
Gray et al. Algorithms for Molecular Biology (2024) 19:9
https://doi.org/10.1186/s13015-024-00256-4

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Algorithms for
Molecular Biology

SparseRNAfolD: optimized sparse RNA
pseudoknot-free folding with dangle
consideration
Mateo Gray1*, Sebastian Will2 and Hosna Jabbari1*

Abstract

Motivation Computational RNA secondary structure prediction by free energy minimization is indispensable
for analyzing structural RNAs and their interactions. These methods find the structure with the minimum free energy
(MFE) among exponentially many possible structures and have a restrictive time and space complexity (O(n3) time
and O(n2) space for pseudoknot-free structures) for longer RNA sequences. Furthermore, accurate free energy calcula-
tions, including dangle contributions can be difficult and costly to implement, particularly when optimizing for time
and space requirements.

Results Here we introduce a fast and efficient sparsified MFE pseudoknot-free structure prediction algorithm,
SparseRNAFolD, that utilizes an accurate energy model that accounts for dangle contributions. While the sparsifica-
tion technique was previously employed to improve the time and space complexity of a pseudoknot-free structure
prediction method with a realistic energy model, SparseMFEFold, it was not extended to include dangle contributions
due to the complexity of computation. This may come at the cost of prediction accuracy. In this work, we compare
three different sparsified implementations for dangle contributions and provide pros and cons of each method. As
well, we compare our algorithm to LinearFold, a linear time and space algorithm, where we find that in practice, Spar-
seRNAFolD has lower memory consumption across all lengths of sequence and a faster time for lengths up to 1000
bases.

Conclusion Our SparseRNAFolD algorithm is an MFE-based algorithm that guarantees optimality of result
and employs the most general energy model, including dangle contributions. We provide a basis for applying dangles
to sparsified recursion in a pseudoknot-free model that has the potential to be extended to pseudoknots.

Keywords RNA, MFE, Secondary structure prediction, Dangle, Sparsification, Space complexity, Time complexity

Introduction
Non-coding RNAs play crucial roles in the cell, such as in
transcription [1], translation [1, 2], splicing [3, 4], cataly-
sis [1, 5] and regulating gene expression [1, 3, 6, 7]. Since
RNA’s function heavily relies on its molecular structure,
facilitated by hydrogen bonding both within and between
molecules, predicting and comprehending the structure
of RNA is a dynamic area of research. It is reasonable to
assume (without further knowledge) that RNA forms the
structure with the lowest free energy [8, 9]. This is the
motivation for algorithms that aim to predict the RNA

*Correspondence:
Mateo Gray
mateo2@ualberta.ca
Hosna Jabbari
jabbari@ualberta.ca
1 Department of Biomedical Engineering, University of Alberta, Street,
Edmonton T6G2R3, AB, Canada
2 Department of Computer Science CNRS/LIX (UMR 7161), Institut
Polytechnique de Paris, Street, Paris 10587, France

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-024-00256-4&domain=pdf

Page 2 of 16Gray et al. Algorithms for Molecular Biology (2024) 19:9

minimum free energy (MFE) structure from the pool of
exponentially many structures it can form. Such meth-
ods employ a set of energy parameters for various loop
types, called an energy model; to find the free energy of a
structure, they add up the energy of its loops. While pre-
diction accuracy of these methods depends on the qual-
ity of their energy models, these methods are applicable to
novel RNAs with unknown families or functions and for
the prediction of the structure of interacting molecules.
The large time and space complexity of MFE-based meth-
ods (O(n3) time and O(n2) space where n is the length of
the RNA), however, restricted their applications to small
RNAs. The sparsification technique was recently utilized
in existing MFE-based algorithms to reduce their time
and/or space complexity [10–17] by removing redundant
cases in the complexity-limiting steps of the dynamic pro-
gramming algorithms. While the majority of these meth-
ods focused on simple energy models, some expanded
sparsification techniques to more realistic energy models
[15–17]. To the best of our knowledge, no existing method
has yet incorporated dangles energy contributions into a
sparsified prediction algorithm. Dangle energies refer to
the free energy contributions of unpaired nucleotides that
occur at the end of a stem-loop structure.

We show in Fig. 1 the location of dangles on a pseu-
doknot-free structure (see Fig. 1a) and a pseudoknot-
ted structure (see Fig. 1b). The complexity of dangles
in a pseudoknot further increases as dangles have to be
tracked for both bands within the pseudoknot.

Neglecting dangle energies in the prediction of RNA
structure stability can lead to inaccuracies. For instance, a
stem-loop structure that includes an unpaired nucleotide
at the end may appear less stable than its actual stability
if the dangle energy contribution is ignored. Conversely,
a stem-loop structure with an unpaired nucleotide that
interacts positively with another one may appear more
stable than its actual stability if the dangle energy contri-
bution is not taken into account.

Dangles, in some form, are implemented in the majority
of MFE pseudoknot-free secondary structure prediction
algorithms [18, 19]. RNAFold [18, 20–23, 25] is an O(n3)
time and O(n2) space algorithm which implements the dan-
gle 0 (“no dangle”), dangle 2 (“always dangle”), and dangle
1 (“exclusive dangle”) model (defined in Section “Dangles”).
It also utilizes a dangle model that implements coaxial
stacking—a type of stacking that gives a bonus to stacks in
the vicinity of each other. LinearFold [19], a sparsified O(n)
space heuristic algorithm has implemented the “no dan-
gle” and “always dangle” model but has not implemented
an “exclusive dangle” model. Fold from the RNAstructure
library [26] is an O(n3) time and O(n2) space algorithm
which implements an “exclusive dangle” model with coaxial
stacking. MFold [27–29] is an O(n3) time and O(n2) space
algorithm which has implemented an “exclusive dangle”
model with coaxial stacking.

Handling dangles in pseudoknot prediction algorithms
is less developed. Pknots [30], an O(n6) time and O(n4)
space pseudoknot prediction algorithm has implemented
an “exclusive dangle” model that also includes coaxial
stacking. Within Pknots, a set of parameters is defined for
pseudoknot-free and pseudoknot dangles. The pseudo-
knot parameters are estimated and rely on an estimated
weighting parameter. Hotknots [31], a heuristic algorithm,
uses the DP09 parameters, which include pseudoknot-
ted parameters from Dirks and Pierce [32] and tuned by
Andronescu et al. [31]; however, the energies for the pseu-
doknotted dangles are the same as those for pseudoknot-
free dangles, and there is no weighting parameter.

Contributions
In [15], we already discussed the sparsification of RNA
secondary structure prediction by minimizing the energy
in the Turner energy model. However, in this former
work, we did not yet consider the energy contributions
due to the interactions of base pairs at helix ends with
dangling bases (i.e., ‘dangling ends’). Here, we identify the

Fig. 1 An RNA structure is shown with dangles highlighted. a In red, we have the dangles on the bands in the multi-loop. In blue, we have
the dangle on the closing bases of the multi-loop. In gray, we have dangles on the outer end of the RNA. b We include purple to show dangles
occurring in a pseudoknot. Dangles in pseudoknots can be handled differently depending on the program

Page 3 of 16Gray et al. Algorithms for Molecular Biology (2024) 19:9

correct handling of dangling end energies in the context
of sparsification as a non-trivial problem, characterize
the issues, and present solutions.

For this purpose, we first state precisely how dan-
gle energies are handled by energy minimization algo-
rithms; to the best of our knowledge, this is elaborated
here for the first time. Consequently, we devise novel
MFE prediction algorithms that include dangling energy
contributions and use sparsification techniques to sig-
nificantly improve the time and space complexity of MFE
prediction.

Like the algorithm in [15], our efficient SparseRNA-
FolD algorithm keeps the additional information to a
minimum using garbage collection. In total, we study
three different possible implementations and compare
their properties, which make them suitable for different
application scenarios. Finally, while we study the case of
non-crossing structure prediction, we discuss extensions
to the more complex cases of pseudoknot and RNA–
RNA interaction prediction (such extensions being the
main motivation for this work in the first place).

Preliminaries: sparsification without dangling ends
We restate the preliminaries and main results from our
former work on sparsification of free energy minimiza-
tion without dangling ends [15].

We represent an RNA sequence of length n as a
sequence S = S1, . . . , Sn over the alphabet {A,C ,G,U} ;
Si,j denotes the subsequence Si, . . . , Sj . A base pair of S is

an ordered pair i.j with 1 ≤ i < j ≤ n , such that ith and
jth bases of S are complementary (i.e. {Si, Sj} is one of
{A,U}, {C ,G}, or {G,U}). A secondary structure R for S
is a set of base pairs with at most one pairing per base
(i.e. for all i.j, i′.j′ ∈ R : {i, j} ∩ {i′, j′} = ∅). Base pairs of
secondary structure R partition the unpaired bases of
sequence S into loops [33] (i.e., hairpin loop, interior loop
and multiloop). Hairpin loops have a minimum length of
m; consequently, j − i > m for all base pairs i.j of R. Two
base pairs i.j and i′.j′ cross each other iff i < i′ < j < j′ or
i′ < i < j′ < j . A secondary structure R is pseudoknot-
free if it does not contain crossing base pairs.

The unsparsified, original algorithm for energy mini-
mization over pseudoknot-free secondary structures was
stated by Zuker and Stiegler [24]. It is a dynamic pro-
gramming algorithm that, given an RNA sequence S of
length n, recursively calculates the minimum free ener-
gies (MFEs) for subsequences Si,j as W (i, j) (stored in a
dynamic programming matrix). Finally, W (1, n) is the
optimal free energy. We state this algorithm in a sparsi-
fication-friendly form following [15]. As usual, the algo-
rithm is described by a set of recursion equations (for a
minimum hairpin loop size of m and a maximum interior
loop size of M)—see Fig. 2. For 1 ≤ i < j ≤ n , i < j −m:

(1)W (i, j) = min{Wp(i, j),V (i, j) } ,

(2)

Wp(i, j) = min{W (i, j − 1), min
i<k<j

W (i, k − 1)+W (k , j) } ,

(3)
V (i, j) = min{H(i, j); min

i < p < q < j
p− i + j − q − 2 ≤ M

I(i, j; p, q)+ V (p, q);WM2(i + 1, j − 1)+ a}
,

Fig. 2 We show in graphical format each of the recursions. The notation for these figures is as follows: a solid horizontal line signifies the RNA
sequence, a solid arc denotes a base pair, and dashed arcs represent regions. Fixed endpoints of a region are depicted by red circles, while blue
squares indicate unpaired elements used for boundary determination

Page 4 of 16Gray et al. Algorithms for Molecular Biology (2024) 19:9

Here, a, b, c are multi-loop initialization penalty, branch
penalty, and unpaired penalty in a multi-loop, respec-
tively. I(i, j; p, q) refers to an interior loop between base
pairs i.j and p.q. The initialization cases are W (i, i) = 0 ;
V (i, j) = WM(i, j) = ∞ for all j − i ≤ m and WM2 = ∞
for all j − i ≤ 2m+ 3.

In these recursions, all function values (e.g. W (i, j) or
Wp(i, j)) denote minimum free energies over certain classes
of structures of subsequences Si,j . The classical Zuker/Stie-
gler matrices W , V and WM are defined as: W yields the
MFEs over general structures; V , over closed structures,
which contain the base pair i.j; WM , over structures that are
part of a multi-loop and contain at least one base pair.

Since sparsification is based on the idea that certain
optimal structures can be decomposed into two optimal
parts, while others (namely closed structures) are non-
decomposable, we single out the partitioning cases and
introduce additional function symbols Wp , WMp , and
WM2.

Recurrence visualization terminology
In Fig. 2, we visualize each of the recurrences listed in
Eqs. (1) through 6. In our notation a solid horizontal

(4)WM(i, j) = min{WMp(i, j),V (i, j)+ b } ,

(5)

WMp(i, j) = min
{
WM(i + 1, j)+ c,WM(i, j − 1)

+c,WM2(i, j)
}
,

(6)WM2(i, j) = min
i<k<j

WM(i, k − 1)+WM(k , j) .

line signifies the RNA sequence, a solid arc denotes a
base pair, and dashed arcs represent regions. Fixed end-
points of a region are depicted by red circles, while blue
squares indicate unpaired elements used for boundary
determination.

Sparsification without dangling ends
This allows us to cleanly explain the key idea of sparsifi-
cation and consequently formalize it: to minimize over
the energies of general structures in W (i, j)—note that
there is another minimization inside of multi-loops that
is handled analogously—the algorithm considers all
closed structures V(i, j) and all others Wp(i, j) . Optimal
structures in the latter class can be decomposed into two
optimal structures of some prefix Si,k−1 and suffix Sk ,j of
the subsequence. Classically, the minimum is therefore
obtained by minimizing over all ways to split the sub-
sequence. Sparsification saves time and space since it is
sufficient to consider only the splits where the optimum
of the suffix Sk ,j is not further decomposable (formally,
where W (k , j) < Wp(k , j)). Briefly (for more detail, see
[15] or [10]), this is sufficient since otherwise there is a
k ′ to optimally split the suffix further into Sk ,k ′−1 and Sk ′,j .
The split of Si,j at k cannot be better than the split at k ′
and therefore does not have to be considered in the mini-
mization; thus, it can be restricted to a set of candidates.
This is argued by the triangle inequality for W (which
directly follows from the definition of W as minimum):

Consequently, sparsification improves the computation
of Wp , WMp and WM2 . The corresponding sparsified ver-
sion are

W (i, j) ≤ W (i, k − 1)+W (k , j) for all 1 ≤ i < k ≤ j ≤ n..

Ŵ p(i, j) = min{W (i, j − 1); min
[k ,j] is candidate, k>i

W (i, k − 1)+ V (k , j) }

ŴM
p
(i, j) = min{WM(i, j − 1)+ c; min

[k ,j] is candidate, k>i
c · (k − i)+ V (k , j) ; ŴM2(i, j)}

ŴM2(i, j) = min{ ŴM2(i, j − 1)+ c; min
[k ,j] is candidate, k>i

WM(i, k − 1)+ V (k , j) },

Fig. 3 Graphical representation of the sparsified versions of the recursions: Wp , WMp , and WM2 . The notation for these figures is as follows: a solid
horizontal line signifies the RNA sequence, a solid arc denotes base pairs, and dashed arcs represent regions. Fixed endpoints of a region are
depicted by red circles, while blue squares indicate unpaired elements used for boundary determination

Page 5 of 16Gray et al. Algorithms for Molecular Biology (2024) 19:9

where candidates [k , j] correspond to the not opti-
mally decomposable subsequences Sk ,j (in either
situation: general structures or structures inside of multi-
loops), i.e. [i, j] is a candidate iff V (i, j) < Ŵ p(i, j) or
V (i, j)+ b < ŴM

p
(i, j) . Similarly, the modified versions

of the recursions can be found in Fig. 3.

Time and space complexity of sparsified energy
minimization
Will and Jabbari showed that following the above algo-
rithm, W (1, n) can be calculated in O(n2 + nZ) time,
where Z is the total number of candidates. While the MFE
structure in the Zuker and Stiegler algorithm can be trivi-
ally reconstructed following a traceback procedure, this
is not the case if sparsification is used for improving time
and space as in the SparseMFEFold algorithm (and our
novel algorithms). To improve the space complexity, spar-
sification avoids storing all entries of the energy matrix.
The idea is to store the candidates and as few additional
matrix entries as possible. A specific challenge is posed by
the decomposition of interior loops (the single most sig-
nificant major complication over base pair maximization,
see [13]). For this reason, Will and Jabbari introduced trace
arrows for cases, where the trace cannot be recomputed
efficiently during the traceback procedure; they discussed
several space optimization techniques, such as avoiding
trace arrows by rewriting the MFE recursions, and remov-
ing trace arrows as soon as they become obsolete. Due to
such techniques, SparseMFEFold requires only linear space
in addition to the space for candidates and trace arrows; its
space complexity is best described as O(n+ T + Z) , where
T is the maximum number of trace arrows.

Dangles
Recall that sparsification was discussed before (e.g., in
SparseMFEFold) only for the simplest and least accu-
rate variant of the Turner model, namely the one with-
out dangling end contributions. Before we improve this
situation, let’s look in more detail at dangling ends and
different common ways to handle them. Specifically, we
discuss different dangle models “no dangle” (model 0),
“exclusive dangle” (model 1), and “always dangle” (model
2) as implemented by RNAFold of the Vienna RNA pack-
age (and available via respective command line options
-d0, -d1, and -d2).

Dangling end contributions occur only at the ends of
stems (either in multiloops or externally) due to stacking
interaction between the closing base pair of the stem and
one or both immediately adjacent unpaired bases. In con-
trast, dangling end terms are not considered within (inte-
rior loops of) stems by the energy model.

We present modified DP recursions in order to reflect
precisely where and how dangling ends are taken into
account. Therefore, in preparation, let’s replace V in the
Equations (1) and (4) of the free energy minimization
recursions of Section “Preliminaries” by a new function
V d . The dangle models differ in the exact definition of V d.

Note that in the energy model, dangling ends can also
occur at the inner ends of helices that close a multi-loop.
These dangles can be handled directly in the recurrence
of V (i, j) ; specifically, in the subcase where i.j closes a
multi-loop.

No dangles
In the simplest model “no dangle”, dangling ends are
ignored. We achieve this by defining

While easy to implement, it is clearly wrong to ignore
dangling end contributions, and this has a significant
negative effect on the prediction accuracy compared to
the other dangle models [34–36].

Always dangle
A second relatively simple way is to apply a 53’ dan-
gle energy at both ends of a stem (both 5’ and 3’ ends),
assuming that stem ends always dangle with their adja-
cent bases. As a strong simplification, in this model, one
disregards whether the bases are paired and/or dangle
with a different stem (either case would actually make
them unavailable for dangling).

This dangle model allows the dangling ends to have a
thermodynamic influence while keeping the model easy
to implement as neither the conflicting adjacent nucleo-
tides nor the energies of single dangle have to be tracked;
it only requires knowledge of the bases on the 3’ and 5’
sides of a base pair. Formally, we implement V d as

Moreover, we add the appropriate dangle contribution
when closing a multi-loop in Eq. (3) in the last case of the
V -recurrence of Eq. (3). The term WM2(i + 1, j − 1)+ a
is rewritten to

(1’)W (i, j) = min{Wp(i, j),V d(i, j) } .

(4’)WM(i, j) = min{WMp(i, j),V d(i, j)+ b } .

(no dangle)V d(i, j) := V (i, j).

(always dangle)V d(i, j) := V (i, j)+ dangle53(i, j).

(always dangle, ML
closing)

WM2(i + 1, j − 1)+ a+ dangle53(i + 1, j − 1).

Page 6 of 16Gray et al. Algorithms for Molecular Biology (2024) 19:9

Exclusive dangling
The most complex but general secondary structure dan-
gle model, “exclusive dangle” considers both single and
double unpaired nucleotides adjacent to a stem. Further-
more, the model does not allow shared dangling ends i.e.
no base can be used simultaneously in two dangles (in
other words, adjacent unpaired bases dangle exclusively
with a single stem end). As the restriction requires track-
ing of unpaired bases, V(i, j) places the possible unpaired
bases at i and j and looks at the adjacent V energies. As

this requires knowledge of energies adjacent to the cur-
rent bases being looked at, this inherently causes diffi-
culty in sparsification.

Moreover, we consider dangles at the closing of a multi-
loop. In this model, the case WM2(i + 1, j − 1)+ a in the
minimization of Eq. (3) is replaced by (the minimum of)
four different cases:

Space‑efficient sparsification with exclusive
dangles is non‑trivial
We approach our main motivation for this work,
which is to study and solve the issues of sparsification
in the exclusive dangle model (dangle model 1). Let’s
thus start by applying the idea of sparsification (Sec-
tion “Preliminaries”) straightforwardly to the Recur-
sion (2) (where W and V d are defined for exclusive
dangles).

We quickly come up with the equation:

(exclusive dangle)

V d(i, j) := min





V (i, j)
V (i + 1, j)+ dangle5(i)
V (i, j − 1)+ dangle3(j)
V (i + 1, j − 1)+ dangle53(i, j)

(exclusive dangle, ML
closing)

min





WM2(i + 1, j − 1)+ a

WM2(i + 2, j − 1)+ a+ dangle3(i)

WM2(i + 1, j − 2)+ a+ dangle5(j)

WM2(i + 2, j − 2)+ a+ dangle53(i, j)

but we would still have to define ed-candidate (exclusive
dangle candidate) to make this work. We could define: [i,j]
is an ed-candidate iff V d(i, j) < Ŵ p(i, j) , where the cor-
rectness of sparsification holds to a sparsification-typical
triangle inequality argument (Section “Preliminaries”).

Expanding V d shows that this is not the only possible
path to sparsifying the recursion. We could consider

with different sets of candidates for all four cases. How-
ever, storing all these candidate sets (recall that there is
even a second recursion that needs to be sparsified) is
easily prone to compromising any space benefits due to
sparsification in practice.

The transfer of the techniques from [15] brings even
more problems, since due to such definitions, can-
didates [i,j] do not necessarily correspond to subse-
quences that have closed optimal structures. Will and
Jabbari strongly exploited this fact for their strong
space savings.

Even considering our definition of an ed-candidate, we
still run into the challenge of to tracing back to the cor-
responding base pair. With just the dangle energy, this
poses issues as an ed-candidate can be one of four cases.

Lemma 1 In the exclusive dangle model, storing only the
energy of each ed-candidate is not sufficient to correctly
trace back from the candidate.

Proof Concretely, for the loop-based Turner 2004
energy model [37] with exclusive dangles, consider the
following RNA sequence S of length 12 with its MFE
structure:

In the calculation of W (1, 12) , the recur-
rences unfold to W (1, 12) = W (1, 1)+ V

d(2, 12)

= W (1, 1)+ V (2, 11)+ dangle3(12) = · · · = −2.9 kcal/

Ŵ p(i, j) = min{W (i, j − 1);

min
[k ,j] is ed-candidate,k>i

W (i, k − 1)+ V d(k , j) },

�W p(i, j) = min




W (i, j − 1)
min[k ,j] is ed0-candidate,k>i W (i, k − 1)+ V (i, j)
min[k ,j] is ed5-candidate,k>i W (i, k − 1)+ V (i + 1, j)+ dangle5(i)
min[k ,j] is ed3-candidate,k>i W (i, k − 1)+ V (i, j − 1)+ dangle3(j)
min[k ,j] is ed53-candidate,k>i W (i, k − 1)+ V (i + 1, j − 1)+ dangle53(i, j)

Page 7 of 16Gray et al. Algorithms for Molecular Biology (2024) 19:9

mol, i.e. it is optimal to assume dangling of base pair
(2, 11) to the right.

In a non time- and space-sparsified algorithm, recom-
puting V d from V adjacent energies would be trivial.
However, due to space sparsification, the values of V
are generally unavailable in the trace-back phase. In the
constructed example, recomputation would require us
to know V (2, 12) , V (2, 11) , V (3, 12) , and V (3, 11) . Thus,
under the assumption of the lemma, the optimal dangling
cannot be efficiently recomputed for a candidate like
[2,12]. �

In our preceding work, SparseMFEFold [15], trace
arrows were introduced to trace back to non-candidate val-
ues necessary to the structure within the interior loop case:
V il-cand(i, j) . Trace arrows that point to candidates are not
stored as they can be avoided by minimizing over candi-
dates as seen in Eq. (7).

Consequently, finding the inner base pair of a loop
through a candidate relies on the energy saved being
V(p, q). However, as shown in Eq. (exclusive dangle, ML
closing), the dangle energy could be V(p, q), V (p+ 1, q) ,
V (p, q − 1) , or V (p+ 1, q − 1) . Replacing the stored
energy within a candidate with V d may conflict with the
interior loop calculation. Recomputation of the V values
required for Vd would negate the sparsification benefit.
In summary, there is no easy or direct way to save the
V energy required for the interior loop as well as the V d
energy required for a multi-loop or external loop within
the current candidate structure.

Lemma 2 The minimization over inner base pairs in the
recursion of V cannot be restricted to candidates in the
same way as in SparseMFEFold.

Proof Again consider the loop-based Turner 2004
energy model. There is a sequence S and 1 ≤ i < j ≤ n ,
such that V d(p, q) < V (p, q) , but there is no way to trace
back to p and q from i and j, namely, consider the RNA
sequence S of length 19 with its MFE structure:

(7)

V il-cand(i, j) = min

i < p < q < j

p− i + j − q − 2 ≤ M

[p, q]is candidate

I(i, j; p, q)+ V (p, q).

The optimal recursion case of V (3, 17) forms the inte-
rior loop closed by 3.17 with inner base pair 5.15,
because V (5, 15) = −2.4 kcal/mol and V(3,17) =
I(3, 17; 5, 15)+ V (5, 15) = −1.5 kcal/mol.

The space optimization of SparseMFEFold removes trace
arrows to candidates since the trace-back to candidates
can be reconstructed based on candidate energies (com-
pare Eq. (7)).

In the way of SparseMFEFold, we would not store a
trace arrow pointing to 5.15 from [3, 17] , since [5, 15] is
a candidate. However, without a trace arrow, we would
not reconstruct the correct trace. This happens, since
the optimal structure in the subsequence 5..15, GGG AAA
ACCCC , would be (((....))). due to the 3’ dangle
(V d(5, 15) = −2.9 kcal/mol). Consequently, tracing back
the optimal path from V d(5, 15) wrongly introduces a
base pair at 5.14. �

SparseRNAFolD
SparseRNAFolD combines the power of sparsification
and a general energy model including dangle energies to
achieve a fast and highly accurate RNA pseudoknot-free
secondary structure prediction. To this end, we started
with the sparsified dynamic programming recurrences
of SparseMFEFold (which implements the “no dangles”
model), rewriting and revising them to accommodate
various dangle energies.

“Always dangle” model
Recall that “always dangle” model considers both the 5’
and 3’ ends of a branch of a multi-loop or external loop
for dangle contributions. The addition of this model is
trivial, with no change necessary to the recurrences of
the SparseMFEFold. Note that, as mentioned earlier, this
model ignores overlapping cases and may overcount the
contributions of dangles.

“Exclusive dangle” model
As mentioned in Section Space-efficient sparsification
with exclusive dangles is non313 trivial, accounting for
the “exclusive dangle” model is non-trivial when dealing
with candidates, as ed-candidates do not hold enough
information to identify the direction of dangles. To allevi-
ate this problem, we provide three different strategies, as
described below. Each strategy has its pros and cons and
should be selected based on the application.

In order to handle the changes for exclusive dangles,
we extend the candidate data structure. A candidate base
pair, [i, j] as implemented in SparseMFEFold, holds i, the
start position, and the energy V (i, j) as a tuple (i,V (i, j))
and is stored at the jth index of the candidate list. Our

Page 8 of 16Gray et al. Algorithms for Molecular Biology (2024) 19:9

extensions to candidate structures involves including the
energy values for W and WM in the candidate tuples as
(i,V (i, j),W (i, j),WM(i, j)) . The modification reflects the
need to store more information about the dangles posi-
tions and directions.

Strategy 1: trace arrow implementation
As the first strategy to trace an ed-candidate to its posi-
tion, we used modified trace arrows. We refer to this
strategy as SparseRNAFolD-Trace.

Recall that in SparseMFEFold, a trace arrow struc-
tures were introduced to identify energy matrix entries
that are necessary for calculating the energy of internal
loops but are not kept as candidates. Here, we define ed-
trace-arrows to hold information about dangle positions
to aid with the traceback procedure from ed-candidates.
In particular, in the sparse fold reconstruction procedure
of SparseRNAFolD, an ed-trace-arrow is checked for a
chosen ed-candidate within W , WM , and ŴM2 to adjust
the energy and position of the base pair as required. The
drawback of this strategy comes from the innate ineffi-
ciencies of the trace arrows, meaning an increase in space
usage. Recall that within SparseMFEFold, we used strate-
gies such as garbage collection and trace arrow avoidance
to save space. These strategies are not, however, possible
for SparseRNAFolD-Trace, as an ed-candidate cannot be
excluded from the optimal MFE path, and an ed-trace-
arrow is therefore required for every ed-candidate.

Bit encoding Within the second and third strategies, as
explained next, we employed bit encoding and bit decod-
ing to store the information about the dangle within the
energy values to reduce space usage. Currently, energy
values are stored as 32-bits int data type. We note that the
maximum expected bit usage for the energy value of an
RNA sequence of up to 20000 bases is about 13 bits. We
employed a bit shift to store the dangle type in the first
two bits of the V entries, referred to as Venc , and repre-
sented in Eq. (8).

Bit decoding technique was used to retrieve the energy
value and type/direction of dangle contributions. Bit
decoding was done in two steps. Shifting the encoded
energy, Venc , two bits forward gave back the energy, V
(see Eq. 9).

The dangle type is found in the first two bits; no dangle
is represented with a “00” in bits; a 5’ dangle with a “01”;
a 3’ dangle with a “10”; and a 53’ dangle with a “11”. The

(8)Venc = (V ≪ 2) | dangle

(9)V = Venc ≫ 2

dangle type is decoded using a bit-wise AND with “11”
to only keep the first two bits of the encoded energy, as
represented in Eq. (10).

Strategy 2: Bit encoding with candidate extension
As the second strategy, we used bit encoding within the
W and WM entries of the ed-candidate data structure.
We refer to this strategy as SparseRNAFolD-Standard.
This implementation of bit encoding was utilized in W
and WM entries, as other loop types do not deal with
dangles.

Strategy 3: Bit encoding with altered candidate
As the third strategy, we further optimize for space by
reducing the candidate size. To reduce candidate size,
we stored energy values in ed-candidates in W and WM
as V d minus the dangle energy. We refer to this strategy
as SparseRNAFolD-Triplet. This strategy allows for the
correct identification of dangle types regardless of energy
parameters used. Note that currently, in the Turner 2004
energy model, the parameter values for 53’ dangle for an
external loop and multi-loop are the same. These values
may be further estimated and revised in future energy
models. The extra calculations to retrieve the V d value
ensure the accuracy of the result in the event of such a
change.

As we only require constant space for each candi-
date, the asymptotic time and space complexity can be
expressed analogously to SparseMFEFold [15] with the
time as O(n2 + nZ) and O(n+ Z + T) with Z << n2 –
where Z is the number of candidates in SparseRNAFolD
and T is the number of trace arrows in SparseRNAFolD.

Compared methods
To evaluate the performance of our SparseRNAFolD, we
compared it to two of the best-performing methods for
prediction of pseudoknot-free RNA secondary structure,
namely RNAFold [18] and LinearFold [19].

RNAFold
RNAFold is part of the Vienna RNA package [18]. As dis-
cussed in Section “Dangles”, RNAFold is an O(n3) time
and O(n2) space pseudoknot-free RNA secondary struc-
ture prediction algorithm. It takes an RNA sequence as
input and provides the MFE structure as output. RNA-
Fold is well-maintained and highly optimized and is used
here as a benchmark for a fast implementation of the
Zuker and Steigler-type MFE algorithm.

(10)dangle = Venc && 11

Page 9 of 16Gray et al. Algorithms for Molecular Biology (2024) 19:9

LinearFold
LinearFold [19] is a pseudoknot-free RNA secondary
structure prediction algorithm that uses heuristic tech-
niques to run in linear time and space. As the main goal
of sparsification is to speed up the time and space com-
plexity of MFE prediction, we set out to investigate how
our SparseRNAFolD compares in practice to LinearFold
with better asymptotic complexities.

LinearFold employs two techniques to reduce its time
and space complexity to O(n), namely beam pruning and
k-best parsing. Both methods aim to prune the structure
path to optimal cases only. Beam pruning works by only
keeping a predetermined number (specified by the beam
width, b) of the optimal states. Within LinearFold, best
sets are kept for each possible loop type as defined in
the Zuker algorithm: hairpin, multi-loop fragments, and
internal loop. Through beam pruning, time complexity is
reduced to O(nb2) and the space to O(nb) where b is the
beam width. K-best parsing further reduces the time to
O(nb log(b)) . We note that due to the heuristic nature of
the LinearFold algorithm, it does not guarantee finding
the MFE structure for a given RNA sequence.

Experimental design
We implemented SparseRNAFolD in C++. All experi-
ments were performed using an Azure virtual machine.
The virtual machine contained 8 vCPUs with 128 GiB of
memory.

Dataset
We used the original dataset from SparseMFEFold [15].
This dataset is comprised of 3704 sequences in 6 differ-
ent families selected from the RNAstrand V2.0 database
[38]. The smallest sequence is 8 nucleotides long, while
the largest is 4381 nucleotides long.

Energy model
We used the energy parameters of the Turner 2004
energy model [37, 39], as implemented in the Vien-
naRNA package [18].

Accuracy measures
The number of true positives (TP) is defined as the num-
ber of correctly predicted base pairings within the struc-
ture. The number of false positives (FP), similarly, is the
number of predicted base pairs that do not exist in the
reference structure. Any base missed in the prediction
that corresponds to a pairing in the reference structure is
a false negative (FN).

We evaluate the performance of algorithms based on
three measures: sensitivity, positive predictive value
(PPV), and their harmonic mean (F-measure).

Proof of concept with RNAFold
As a proof of concept for the correct implementation of
dangle energy models (i.e., “always dangle” and “exclu-
sive dangle”), we assessed SparseRNAFolD against
RNAFold. As the MFE structure may not be unique, we
restricted our assessment to the MFE value obtained by
each method. We found that the MFE predicted by Spar-
seRNAFolD and RNAFold was the same. Details of the
results can be found in our repository.

Results
We measured runtime using user time and memory using
the maximum resident set size.

Alternative models
We start by comparing the three different implementa-
tions of SparseRNAFolD. SparseRNAFolD-Standard was
found to be in the middle in terms of memory and time.
The effect of additional trace arrows in SparseRNAFolD-
Trace had a 27% increase in memory usage on the largest
sequence compared to SparseRNAFolD-Standard. How-
ever, the increase in computation from the bit encod-
ing only resulted in a 5% increase in time on the largest
sequence. We find a similar effect when comparing Spar-
seRNAFolD-Standard and SparseRNAFolD-Triplet. The
altered triplet structure reduced the memory by 9% but
increased the time by 10% due to extra computation.
These are highlighted in Fig. 4.

Comparison with LinearFold and RNAFold
When comparing SparseRNAFolD-Standard with Linear-
Fold and RNAFold, we look at the “always dangle” model,
as LinearFold does not implement the “exclusive dangle”
model.

We first compared the three algorithms by their predic-
tive accuracy (F-measure). For comparison, we selected
all sequences from our dataset whose structure was
available on RNAstrand. We further constrained it to
sequences that contained hairpins greater than 3 and
no pseudoknots. This resulted in 986 sequences. We
found that SparseRNAFolD-Standard had a marginally
better, but not significant, average F-measure of 0.6394

(11)Sensitivity =
TP

TP + FN
,

(12)PPV =
TP

TP + FP
,

(13)Fmeasure =
2 · PPV · Sensitivity

PPV + Sensitivity
.

Page 10 of 16Gray et al. Algorithms for Molecular Biology (2024) 19:9

compared to 0.6391 of LinearFold. As described in Sec-
tion “Proof 450 of concept with RNAFold”, RNAFold
and SparseRNAFold-Standard are identical in predictive
accuracy.

We then assessed their time and space usage. To
increase the size of our dataset for this testing, we
included a dinucleotide shifted version of our dataset in
our test data. We then constrained the size of sequences

500 1000 2000

0.
1

0.
2

0.
5

1.
0

2.
0

5.
0

10
.0

Length

Ti
m

e
(s

)

SparseRNAFolD−Standard (2.2)
SparseRNAFolD−Trace (2.2)
SparseRNAFolD−Triplet (2.2)

(a) Time vs Length

500 1000 2000

20
00

50
00

10
00

0
20

00
0

Length

M
em

or
y

(K
B)

SparseRNAFolD−Standard (1.8)
SparseRNAFolD−Trace (1.8)
SparseRNAFolD−Triplet (1.7)

(b) Memory vs Length
Fig. 4 We plot the results of the three versions of SparseRNAFolD when given RNA sequence only as input against each other and an “exclusive
dangle” model based on the dataset. a Memory Usage (maximum resident set size in KB) versus length (log-log plot) over all benchmark instances.
The solid line shows an asymptotic fit (c1 + c2n

x) for sequence length n, constants c1 , c2 , and exponent x for the fit. We ignored all values < 1000 . b
Run-time (s) versus length (log-log plot) over all benchmark instances. For each tool in both plots, we report (in parenthesis) the exponent x that we
estimated from the benchmark results; it describes the observed complexity as �(nx)

500 1000 2000

0.
1

0.
2

0.
5

1.
0

2.
0

5.
0

20
.0

Length

Ti
m

e
(s

)

SparseRNAFolD (2.2)
LinearFold (1.2)
RNAFold (2.5)

(a) Time vs Length

500 1000 2000

2e
+0

3
5e

+0
3

2e
+0

4
5e

+0
4

Length

M
em

or
y

(K
B)

SparseRNAFolD (1.8)
LinearFold (1.2)
RNAFold (2)

(b) Memory vs Length
Fig. 5 We plot the results of SparseRNAFolD-Standard against two state of the art algorithms: RNAFold and LinearFold when given RNA sequence
only as input against each other and an “always dangle” model on our dataset and the dinucleotide shuffled version of our dataset. a Memory
Usage (maximum resident set size in KB) versus length (log-log plot) over all benchmark instances. The solid line shows an asymptotic fit (c1 + c2n

x)
for sequence length n, constants c1 , c2 , and exponent x for the fit. We ignored all values < 1000 . b Run-time (s) versus length (log-log plot) over all
benchmark instances. For each tool in both plots, we report (in parenthesis) the exponent x that we estimated from the benchmark results; it
describes the observed complexity as �(nx)

Page 11 of 16Gray et al. Algorithms for Molecular Biology (2024) 19:9

to those > 400 . The maximum time and memory used
by LinearFold on this dataset were 3.34 s and 118, 848
KB. The maximum time and memory used by RNAFold
were 22.26 s and 109136 KB. In contrast, the maximum
time and memory spent by SparseRNAFold were 18.32 s
and 13,000 KB, respectively. This is illustrated in Fig. 5a,
b. The results show that SparseRNAFolD-Standard uses
far less memory on even the largest pseudoknot-free
sequences in our dataset. Note that the maximum resi-
dent set size is nine times lower than that of LinearFold
and eight times lower than that of RNAFold. RNAFold’s
time remained consistent with SparseRNAFolD-Standard
until longer sequences where it falls behind. LinearFold,
whose time complexity is O(nb log(b)) , where n is the
length of the sequence and b is the beam width, did per-
form faster than SparseRNAFolD-Standard as the length
of the sequence increased. However, we did find that
SparseRNAFolD-Standard outperformed LinearFold in
practice for sequences of up to about 1000 nucleotides.

Highlighting RNAFold
To highlight the difference in space between RNA-
Fold and SparseRNAFolD-Standard, we selected 81
sequences from our dataset with size greater than or
equal to 2500. The sequence with the maximum length
in the set was 4381 nucleotides long.

As seen in Table 1, while SparseRNAFolD-Standard’s
runtime is comparable to RNAFold’s, its memory con-
sumption is about five times lower.

Candidate comparison
In order to illustrate the effectiveness of candidates in
terms of memory consumption, we plotted the rela-
tionship between the number of candidates and trace
arrows, against the quadratic space, using the dataset that

includes dinucleotide shifted elements. To emphasize
the upper limit of candidate usage when executing Spar-
seRNAFolD-Standard, we employ the “exclusive dangle”
model.

For a more meaningful comparison, we juxtapose the
counts of candidates and trace arrows with the count
obtained from a single quadratic matrix. It is important
to note that the majority of algorithms employing quad-
ratic space make use of multiple quadratic matrices. Con-
sidering this aspect, we discovered that, on average, the
disparity in count between the number of candidates and
trace arrows with quadratic space was approximately a
factor of 100. Figure 6 highlights that the increase in can-
didates is consistent with the increase in length.

Folding with hard constraints
As partial information on structures has become more
available and is extensively used for better prediction of
possibly pseudoknotted structures [40, 41], we further
extend our evaluation of the SparseRNAFolD versions to
cases where we are folding with hard constraints [23] in
addition to the RNA sequence.

To study the effect of hard structure constraints on the
efficiency of our sparsified folding algorithm, for each
sequence, a pseudoknot-free constraint structure was
generated. The structure was generated by taking two
random indices at a time from the sequence. If the two
bases could pair, were at least 3 bases apart, and did not
form a pseudoknot with the other base pairs, the base

Table 1 We tabulate the results of the comparison between
RNAFold and SparseRNAFolD-Standard when given only
sequences with length > 2500 from our dataset as input and
using the “exclusive dangle” model

We looked at time (s) and memory (maximum resident set size in KB) for the
minimum, median and maximum length sequence within the constrained
dataset

Run-time (s) Memory: resident set size
(KB)

RNAFold SparseRNAFolD RNAFold SparseRNAFolD

Minimum 5.04 5.36 40,148 8832

Median 7.28 7.86 51,284 12,592

Maximum 22.08 18.32 109,040 16,836

500 1000 2000

5e
+0

3
5e

+0
4

5e
+0

5
5e

+0
6

Length

C
ou

nt

Candidates
Quadratic
Trace arrows

Fig. 6 We plot the results of the number of candidates and trace
arrows compared to quadratic space. ‘Quadratic’ shows the count
within an n× n matrix as it would be given quadratic space. In
contrast, ‘Candidates’ and ‘Trace arrows’ show the contrasting number
for the same length

Page 12 of 16Gray et al. Algorithms for Molecular Biology (2024) 19:9

pair was added to the constraint structure. In order to
avoid overpopulating the constraint structure, the num-
ber of base pairs in a constraint structure was capped at
0.5× log2(length) . This resulted in an average of 3–7 base
pairs per sequence. There was a noticeable decrease in
time and space when a constraint structure was provided
in addition to an RNA sequence. Between RNA sequence
only as input and sequence as well as a constraint struc-
ture, SparseRNAFolD saw a 67% decrease in time and a
40% decrease in memory. As the constraint structure
reduced the number of candidates for a sequence, the
difference in memory was less apparent between the
models. SparseRNAFolD-Standard had a 6% increase in
time from SparseRNAFolD-Trace but a 15% decrease in
memory on the largest sequence. From SparseRNAFolD-
Standard to SparseRNAFolD-Triplet, there was an 8%
decrease in memory but a 13% increase in time. Note
that even when reducing the number of candidates, the
increase in time from Standard to Triplet was greater by
3% . This can be seen in Fig. 7.

Modification of internal loop logic
In MFE-based dynamic programming algorithms, the
calculation of the internal loop stands out as the primary
time-consuming element in the prediction process. This
holds particularly true in the context of sparsified pre-
diction, as the internal loop remains the singular aspect

500 1000 2000

0.
01

0.
05

0.
20

1.
00

5.
00

Length

Ti
m

e
(s

)

SparseRNAFolD−Standard (2.3)
SparseRNAFolD−Trace (2.3)
SparseRNAFolD−Triplet (2.3)

(a) Time vs Length

500 1000 2000

20
00

40
00

60
00

80
00

12
00

0

Length

M
em

or
y

(K
B)

SparseRNAFolD−Standard (1.4)
SparseRNAFolD−Trace (1.5)
SparseRNAFolD−Triplet (1.4)

(b) Memory vs Length

Fig. 7 We plot the results of the three versions of SparseRNAFolD when given an RNA sequence, an “exclusive dangle” model, and a random
pseudoknot-free structure as input against each other based on our dataset. a Memory usage (maximum resident set size in KB) versus length
(log-log plot) over all benchmark instances. The solid line shows an asymptotic fit (c1 + c2n

x) for sequence length n, constants c1,c2 , and exponent
x for the fit. We ignored all values < 1000 . b Run-time (s) versus length (log-log plot) over all benchmark instances. For each tool in both plots, we
report (in parenthesis) the exponent x that we estimated from the benchmark results; it describes the observed complexity as �(nx)

where sparsification struggles to enhance runtime during
energy calculations. Given this bottleneck, any enhance-
ment to the internal loop logic signifies a substantial
improvement in sparsified algorithms.

To accommodate constraint folding, a logic check was
incorporated to verify that the interior base pair does
not violate the specified structural constraint. Given the
higher frequency of occurrences of internal loops com-
pared to non-internal loop calculations, the impact of
frequent branch mispredictions on processing time is
substantial. Specifically, a typical branch instruction
requires 0–2 clock cycles, whereas a branch mispre-
diction can lead to a significant latency of 12–25 clock
cycles, depending on the processor [42]. To mitigate the
impact of branch misprediction, we opted to reconfigure
the logic check, shifting its reliance from branching to
operations involving addition and bit manipulations. We
refer to this version of SparseRNAFold as SparseRNA-
Fold V2.0. The initial format of the logic check involves
nested if statements within the for loops. The first if state-
ment verifies the absence of paired bases between the
two opening bases of the base pairs, while the second if
statement ensures the presence of only unpaired bases
between the two closing bases—see Algorithm 1. Never-
theless, we can achieve equivalent functionality through
bit manipulation, eliminating the need for explicit if
statements.

Page 13 of 16Gray et al. Algorithms for Molecular Biology (2024) 19:9

Algorithm 1 Original internal loop

1. Fundamentally, our objective is to attain the energy
value when feasible and assign infinity otherwise.
With this perspective, we can conceptualize this
process as adding 0 when achievable and incorpo-
rating infinity when the energy value is not attain-
able.

2. The second key point to keep in mind is that, for a
signed integer, the representation of 0 entails the
signed bit as 0, followed by all subsequent bits as 0.
Conversely, the representation of −1 involves the
signed bit as 1, with all subsequent bits set to 1.

Algorithm 2 Modified internal loop

In our initial if statement, we store the boolean indicat-
ing the absence of bases on the left as an integer and sub-
tract 1, guaranteeing a result of either 0 or −1 . The same
process is then applied to the right side, and the results
are combined using a bitwise OR operation. If both sides
permit pairing, the result is 0; otherwise, it is −1 . This
result is subsequently bitwise ANDed with a predefined
large value representing infinity. Consequently, if the
result was 0, the outcome is 0, and if the result was −1 , it
is set to infinity. Finally, we add our energy value to this
outcome. This sequence of operations ensures that both
sides permit pairing, all without the need for explicit
branching via an if statement—see Algorithm 2.

We observed an approximately 17% reduction in predic-
tion time for the largest sequence in the dataset (10241)
when comparing the original SparseRNAFolD to Spar-
seRNAFold V2.0.

Since the internal loop represents an area within spar-
sified algorithms that cannot be sparsified, this improve-
ment can be applied not only to SparseRNAFold V2.0 but
also to other MFE-based dynamic programming algo-
rithms (Fig. 8).

Performance on very large sequences
The advantage of utilizing heuristic approaches such
as LinearFold lies in their capability to predict larger
sequences efficiently, attributed to their low time com-
plexity. However, this advantage comes with the trade-
off that they cannot guarantee the prediction of the
MFE structure for the given sequence. To underscore
the effectiveness of sparsification and the enhancements
in internal loop logic, we conducted an analysis on the
SARS-CoV-2 RNA, which spans a length of 29, 903 bases.
As seen in Table 2, although SparseRNAFolD V2.0 exhib-
ited a longer prediction time for predicting the MFE
structure of this RNA, it delivered a structure with lower
free energy while utilizing only 25.5% of the memory at
this extended length.

Conclusions
In this work, we introduced SparseRNAFolD, a sparsi-
fied MFE RNA secondary prediction algorithm that
incorporates dangles contribution to the energy calcu-
lation of a sparsified method. We showed that while “no
dangle” and “always dangle” models were easy to incor-
porate into the existing algorithms, “exclusive dangle”
introduces non-trivial challenges that need calculated
changes to the sparsified recursions to alleviate. We
identified three strategies to implement dangle contri-
butions: SparseRNAFolD-Trace which utilizes addi-
tional trace arrows; SparseRNAFolD-Standard, which
incorporates bit encoding as well as extension to the
definition of candidate structures; and SparseRNA-
FolD-Triplet, which, similar to the SparseRNAFolD-
Standard, utilizes bit encoding but modifies candidate
energy calculation in anticipation of possible change
in parameters in the future. Comparing these three
versions on a large dataset, we concluded that the
SparseRNAFolD-Triplet implementation is the most
efficient in terms of memory, and SparseRNAFolD-
Trace is the most efficient in terms of time. These two
versions showcase how space and time trade-offs can
improve performance for a specific application. The
SparseRNAFolD-Standard version provides a middle
ground for improvement in both time and space and

Page 14 of 16Gray et al. Algorithms for Molecular Biology (2024) 19:9

has been chosen as the standard implementation of our
algorithm. While guaranteeing the MFE structure and
matching the energy of RNAFold, our SparseRNAFolD
is on par with LinearFold on memory usage and run
time for sequences up to about 1000 bases. This pro-
vides a promising starting point to bring dangles con-
tributions to pseudoknotted MFE structure prediction
methods in which memory usage is the prohibitive fac-
tor [17].

Our results showcase the substantial difference in
the number of candidates when compared to quadratic
space. This provides an illuminating perspective on the
space improvement achieved through sparsification.

We further assessed the effect of hard structural con-
straints on the performance of SparseRNAFolD, pre-
senting significant improvements both in terms of time

and space. We believe the significant improvement in
time and space due to the limitation of search space
by hard structural constraints can have a more pro-
nounced impact on sparsified pseudoknotted MFE pre-
diction, which is our ultimate goal.

We enhanced our initial algorithm by refining the
internal loop logic, mitigating branch mispredictions
through the elimination of conditionals and incorporat-
ing the same functionality via addition and bit manip-
ulation. This optimization resulted in a notable 17%
improvement over the original code

Additionally, we demonstrated SparseRNAFolD V2.0’s
proficiency in predicting extensive sequences, exempli-
fied by its handling of the SARS-CoV-2 sequence com-
prising 29, 903 bases. Notably, our approach ensures the
prediction of the MFE structure while consuming less
memory compared to LinearFold.

Finally, memory consumption becomes a bottleneck for
the prediction of MFE structure for long RNA sequences
or MFE pseudoknotted structure prediction. Utilizing
the power of computational servers, such restrictions
have been somewhat alleviated. Sparsification provides
improvements in both time and space requirements and
can be used to bring computations back to personal com-
puters, providing equal access to the existing technology.
In addition, improvements in memory usage can improve
use cases for computing clusters, as the amount of mem-
ory assigned to a computing node is also limited.

500 1000 2000 5000 10000

0.
1

0.
5

5.
0

50
.0

Length

Ti
m

e
(s

)

SparseRNAFolD (2.2)
LinearFold (1.2)
RNAFold (2.6)

(a) Time vs Length

500 1000 2000 5000 10000

2e
+0

3
1e

+0
4

5e
+0

4
2e

+0
5

Length

M
em

or
y

(K
B)

SparseRNAFolD (1.6)
LinearFold (1.2)
RNAFold (2)

(b) Memory vs Length
Fig. 8 We plot the results of SparseRNAFolD V2.0 against two state of the art algorithms: RNAFold and LinearFold when given RNA sequence
only as input against each other and an “always dangle” model on our dataset and the dinucleotide shuffled version of our dataset and three added
sequences of length: 6380, 8082, and 10241. a Memory Usage (maximum resident set size in KB) versus length (log-log plot) over all benchmark
instances. The solid line shows an asymptotic fit (c1 + c2n

x) for sequence length n, constants c1,c2 , and exponent x for the fit. We ignored all
values < 1000 . b Run-time (s) versus length (log-log plot) over all benchmark instances. For each tool in both plots, we report (in parenthesis)
the exponent x that we estimated from the benchmark results; it describes the observed complexity as �(nx)

Table 2 We tabulate the results of the comparison between
LinearFold and SparseRNAFolD V2.0 when given the SARS-COV-2
sequence of length 29,903 as input and using the “always dangle”
model

We looked at the energy (kcal/mol), time (s) and memory (maximum resident set
size in KB)

SparseRNAFolD V2.0 LinearFold

Energy (kcal/mol) − 8787.50 − 8476.20

Run-time (s) 1127.92 27.67

Memory: resident set size (KB) 274,704 1,076,904

Page 15 of 16Gray et al. Algorithms for Molecular Biology (2024) 19:9

Acknowledgements
The authors thank Microsoft AI4Health Azure (HJ) and NSERC Discovery Grant
(HJ) for partially supporting this work.

Funding
Funding was provided through NSERC Discovery grants (HJ) and Microsoft
AI4Health Azure (HJ). Funding provided no role in the design of the study.

Availability of data and materials
The dataset supporting the conclusions of this article is available in the reposi-
tory, https:// github. com/ mateo g4712/ Spars eRNAF olD- RawDa ta. SparseR-
NAFolD’s algorithm and detailed results are available at https:// github. com/
mateo g4712/ Spars eRNAF olD.

Declarations

Competing interests
The authors declare no competing interests.

Received: 29 November 2023 Accepted: 13 February 2024

References
 1. Cruz JA, Westhof E. The dynamic landscapes of RNA architecture. Cell.

2009;136:604–9. https:// doi. org/ 10. 1016/j. cell. 2009. 02. 003.
 2. Kozak M. Regulation of translation via mRNA structure in prokaryotes and

eukaryotes. Gene. 2005;361:13–37. https:// doi. org/ 10. 1016/j. gene. 2005.
06. 037.

 3. Mortimer SA, Kidwell MA, Doudna JA. Insights into RNA structure and
function from genome-wide studies. Nat Rev Genet. 2014;15:469–79.
https:// doi. org/ 10. 1038/ nrg36 81.

 4. Warf MB, Berglund JA. Role of RNA structure in regulating pre-mRNA
splicing. Trends Biochem Sci. 2010;35:169–78. https:// doi. org/ 10. 1016/j.
tibs. 2009. 10. 004.

 5. Wilson TJ, Lilley DMJ. RNA catalysis—is that it? RNA. 2015;21:534–7.
https:// doi. org/ 10. 1261/ rna. 049874. 115.

 6. Holt CE, Bullock SL. Subcellular mRNA localization in animal cells and why
it matters. Science. 2013;326:1212–6. https:// doi. org/ 10. 1126/ scien ce.
11764 88.

 7. Martin KC, Ephrussi A. mRNA localization: gene expression in the spatial
dimension. Cell. 2009;136:719–30. https:// doi. org/ 10. 1016/j. cell. 2009. 01.
044.

 8. Mathews DH, Turner DH. Prediction of RNA secondary structure by free
energy minimization. Curr Opin Struct Biol. 2006;16(3):270–8. https:// doi.
org/ 10. 1016/j. sbi. 2006. 05. 010.

 9. Nowakowski J, Tinoco I. RNA structure and stability. Semin Virol.
1997;8(3):153–65. https:// doi. org/ 10. 1006/ smvy. 1997. 0118.

 10. Wexler Y, Zilberstein C, Ziv-Ukelson M. A study of accessible motifs and
RNA folding complexity. J Comput Biol. 2007;14:856–72. https:// doi. org/
10. 1089/ cmb. 2007. R020.

 11. Salari R, Möhl M, Will S, Sahinalp SC, Backofen R. Time and space efficient
RNA-RNA interaction prediction via sparse folding. In: Research in com-
putational molecular biology. Berlin, Germany: Springer; 2010. p. 473–90.
https:// doi. org/ 10. 1007/ 978-3- 642- 12683-3_ 31.

 12. Möhl M, Salari R, Will S, Backofen R, Sahinalp S. Sparsification of RNA
structure prediction including pseudoknots. Algorithms Mol Biol. 5 (2010)
https:// doi. org/ 10. 1186/ 1748- 7188-5- 39

 13. Backofen R, Tsur D, Zakov S, Ziv-Ukelson M. Sparse RNA folding: time and
space efficient algorithms. J Discrete Algo. 2011;9:12–31. https:// doi. org/
10. 1016/j. jda. 2010. 09. 001.

 14. Dimitrieva S, Bucher P. Practicality and time complexity of a sparsified
RNA folding algorithm. J Bioinformat Comput Biol 10 (2012) https:// doi.
org/ 10. 1142/ S0219 72001 24100 77

 15. Will S, Jabbari H. Sparse RNA folding revisited: space-efficient minimum
free energy structure prediction. Algorithms for Molecular Biology 11
(2016) https:// doi. org/ 10. 1186/ s13015- 016- 0071-y

 16. Jabbari H, Wark I, Mothentemagno C, Will S. Sparsification enables pre-
dicting kissing hairpin pseudoknot structures of long RNAs in practice.
In: 17th International Workshop on Algorithms in Bioinformatics (WABI
2017). Leibniz International Proceedings in Informatics (LIPIcs), vol. 88, pp.
12–11213. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Oktavie-
Allee, 66687 Wadern, Germany (2017). https:// doi. org/ 10. 4230/ LIPIcs.
WABI. 2017. 12

 17. Jabbari H, Wark I, Montemagno C, Will S. Knotty: efficient and accurate
prediction of complex RNA pseudoknot structures. Bioinformatics.
2018;34:3849–56. https:// doi. org/ 10. 1093/ bioin forma tics/ bty420.

 18. Lorenz R, Bernhart S.H, Siederdissen C, Tafer H, Flamm C, Stadler P.F,
Hofacker I.L. ViennaRNA package 2.0. Algo Mol Biol. 2011;6. https:// doi.
org/ 10. 1186/ 1748- 7188-6- 26

 19. Huang L, Zhang H, Deng D, Zhao K, Liu K, Hendrix DA, Mathews DH.
Linearfold: linear-time approximate RNA folding by 5’-to-3’ dynamic
programming and beam search. Bioinformatics. 2019;35:295–304. https://
doi. org/ 10. 1093/ bioin forma tics/ btz375.

 20. Hofacker IL, Stadler PF. Memory efficient folding algorithms for circular
RNA secondary structures. Bioinformatics. 2006;22:1172–6. https:// doi.
org/ 10. 1093/ bioin forma tics/ btl023.

 21. McCaskill JS. The equilibrium partition function and base pair binding
probabilities for RNA secondary structure. Biopolymers. 1990;29:1105–19.
https:// doi. org/ 10. 1002/ bip. 36029 0621.

 22. Bompfünewerer AF, Backofen R, Bernhart SH, Hertel J, Hofacker IL,
Stadler PF, Will S. Variations on RNA folding and alignment: lessons
from Benasque. J Mathe Biol. 2008;56:129–44. https:// doi. org/ 10. 1007/
s00285- 007- 0107-5.

 23. Lorenz R, Hofacker IL, Stadler PF. RNA folding with hard and soft
constraints. Algo Mol Biol. 2016;11 (2016) https:// doi. org/ 10. 1186/
s13015- 016- 0070-z

 24. Zuker M, Stiegler P. Optimal computer folding of large RNA sequences
using thermodynamic and auxiliary information. Nucleic Acids Res.
1981;9:133–48. https:// doi. org/ 10. 1093/ nar/9. 1. 133.

 25. Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster
P. Fast folding and comparison of RNA secondary structures. Chem
Monthly. 1994;125:167–88. https:// doi. org/ 10. 1007/ BF008 18163.

 26. Reuter J.S, Matthews D.H. RNAstructure: software for RNA second-
ary structure prediction and analysis. In: Proceeding of the National
Academy of Science of the USA. 2010; 11. https:// doi. org/ 10. 1186/
1471- 2105- 11- 129

 27. Zuker M, Jacobson AB. Using reliability information to annotate RNA
secondary structures. RNA. 1998;4:669–79. https:// doi. org/ 10. 1017/ s1355
83829 89801 16.

 28. Waugh A, Gendron P, Altman R, Brown JW, Case D, Gautheret D, Harvey
SC, Leontis N, Westbrook J, Westhof E, Zuker M, Major F. RNAML: a stand-
ard syntax for exchanging RNA information. RNA. 2002;8:707–17. https://
doi. org/ 10. 1017/ s1355 83820 20280 17.

 29. Zuker M. Mfold web server for nucleic acid folding and hybridization
prediction. Nucleic Acids Res. 2003;31:3406–15. https:// doi. org/ 10. 1093/
nar/ gkg595.

 30. Rivas E, Eddy SR. A dynamic programming algorithm for RNA structure
prediction including pseudoknots. J Mol Biol. 1999;285:2053–68. https://
doi. org/ 10. 1006/ jmbi. 1998. 2436.

 31. Ren J, Rastegari B, Condon A, Hoos HH. HotKnots: heuristic prediction of
RNA secondary structures including pseudoknots. RNA. 2005;11:1494–
504. https:// doi. org/ 10. 1261/ rna. 72849 05.

 32. Dirks RM, Pierce NA. A partition function algorithm for nucleic acid sec-
ondary structure including pseudoknots. J Comput Chem. 2003;24:1664–
77. https:// doi. org/ 10. 1017/ s1355 83829 89801 16.

 33. Rastegari B, Condon A. Parsing nucleic acid pseudoknotted secondary
structure: algorithm and applications. J Comput Biol. 2007;14. https:// doi.
org/ 10. 1089/ cmb. 2006. 0108

 34. Sugimoto N, Kierzek R, Turner DH. Sequence dependence for the
energetics of dangling ends and terminal base pairs in ribonucleic acid.
Biochemisty. 1987;19:4554–8. https:// doi. org/ 10. 1021/ bi003 88a058.

 35. Zuber J, Sun H, Zhang X, McFayden I, Matthews DH. A sensitivity analysis
of RNA folding nearest neighbor parameters identifies a subset of free
energy parameters with the greatest impact on RNA secondary structure
prediction. Nucleic Acids Res. 2017;45:6168–76. https:// doi. org/ 10. 1093/
nar/ gkx170.

https://github.com/mateog4712/SparseRNAFolD-RawData
https://github.com/mateog4712/SparseRNAFolD
https://github.com/mateog4712/SparseRNAFolD
https://doi.org/10.1016/j.cell.2009.02.003
https://doi.org/10.1016/j.gene.2005.06.037
https://doi.org/10.1016/j.gene.2005.06.037
https://doi.org/10.1038/nrg3681
https://doi.org/10.1016/j.tibs.2009.10.004
https://doi.org/10.1016/j.tibs.2009.10.004
https://doi.org/10.1261/rna.049874.115
https://doi.org/10.1126/science.1176488
https://doi.org/10.1126/science.1176488
https://doi.org/10.1016/j.cell.2009.01.044
https://doi.org/10.1016/j.cell.2009.01.044
https://doi.org/10.1016/j.sbi.2006.05.010
https://doi.org/10.1016/j.sbi.2006.05.010
https://doi.org/10.1006/smvy.1997.0118
https://doi.org/10.1089/cmb.2007.R020
https://doi.org/10.1089/cmb.2007.R020
https://doi.org/10.1007/978-3-642-12683-3_31
https://doi.org/10.1186/1748-7188-5-39
https://doi.org/10.1016/j.jda.2010.09.001
https://doi.org/10.1016/j.jda.2010.09.001
https://doi.org/10.1142/S0219720012410077
https://doi.org/10.1142/S0219720012410077
https://doi.org/10.1186/s13015-016-0071-y
https://doi.org/10.4230/LIPIcs.WABI.2017.12
https://doi.org/10.4230/LIPIcs.WABI.2017.12
https://doi.org/10.1093/bioinformatics/bty420
https://doi.org/10.1186/1748-7188-6-26
https://doi.org/10.1186/1748-7188-6-26
https://doi.org/10.1093/bioinformatics/btz375
https://doi.org/10.1093/bioinformatics/btz375
https://doi.org/10.1093/bioinformatics/btl023
https://doi.org/10.1093/bioinformatics/btl023
https://doi.org/10.1002/bip.360290621
https://doi.org/10.1007/s00285-007-0107-5
https://doi.org/10.1007/s00285-007-0107-5
https://doi.org/10.1186/s13015-016-0070-z
https://doi.org/10.1186/s13015-016-0070-z
https://doi.org/10.1093/nar/9.1.133
https://doi.org/10.1007/BF00818163
https://doi.org/10.1186/1471-2105-11-129
https://doi.org/10.1186/1471-2105-11-129
https://doi.org/10.1017/s1355838298980116
https://doi.org/10.1017/s1355838298980116
https://doi.org/10.1017/s1355838202028017
https://doi.org/10.1017/s1355838202028017
https://doi.org/10.1093/nar/gkg595
https://doi.org/10.1093/nar/gkg595
https://doi.org/10.1006/jmbi.1998.2436
https://doi.org/10.1006/jmbi.1998.2436
https://doi.org/10.1261/rna.7284905
https://doi.org/10.1017/s1355838298980116
https://doi.org/10.1089/cmb.2006.0108
https://doi.org/10.1089/cmb.2006.0108
https://doi.org/10.1021/bi00388a058
https://doi.org/10.1093/nar/gkx170
https://doi.org/10.1093/nar/gkx170

Page 16 of 16Gray et al. Algorithms for Molecular Biology (2024) 19:9

 36. Zuber J, Cabral BJ, McFayden I, Mauger DM, Matthews DH. Analysis
of RNA nearest neighbor parameters reveals interdependencies and
quantifies the uncertainty in RNA secondary structure prediction. RNA.
2018;24:1568–82. https:// doi. org/ 10. 1261/ rna. 065102. 117.

 37. Matthews DH, Disney MD, Childs JL, Schroeder SJ, Zuker M, Turner
DH. Incorporating chemical modification constraints into a dynamic
programming algorithm for prediction of RNA secondary structure. Proc
Nat Acad Sci USA. 2004;101:7287–92. https:// doi. org/ 10. 1073/ pnas. 04017
99101.

 38. Andronescu M, Bereg V, Hoos HH, Condon A. RNA STRAND: the RNA
secondary structure and statistical analysis database. BMC Bioinformat.
2008;9(1):340. https:// doi. org/ 10. 1186/ 1471- 2105-9- 340.

 39. Turner DH, Matthews DH. NNDB: the nearest neighbor parameter data-
base for predicting stability of nucleic acid secondary structure. Nucleic
Acids Res. 2009;38:280–2. https:// doi. org/ 10. 1093/ nar/ gkp892.

 40. Jabbari H, Condon A. A fast and robust iterative algorithm for predic-
tion of RNA pseudoknotted secondary structures. BMC Bioinformatics
2014;15. https:// doi. org/ 10. 1186/ 1471- 2105- 15- 147

 41. Gray M, Chester S, Jabbari H. KnotAli: informed energy minimization
through the use of evolutionary information. BMC Bioinformat. 2022; 23.
https:// doi. org/ 10. 1186/ s12859- 022- 04673-3

 42. Fog A. Optimizing Software in C++. (2023). https:// www. agner. org/ optim
ize.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1261/rna.065102.117
https://doi.org/10.1073/pnas.0401799101
https://doi.org/10.1073/pnas.0401799101
https://doi.org/10.1186/1471-2105-9-340
https://doi.org/10.1093/nar/gkp892
https://doi.org/10.1186/1471-2105-15-147
https://doi.org/10.1186/s12859-022-04673-3
https://www.agner.org/optimize
https://www.agner.org/optimize

	SparseRNAfolD: optimized sparse RNA pseudoknot-free folding with dangle consideration
	Abstract
	Motivation
	Results
	Conclusion

	Introduction
	Contributions

	Preliminaries: sparsification without dangling ends
	Recurrence visualization terminology
	Sparsification without dangling ends
	Time and space complexity of sparsified energy minimization

	Dangles
	No dangles
	Always dangle
	Exclusive dangling

	Space-efficient sparsification with exclusive dangles is non-trivial
	SparseRNAFolD
	“Always dangle” model
	“Exclusive dangle” model
	Strategy 1: trace arrow implementation
	Bit encoding

	Strategy 2: Bit encoding with candidate extension
	Strategy 3: Bit encoding with altered candidate

	Compared methods
	RNAFold
	LinearFold

	Experimental design
	Dataset
	Energy model
	Accuracy measures
	Proof of concept with RNAFold

	Results
	Alternative models
	Comparison with LinearFold and RNAFold
	Highlighting RNAFold
	Candidate comparison
	Folding with hard constraints
	Modification of internal loop logic
	Performance on very large sequences

	Conclusions
	Acknowledgements
	References

