n(X)+
�(X)
2

= n(X)+
⌈

pa|b(X)
2

⌉

.

n(X)+
⌈

pa|b(X)
2

⌉

= n(X)+
pa|b(X)

2
= n(X)−

pa|b(X)
2

+ pa|b(X)

= n(X)+ d(X)−
pa|b(X)

2
− pa◦a(X)− pb◦b(X)

= N (X)−
(

pπ ,π (X)+ pγ ,γ (X)+
⌊

pπ ,γ (X)
2

⌋)

,

Fig. 9 For all safe DCJ operations with two piers or pontoons as sources, there is a safe bracelet or chain in which the same operation is optimal
and vice versa

Page 9 of 19Bohnenkämper Algorithms for Molecular Biology (2024) 19:8

also Additional file 1: Fig. S16 after Step (d)). We call
these components unsaturated. Since each safe opera-
tion also has a corresponding safe chain or bracelet,
these are also the only components, which end up in
unsafe chains if one restricts the completion to a single
crossing (compare to Additional file 1: Fig. S17). Since
every other component can be dealt with safe opera-
tions, unsaturated components are the only ones that
might have to be involved in what is called in [11] a
(path) recombination, that is, a DCJ operation involv-
ing more than one crossing. When studying recombi-
nations, we can therefore abstract from any concrete
bridge p = p1, ..., pk with piers p1, pk and only write it
as its unsaturated components. We therefore write
such a component as p1pk if p contains an even num-
ber of odd pontoons or as p1Pa|bpk otherwise. We call
this the reduced bridge. Interestingly, Braga et al. make
the same abstraction and identify the bridges by the
genome of their telomeres and the genome of the first
and last run. This direct correspondence is illustrated
by comparing Columns 1 and 4 of Additional file 1:
Table S4. In [11], another observation is that (reduced)
bridges of the type PA|b,PB◦b or PA◦a,PB|a never need
to appear as sources for any recombination. Using
our conceptualization, we can confirm that because
PA|b,PB◦b → PA|B,Pb◦b and PA◦a,PB|a → PA|B,Pa◦a are
safe operations, these types of bridges can be sorted
entirely by internal safe operations. It therefore makes
sense to group them as in [11] with viaducts, the other
type of bridge that can be sorted in this way.

All other bridges might need recombinations to be
sorted optimally. If there is a safe operation between the
components of two bridges, we know that this recombi-
nation must be optimal. In fact, if we only regard unsatu-
rated components, we see that the only remaining safe
operations are (i) PA◦a,PB|a → PA|B,Pa◦a , (ii)
PA|b,PB◦b → PA|B,Pb◦b and (iii) Pa|b,Pa|b → Pa◦a,Pb◦b .
We know (either by combinatorics or Additional file 1:
Table S4) that each source of (i) and (ii) appears in 3 types
of (reduced) bridges and thus there are 3× 3 = 9 path
recombinations facilitated by each of these two safe oper-
ations. For (iii), we have 4 types of (reduced) bridges con-

taining Pa|b and thus
(

4

1

)

+

(

4

2

)

= 10 path

recombinations using this operation. Of course, these are
not mutually exclusive, but since Operations (i) and (ii)
involve the end of a bridge and one of its resultants is a
viaduct, we can always choose to do one of these

operations first, upon which all other possible safe opera-
tions on piers and pontoons will be in the same compo-
nent and will not require any further recombinations.
In [11] all of these recombinations are catalogued. We
were able to confirm this by recreating their tables of
recombinations with �d ≤ 0 as Additional file 1: Table S5
of Appendix B. It is easily checked that (i) and (ii) each
occur 9 and (iii) occurs 10 times. The unsaturated com-
ponents after the operation in these cases form precisely
those bridges listed in [11] as the resultant(s). The precise
difference for the distance as opposed to sorting the
crossing separately can then be derived by comparing the
term P̃ in our formula on the graphs containing each
bridge separately and on a graph containing the union of
the two bridges (see Additional file 1: Table S5 Col-
umns 3, 6, 9, 10). In summary, we can see that in all but
two cases, the DCJ chosen to recombine the bridges
in [11] is safe and the resultants are exactly comprised of
the unsaturated components after the operation.

The two exceptions are the recombinations of
PA◦a,PA◦a with PB◦b,PB◦b and PA|a,PA|b with PB|a,PB|a
(marked with ⋆ in the table). In these cases, there
is no safe operation and therefore all piers remain
unsaturated. The reason this recombination can still
be done in some cases is that an unsafe operation like
PA◦a,PB◦b → PA|B,Pa|b in this specific case reduces F by
one, but since there are equally optimal internal opera-
tions (i.e. PA◦a,PA◦a → PA◦A,Pa◦a) in this case, this
recombination actually never has to be used. The only
task remaining is then to find a sequence of recombina-
tions that improve upon the distance. Braga et al. give
this as their recombination groups. We have listed these
groups in Additional file 1: Table S6 of Appendix B. The
first observation is that by exhausting all safe DCJ oper-
ations in a recombination group, we are able to create
the unsaturated components of what are called in [11]
reusable resultants. In combination with our observa-
tions about pairwise recombinations, we thus know
that all recombinations in the groups can be facilitated
purely by safe DCJs. We also see that in many cases,
after sorting a group, no further unsaturated compo-
nents are present. In the other cases, Braga et al. make
sure that all partners of the unsaturated components
are “used up” in earlier recombinations of the table (see
last column) or that remaining safe operations are at
most co-optimal, such that the unsafe operations sort-
ing the unsaturated components are still optimal.

Page 10 of 19Bohnenkämper Algorithms for Molecular Biology (2024) 19:8

Capping‑free generalization to natural genomes
Algorithm 1 Capping-free ILP to compute the DCJ-indel distance for natural genomes

In this section, we describe briefly how to general-
ize the distance formula presented as Theorem 1 to an
ILP for which no capping of the MRD is required. The
ILP works by determining a matching on the mark-
ers as described in Problem 2. Equivalent to finding a
matching is to find a decomposition of the MRD, that
is, a subset of extremity edges, such that each vertex is
connected to at most one extremity edge. In this case,
it is important that the decomposition is consistent,
meaning the matched extremity edges should express
the same matching of the markers. More formally, if
m ∈ MA, n ∈ MB with m ≡ n then the extremity edge
ntmt is part of a consistent decomposition if and only
if nhmh is. We call the edges ntmt and nhmh siblings [7].

Before we give the ILP, we describe the modifications
to the MRD necessary to construct the program.

Firstly, in order to be consistent with predecessor
ILPs, we retain indel edges as used in [7]. Indel edges
connect the head and tail vertices of a marker and we
denote their set by Eι . However, we do not use them
to connect form bridges and ferries as in the previous

section. Instead, we still use the distinction of com-
ponents and formula of Fig. 4. We use an indel edge
merely to indicate when a marker’s vertices are not con-
nected to any extremity edges in the decomposition
and thus the vertices are lava vertices.

To avoid the edge case of a path with only a single ver-
tex and no edges, we apply a slight modification for tel-
omeres: For each telomere v, we add another vertex v∅
and add vv∅ as an adjacency edge. We name these added
vertices pseudo-caps and write the set of these vertices as
V∅ . An example of these modifications can be found in
Fig. 10.

Note that in contrast to “real” capping as applied in [7],
pseudo-caps do not significantly increase the solution
space, because they are not connected by extremity
edges, which would need to be resolved as part of finding
a decomposition.

Finally, each vertex v of the MRD is assigned a unique
identifier ix(v) with ix(v) ≥ 1 . We assign vertices of
genome A lower identifiers than vertices of genome B .
Since we continue to make some distinctions based on

Page 11 of 19Bohnenkämper Algorithms for Molecular Biology (2024) 19:8

the genome vertices or edges in, we use the notation SA
and SB to stand for the subsets of a set S with elements in
genome A and B respectively. For reasons that will become
clear later, we assign pseudo-caps the lowest ids, that is,
∀v ∈ VA

∅ , ∀u ∈ V B
∅, ∀w ∈ V : ix(v) < ix(u) < ix(w).

We now begin the description of the ILP. The basic
framework to compute consistent decompositions
(Constraints C.01 to C.06) is the same as for ding [7]
and the ILP by Shao et al. [6]: A binary variable x is used
to indicate whether or not an edge is part of the decom-
position. Variable yv in an optimal solution is equal to
the lowest vertex id of in the component and zv marks
the vertex v with the lowest index ix(v) in a component
without lava vertices. In components with lava vertices,
all y-variables and consequently all z-variables are set
to 0. We also adopt the way circular singletons are dealt
with in [7] as Constraint C.28.

The only major change we make w.r.t. [7] in Con-
straints C.01 to C.06 is the addition of Constraint C.06,
where we allow for other matching models in addi-
tion to the maximum matching model by specifying
an upper (Uf) and lower bound (Lf) for the number
of markers to be matched per family f. Specifications
for how to set these bounds to achieve the maximum
matching model and other popular models can be
found in Table 2.

Our goal is to find the consistent decompositions
with the lowest DCJ-indel distance (see Problem 2). To
calculate the DCJ-indel distance for the objective, we
then need to distinguish the different components from
each other. We thus have to distinguish the 11 types of
cycles, viaducts, piers and pontoons from each other
(see Fig. 4 for a reminder of what these components
look like).

From a birds-eye view, we detect the type of a compo-
nent via binary report variables anchored at adjacency
edges. These are named named rCe for reporting com-
ponent type C at edge e (see Domains D.05 to D.08).
We then sum up these report variables to obtain the
terms of the formula (see C.16 to C.27) with variable q

representing the fraction P̃ . Together with n, the num-
ber of markers in the decomposition (C.15) and s,
number of circular singletons (C.29), we are able to
construct our distance formula for the objective
function.

Of course, we need to ensure that an rC-variable is set
to 1 only once per component as well as if and only if
the component type is actually C. To detect, in which
genome the endpoints of a path lie, we use the label
variable l (D.04). This variable is set to 0 for endpoints
in genome A and to 1 for endpoints in genome B . This
is done statically for pseudo-caps (C.07) and dynami-
cally for other vertices if they become lava vertices
(C.08). We require this variable to be the same for two
connected vertices (C.09), but escape the cases when an
edge is not part of the decomposition (1− xuv) or when
reporting a component type with endpoints in both
genomes (ra|b, rA|B, rA|b, rB|a).

Because telomeres are known beforehand and marked
by pseudo-caps, we can make sure one telomere end-
point of the path an r variable reports is correct by only
defining the corresponding r variable on adjacency
edges involving a pseudo-cap in the correct genome (see
Domains D.06, D.07).

For reporting cycles, and viaducts of type PA|B , we
require the z variable of an adjacent vertex to be set to 1
(C.10). This serves two purposes: On the one hand, it
ensures that r is only set to 1 once per component (as there
is only one z variable set to 1 per component). On the other
hand, it ensures that no component containing lava verti-
ces can report PA|B or a cycle. This is because components

Fig. 10 Modifications to the MRD for the ILP: Pseudo-caps and additional adjacency edges shown in grey, indel edges shown dashed. Numbers
show the optimal variable assignment of the l-variable for each vertex. Arrows indicate the setting of a report variable of an edge together
with the constraints responsible. Other report variables are 0. Due to C.04 all y-variables are 0 and consequently (C.05) all z variables are 0.

Table 2 Settings for Uf , Lf in Algorithm 1 to enforce different
matching models described in [12] with fA and fB the markers of
f in A and B respectively

Maximum matching
(Full)

Intermediate
matching

Exemplar
matching

Lf min(|fA|, |fB|) min(|fA|, |fB|) 1

Uf min(|fA|, |fB|) 1 1

Page 12 of 19Bohnenkämper Algorithms for Molecular Biology (2024) 19:8

with lava vertices do not have any z-variables set to 1. This
is important because cycles as well as viaducts of type PA|B
decrease the formula while all other component types are
either neutral or increase the formula.

Conversely, we set all y-variables and by proxy all z-var-
iables to 0 if a pier is reported (Constraint C.11). This is to
prevent the report variable being used to alter the l-vari-
able of PA◦A (or pB◦B) type paths to report a PA|B path.

With the constraints described until now, the ILP
would only correctly report piers with endpoints in dif-
ferent genomes, because while Constraint C.09enforces
that any PA|b or PB|a are reported, there is no equiva-
lent for the type PA◦a or PB◦b . We therefore require for
pseudo-caps to report a pier if the y-variable is 0 (C.12),
which indicates that there is a lava vertex in the compo-
nent due to Constraint C.04. The interplay of l, the r vari-
ables and selected constraints is also visualized in Fig. 10.

Additionally, we require a change in the l-variable
when reporting odd paths, such that no even path can be
reported as an odd one (C.13).

To enforce that ra|b is set only in components with lava
vertices, we use an idea introduced in [7]: We require for
ra|b to be set to 1 that a neighboring indel edge is part of
the decomposition (C.14).

Note here that we do not prevent the variable ra|b to be
used to change l in components containing lava vertices as
we did for other report variables before. For example, it is
possible that in a component PA◦a any ra|b variable could
be set to 1, meaning rA|b could be set to 1 at the pseudo-
cap instead of rA◦a . However, since any ra|b variable set to 1
increases the formula at least as much as the report varia-
ble of any pier type, this has no effect on optimal solutions.

Evaluation of the ILP
We implemented the ILP described in the previous sec-
tion and made it publicly available.1 We refer to this
implementation as ding-cf for the rest of this work.

In this section, we show results of applying the ILP to
both simulated and real data and comparing its perfor-
mance to the python3 version of ding [7], namely din-
gII, a similar ILP solution to the DCJ-indel distance
problem for natural genomes. In contrast to ding-cf,
dingII uses the capping technique. In all experiments,
we used gurobi10.0 on a single thread on a virtual
machine with 256 GB RAM to solve the ILPs.

We first test the ILPs on simulated data in "Perfor-
mance Evaluation on Simulated Data" Subsection before
demonstrating the practical usefulness of rearrangement
analyses on contig level resolved genomes by analysing

11 Drosophila genomes in "Analysis of Drosophila
Genomes" Subsection.

Performance evaluation on simulated data
We initially planned to use the simulation script that
comes with dingII, but due to the script regularly
encountering stack overflows on large genomes owing to
its reliance on recursion, we instead re-implemented it in
C++. This implementation is also publicly available.2

The re-implementation has the same features as the
original script with only one minor change: Instead of the
number of DCJ-operations to be performed as a param-
eter, our simulation takes a fixed number of total opera-
tions and distributes them according to rates relative to a
rate of 1 for DCJ operations. For more detail on the simu-
lation, the interested reader is referred to the description
of the original simulation script in [7].

In our experiments, we simulated two genomes from
a common root for each sample. We chose parameters
close to those of the experiments performed in the origi-
nal ding publication [7]. In all experiments, we set the
length of the root genomes to 20,000 markers and per-
formed 10,000 operations in total, with an insertion rate
of 0.1 and an deletion rate of 0.2 unless specified other-
wise. For reference, this amounts to 5882 DCJ operations
in expectation for a duplication rate of 0.4 to compare to
experiments run with the python script of dingII. The
shape parameter for the Zipf distribution was set to 4
for indel lengths and to 6 for duplication lengths. In the
experiments of this section, we limited gurobi’s solving
time to 1h (3600s). All experiments were designed to test
parameters to which ILPs like ding have been shown to
be sensitive.

In our first experiment, we increased the duplication
rate in steps of 0.1 from 0.1 to 1.4, generating 10 genome
pairs from a root genome with 1 linear chromosome per
step. We then created the ILPs for dingII and ding-
cf. The number of ambiguous families ranged from 628
to 4356 (median 3076) in this experiment with the maxi-
mum family size per sample reaching up to 7 markers.

We show the solving times of gurobi10.0 in
Fig. 11 (a). We see that ding-cf is competitive with
dingII. This is not surprising as most additional con-
straints of ding-cf w.r.t. dingII are due to the
pseudo-caps and thus do not overwhelmingly come into
effect as long as the number of linear chromosomes is
low. We were able to further verify that on genomes with
few linear chromosomes, ding-cf behaves similarly
to ding for varying different parameters in Additional
file 1: Appendix C.

2 https:// gitlab. ub. uni- biele feld. de/ gi/ ffs- dcj.1 https:// gitlab. ub. uni- biele feld. de/ gi/ ding- cf.

https://gitlab.ub.uni-bielefeld.de/gi/ffs-dcj.
https://gitlab.ub.uni-bielefeld.de/gi/ding-cf.

Page 13 of 19Bohnenkämper Algorithms for Molecular Biology (2024) 19:8

To test the actual use case for ding-cf, that is, high
numbers of linear chromosomes, we increased the num-
ber of linear chromosomes in the root genome progres-
sively from 10 to 50 to 100, 200 and 300 chromosomes
with a fixed duplication rate of 0.4 and 10 samples per
step. The runtimes are shown in Fig. 11 (b). We see that
up to 100 linear chromosomes in the simulated pair of
genomes, dingII is able to compete with ding-cf,
but its runtime rises exponentially until the majority of
the dingII ILPs are not solved within an hour of solving
time. Meanwhile, the runtimes of ding-cf are stable
throughout the experiments, staying below 20 seconds in
each case.

In order to test the composite effect of the number
of duplicates and the number of linear chromosomes
on solving times, we repeated the first experiment
(Fig. 11 (a)) with 50 and 100 linear chromosomes at

the root genome, resulting in total numbers of about
100 and 200 linear chromosomes for each pair. The
results (shown in Fig. 12) indicate that dingII is far
more sensitive to changes in the number of chromo-
somes with the first increase to 100 chromosomes in
the pair already showing longer solving times on most
samples. The second increase to 200 fully separates
the two solutions, having a negligible effect on ding-
cf while making the solving times for dingII much
more unpredictable. Many of the pairs with high dupli-
cate numbers become unsolvable within an hour for
dingII.

To confirm that the number of linear chromosomes
alone only plays a minor part in the runtime of ding-
cf, we ran another experiment, this time keeping the
duplication rate fixed at 0.4 and increasing the number
of linear chromosomes in the root genome from 500

Fig. 11 Runtimes for dingII and ding-cf for genomes simulated in 10,000 steps from a common root, in a increasing the duplication rate
in steps of 0.1 from 0.1 to 1.1, in b increasing the number of linear chromosomes in the root genome progressively from 10 to 50 to 100, 200
and 300

Fig. 12 Runtimes for dingII and ding-cf for genomes simulated in 10,000 steps from a common root increasing the duplication rate in steps
of 0.1 from 0.1 to 1.1 with a 100 total linear chromosomes and b 200 total linear chromosomes on average per sample pair

Page 14 of 19Bohnenkämper Algorithms for Molecular Biology (2024) 19:8

to 2000 in steps of 250 with 10 samples per step. The
runtimes are given in Fig. 13 and exhibit only a minor,
linear increase. In fact, the increase is so slow that even
for 2000 linear chromosomes at the root (c.a. 4000 lin-
ear chromosomes of the pair in total), the runtime is
still below a minute for all 10 samples.

Analysis of drosophila genomes
We obtained 11 assemblies of species in the Drosophila
genus previously analyzed by Rubert and Braga [8]. We
used FFGC to extract the longest transcript of each locus
and ran OrthoFinder version 2.3.7 [13] to obtain
orthologous groups. We then translated the genomes
into unimog files using the orthogroups as families and
translating linear contigs into linear chromosomes. We
then filtered out any empty chromosomes. The genomes
obtained in this fashion comprised 13,143 markers spread
on 97 linear chromosomes on average. More detailed sta-
tistics about the genomes after this preprocessing step
are listed in Additional file 1: Table S7 of Appendix D.

We then used ding-cf to calculate pairwise distances,
running gurobi10.0 on a single thread for 12 h. Of the
55 resulting ILPs, we obtained an exact result for 9 and
approximate results for 46, all of which deviated at less
than 2% from the exact solution, most of them below 1%.
We give the distance data obtained in this manner and
detailed performance results in Additional file 1: Table S8
of Appendix D.

Phylogenetic Analysis. We proceeded to construct a
phylogenetic tree via Neighbor Joining using Split-
sTree4 [14]. The tree, shown in Fig. 14, is entirely con-
sistent with the current state of knowledge about the
Drosophila phylogeny. Additionally, the phylogenetic sig-
nal in the distance data is remarkably strong. To demon-
strate this fact, we calculated the distance matrix for the
path metric of the tree and compared it to the distances
calculated by ding-cf. On average, the tree path metric
deviates only by 0.5% per entry from the distances cal-
culated by ding-cf with the largest relative difference
being 2% for the distance of D. melanogaster and D. simu-
lans. We were able to further confirm this strong corre-
spondence between the tree and the distance data via a
split decomposition with SplitsTree4 in Additional
file 1: Appendix D.1 [14, 15]. Overall, judging from these
experiments, ding-cf looks promising as a distance
measure for phylogenetic analyses.

However, we want to draw the reader’s attention to
one possible pitfall of our method as a phylogenetic
tool, namely that the fragmentation of the genome itself
appears as a signal in the distance data. To emphasize
this, let us pose a hypothetical extreme example: Con-
sider a comparison between two assemblies A,B with n
markers each, with a matching between all markers of
A and B . Suppose A is fully assembled into one chro-
mosome and B fragments into n contigs of one marker.
No matter the actual structure of the underlying (true)
genome of B , the DCJ distance between the assemblies
A and B is always n− 1 . The size of this effect for prac-
tical levels of fragmentation needs to be investigated,

Fig. 13 Runtimes for ding-cf for genomes simulated from a root
with 500 to 2000 chromosomes in steps of 250

Fig. 14 Neighbor joining tree inferred from the distances in Additional file 1: Table S8 using SplitsTree4. Edge lengths are drawn proportional
to their weight. The absolute edge lengths can be found in Additional file 1: Appendix D

Page 15 of 19Bohnenkämper Algorithms for Molecular Biology (2024) 19:8

particularly whether these problems could be exacer-
bated by biases in the assembly method used to arrive at
the studied pair of genomes, such as might be the case for
comparative assembly strategies.

Refining Orthology to Match Contigs and Chromosomes.
We extracted the matchings from the ILP solutions cal-
culated by gurobi and plotted them with Circos [16].
We show the matching between D. virilis and D. mojaven-
sis in Fig. 15 as compared to just the marker matches
identified by OrthoFinder. The plots for all other pairs
can be found in Additional file 1: Appendix D.2. We see
that even though there are some big rearrangements,
such as inversions and transpositions as indicated by the
arcs as well as an abundance of duplicates, the calculated
matching identifies large stretches of matched markers
in the same order and orientation as well as stretches
of markers matched predominantly with markers from
another such stretch. Depending on the particular defini-
tion of synteny, blocks such as these are known as syn-
tenic blocks in the literature. While at this point we see no
direct relation between the DCJ-indel model and models
explicitly focusing on synteny, such as the syntenic dis-
tance in [17], we believe that refining orthologies using
our ILP reveals important syntenic information.

For example, in many of the smaller contigs mark-
ers are matched predominantly to markers of one large
contig of the other species. Matchings like this could
therefore possibly be used to aid in improving very frag-
mented assemblies, given a sufficiently closely related
and resolved reference genome.

Conclusion
We presented a new, simpler distance formula for the
DCJ-indel model. Using this distance formula, we
were able to explain the previously unclear relationship
between the BWS- and Compeau-conceptualizations of
the DCJ-indel model. Furthermore, our formula is easily
generalizeable to a performant ILP solution that enables
the distance computation even for genomes fragmented
into thousands of contigs. We have shown that a DCJ-
indel analysis can be meaningful even with relatively
fragmented genomes by applying the ILP to 11 Dros-
ophila assemblies. From this we obtained a well resolved
phylogeny with little noise in the distance data, indicating
that our method could be well suited for distance based
phylogenetic analyses provided the effect size of genome
fragmentation in the particular use case can be bounded.
We also showed that the ILP can be used to disambiguate
orthologous and paralogous regions, which has potential
use cases in orthology assignment and the finalization of
fragmented assemblies.

Furthermore, we are confident that using this new for-
mula, capping-free versions of other existing algorithms,
such as for the family-free distance problem as in [8, 18]
and parsimony problems as in [19] can be devised.

Fig. 15 Circos plots for Contigs of D. virilis (red segments) and D. mojavensis (blue segments). Blue arcs show common markers with the same
direction, purple arcs show common markers with different directions. On the left: before matching. On the right: after matching with ding-cf

Page 16 of 19Bohnenkämper Algorithms for Molecular Biology (2024) 19:8

Appendix A Derivation of the distance formula
In this section, we derive the distance formula presented
in the "Relation of the BWS- and Compeau-Conceptu-
alization" section. formally. We do this mostly by heav-
ily referencing general statements about graphs like the
MRD from [9], particularly from Section 3 there. We
start by presenting an upper bound.

Proposition 2 For two genomes A,B with a resolved
homology (⋆≡) containing no circular singletons holds

where n = |{(m,m′)|m ∈ MA,m
′ ∈ MB,m

⋆
≡m

′}|.

We note that since the MRD is bipartite con-
cerning extremity edges, parity and genomes
of endpoints are determined by each other,
that is PXX = PX◦X ,PXx = PX◦x,Pxx = Px◦x and
PXY = PX |Y ,PXy = PX |y,Pxy = Px|y for X,Y ∈ {A,B}
with X = Y . As a reminder, we use the following
shorthands

for select formula terms. We start proving Proposition 2
by noticing that

Proposition 3 For two genomes A,B with a resolved
homology (≡) containing no circular singletons holds

Proof If there are no singular markers, F reduces to

which is the DCJ distance formula by Bergeron et al. and
therefore has already been shown to be 0 if and only if
both genomes are equal [10]. If there are singular mark-
ers, obviously the two genomes cannot be equal, so the
forward direction is trivial. For the backward direction,
notice that every extremity of matched markers needs to
either contribute to a 2-cycle or 1-path to reduce
n− c◦ +

⌈

−pA|B
2

⌉

 to zero. Thus, every chromosome with
at least one matched marker has a homologue. The only

didDCJ (A,B,
�
≡) ≥n− c◦

+

⌈ pa|b +max(pA◦a , pB|a)+max(pA|b , pB◦b)− pA|B
2

⌉

F := n− c◦ + P̃ := n− c◦ +
⌈

p̃
2

⌉

:= n− c◦ +
⌈

pa|b +max(pA◦a, pB|a)+max(pA|b , pB◦b)− pA|B
2

⌉

A ≡ B ⇐⇒ n− c◦

+

⌈

pa|b +max(pA◦a, pB|a)+max(pA|b, pB◦b)− pA|B

2

⌉

= 0.

n− c◦ +

⌈

−
pA|B
2

⌉

= n− (c +
⌊ pA|B

2

⌋

)
pA|B even

= n− (c +
pA|B
2

),

difference between the two genomes can be singleton
chromosomes. Since our premise is that the genomes
contain no circular singletons, only linear singletons
remain. These, however, contain even piers PA◦a or PB◦b
at their ends, thus max(pA◦a, pA|b)+max(pB|a, pB◦b) > 0
and with that F > 0 , a contradiction. Therefore, both
genomes must be equal. �

We continue our proof of Proposition 2 by showing the
influence of DCJ operations on the formula. To that end,
we use the �o operator used in [9], which denotes the dif-
ference in a quantity before and after operation o.

Proposition 4 For any DCJ operation d holds

Proof Clearly, DCJ operations do not influence n.
From [9] we know that �c◦ ≥ −1 (see Corollary 2) and
that none of the terms in the numerator can change if the
number of cycles changes (see Observation 3 in [9]). We
therefore only need to concern ourselves with P̃ . We will
show that its numerator p̃ can be reduced by at most 2.
To that end, we first observe the way the maximizations
in the formula behave. Clearly, the maximum will change
at most as much as one of the its elements.�
Observation 1 For any operation o holds

Together with Corollary 1 from [9] we are able to derive
the first bound for the numerator.

Corollary 1 For a given DCJ operation d, there are
x ∈ {pA◦a, pB|a} and y ∈ {pB|a, pB◦b} , for which hold

We see that the only way that p̃ could be reduced
by more than two is if �pA|B > 0 and some other
term is decreased at the same time. From Observa-
tion 5 from [9] we know that this cannot be pa|b . From
Observation 4 from [9] we know that �pA|B ≤ 1 if we
decrease the other terms. The only remaining opera-
tions are then of the form PAy,PBz → PAB,Pyz . Clearly,
any operation where y = z will have �p̃ = −2 . If y = z ,
the number of odd pontoons is increased, as seen also
in Observation 6 of [9]. Thus, �p̃ ≥ −2 and with that
�P̃ ≥ −1 . This concludes our proof of Proposition 4. �

�d (n− c◦ +

⌈ pa|b +max(pA◦a , pB|a)+max(pA|b , pB◦b)− pA|B
2

⌉

) ≥ −1.

�omax(x, y) ≥ �ox or

�omax(x, y) ≥ �oy

�d(pa|b +max(pA◦a, pB|a)+max(pA|b, pB◦b))

≥ �d(pa|b + x + y)
Cor. 1
≥ − 2.

Page 17 of 19Bohnenkämper Algorithms for Molecular Biology (2024) 19:8

We are left to examine the effect of indel operations.
To that end, we need the definition of a uni-indel as
defined in [9]. In short, uni-indels insert a single adja-
cency or delete a single marker. Regarding Observa-
tion 7 of [9], we see that a uni-indel either concatenates
two piers or pontoons, thereby possibly creating a via-
duct or creates a cycle from an even pontoon. From
this follows that a uni-indel i1 has either �i1c◦ ≤ 1 and
�i1 P̃ = 0 or �i1c◦ = 0 and �i1 P̃ ≥ −1 . Since none of the
relevant component subsets contains (even) pontoons
of length 0, we conclude using Observation 8 of [9]:

Observation 2 For any deletion δ holds

We will treat insertions in the same way as in Obser-
vation 9 of [9]. An insertion of a circular chromosome
of length l has �n = l , but each of the l uni-indels
reduces F by at most 1. Thus, we have �F ≥ 0 after
applying the uni-indels, but before applying the DCJ
operation. Since DCJ operations reduce F by at most 1,
we have

�δF ≥ −1

Observation 3 For any insertion ι holds

Together Observations 2 and 3 as well as Proposi-
tions 3 and 4, conclude our proof for the lower bound
in Proposition 2.

To show that Theorem 1 holds, we need to show that
this lower bound can be attained. To that end, we give
a sorting procedure, in which each step decreases F by
1. For the sake of simplicity, we will sort both genomes
to an intermediate genome that contains no mark-
ers singular to A or B . The advantage of this is that we
do not need to consider in which genome we apply a
DCJ operation and simply focus on the components
involved. We can also use deletions only, which in this
context are easier to conceptualize. Since each opera-
tion has an inverse, the sorting scenario from both
genomes to an intermediate also describes a sorting
scenario from A to B . We give the sorting procedure in
Algorithm 2.

�ιF ≥ −1.

Algorithm 2 DCJ-indel sorting

Page 18 of 19Bohnenkämper Algorithms for Molecular Biology (2024) 19:8

Every step in the algorithm is conceived as a DCJ
operation X ,Y → W ,Z transforming X, Y into Y, Z.
This is not always possible without creating a circu-
lar singleton, which can only arise if an even pontoon
of length 0 is created. In these cases, we have written
the operation as X ,Y → W , (Z)∗ instead. If creating Z
would generate a circular singleton, we simply replace
the operation by the deletion X ,Y → W .

We now regard the assertions written as comments.
Both assertions in Line 9 and 10 follow from a simple
observation: Due to the fact that there is an even num-
ber of extremities of singular markers in each genome,
there must be an even number of paths with an odd
number of those extremities. Thus follows:

Observation 4

Due to the while-conditions in Lines 1 and 3, to reach
these lines, one of the summands must be 0. Thus, we
know that pA◦a + pB|a = max(pA◦a, pB|a) and due to
the while-conditions in Lines 5 and 7, we know that
pA◦a, pA|b, pB|a, pB◦b ∈ {0, 1}.

Due to the fact that for odd pa◦b the algorithm starts
from the beginning (see Line 16), it is clear that the
assertion in Line 18 holds, although we should note
that this goto-instruction is used at most once due to
the fact that the parity of pa|b is only once changed in
the if-branch. The remaining assertions are trivial and
follow directly from previous while-conditions being
false in order to reach the respective line.

We see that almost every step decreases either −c◦
by 1 or the numerator p̃ by 2 while leaving other terms
untouched. Therefore, these steps trivially reduce F by
1. As a reference, we list the corresponding differences
in Table 3. However, there are two problematic steps,

pA◦a + pB|a ≡ pa|b ≡ pA|b + pB◦b mod 2

namely 11 and 14, that reduce pab by only 1 and do not
reduce any other terms. To see how they nonetheless
reduce F by 1, we need an additional observation: Since
each linear chromosome has two telomeres, the num-
ber of paths containing an odd number of telomeres in
each genome, must me even, that is:

Observation 5

We thus know that for Lines 11, 14 the numerator p̃
before the operation is an odd number because of

and thus changes by −1 to an even number, decreasing P̃
and therefore F by 1.

Supplementary Information
The online version contains supplementary material available at https:// doi.
org/ 10. 1186/ s13015- 024- 00253-7.

Additional file 1: Supplementary Figures and Tables.

Funding
Open Access funding enabled and organized by Projekt DEAL. This work
was supported by the BMBF-funded de.NBI Cloud within the German
Network for Bioinformatics Infrastructure (de.NBI) (031A532B, 031A533A,
031A533B, 031A534A, 031A535A, 031A537A, 031A537B, 031A537C, 031A537D,
031A538A).

Availability of data and materials
The ding-cf software and workflow are available at https:// gitlab. ub.
uni- biele feld. de/ gi/ ding- cf. The preprocessed Drosophila data is available at
https:// uni- biele feld. sciebo. de/s/ 06wGj Slvk7 jeuWR. All Drosophila synteny
plots are available at https:// doi. org/ 10. 6084/ m9. figsh are. 24480 892. v1.

Received: 2 November 2023 Accepted: 21 January 2024

References
 1. Hannenhalli S, Pevzner PA. Transforming cabbage into turnip: polyno-

mial algorithm for sorting signed permutations by reversals. J ACM.
1999;46(1):1–27. https:// doi. org/ 10. 1145/ 300515. 300516.

 2. Yancopoulos S, Attie O, Friedberg R. Efficient sorting of genomic permu-
tations by translocation, inversion and block interchange. Bioinformatics.
2005;21(16):3340–6.

 3. Braga MDV, Willing E, Stoye J. Genomic distance with DCJ and indels.
In: Moulton V, Singh M, editors. Algorithms Bioinf. Berlin, Heidelberg:
Springer; 2010. p. 90–101.

 4. Compeau PEC. A simplified view of DCJ-indel distance. In: Raphael B,
Tang J, editors. Algorithm Bioinf. Berlin, Heidelberg: Springer; 2012. p.
365–77.

 5. Compeau PE. DCJ-indel sorting revisited. Algorithms Mol Biol AMB.
2013;8(1):6–6. https:// doi. org/ 10. 1186/ 1748- 7188-8-6.

 6. Shao M, Lin Y, Moret BME. An exact algorithm to compute the double-
cut-and-join distance for genomes with duplicate genes. J Comput Biol.
2015;22(5):425–35. https:// doi. org/ 10. 1089/ cmb. 2014. 0096.

pA◦a + pA|b ≡ pA|B ≡ pB|a + pB◦b mod 2

pa|b + pA◦a + pA|b − pA|B
Obs. 5
≡ pa|b ≡ 1 mod 2

Table 3 Changes to terms of F by operations of Algorithm 2

Step −�c◦ �pa|b �max(pA◦a, pB|a) �max(pA|b, pB◦b) −�pA|B

1 0 0 − 1 0 − 1

3 0 0 0 − 1 − 1

5 0 0 − 2 0 0

7 0 0 0 − 2 0

11 0 − 1 0 0 0

12 0 − 1 − 1 0 0

13 0 − 1 − 1 0 0

14 0 − 1 0 0 0

18 0 − 2 0 0 0

22 − 1 0 0 0 0

https://doi.org/10.1186/s13015-024-00253-7
https://doi.org/10.1186/s13015-024-00253-7
https://gitlab.ub.uni-bielefeld.de/gi/ding-cf
https://gitlab.ub.uni-bielefeld.de/gi/ding-cf
https://uni-bielefeld.sciebo.de/s/06wGjSlvk7jeuWR
https://doi.org/10.6084/m9.figshare.24480892.v1
https://doi.org/10.1145/300515.300516
https://doi.org/10.1186/1748-7188-8-6
https://doi.org/10.1089/cmb.2014.0096

Page 19 of 19Bohnenkämper Algorithms for Molecular Biology (2024) 19:8

 7. Bohnenkämper L, Braga MDV, Doerr D, Stoye J. Computing the rearrange-
ment distance of natural genomes. J Comput Biol. 2021;28(4):410–31.
https:// doi. org/ 10. 1089/ cmb. 2020. 0434.

 8. Rubert DP, Braga MDV. Gene Orthology Inference via Large-Scale Rear-
rangements for Partially Assembled Genomes. In: Boucher C, Rahmann
S, editors. 22nd International Workshop on Algorithms in Bioinformatics
(WABI 2022), vol. 242. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl - Leibniz-Zentrum für
Informatik; 2022. p. 24–12422. https:// doi. org/ 10. 4230/ LIPIcs. WABI. 2022.
24 . https:// drops. dagst uhl. de/ opus/ vollt exte/ 2022/ 17058.

 9. Bohnenkämper L. The floor is lava - halving genomes with viaducts, piers
and pontoons. In: Jahn K, Vinař T, editors. Comparative Genomics. Cham:
Springer; 2023. p. 51–67.

 10. Bergeron A, Mixtacki J, Stoye J. A unifying view of genome rearrange-
ments. In: Bücher P, Moret BME, editors. Algorithms in Bioinformatics.
Berlin, Heidelberg: Springer; 2006. p. 163–73.

 11. Braga MDV, Willing E, Stoye J. Double cut and join with insertions and
deletions. J Comput Biol. 2011;18(9):1167–84. https:// doi. org/ 10. 1089/
cmb. 2011. 0118.

 12. Fertin G, Labarre A, Rusu I, Tannier E, Vialette S. Combinatorics of genome
rearrangements. computational molecular biology. Cambridge: The MIT
Press; 2009.

 13. Emms DM, Kelly S. Orthofinder: solving fundamental biases in whole
genome comparisons dramatically improves orthogroup inference
accuracy. Genome Biol. 2015;16(1):157. https:// doi. org/ 10. 1186/
s13059- 015- 0721-2.

 14. Huson DH, Bryant D. Application of phylogenetic networks in evolution-
ary studies. Mol Biol Evol. 2005;23(2):254–67.

 15. Bandelt H-J, Dress AWM. Split decomposition: a new and useful
approach to phylogenetic analysis of distance data. Mol Phylogenet Evol.
1992;1(3):242–52. https:// doi. org/ 10. 1016/ 1055- 7903(92) 90021-8.

 16. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones
SJ, Marra MA. Circos: an information aesthetic for comparative genomics.
Genome Res. 2009;19(9):1639–45.

 17. Ferretti V, Nadeau JH, Sankoff D. Original synteny. In: Hirschberg D, Myers
G, editors. Combinatorial pattern matching. Berlin, Heidelberg: Springer;
1996. p. 159–67.

 18. Rubert DP, Doerr D, Braga MDV. The potential of family-free rear-
rangements towards gene orthology inference. J Bioinf Comput Biol.
2021;19(06):2140014. https:// doi. org/ 10. 1142/ S0219 72002 14001 4X.

 19. Doerr D, Chauve C. Small parsimony for natural genomes in the DCJ-indel
model. J Bioinf Comput Biol. 2021;19(06):2140009. https:// doi. org/ 10.
1142/ S0219 72002 14000 96.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1089/cmb.2020.0434
https://doi.org/10.4230/LIPIcs.WABI.2022.24
https://doi.org/10.4230/LIPIcs.WABI.2022.24
https://drops.dagstuhl.de/opus/volltexte/2022/17058
https://doi.org/10.1089/cmb.2011.0118
https://doi.org/10.1089/cmb.2011.0118
https://doi.org/10.1186/s13059-015-0721-2
https://doi.org/10.1186/s13059-015-0721-2
https://doi.org/10.1016/1055-7903(92)90021-8
https://doi.org/10.1142/S021972002140014X
https://doi.org/10.1142/S0219720021400096
https://doi.org/10.1142/S0219720021400096

	Recombinations, chains and caps: resolving problems with the DCJ-indel model
	Abstract
	Introduction
	Problem definition
	A new DCJ-indel distance formula
	Relation of the BWS- and compeau-conceptualization

	Capping-free generalization to natural genomes
	Evaluation of the ILP
	Performance evaluation on simulated data
	Analysis of drosophila genomes

	Conclusion
	Appendix A Derivation of the distance formula
	References

