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Abstract 

A colored de Bruijn graph (also called a set of k-mer sets), is a set of k-mers with every k-mer assigned a set of colors. 
Colored de Bruijn graphs are used in a variety of applications, including variant calling, genome assembly, and data-
base search. However, their size has posed a scalability challenge to algorithm developers and users. There have been 
numerous indexing data structures proposed that allow to store the graph compactly while supporting fast query 
operations. However, disk compression algorithms, which do not need to support queries on the compressed data 
and can thus be more space-efficient, have received little attention. The dearth of specialized compression tools 
has been a detriment to tool developers, tool users, and reproducibility efforts. In this paper, we develop a new tool 
that compresses colored de Bruijn graphs to disk, building on previous ideas for compression of k-mer sets and index-
ing colored de Bruijn graphs. We test our tool, called ESS-color, on various datasets, including both sequencing data 
and whole genomes. ESS-color achieves better compression than all evaluated tools and all datasets, with no other 
tool able to consistently achieve less than 44% space overhead. The software is available at http:// github. com/ medve 
devgr oup/ ESSCo lor.

Introduction
Modern methods for analyzing biological sequences 
often reduce the input dataset to a set of short, fixed 
length strings called k-mers. When working with a col-
lection of such datasets E = (E0, . . . ,E|E|−1) , it is fruit-
ful to represent them as one union set of k-mers and, 
for each k-mer, the indices of the datasets to which it 
belongs. The set of indices of each k-mer is referred to as 

its color class, and E is referred to as a colored de Bruijn 
graph [1]. A colored de Bruijn graph (cdBG) is com-
monly used to represent a sequence database, such as a 
collection of sequencing experiments or a collection of 
assembled genomes. For example, it is used by tools for 
inferring phylogenies [2], quantification of RNA expres-
sion [3], and studying the evolution of antimicrobial 
resistance [4].

As sequence database sizes grow to petabytes [5], the 
cost of storing or transferring the data (e.g. on Amazon 
Web Services or in-house compute infrastructure) has 
underscored the need for efficient disk compression algo-
rithms. Such costs are often prohibitive for smaller labs 
and, even for larger labs, limit the scale of data that can 
be analyzed. Large file sizes also hamper tool develop-
ment, which relies on iterative loading/copying/modi-
fying data, and reproducibility efforts, which require 
downloading and storing the data. For example, storing 
the 31-mers from 450,000 microbial genomes in com-
pressed form takes about 12 Tb [4]. Unfortunately, there 
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has not been a lot of work to develop methods for disk 
compression of colored de Bruijn graphs.

In contrast to disk compression, indexing cdBGs have 
received much attention [6]. A slew of data structures 
have been developed, optimizing various metrics such 
as index size, construction time, or query time (see the 
survey [6] and its follow up [7]). Indexing data structures 
exploit the structure of cdBGs and use clever tricks to 
compress the color classes of similar k-mers. But they 
also carry a space overhead to efficiently support queries; 
since this is not needed for disk compression, indexing 
data structures are usually not competitive with custom 
made cdBG compression methods.

The simplest option for compressing a cdBG is to 
compress each color (i.e. dataset) independently, using a 
compression tool designed for a single set of k-mers (e.g. 
[8]). This approach can work well when k-mers tend to 
not be shared among colors. However, most cdBGs have 
a large overlap between the k-mers of various colors. In 
such cases, independently compressing each color does 
not exploit the properties of cdBGs and, as we show in 
this paper, results in subpar compression ratios. There 
exist two tools designed specifically for disk compression 
of cdBGs. The first tool is unfortunately limited to only 
three k-mer sizes [9]. The second tool, called GGCAT 
[10] is a space efficient indexing method that, while not 
originally evaluated in this regard, turns out to also be a 
good disk compression method when combined with a 
generic post-compression step.

In this paper, we design, implement, and evaluate an 
algorithm ESS-color for the disk compression of cdBGs. 
We build upon the idea of spectrum-preserving string 
sets [11–13] and the followup compression format for a 
k-mer set [8], called ESS. By constructing an ESS of the 
union of k-mers in E , we represent the k-mer sequences 
themselves compactly. We exploit the fact that consecu-
tive k-mers in an ESS have similar color classes in order 
to efficiently compress the color vectors of each k-mer.

We evaluate ESS-color on a variety of datasets, includ-
ing bacteria, fungi, human, and including whole genome 
sequencing data, metagenome sequencing data, and 
whole assembled genomes. ESS-color achieves better 
compression than all evaluated tools and on all datasets, 
with all other tools using ≥ 44% more space on at least 
one of our datasets. On some datasets the improvement 
over all other tools is quite large, e.g. for a gut metage-
nome, all the other tools use at ≥ 27% more space than 
ESS-color. Compressing each color independently uses 
between 1.2x and 6.9x more space than ESS-color. The 
absolute compression ratio is more than 26x on datasets 
of assembled genomes and between 1.4x and 8.7x on 
datasets from sequencing experiments. The software is 
available at http:// github. com/ medve devgr oup/ ESSCo lor.

Preliminaries
In this section we give some important definitions. 
Please refer to Fig.  1 for examples of the introduced 
concepts.

Strings
A string of length k is called a k-mer. We assume k-mers 
are over the DNA alphabet. A string x is canonical if it 
is the lexicographically smaller of x and its reverse com-
plement. Let K be a set of k-mers. A spectrum-preserv-
ing string set (SPSS) of K is a set of strings S such that 
each string s ∈ S is at least k characters long, every k
-mer that appears in S appears exactly once, and the set 
of k-mers that appear in S is K [11–13]. For example, if 
K = {ACG,CGT ,CGA} , then {ACGT ,CGA} would an 
SPSS of K. Note that K can have multiple spectrum-pre-
serving string sets. There are several efficient tools for 
computing an SPSS so as to minimize the total number 
of characters [10, 14]. In this paper, we rely on the imple-
mentation in [8]. Each string in the resulting SPSS is 
referred to as a simplitig.

Compression of a k‑mer set
ESS is a disk-compression format to store a set of k-mers 
K. It was introduced in [8] as the output of a compres-
sion tool, which, in this paper, we will refer to as ESS-
basic. The technical details of the format and of the tool 
are irrelevant for this paper and can be viewed as black 
boxes. An ESS representation cannot be queried effi-
ciently but can be decompressed into an SPSS of K. This 
output gives an ordering of the k-mers of K, and there-
fore the ESS compression of K induces an ordering on K. 
Note that because the decompression algorithm is deter-
ministic, by storing an ESS representation, we are implic-
itly storing an SPSS representation as well.

Colored k‑mer sets
Let C > 0 be an integer indicating the number of colors. 
Let E = {E0, . . . ,EC−1} be a set of C k-mer sets, also 
referred to as a colored de Bruijn graph. Let E be the set 
of all k-mers in E , i.e. E = {x | ∃i s. t. x ∈ Ei} . The (color) 
class of a k-mer x ∈ E is the set of indices i such that 
x ∈ Ei . The color vector of x is a binary vector of length C 
where position i is 1 iff x ∈ Ei.

Non‑compressed representation of cdBGs
Assume you have an ordering of E , e.g. the one given by 
an ESS of E . A color matrix of E is a file with row i con-
taining the color vector of the ith k-mer. Storing an ESS of 
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E together with a color matrix of E is a lossless represen-
tation of E.

Methods
In this section, we describe our algorithm ESS-color for 
the compression of cdBGs. Let E = {E0, . . . ,EC−1} be a 
colored dBG over C colors. Recall that E is the set of all 
k-mers in E . Let M denote the number of distinct color 
classes in E.

ESS-color can accept input in one of two formats. First, 
it can accept each Ei stored in the KFF file format [15]. 
Alternatively, we can take as input a collection of FASTA 
files, each one assigned one of C colors, and an abun-
dance parameter a. Ei is then implicitly defined as the set 
of all canonical k-mers that appear at least a times in the 

FASTA files of color i. We obtain Ei by running KMC [16] 
on the FASTA files of color i.

Building a color matrix of E and compressing E
In this step, we first compress E using ESS-basic [8] 
and then build the color matrix of E , ordered by the 
ESS order. Specifically, we first compress the nucleo-
tide sequences themselves, i.e. we run ESS-basic [8] on 
all the input files jointly. We refer to this as the union 
ESS. We then decompress this file to obtain an SPSS of 
E , denoted by S. From S, we build an SSHash dictionary 
[17] that allows us to map each k-mer in E to its rank in 
S. We then build on top of the KMC API to read in the 
binary files representing E0, . . . ,EC−1 and output a color 
matrix ordered by the SSHash dictionary. At the end of 
this stage, we have the union ESS, which is retained in the 

Fig. 1 An example illustrating the various definitions in Sect. Preliminaries and the first step of our compression method (Sect. Building 
a color matrix of E and compressing E). The input to the compression algorithm is a colored de Bruin Graph. The top panel 
shows an example with three colors (i.e. C = 3 ), k = 5 , and a colored cdBG of E = {E0, E1, E2} . Here, E0 = {TCAAA, CAAAA, AAAAT } , 
E1 = {TCAAA, CAAAA, AAAAT , AAATT , CAAAG, AAATC , AATCG} , and E2 = {TCAAA, CAAAA, AAAAT , AAATT , CAAAG} . The color class is shown next to each 
k-mer, e.g. the color class of TCAAA  is {0, 1, 2} . There are three distinct color classes, i.e. M = 3 . These are {0, 1, 2}, {1, 2} , and {1} . The lower left panel 
shows the union ESS, i.e. the ESS representation of the set E = {TCAAA, CAAAA, AAAAT , AAATT , CAAAG, AAATC , AATCG} . This union ESS can be 
decomposed into an SPSS of E  , shown in the figure. The third column in bottom panel shows the color matrix, with k-mers in the order of the SPSS. 
To obtain the final compressed representation the color matrix is compressed using the algorithm we describe in Sect. Compression of the color 
matrix
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final compression output, and we have S and the color 
matrix, which are used in later stages but not retained in 
the final compression output.

Compression of the color matrix
Given an SPSS S of E and a color matrix of E over the 
order induced by S, we now generate a compressed rep-
resentation of the matrix. Our representation consists of 
a global class table and, for every simplitig of S, a few bits 
of metadata, a local class table and one bitvector m . The 
local class table is optional, as we describe below. Fig-
ure 2 gives a schematic representation. We now explain 
each of these in detail.

Global class table: For most applications, the number 
of distinct color vectors M is significantly smaller than 
2C . Hence, the color matrix representation, which uses C 
bits per k-mer, is very inefficient. Instead, we use Huff-
man coding to assign a global ID to each class, so as to 
minimize the number of bits that will be used to store 
these IDs later (this is similar to what was done in [18]). 
To do this, we scan the color matrix to determine all the 
distinct classes and the number of k-mers that have each 
class. We then use Huffman coding to assign a global 
ID to each distinct class, so that more frequent global 
IDs tend to use less bits. This table is then stored in two 

forms: one that is compressed to disk, and the other that 
is stored in memory to be used during the compression 
algorithm.

We store the table on disk using three files: a color 
encoding � , a boundary bitvector b, and a text file. First, 
we sort the color classes in increasing numerical order, 
interpreting each color vector as a C-bit integer. For � , 
we write a concatenation of the M color vectors to disk, 
with the first color vector being written using C bits and 
the following colors being encoded as a difference with 
their predecessor. Specifically, if hi is the Hamming dis-
tance between the ith and the (i − 1)st color vectors, then 
we use hi⌈logC⌉ bits to encode the indices where the ith 
color vector is different from the (i − 1)st color vector. 
We also store a boundary bitvector b which is the same 
length as � and contains a ‘1’ whenever � starts a new 
color class. Finally, we store the frequencies of the color 
classes in a text file. These three files are then sufficient to 
reconstruct the global IDs during decompression.1

Fig. 2 Example of how we compress the color matrix (Sect. Compression of the color matrix). The top panel shows the compression of a simplitig 
ACT TTG GA and the bottom panel shows the compression of a simplitig AAA ATT AC. Other simplitigs exist but are not shown. In this example, C = 6 , 
k = 4 , and runDivisor = 4 . The figure is divided into three columns. The first column shows the information that the algorithm has about each k
-mer (i.e. its color vector and corresponding global ID). The second column shows the metadata which holds the values of maxDif and useLocalId 
for the corresponding simplitig. The third column shows the m vector. Within the m vector, the type of encoding is shown in gray colored boxes 
and other values are shown in white boxes. The colors of the values inside the white boxes correspond to the color used for the corresponding k
-mers ’ color vector in the first column of the figure. Note that in the bottom simplitig, a local table is used. In particular, there are two distinct color 
vectors in this simplitig, with global ID 0011 assigned to local ID 0 and global ID 000 assigned to local ID 1

1 For readers familiar with Mantis-MST [19], we also tried their approach 
for storing our global table. Surprisingly, we found that our approach out-
performed their more sophisticated approach, at least in our datasets. 
Though the Mantis-MST approach resulted in a smaller � vector, the over-
head of storing the tree parent vector outweighed this gain.
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Simultaneously, we need to be able to map a color vec-
tor to an ID during the compression process. To do this, 
we create a minimal perfect hash function h (CHM [20]) 
that maps from each distinct color vector to an integer 
between 0 and M − 1 . We then maintain an array A of 
size M, where for each color vector c, A(h(c)) holds the 
global ID of color vector c.

After the global class table is created, we process the 
simplitigs of S one at time. For each simplitig, we dynam-
ically set two parameters: a boolean variable UseLocalID, 
and an integer 0 ≤ maxDif ≤ 2 . We postpone the discus-
sion on how these are set until the end of the section. The 
values of maxDif and UseLocalID are stored using 3 bits 
of metadata per simplitig. If UseLocalID is set, we create 
a local class table:

Local class table: In the case that the frequencies of 
color classes are evenly distributed, we need approxi-
mately logM bits to represent the global class ID of each 
k-mer. We observe that sometimes a class is used at mul-
tiple locations of a simplitig, in which case using logM 
bits for each occurrence can be wasteful. Let ℓ be the 
number of distinct classes appearing in a simplitig. To 
save space on class IDs, we create a separate local class 
table, which maps from ℓ integers, called local class IDs, 
to their respective global IDs. Then, the encoding of k
-mer classes for this simplitig can use local class IDs, 
which take only log ℓ space. The local class table is writ-
ten to disk, with logM bits encoding ℓ followed by ℓ con-
secutive global class IDs together

The bitvector m is constructed by scanning the sim-
plitig from left to right and, for each k-mer x, deciding 
how to encode it, and appending that encoding to m . 
Intuitively, the encodings follow three basic possibilities. 
The first possibility is to just append m with the k-mer ’s 
class ID. Second, we observed in practice that simplitigs 
often contain runs of k-mers with identical classes, in 
which case we can append m with the length of the run, 
rather than writing out each class IDs (such runs are 
similar to the monotigs of [21]). Finally, we often observe 
that a k-mer has a color vector with a small Hamming 
distance (i.e. 1 or 2) to that of the previous k-mer. In this 
case, we append m with the indices in the color vector 
that are different. Since there are three types of encoding, 
we will also need to prepend each encoding with two bits 
denoting the type of encoding. Formally, for each k-mer 
in a simplitig, we choose one of four options:

Skip
This option is invoked if x is not the first or last k-mer in 
its simplitig and has the same class as the preceding and 
succeeding k-mer. In this option, nothing is appended to 
m.

Small class difference
Let h be the Hamming distance between the color vector 
of x and the color vector of the preceding k-mer in the 
simplitig. This option is invoked when 0 < h ≤ maxDif  . 
First, we append m with ‘10’ to indicate that the following 
encoding will encode a class difference. If maxDif = 2 , 
then we append m with a ‘1’ to indicate that h = 2 or a 
‘0’ to indicate that h = 1 . If maxDif = 1 , then we do not 
append this extra bit, since it is implicit. Then, we append 
m with h logC bits which list the colors that are differ-
ent. Note that setting maxDif = 0 effectively disables this 
type of encoding.

End of run
This option is invoked if x has the same class as the pre-
ceding k-mer and either has a different class than the suc-
ceeding k-mer or is the last k-mer in the simplitig. First, 
we indicate that the following encoding will encode a 
run length by appending m with ‘11’ if maxDif > 0 and 
‘1’ if maxDif = 0 . This difference is due to the fact that if 
maxDif = 0 , then there are only two types of encodings 
and so we can just use one bit for the type.

Let runLen be the number of consecutive k-mers that 
preceded x (not including x) and have the same class. 
We encode runLen by separating it into a quotient q and 
remainder r (with respect to a global parameter runDi-
visor), and then encoding the quotient q in unary and 
the remainder r in binary. Formally, let q = ⌊ runLen

runDivisor ⌋ 
and r = runLen mod runDivisor . We append to m q 
‘1’s followed by a ’0’. Then, we append to m the binary 
encoding of r, using log runDivisor bits. For example, 
if runDivisor = 16 and runLen = 21 , then q = 1 and 
r = 5 , and m is appended with 100101. Observe that a 
smaller value of runDivisor results in more bits used to 
encode long runs (i.e. q is larger) while a larger value 
of runDivisor uses more bits to encode short runs (i.e. 
log runDivisor is larger). We found that a default value of 
16 works best in our experiments.

Store the class ID
This option is invoked when none of the criteria for the 
other options are satisfied. In this case, we append m with 
‘0’ to indicate the type of encoding, followed by the class 
ID of x. If UseLocalID is set, we use the local class ID, 
otherwise we use the global class ID.

After finishing with all simplitigs, we compress the 
global class table, local class tables, and m using RRR [22] 
and write them to disk.

Setting the parameters UseLocalID and maxDif 
involves trade-offs that are difficult to quantify in 
advance. For example, the cost of having to store the 
local class table may exceed the benefits of using less 
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bits to encode class IDs for a simplitig where every pre-
sent class ID is contained within a single run. Similarly, 
when d is too large, then writing the positions of the 
color differences to m can take more space then just writ-
ing the class ID. Moreover, there is a benefit of setting 
d = 0 , since it enables to save one bit per run by using 
‘1’ instead of ‘11’ for the ‘end of run’ encoding. All bitvec-
tors are additionally compressed with RRR, making it dif-
ficult to determine in advance which parameters result 
in the least space. We therefore try all possibilities of 
maxDif ∈ {0, 1, 2} and UseLocalID ∈ {True, False} , and, 
for each combination, compute the encoding. We then 
use the encoding that takes less space and disregard the 
rest. Though this step can likely be optimized, we found 
that the time taken to try all possibilities was not a large 
factor in the overall compression time.

The decompression algorithm for the m vector is 
straightforward since our color matrix compression 
scheme is designed to be unambiguously decompressed. 
Simultaneously, we decompress E with ESS-decompress. 
The result is an SPSS S of E and a color matrix of E in the 
order of S. If the output is to be processed downstream 
in a streaming manner, our decompression algorithm can 
trivially stream out k-mer sequence and color vectors, 
one k-mer at a time.

Other optimizations
For completeness, we describe some additional optimiza-
tions that did not produce substantial improvements in 
practice on our datasets, but might be useful for datasets 
with different characteristics.

In one optimization, we tried a special encoding just 
for simplitigs with a single color class. We require an 
extra bit to the metadata that indicates whether a sim-
plitig is a single-class simplitig or not, and, for single-
class simplitigs, we just stored the global class ID in m . 
In fact, there is a way we can avoid adding a new bit to 
the metadata for this special case. We already allocate 
3 bits to hold the six combinations of maxDif ∈ {0, 1, 2} 
and UseLocalID ∈ {True, False} . That leaves us with two 

unused combinations, one of which can be used to indi-
cate whether a simplitig is single-class or not.

In another optimization, we tried to reduce the size of 
the local class table. Theoretically, the number of local 
class IDs ( ℓ ) might be as large as M, so we use logM bits 
to store ℓ . However, in our dataset, we never observed ℓ 
to be greater than 8. We therefore tried an optimization 
where we allocate only 3 bits for storing ℓ . If a case with 
ℓ > 8 is encountered, we force UseLocalId = False (i.e. 
we avoid using the local class table).

Results
Evaluated tools and datasets
As far as we are aware, there are two other tools 
designed for compressing colored de Bruijn graphs: KS 
[9] and GGCAT [10]. We refer to the first tool as KS 
after the authors’ last names [9]. KS is limited to sup-
port only three k values (15, 19, and 23), so we com-
pare against it for k = 23 but also evaluate ESS-color 
on a more practical k value of k = 31 . For GGCAT, we 
additionally compressed its Fasta output file with MFC 
and its binary color table with gzip to maximize its 
compression ratio. We also compare ESS-color against 
the naive approach of compressing each color indepen-
dently using the algorithm of [8], which we refer to as 
ESS-basic.

Table 1 shows the datasets we use for evaluation and 
their properties. We chose five datasets so as to cover 
a broad range of input types. Three of the datasets are 
from assembled genomes, one is from RNA-seq reads, 
and one is from metagenome reads. We used all k-mers 
from the three assemblies datasets and all k-mers that 
appear at least twice from the two read datasets. The 
datasets cover various species, from Bacteria to Fungi 
to Human. Concretely, we have (1) 100 arbitrarily 
selected E.coli strains from GenBank, (2) an arbitrary 
subset of 10 of those, (3) 20 arbitrarily selected fungi 
sequences from RefSeq, (4) gut microbiome read sets 
from nine individuals sequenced in [23], and (5) 19 

Table 1 Dataset characteristics

C is the number of colors and M is the number color classes

Source type C M n. k‑mers ×10
6 (% single color) n. simplitigs ×10

6

k = 23 k = 31 k = 23 k = 31

E. coli assemblies 100 542,545 27 (30%) 31 (31%) 0.5 0.5

E. coli assemblies 10 826 13 (38%) 14 (41%) 0.2 0.2

Fungi assemblies 20 13,227 394 (93%) 409 (93%) 1.8 1.7

Gut metagenome reads 9 511 2,236 (67%) 2,477 (70%) 76 95

Human RNA-seq reads 19 9654 120 (71%) 103 (75%) 7.2 10
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paired-end, human, bulk RNA-seq short-read experi-
ments previously used in [19]. All accession numbers 
are listed in https:// github. com/ medve devgr oup/ ESSCo 
lor/ wiki/ Exper iments.

Finally, all experiments were run on a server with an 
Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.10GHz processor 
with 64 cores and 512 GB of memory. We ran all tools 
in unrestricted memory mode. We used 8 threads for all 
tools and their components, whenever they supported 
multi-threading.

Comparison against other disk compression tools
Table 2 shows the bits per k-mer achieved by ESS-color 
compared with KS, GGCAT ESS-basic, and a p7zip com-
pression of the original fasta file. ESS-color achieves 
better compression than all evaluated tools and on all 
datasets. No other tool was able to consistently achieve 
less than 44% space overhead compared to ESS-color. On 
some datasets the improvement over all other tools is 
quite large, e.g. for Gut ( k = 23 ), all the other tools use at 
least 27% more space than ESS-color.

The compression ratio of ESS-color relative to the orig-
inal Fa.p7zip files varies (Table 2). For the read datasets, it 
is more than 15x, since high-coverage FASTA files are by 
their nature very redundant. For the assemblies datasets, 
the ratio is between 1x and 7x. We found that a good pre-
dictor of compressibility of assemblies is the percentage 
of k-mers that have exactly one color (Table  1). At one 
extreme, 93% of Fungi20 k-mers have exactly one color, 
and ESS-color achieves little improvement over fa.p7zip. 
At the other extreme, only 30% of Ecoli100 k-mers have 
exactly one color, and the compression ratio is relatively 
high at 7.1x (for k = 23 ). This trend makes intuitive sense 
since single-color k-mers do not benefit from ESS-color ’s 
multi-color compression algorithm.

KS is not as effective as ESS-color on our datasets, 
using between 1.4x and 3.3x more space than ESS-color 
(Table 2). We note that even though KS is also designed 
to exploit the fact that k-mers are shared across colors, it 

makes a different design trade-off compared to ESS-color. 
Specifically, it does not allow simplitigs to extend beyond 
a single color class (resulting in more space needed to 
store k-mers), but, in exchange, it is more efficient in 
storing color information.

GGCAT is generally the closest competitor against 
ESS-color, using between 14 and 44% more space on the 
non-Fungi datasets (note that for Fungi all tools did well). 
Like ESS-color, it builds a kind of global class table, con-
structs an SPSS of the k-mers, and annotates each run of 
single-class k-mers with their class ID. Unlike ESS-color, 
however, it does not use ESS, does not encode small class 
differences, and does not use local class tables.

As expected, ESS-basic is not as effective as ESS-color, 
using up to 6.9x more space than ESS-color (Table  2). 
These results are not surprising since ESS-basic does not 
exploit the redundancy created by shared k-mers across 
samples. For the assemblies datasets, the compression 
improvement of ESS-color over ESS-basic closely tracks 
that of ESS-color over the original fa.p7zip. For the 
sequencing datasets, ESS-basic uses between 1.3 and 1.9 
more space than ESS-color.

Tables  3 and 4 show the run time and memory usage 
of compression, respectively. Here, ESS-color is outper-
formed by other tools. In particular, if optimal compres-
sion space is not needed, then GGCAT becomes a good 
alternative to ESS-color. Note that the decompression 
time (Table 5) is an order of magnitude smaller compared 
to the compression times.

Inside the space usage of ESS‑color
ESS-color’s compressed representation includes sev-
eral components, with the major ones being the union 
ESS, the m vector, the global table, and the local tables. 
Table  6 shows that the majority of space used by ESS-
color is taken by the union ESS. Except for Ecoli100, the 
rest of the space is taken up almost exclusively by m. For 
Ecoli100, which has the largest number of colors, the 
global table takes 23% of the total space.

Table 2 Compression results, in bits per k-mer. ESS-color is our new tool

ESS-basic is the non-integrative approach of compressing every color separately. KS is tool from [9], and a hyphen indicates that it does not support k > 23 . fa.p7zip 
is the p7zip compression of the original data. We show bits per k-mer, which is the total compressed size divided by the number of distinct k-mer in the input (i.e. |E| ). 
Compression ratios can be inferred by comparing to the fa.p7zip column

Dataset k = 23 k = 31

fa.p7zip ESS‑color KS GGCAT ESS‑basic fa.p7zip ESS‑color KS GGCAT ESS‑basic

Ecoli100 37 5.2 17.3 6.4 35.0 33 4.4 – 5.5 30.3

Ecoli10 8 2.9 5.3 3.3 7.3 7 2.6 – 3.0 6.6

Fungi20 2.4 2.2 2.5 2.3 2.3 2.3 2.2 – 2.3 2.5

Gut9 60 3.7 5.7 4.9 4.7 54 3.4 – 4.9 4.4

HumRNA19 112 5.6 8.8 7.1 10.4 131 8.9 – 10.5 12.1

https://github.com/medvedevgroup/ESSColor/wiki/Experiments
https://github.com/medvedevgroup/ESSColor/wiki/Experiments
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Recall that ESS-color chooses one of six dif-
ferent compression modes for each simplitig, i.e. 
UseLocalId ∈ {0, 1} and maxDif ∈ {0, 1, 2} . In order to 
access the relative contribution of the various compres-
sion techniques, we count the frequency with which 
each mode occurs (Table 7). First, we observe that the 
idea of a local table was rarely helpful on our data. 
Local tables are only beneficial when a single color 
class appears in more than one run in a simplitig, which 
apparently was rare. Second, the majority of simplitigs 
use maxDif = 0 . This mode is optimal when the sim-
plitig has just one color class. There is also a more com-
plicated trade-off since setting maxDif > 0 adds one 
extra bit for each run encoding, which may outweigh 
the benefits of encoding some k-mers with a class dif-
ference. Third, the Gut dataset demonstrates the bene-
fit of encoding class differences, especially compared to 
GGCAT. It is the dataset with the highest percentage of 
simplitigs using maxDif > 0 (21%) and, simultaneously, 
it is also the dataset where GGCAT uses the most space 
relative to ESS-color (44%). We also tested the effect of 
additional optimizations described in  Sect.  Compres-
sion of the color matrix for k=31, but we did not report 
them as the optimizations reduced our archive size 
only by 1–3%.

Table 3 Time (min) used by the various compression algorithms

For the Gut9 ESS-color run with k = 23 (marked with *), we used an unoptimized implementation of the color matrix generation step, since SSHash was not working 
as expected. For GGCAT on Gut9 with k = 23 (denoted by **), the original run crashed because of exceeding the number of open files allowed by the operating 
system. We therefore re-ran GGCAT using our simplitigs as a starting point, which allowed the run to complete. However, the time shown here does not include the 
time we used to construct the simplitigs

k = 23 k = 31

Dataset ESS‑color KS GGCAT ESS‑basic ESS‑color GGCAT ESS‑basic

Ecoli100 14.8 11.6 0.7 6.3 20.7 0.7 27

Ecoli10 2.6 7.0 0.3 0.9 2.6 0.3 2

Fungi20 59.1 7.0 3.3 7.3 76 3.3 25

Gut9 1101* 148.5 37.8** 234 611.6 92.2 341

HumRNA19 31.9 10.5 21.2 31 60.1 15.0 39

Table 4 Maximum memory (GB) used by the various compression algorithms

The (*) and (**) annotations are the same as in Table 3

k = 23 k = 31

Dataset ESS‑color KS GGCAT ESS‑basic ESS‑color GGCAT ESS‑basic

Ecoli100 1.2 0.9 1.5 1.2 1.1 1.4 1

Ecoli10 0.6 3.2 0.8 1.1 0.6 0.8 1

Fungi20 5.4 3.2 4.8 5.9 4.3 3.9 6

Gut9 174.6* 50.6 87.2** 33.2 121 78.2 119

HumRNA19 26.8 6.0 8.8 9.1 12.1 10.2 7

Table 5 Time and memory for decompression of ESS-color, for 
k = 31

Dataset Memory (GB) Time (min)

Ecoli100 0.5 2

Ecoli10 0.5 1

Fungi20 0.5 13

Gut9 8.5 90

HumRNA19 1.0 5

Table 6 Breakdown of the space usage (in percentage of total 
space) of the components of ESS-color, for k = 31

Note that all components except union ESS are shown after compression with 
RRR 

Dataset union ESS m global 
table ( � 
and b)

global table 
(frequencies)

local tables

Ecoli100 51 23 23 2 1

Ecoli10 81 18 <0.1 <0.1 0.5

Fungi20 95 5 <0.1 <0.1 0.1

Gut9 77 22 <0.1 <0.1 1

HumRNA19 73 26 <0.1 <0.1 0.8
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Effect of varying number of colors on E.coli dataset
We tested for the differences in output sizes when num-
ber of colors are varied in E. coli dataset. We arbitrarily 
chose 10, 100, 500 and 1000 E. coli strains from GenBank.
Table 8 shows compressed sizes of E. coli data in bits/k
-mer for ESS-color and its closest competitor GGCAT. 
GGCAT takes 15–18% more disk space in all cases.

Since E. coli samples are very similar, the size of union 
ESS does not increase as much as the size of color matrix. 
If we look at the breakdown of space usage of ESS-color, 
we see that the size of union ESS (2.2−2.3 bits/k-mer) 
did not change much as colors increased. However the 
contribution of color information increased from 13% to 
83%. This is due to the large increase in number of unique 
color classes.

Comparison to indexing data structures
There exist numerous indexing data structures for cdBGs 
[6]. Indexing data structures are similar to disk com-
pression but additionally support efficient membership 
and color queries. We expect this overhead to make 
them non-competitive with respect to disk compression 
schemes. To verify this, we compared the space taken by 
ESS-color against three indexing approaches. We note 
that since these approaches are designed for indexing, 
they do not implement decompression and are thus not 
viable for disk compression in their current state. We also 

note that GGCAT also supports indexing, but, since it is 
trivial to decompress, we included it in the main analy-
sis of Sect.  Comparison against other disk compression 
tools.

The first two approaches are ones that are shown in 
[24, 25] to be the most space efficient. These are Row-
Diff+, which is the latest version [25] of RowDiff [24], and 
Rainbow-MST [24], which is a space-improved version of 
Mantis-MST [19]. As a trivial improvement, we further 
compress these indices using gzip. The third approach we 
compare to is a natural hybrid of ESS-color and the Row-
Diff indexing algorithm for cdBGs [24]. We refer to this 
as RowDiff-ESS and describe it in detail in the Appendix. 
We do not compare against other indices such as REIN-
DEER [21], Bifrost [26], Themisto [27], or Mantis-MST 
[19], because they are less space efficient than RowDiff+, 
and we do not compare against Sequence Bloom Tree 
approaches (e.g. [28, 29]) because they are lossy.

Table  9 shows the results. As expected, the compres-
sion ratios of these indexing tools are not competitive 
against ESS-color. Even the most space efficient index-
ing approach for each dataset takes 60% more space than 
ESS-color. We do note that GGCAT, which was shown 
in Table 2, is an exception, since it implements both effi-
cient indexing and disk compression.

Table 7 The percentage of simplitigs ( k = 31 ) that fall into the six compression modes, i.e. combinations of UseLocalID and maxDif 

Dataset UseLocalID = False UseLocalID = True

maxDif = 0 maxDif = 1 maxDif = 2 maxDif = 0 maxDif = 1 maxDif = 2

Ecoli100 75 20 5 <0.1 <0.1 <0.1

Ecoli10 82 16 2 <0.1 <0.1 <0.1

Fungi20 99 1 0.2 <0.1 <0.1 <0.1

Gut9 80 19 2 0.2 <0.1 <0.1

HumRNA19 91 9 0.1 0.1 <0.1 <0.1

Table 8 Compression results for varying number of colors for 
E.coli ( k = 31)

C n. k‑mers × 106 M bits/k‑mer (k=31)

ESS‑Color GGCAT 

10 14 544 2.6 3.0

100 31 506,577 4.6 5.5

500 61 1,671,449 9.6 11.4

1000 82 2,509,863 13.9 16.0

Table 9 Compression results in bits per k-mer ( k = 31 ) of 
indexing approaches, compared to ESS-color

Dataset ESS‑color RowDiff‑ESS RowDiff+ Rainbow‑MST

Ecoli100 4.4 14.6 8.0 34.2

Ecoli10 2.6 7.8 6.3 19.3

Fungi20 2.2 3.6 4.3 9.5

Gut9 3.4 11.2 40.6 15.6

HumRNA19 8.9 37.9 112.6 19.1
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Conclusion
Colored de Bruijn graphs are a popular way to represent 
sequence databases. In spite of their ever-growing sizes, 
there have not been many specialized tools for com-
pressing them to disk. In this paper, we present a novel 
disk compression algorithm tailormade for cdBGs that 
achieves superior space compression compared to all 
other tools on the evaluated datasets.

Our algorithm is a novel combination of ideas bor-
rowed from previous work on disk compression of k-mer 
sets and indexing of cdBGs. We use a spectrum-preserv-
ing string set (SPSS) as a basis for both compressing the 
nucleotide sequences and for ordering the rows in the 
color matrix. By using the SPSS ordering, we can avoid 
the costly storage of an indexed de Bruijn graph (e.g. 
BOSS in [24, 25] or a counting quotient filter in [19]). We 
also exploit the fact that consecutive k-mers in an SPSS 
likely have the same or similar color class. A major com-
ponent of our approach is that we select a different com-
pression scheme for each simplitig, depending on what 
gives the best compression on that simplitig.

The most important practical direction for future work 
is to improve the running time of our algorithm. The gen-
eration of the union ESS is done by ESS-basic. ESS-basic 
can be sped up by extending the latest SPSS generation 
tools [10, 14] to also compute an ESS. We could even 
build on top of GGCAT, taking advantage of their effi-
cient implementation (unfortunately, GGCAT was only 
released once our project was near completion). Another 
bottleneck is the color matrix generation step, which 
could be parallelized or even avoided by using color lists.

A theoretical future direction is to derive bounds on 
the bits used by the compression scheme. Unfortunately, 
we do not see an easy way to do this, since the choice of 
encoding depends on the order of the k-mers in the SPSS 
and on the decomposition of the k-mers into simplitigs. 
It is unclear to us how to capture these properties as a 
function of the input data.

Finally, we could further improve the compression 
algorithm by modifying the SPSS generated by the ESS-
basic algorithm. Currently, the choice of how to select 
from multiple simplitig extensions is made arbitrarily. 
Instead, the choice could be made to use the extension 
that has the most similar color class. Such a modification 
to the SPSS construction algorithm would likely be com-
putationally non-trivial, since it would require accessing 
the color information.

Appendix
Here we describe RowDiff-ESS, the hybrid of ESS-color 
and the RowDiff indexing algorithm for cdBGs [24]. 
Though the approach turned out to not be comptetive 

against ESS-color, we describe it here for completeness. 
The RowDiff index is composed of two parts: BOSS, 
which is an index of E , and a compressed color matrix 
whose labels are implicitly given by BOSS. Because of its 
structural similarity to our approach, we can swap out 
BOSS (which supports queries and is therefore not space 
efficient for disk compression) with an ESS of E . We 
then feed the k-mer ordering implied by the ESS to the 
RowDiff color matrix compression algorithm. The space 
used by this scheme is the ESS space plus the space of the 
RowDiff’s color matrix, compressed with gzip.

Acknowledgements
We would like to thank R. Chikhi for helpful discussions.

Author contributions
AR and PM conceived of the project, developed the compression scheme and 
wrote the manuscript. Both AR and YD contributed to the implementation, 
benchmarking and evaluation of methods. All authors contributed to review-
ing the paper.

Funding
This material is based upon work supported by the National Science Founda-
tion under grant nos. 2138585 and 1931531. Research reported in this publica-
tion was also supported by the National Institutes of Health under Grant NIH 
R01GM146462 (to P.M.). A.R. was supported by the National Institutes of Health 
Computation, Bioinformatics, and Statistics (CBIOS) training program. Y.D. 
has received funding from the European Union’s Horizon 2020 research and 
innovation programme under the Marie Skłodowska-Curie grants agreements 
No. 956229. Y.D. was supported by ANR Inception (PIA/ANR16-CONV-0005). 
The content is solely the responsibility of the authors and does not necessarily 
represent the official views of the National Institutes of Health.

Availability of data and materials
Source code and data accession numbers are found in http:// github. com/ 
medve devgr oup/ ESSCo lor.

Declarations

Competing interests
The authors declare no competing interests.

Received: 14 November 2023   Accepted: 24 January 2024

References
 1. Iqbal Z, Caccamo M, Turner I, Flicek P, McVean G. De novo assembly 

and genotyping of variants using colored de Bruijn graphs. Nat Genet. 
2012;44(2):226–32.

 2. Wittler R. Alignment-and reference-free phylogenomics with colored de 
Bruijn graphs. Algorithms Mol Biol. 2020;15:1–12.

 3. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast 
and bias-aware quantification of transcript expression. Nat Methods. 
2017;14(4):417–9.

 4. Bradley P, Den Bakker HC, Rocha EP, McVean G, Iqbal Z. Ultrafast search 
of all deposited bacterial and viral genomic data. Nat biotechnol. 
2019;37(2):152–9.

 5. Papageorgiou L, Eleni P, Raftopoulou S, Mantaiou M, Megalooikonomou 
V, Vlachakis D. Genomic big data hitting the storage bottleneck. Heidel-
berg: EMBnet; 2018. p. 24.

 6. Marchet C, Boucher C, Puglisi SJ, Medvedev P, Salson M, Chikhi R. Data 
structures based on k-mers for querying large collections of sequencing 
data sets. Genome Res. 2020;31(1):1–12.

http://github.com/medvedevgroup/ESSColor
http://github.com/medvedevgroup/ESSColor


Page 11 of 11Rahman et al. Algorithms for Molecular Biology           (2024) 19:20  

 7. Marchet C. Data-structures for sets of k-mer sets: what’s new since 2020. 
Blog post 2022. https:// kamim rcht. github. io/ webpa ge/ sets_ kmer_ sets. 
html

 8. Rahman A, Chikhi R, Medvedev P. Disk compression of k-mer sets. Algo-
rithms Mol Biol. 2021;16(1):1–14.

 9. Kitaya K, Shibuya T. Compression of multiple k-mer sets by iterative 
SPSS decomposition. In: 21st International Workshop on Algorithms in 
Bioinformatics (WABI 2021) 2021. Schloss Dagstuhl-Leibniz-Zentrum für 
Informatik.

 10. Cracco A, Tomescu A.I. Extremely-fast construction and querying of 
compacted and colored de Bruijn graphs with GGCAT. BioRxiv 2022.

 11. Rahman A, Medevedev P. Representation of k-mer sets using spectrum-
preserving string sets. J Comput Biol. 2021;28(4):381–94.

 12. Břinda K. Novel computational techniques for mapping and classifying 
next-generation sequencing data. PhD thesis, Université Paris-Est (2016)

 13. Břinda K, Baym M, Kucherov G. Simplitigs as an efficient and scalable 
representation of de Bruijn graphs. Genome Biol. 2021;22:1–24.

 14. Khan J, Kokot M, Deorowicz S, Patro R. Scalable, ultra-fast, and low-
memory construction of compacted de Bruijn graphs with Cuttlefish 2. 
Genome Biol. 2022;23(1):190.

 15. Dufresne Y, Lemane T, Marijon P, Peterlongo P, Rahman A, Kokot M, 
Medvedev P, Deorowicz S, Chikhi R. The K-mer File Format: a standard-
ized and compact disk representation of sets of k-mers. Bioinformatics. 
2022;38(18):4423–5.

 16. Kokot M, Długosz M, Deorowicz S. KMC 3: counting and manipulating 
k-mer statistics. Bioinformatics. 2017;33(17):2759–61.

 17. Pibiri GE. Sparse and skew hashing of k-mers. Bioinformatics. 
2022;38(Supplement–1):185–94.

 18. Almodaresi F, Pandey P, Patro R. Rainbowfish: a succinct colored de 
Bruijn graph representation. In: 17th International Workshop on Algo-
rithms in Bioinformatics (WABI 2017). Leibniz Int Proc Informat (LIPIcs). 
2017;88:18–11815.

 19. Almodaresi F, Pandey P, Ferdman M, Johnson R, Patro R. An efficient, 
scalable, and exact representation of high-dimensional color information 
enabled using de Bruijn graph search. J Comput Biol. 2020;27(4):485–99.

 20. Czech ZJ, Havas G, Majewski BS. An optimal algorithm for generating 
minimal perfect hash functions. Inform Proc lett. 1992;43(5):257–64.

 21. Marchet C, Iqbal Z, Gautheret D, Salson M, Chikhi R. REINDEER: efficient 
indexing of k-mer presence and abundance in sequencing datasets. 
Bioinformatics. 2020;36(Supplement–1):177–85.

 22. Raman R, Raman V, Rao SS. Succinct dynamic data structures. In: 
Algorithms and data structures: 7th international workshop, WADS 2001 
Providence, RI, USA, August 8–10, 2001 Proceedings 7,2001: 426–437. 
Springer

 23. Mas-Lloret J, Obón-Santacana M, Ibáñez-Sanz G, Guinó E, Pato ML, 
Rodriguez-Moranta F, Mata A, García-Rodríguez A, Moreno V, Pimenoff 
VN. Gut microbiome diversity detected by high-coverage 16S and shot-
gun sequencing of paired stool and colon sample. Sci data. 2020;7(1):92.

 24. Danciu D, Karasikov M, Mustafa H, Kahles A, Rätsch G. Topology-
based sparsification of graph annotations. Bioinformatics. 
2021;37(Supplement–1):169–76.

 25. Karasikov M, Mustafa H, Rätsch G, Kahles A. Lossless indexing with count-
ing de Bruijn graphs. Res Comput Mol Biol. 2022;32:1754.

 26. Holley G, Melsted P. Bifrost: highly parallel construction and indexing of 
colored and compacted de Bruijn graphs. Genome Biol. 2020;21(1):1–20.

 27. Alanko JN, Vuohtoniemi J, Mäklin T, Puglisi SJ. Themisto: a scalable 
colored k-mer index for sensitive pseudoalignment against hundreds of 
thousands of bacterial genomes 2023.

 28. Harris RS, Medvedev P. Improved representation of sequence bloom 
trees. Bioinformatics. 2020;36(3):721–7.

 29. Solomon B, Kingsford C. Fast search of thousands of short-read sequenc-
ing experiments. Nat Biotechnol. 2016;34(3):300–2.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://kamimrcht.github.io/webpage/sets_kmer_sets.html
https://kamimrcht.github.io/webpage/sets_kmer_sets.html

	Compression algorithm for colored de Bruijn graphs
	Abstract 
	Introduction
	Preliminaries
	Strings
	Compression of a -mer set
	Colored -mer sets
	Non-compressed representation of cdBGs

	Methods
	Building a color matrix of  and compressing 
	Compression of the color matrix
	Skip
	Small class difference
	End of run
	Store the class ID
	Other optimizations

	Results
	Evaluated tools and datasets
	Comparison against other disk compression tools
	Inside the space usage of ESS-color
	Effect of varying number of colors on E.coli dataset
	Comparison to indexing data structures

	Conclusion
	Appendix
	Acknowledgements
	References


