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Abstract 

Gene trees can be different from the species tree due to biological processes and inference errors. One way to obtain 
a species tree is to find one that maximizes some measure of similarity to a set of gene trees. The number of shared 
quartets between a potential species tree and gene trees provides a statistically justifiable score; if maximized prop-
erly, it could result in a statistically consistent estimator of the species tree under several statistical models of discord-
ance. However, finding the median quartet score tree, one that maximizes this score, is NP-Hard, motivating several 
existing heuristic algorithms. These heuristics do not follow the hill-climbing paradigm used extensively in phyloge-
netics. In this paper, we make theoretical contributions that enable an efficient hill-climbing approach. Specifically, 
we show that a subtree of size m can be placed optimally on a tree of size n in quasi-linear time with respect to n 
and (almost) independently of m. This result enables us to perform subtree prune and regraft (SPR) rearrangements 
as part of a hill-climbing search. We show that this approach can slightly improve upon the results of widely-used 
methods such as ASTRAL in terms of the optimization score but not necessarily accuracy.

Keywords Phylogenetics, Gene tree discordance, Quartet score, Quartet distance, Subtree prune and regraft, Tree 
search, ASTRAL

Introduction
The NP-Hard [1] problem of finding a tree that mini-
mizes the total quartet distance to a set of given trees has 
found wide-ranging applications in recent years [2]. The 
quartet distance between two unrooted trees is obtained 
by dividing each tree into all its quartets (choices of 
four taxa) and counting quartet topologies that do not 
match [3]. While studying this quartet median tree prob-
lem is not new [4, 5], its renewed popularity is a result 
of its connection to a broader trend in phylogenomics 
– the embrace of methods that account for discordance 
between gene trees and species trees [6]. While various 

approaches exist for accounting for such discordance 
when inferring a species tree [7], many of these methods 
rely on quartets. There is a reason for the use of quartets. 
As originally noted by Allman et  al. [8] for the multi-
species coalescent model (MSC) [9, 10] of incomplete 
lineage sorting (ILS) and later extended to models of 
duplication and loss (GDL) [11, 12], HGT [13], and even 
ILS+GDL [14],  on a quartet species tree, the unrooted 
gene tree topology matching the species tree has a higher 
probability of being observed than the two alternative 
topologies. Some methods (e.g., ASTRAL [15]) have used 
this observation to directly use the median quartet tree 
problem as a way of estimating species trees. Others (e.g., 
[16–18]) have used this observation to infer individual 
quartet species trees using some criterion and then com-
bine them. Either way, taxa are divided into quartets.

Dividing n taxa naively into quartets will require 
�(n4) time just to list the quartets, making any result-
ing algorithm impractical on large datasets. Some meth-
ods still use this approach but subsample quartets to 
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an asymptotically smaller size (e.g., a quadratic or even 
O(n log(n)) number [19]). However, subsampling can be 
avoided while achieving high scalability using improved 
data structures and algorithms. For the simplest problem 
of computing the quartet distance between two trees, 
which naively would require �(n4) time, a straightfor-
ward algorithm can achieve quadratic time [20]. This 
requires the post-traversal of one tree and compar-
ing each node versus each node of the other tree, keep-
ing track of the number of shared children below these 
nodes. This approach has been at the heart of ASTRAL 
since version 2 [21]. If we allow ourselves to use much 
more sophisticated data structures, we can do even bet-
ter. Brodal et al. [22] have designed a complex data struc-
ture called Hierarchical Decomposition Tree (HDT), 
which, along with a host of counters and other algorith-
mic tricks, enable a O(n log2(n)) algorithm for comput-
ing quartet distance. Mai and Mirarab [23] later extended 
this approach to solve the problem of adding one taxon 
to a tree so that the updated tree has the minimum pos-
sible distance to a set of k input trees. Zhang and Mirarab 
[24] used similar ideas to infer a tree by successively add-
ing one taxon to a growing tree in a tool called ASTER. 
Thus, quadratic and sub-quadratic quartet methods with-
out subsampling are widely available.

Available quartet-based median tree inference meth-
ods differ from most other phylogenetic inference meth-
ods in their approach. ASTRAL [15], which is perhaps 
the most widely  used method for this problem, uses a 
dynamic programming algorithm (an approach with 
long history; see [25–27]) to solve the problem exactly 
in exponential time or under some constraints in poly-
nomial time ( O((nk)2.726) in the worst case and close to 
n2k2 empirically [28]). The ASTER package [24, 29] uses 
several rounds of step-wide addition with random orders 
of adding taxa, followed by a dynamic programming step 
similar to ASTRAL to combine these greedy results. Ear-
lier methods such as wQMC use graph-based techniques 
[30]. Thus, none of these methods use the hill-climbing 
search algorithms used by most other phylogenetic infer-
ence tools. While ASTRAL has been scalable, it is not 
clear if the reason is the use of a constrained dynamic 
programming algorithm or if an efficient hill-climb-
ing could be as efficient or perhaps even more. If the 
improvements are due to constrained dynamic program-
ming, perhaps we should explore similar methods for 
other problems. On the other hand, it is possible that hill 
climbing can improve quartet-based estimation in terms 
of running time, accuracy, or both.

Hill climbing tree search requires efficient methods of 
updating the score after a rearrangement. This is often 
straightforward for Nearest Neighbour Interchange 
(NNI) moves around the current tree T. However, many 

modern methods use Subtree Prune and Regraft (SPR) 
rearrangements in addition to NNI. SPR rearrangement 
is defined on an edge (u,u′) , selecting one end, say u, as 
the pruning point. The (u,u′) edge is pruned at u and 
is grafted back on an edge (v, v′) by creating new edges 
(v, u) and (u, v′) . Assume we know the quartet distance 
of a tree to another tree before an SPR move. How 
should we update the distance after the move? We could 
use the Brodal et al. [22] (called B13 hereafter) method 
and simply recompute the score in O(n log2(n))  time. 
Doing so, we would need O(n2 log2(n)) time to find the 
optimal SPR move for a given (u,u′) ; one “round” of 
SPR would in the worst case require trying pruning all 
edges of a tree, which would need O(n3 log2(n)) . Thus, a 
single SPR round can start to become infeasible, and we 
need many rounds.

Our goal in this paper is to enable SPR-based hill 
climbing for the quartet median tree given a set 
of k input trees. Mai and Mirarab [23] extended 
the  B13 algorithm  to optimally add a single taxon 
to a tree in O(n log2(n)k) time. For a pruned sub-
tree of size m, we can repeatedly use this algo-
rithm to find the optimal grafting destination in 
O((n−m)m log(n−m) log(n)k) = O(n2 log2(n)k) 
time. In this paper, we show that we can do even bet-
ter: In O((n−m) log(n−m) log(n)k) time, we can find 
the optimal position for the pruned subtree of size m. 
Surprisingly, this time does not increase with m and 
is only O(n log2(n)k) in the worst case when m and n 
are of the same order. This worst-case for finding the 
optimal grafting position is surprisingly the same as the 
time needed for computing the quartet score. With this 
algorithm, a full SPR round requires only O(n2 log2(n)k) 
time because O(n) SPR sources need to be tested.

Our theoretical results enable us to design a hill-
climbing algorithm for the median quartet tree prob-
lem. We built such a tool, called Q-SPR. In simulation 
and on real data, we show that starting from ASTRAL-
III trees, SPR moves can improve the quartet score 
marginally; however, these improvements do not result 
in meaningful improvements in accuracy. Starting 
from a tree built using a stepwise addition performed 
using tripVote leads to a complete hill-climbing soft-
ware, which, while competitive with ASTRAL-III in 
terms of accuracy, is substantially slower in prac-
tice under the conditions we tested here. Our results 
indicate that the dynamic programming strategy of 
ASTRAL is indeed beneficial for achieving fast run-
ning time. However, we note that Q-SPR still is useful 
for further refining ASTRAL-III output. Moreover, its 
memory and running time depend on k only linearly, 
which is better than ASTRAL-III, which depends on k 
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super-quadratically, for handling tens or hundreds of 
thousands of genes.

Materials and methods
Notations
We denote a tree by T = (VT ,ET ) and let LT ⊆ VT be the 
leaftset. An edge (v,u) ∈ ET is directed from the parent 
v to the child u. We refer to the root of a tree T by rT 
and use dT to denote its maximum node degree, omitting 
the subscript when clear. We use u↑ to denote the parent 
of a node u∈ VT\{rT } . We let Lu denote the set of leaves 
below u. Removing the edge (u↑,u) from the tree T cre-
ates two subtrees, one with and one without the vertex u, 
denoted by T∨

u  and T∧
u  , respectively. Note that any result-

ing degree-2 node in T∧
u  is suppressed, connecting its 

child to its parent. We use T u
◦ T ′ to denote the placement 

of a rooted subtree T ′ on the edge (u↑,u) of T: we divide 
(u↑,u) to (u↑, v) and (v, u) by adding v and then connect 
T ′ to v by adding the edge (v, rT ′) . When u is the root rT , 
we add a new root r∗ and create two new edges (r∗,u) and 
(r∗, rT ′) . The tree T can be rerooted at an edge e = (v,u) 
to obtain the rerooted tree T⊕

u  ; to do so, we divide e into 
(v, r) and (r, u) where r is the new root and reverse the 
direction of all edges in the path from r to rT . Finally, we 
remove all degree-2 nodes other than the new root by 
connecting their children to their parents in the rerooted 
tree T⊕

u .
A tree T can be restricted to any arbitrary set of three 

leaves in LT (suppressing nodes with a single child in the 
process) [31]; we call each of those a triplet of T. We call 
the least common ancestor (LCA) of any three leaves in 
T its anchor. We similarly define a rooted quartet and its 
anchor by restricting T to any set of four leaves. Unroot-
ing this tree gives us the unrooted quartet; when not 
specified, the term quartet refers to the unrooted case. 
For a triplet of leaves {x, y, z} , we say T1 and T2 match, or 
the triplet is matching or shared between T1 and T2 , iff 
{x, y, z} ⊆ LT1 ∩ LT2 , and T1 and T2 have the same triplet 
topologies when restricted to {x, y, z} . Similarly, a quartet 
of leaves {w, x, y, z} is called a matching or shared quartet 
of T1 and T2 iff {w, x, y, z} ⊆ LT1 ∩ LT2 , and the restricted 
trees have the same unrooted topology in both trees.

Problem definition
We use S3(T1,T2) to denote the number of triplets that 
match between the two trees and use S4(T1,T2) to denote 
the number of quartets matching between two trees.

Definition 1 (Q-SPR Problem) Given a rooted query 
tree T = (VT ,ET ) , a set of arbitrarily rooted reference 
trees R = {R1,R2, ...,Rk} , and p ∈ VT\{rT } , find

where u∗ is the optimal placement of the pruned subtree 
T∨
p  and T∧

p

u∗

◦ T∨
p  gives the optimal output (Fig. 1A). Let 

n = |LT | and m = |Lp| , and thus |LT∧
p
| = n−m.

The Maximum-matching Quartet Placement (MQP) 
problem of Mai and Mirarab [23] is a special case of 
Q-SPR where m = 1 and a single query taxon q is placed 
on a given tree. They also defined a Maximum Triplet 
Rooting (MTR) problem where the goal is to root a given 
tree T based on a set of rooted reference trees R so that 
the rooted tree T ∗ maximizes 

∑k
i=1 S3(T

∗,Ri) . MQP and 
MTR turn out to be equivalent: All reference trees can be 
rooted at q, and q can be placed at the root of the output 
of MTR to solve MQP.

Background: tripVote algorithm
Our solution to Q-SPR builds on the tripVote [23] algo-
rithm that solves MTR and MQP using an extension of 
the B13 algorithm. Recall tripVote seeks to optimally root 
a query tree T with respect to a reference tree R. tripVote 
is based on a recursion:

where R is a single reference tree R, and the τ values are 
counters defined in Table  1. Effectively, this recursion 
computes the score of each rerooting T⊕

u  of T based on 
precomputed counters and the score of the rerooting on 
the parent of the current node. The τ iu , τ ou , and τ ru counters 
are computed in a top-down traversal of T, and Equation 
(1) makes it trivial to find the optimal rooting once these 
counters are computed.

Coloring scheme. To compute the counters, tripVote 
follows the coloring scheme of B13. As it traverses T in 
preorder, on visiting a node u, it recolors the leaves so 
that each side of u has a different color. Thus, we need 
dT colors, which we refer to with an index in [0, dT − 1] . 
Around a node u of T with degree d and children 
v1, . . . , vd−1 and parent u↑ , we can obtain d subtrees: 
T∨
v1
, . . . ,T∨

vd−1
 , and T∧

u  . After recoloring, the leaves in T∧
u  

are colored 0, and the leaves in the subtrees T∨
v1
, . . . ,T∨

vd−1
 

are colored 1, . . . , d − 1 , respectively. Colors are marked 
on leaves of both T and R, which are linked using bidi-
rectional pointers. Conceptually, the node u partitions 
leaves of T into d parts, and leaves of each part can be 
located anywhere in the tree R (i.e., do not necessarily 
form a clade). The coloring of a leaf in R helps us track 
which part (i.e., side of u in T) it belongs to. Colors are 

u∗ = arg max
u∈VT∧

p

k
∑

i=1

S4(T
∧
p

u
◦ T∨

p ,Ri)

(1)S3(T
⊕
u ,R) = S3(T

⊕
u↑
,R)− τ i

u↑
− τ r

u↑
+ τ ou + τ ru
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updated one leaf at a time. After all leaves are colored to 
match u, we traverse R from recolored leaves to the root 
and update a set of counters kept at each node of R. These 
counters are functions of the colors of the leaves in R 
and are used in counting the number of shared triplets 
between T and R that match certain criteria specific to 
node u, given in Table 1.

Hierarchical Decomposition Tree (HDT). To make 
recoloring fast, B13 represent  R using a data structure 
called HDT (Hierarchical Decomposition Tree). HDT is a 
locally balanced tree that is built on a rooted tree R with n 
nodes in O(n). Each node (also called component) of the 
HDT corresponds to a set of connected nodes in R. There 

are four possible types of components in an HDT listed 
in Table 2. An HDT is constructed in an iterative process. 
Initially, every leaf and internal node of R is represented 
with an L or I type component in the HDT, respectively. 
During each round of construction, two components are 
merged to form a new HDT component, which is their 
parent (i.e., includes them). The type of the new node 
depends on what types are merged (Table 2). The order 
of these merge operations is specified by B13. The pro-
cess stops when we build the root component of the HDT 
( R ), which corresponds to the set of all nodes of R.

Once the HDT is built, its nodes are assigned counters 
that keep getting updated. Each component X of the 

Fig. 1 An overview of the Q-SPR problem and the algorithm. A The query tree T, a set of reference trees R (one shown), and a node p are given. 
An SPR move removes a subtree T∨p  ( P for short) and places it somewhere on the rest of the T, denoted by T∧p  ( B for short). The Q-SPR problem seeks 

the placement above node u denoted by T∧p
u
◦ T∨p  (or B

u
◦ P for short) with the maximum number of shared unrooted quartets with the reference 

tree(s). B The recursive equation of Lemma 1: each of the counters corresponds to a certain type of solo quartet, color-coded here. Subtracted 
counters are to fix double-counting by other counters, as shown in Table 3. C Reference tree R is represented as an HDT. For each node u of B , 
the leaves are colored such that they correspond to the sides of that node. Outside u is colored 0, the larger child is colored 1, and the rest are 
colored 2 . . . du . The recoloring of B results in the recoloring of the HDT nodes representing R. Note that query nodes are always colored −1 and are 
never recolored. Overall, we need O(n log(n)) leaf recoloring during the top-down traversal of B , each of which can require a O(log(n)) bottom-up 
traversal of the HDT
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HDT has two main counters ρX and πX
j  , defined in 

Table 1 (of these, ρX is similar to B13 counters and πX
j  is 

specific to tripVote). Note that these counters keep 
changing value as we traverse T  and recolor its leaves. 
After we visit a node u of T, leaf recoloring and counter 
updates are triggered; after this is done, counters of the 
HDT ( ρX and πX

j  ) have values defined in Table 1 specific 
to u. Each HDT counter of a component X is the sum 
over all its children, plus extra triplets counted specifi-
cally at X. Due to this cumulative nature and based on 
their definition (Table  1), ρX and πX

j  at the root of the 
HDT ( R ) give τ iu , τ ou , and τ ru values of T; that is, τ iu = πR

0  , 
τ ru = ρR , and τ ovj = πR

j  . To recolor each leaf of the HDT, 

we update ρX and πX
j  counters for all its ancestors; at the 

root R , we can update the corresponding τ iu , τ ou , and τ ru 
counters of T. The ρX and πX

j  counters, in turn, are based 
on O(d2) other auxiliary counters kept for each node of 
the HDT and more complex recursive equations to 
update these counters (we revisit these recursions later). 
These updates can be done  with a time complexity that, 
per node, does not depend on n, requiring O(d2) amor-
tized over all calculations.

Running time. In terms of the running time, recolor-
ing one node of the HDT requires only O(d2T log(n)) 
calculations because of the local balance property of the 
HDT (i.e., each component of the HDT with m leaves 
has O(log(m)) height). Also, as we traverse T, using a 
smaller-half trick adopted from B13, we perform at most 
O(n log(n)) leaf recoloring on the HDT (a naive recolor-
ing scheme would require O(n2) recolorings). Since each 
counter is updated in constant time, the total recoloring 
time is O(d2Tn log

2(n)) for one reference tree. If we have 

k reference tree, we process them independently, obtain-
ing O(kd2Tn log

2(n)) . Note that the HDT structure can be 
constructed from R in O(n) time.

Optimal quartet SPR placement in sub‑quadratic time
For ease of notation, we let B denote the backbone tree 
after pruning (i.e., T∧

p  ), let P denote the pruned subtree 

(i.e., T∨
p  ), and let d = dT . First, we note:

Observation 1 To find the number of shared quartets 
between any potential placement of P on B and the ref-
erence tree R, we only need to count those quartets that 
have a single leaf from P and three leaves from B.

Proof The topologies for quartets with zero or more 
than one leaves from P do not depend on the placement 
of P . Those with zero or four from P clearly have no rela-
tion to its placement. Those with two from P always have 
these two leaves together, regardless of the placement of 
P . Since P is rooted, those with three will have the topol-
ogy implied by the triplet from P regardless of its place-
ment. �

Based on this simple observation, we define:

Definition 2 For any instance of the Q-SPR problem, a 
quartet is called solo if it includes exactly one leaf from P . 
For a solo quartet, removing the sole leaf from P creates 
its associated triplet. A solo quartet is said to belong to 
an HDT component X when the L-type component cor-
responding to each of its four leaves is nested within X.

Observation 2 Q-SPR problem can be solved by 
repeated applications of tripVote.

Proof Since only solo quartets matter, we can place 
each single-leaf tree q of P independently using tripVote 
to obtain the quartet score S4(B

v
◦ q,R) for every node 

v ∈ VB . Then, we can compute

where C is a constant (shared quartets with zero or more 
than one leaf from P ), which is independent of the node v 
and thus can be ignored. It is easy to see that by Observa-
tion 1, maximizing this score returns the optimal place-
ment. �

Using tripVote to solve the Q-SPR problem requires 
O(kd2(n−m) log(n−m) log(n)m) time, which is 
O(kd2n2 log2(n)) for m = �(n) and is thus impractical 

S4(B
v
◦ P,R) = C +

∑

ti∈LP

S4(B
v
◦ ti,R)

Table 1 Each counter gives the number of triplets shared 
between a query tree T (or a rerooting of T; 2nd column) that 
are anchored at a particular node of T (e.g., u; 3rd column) and a 
component X of the HDT (4th column)

HDT represents the reference tree R and is rooted at R

 Rerooting T  at Shared triplets anchored at Under HDT 
component

Counters of a node u of T

τ iu no rerooting node u R

τ ru (u↑ , u) new root of T⊕u R

τ ou (u↑ , u) new sister to u (old u↑) R

Counters of a component X of the HDT

πX
0

no rerooting node u X

ρX (u↑ , u) new root of T⊕u X

πX
j

(u, vj) new sister to vj (old u) X
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for large enough n. Instead, we propose a new method to 
directly solve Q-SPR, as summarized in Algorithm 1. This 
algorithm borrows ideas from tripVote but moves it from 
being based on triplets to quartets; that is, we directly 
count the number of shared quartets between the query 
tree and an arbitrary rooting of the reference tree. Thus, 
we have to mark the leaves of P on reference tree(s). We 

assign a new color −1 to the leaves of the query subtree 
P (Fig. 1C). These leaves, which are missing from B , have 
a fixed color. We will also need new counters. Below, we 
focus on the case with one reference tree R but handling 
multiple reference trees follows trivially.

Algorithm 1 Solution to the Q-SPR problem. du is the degree of  u. 
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Algorithm  1 operates through a pre-order traversal 
of B . Visiting each node u, it colors leaves of the HDT 
representing R such that each side of u has a differ-
ent color, with 1 assigned to the largest child and 0 
assigned to leaves not under u (Fig.  1C). Once leaves 
have the right color, it updates a set of auxiliary coun-
ters available on the HDT for all nodes that have been 
recolored (UpdateHDTCounters function). When 
these updates are all done, it has computed (line: 11) 
a set of counters for u, as defined in Lemma 1 and 
depicted in Fig. 1B. Once the traversal of B is finished, 
using these counters, and the recursion given in Lemma 
1 (see Fig. 1B), the algorithm is able to count each quar-
tet shared between R and B u

◦ P . In the end, finding the 
edge with the maximum score is trivial as the score for 
each edge is computed.

Lemma 1 For any non-root node u ∈ VB\{rB}, the quar-
tet score can be calculated recursively using

where ϕi
u , ϕr

u , and ϕo
u are defined as the number of shared 

solo quartets between the placement B u
◦ P and R such 

that the associated triplet would be anchored at

• ϕi
u: node u in the given rooting of B,

• ϕr
u: the new root of the alternative rerooting B⊕

u ,
• ϕo

u: node u↑ in the alternative rerooting of B⊕
u .

The quartet score for the root of B, rB , is:

where C is a constant that can be ignored.

(2)S4(B
u
◦ P,R) = S4(B

u↑

◦ P,R)− ϕi
u↑

− ϕr
u↑

+ ϕo
u + ϕr

u

(3)S4(B
rB
◦ P,R) = C +

∑

u∈VB

ϕi
u

Proof Recall that according to Observation 1, only the 
solo quartets play a role in calculating the quartet score 
when comparing different placements of the query sub-
tree P on the backbone tree B . We let the constant C 
include all non-solo quartets that are shared. Thus, we 
only count shared solo quartets in the other terms. At the 
root of the backbone tree B , it is evident that each shared 
solo quartet is precisely counted once at the anchor of its 
associated triplet. Thus, Eq. 3 corresponds to the quartet 
score resulting from placing P on rB.

For any non-root node u ∈ VB\{rB} , we partition the 
leaves of B into three sets (those under it, under its sister, 
and the rest): LB∨u , LB∨

u↑
\LB∨u , and LB∧

u↑
 . We examine all 

possible scenarios in which the leaves of the associated 
triplets for the shared quartets between B u

◦ P and R can 
be distributed among these three sets. For each case, 
Table 3 establishes that the shared quartets are counted 
precisely once in Eq. 2 (see Fig. 1B). A quartet that is a 
shared quartet for both B u

◦ P and B u↑

◦ P (all but last case) 

is counted by S4(B
u↑

◦ P,R) . In cases given in the second, 
third, and fourth lines, a quartet is also counted once 
with a positive sign and once with a negative sign by 
other counters. In the last case, only ϕr

u counts the 
quartet.�

We update the meaning of HDT counters ρX and πX
j  

compared to tripVote. Assume in the preorder traversal 
of B , we are on node u. Then, ρX and πX

j  count the num-
ber of solo quartets that belong to the component X of 
the HDT and match the solo quartets in the placement 
B

u
◦ P where the associated triplet is anchored at

• ρX : the root in the alternative rerooting B⊕
u ,

• πX
0  : the node u in the alternative rerooting B⊕

u↑
,

Table 2 HDT components types

Each component in the HDT corresponds to a set of connected nodes in the reference tree R, and can have four types. To construct HDT, B13 follows the rules provided 
here to compose new components and transform existing ones. B13 show that these rules applied with the appropriate order result in a locally balanced hierarchy.

Type Rule Description

I initial Corresponds to an internal node in R. Every I component is a leaf in the HDT.

L initial Corresponds to a leaf node in R. Every L component is a leaf of the HDT and is considered a C type as well.

G Corresponds to a subtree of R (i.e., every node of R descendent from any node in a G is also in that component.)

GG → G Two G components can merge if their roots are siblings in R.

C → G A C can convert to a G if it corresponds to a subtree of R.

C Corresponds to a connected subset of nodes in R. The children of a C satisfy this: there exists an R node in one child that is the 
ancestor of an R node in the other child.

IG → C An I and a G component can merge when the root of G is a child of the internal node in R represented by I.

CC → C Two C components can merge if the root of one in R is the ancestor of the other in R and they form a connected subset of nodes.
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• πX
j (j ≥ 1) : the node u in the alternative rerooting B⊕

vj
 

where vj is a child of u.

Note that rerootings of B are hypothetical (no actual 
rerooting is performed). Each unrooted quartet in B will 
have some arbitrary rooting in R. Once again, it is easy to 
see that at the HDT root R , we can update the counters 
of the B from the HDT counters:

We are now ready to state a key result:

Lemma 2 The ρX and πX
j  counters of the HDT compo-

nent X can be updated in O(d2) time assuming the coun-
ters for children of X are already calculated.

Proof We derive a set of recursions for each compo-
nent, which depend on their type (Table 2). Since L types 
include a single leaf and I include no leaf, no quartet 
can belong to them; thus, ρX and πX

j  are set to zero for 
these components.

Consider a component X of types IG → C , CC → C , or 
GG → G , each of which has two child components, 
denoted by X1 and X2 . A quartet q belongs to X of these 
types if q belongs to X1, q belongs to X2, or q has at least 
one leaf from each child of X. Thus, if we let ρX

comb and 
πX
combj

 count the part of ρX and πX
j  coming from those 

quartets with at least one leaf from each child, then, 
clearly:

For IG → C components, ρX
comb and πX

combj
 are both 0 

because the I component is a single internal node and 
cannot contain any leaves. For other types, we use auxil-
iary counters, which lead to 62 distinct cases. In short,

(4)ϕr
u = ρR ϕi

u = πR

0 ϕo
vj
= πR

j .

ρX =ρX1 + ρX2 + ρX
comb

πX
j =π

X1
j + π

X2
j + πX

combj

• ρX
comb : For these, the rooted quartets must have either 

((i, j), (−1, 0)) or ((0, 0), (−1, i)) unrooted topologies, 
where i, j ∈ [1, d] . The recursive equations for these 
cases are given in Additional file 1: Tables S1 and S2, 
respectively. Additional file 1: Fig. S1A demonstrates 
an example of how ρX is computed and also how ϕr

u is 
computed using ρX.

• πX
combj

 : For these, the rooted quartets must have the 
unrooted topology ((i, i), (−1, k)) where i, k ∈ [0, d] 
and i, k  = j . The recursions for auxiliary counters are 
given in Additional file 1: Table S3.

Note that we have counted only resolved quartets. And 
all solo quartets have exactly a single −1 . Thus, for each 
HDT component, we have O(d2) counters each of which 
is of the form (0,−1, i, j) for i, j ∈ [1, d] . Following all 
recursions in Additional file 1: Tables S1–S3, we can eas-
ily check that the cost of updating all the counters amor-
tized over all counters is constant. This is because most 
counters require a constant time while a constant num-
ber of counters require O(d2) time. �

We next formally state that the number of leaf color-
ings is subquadratic.

Lemma 3 The total traversal of a tree B with N nodes 
using Algorithm 1 requires a total of N log(N ) leaf color-
ing steps.

Proof The proof follows from B13 results and in par-
ticular its smaller-half trick. Algorithm  1 first colors 
all nodes as 1, using O(N) operations. Then, during 
the traversal, it recolors each node u of B only if u has 
a sibling that is larger or the same size; these nodes are 
colored as 1 when u is visited (line 25), as 2 ≤ i ≤ d when 
u↑ is visited (line  27), and as 0 right before existing u↑ 
(line 29). For a tree with N leaves, the sum of the num-
ber of leaves under all nodes that have a larger or equal-
sized sibling is O

(

N log(N )
)

 ; consider the worst case, a 
fully balanced tree, where the number is the solution to 

Table 3 Cases for an associated triplet Lt = {t1, t2, t3} of a shared solo quartet in recursive equation (2). In each case, the quartet is 
counted exactly once, as shown in column 

∑

Case
S4(B

u
↑

◦ P,R) −ϕi

u↑
−ϕr

u↑
ϕo
u ϕr

u

∑

Lt ⊂ LB∨u  or Lt ⊂ LB∨
u↑

\ LB∨u  or Lt ⊂ LB∧
u↑

1 0 0 0 0 1

Lt  ⊂ LB∨u  , Lt  ⊂ LB∨
u↑

\ LB∨u  , and Lt ⊂ LB∨
u↑

1 −1 0 0 1 1

Lt  ⊂ LB∨u  , Lt  ⊂ LB∧
u↑

 , and Lt ⊂ LB∨u ∪ LB∧
u↑

1 0 −1 0 1 1

Lt  ⊂ LB∨
u↑

\ LB∨u  , Lt  ⊂ LB∧
u↑

 , and Lt ⊂ LB∧u 1 0 −1 1 1 1

t1 ∈ LB∨u  , t2 ∈ LB∨
u↑

\ LB∨u  , and t3 ∈ LB∧
u↑

0 0 0 0 1 1
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f (N ) = 2f (N/2)+ N/2 , which is N (1+ 1/2 log2(N )) . 
Thus, the worst-case scenario for the total number of 
recolored nodes is O(N log(N )) . �

Theorem  1 Algorithm  1 optimally solves the Q-SPR 
problem in O(kd2(n−m) log(n−m) log(n)) where n 
is the size of the full tree and m is the size of the pruned 
subtree.

Proof The HDT data structure has a height of O(log(n)) 
by design [22]. According to Lemma 2, updating each 
node of HDT takes O(d2) , and recoloring one node 
requires traversing the HDT tree from the leaf to the 
root. Thus, the total time for recoloring a single leaf is 
O(d2 log(n)) . Moreover, Lemma 3 established that at 
most O((n−m) log(n−m)) leaf recoloring steps are 
needed for our backbone tree B of size n−m after prun-
ing. Thus, we need O(d2(n−m) log(n−m) log(n)) 
operations for leaf recoloring for one reference tree and 
O(kd2(n−m) log(n−m) log(n)) if we have k such trees. 
By Eq. 4, after recolroing the leaves under a node u of B 
in the HDT, ρR and πR

j  give us ϕi
u , ϕr

u , and ϕo
u . By Lemma 

1, we obtain the score for placing P on each branch using 
ϕi
u , ϕr

u , and ϕo
u values and a simple tree traversal; finally, 

we simply choose the placement branch (u↑,u) that max-
imizes the score. �

Tree search using quartet SPR moves
Having access to an optimal and efficient SPR move, we 
can now design a standard hill-climbing tree search to 
find the quartet median tree with respect to a set of refer-
ence trees R. The algorithm begins with a starting tree T, 
obtained using any method. We draw non-root nodes of 
T randomly (without replacement) from some distribu-
tion resulting in a random permutation of non-root 
nodes of T, denoted as OT . For each node p in the order 
OT , we prune T∨

p  from T to obtain T∧
p  . We solve the 

Q-SPR problem to determine the optimal place-
ment  node p∗ of T∨

p  . If p∗ �= p , we place T∨
p  on p∗ to 

obtain the improved tree T ∗ = T∧
p

p∗

◦ T∨
p  and use T ∗ as 

the starting tree in the next round. If not, we apply the 
same approach to the complementary subtree of T∨

p  , 
namely (T⊕

p )
∨

p↑
 . Let p⋆ be the optimal placement of 

(T⊕
p )

∨

p↑
 on T∨

p  . Similarly, if p⋆  = p , we define the improved 

tree as T ⋆ = T∨
p

p⋆

◦ (T⊕
p )

∨

p↑
 , using T ⋆ as the starting tree in 

the subsequent round. We repeat this process for every 
node in OT until an improvement is obtained. The search 
stops if, in a round, we perform SPR moves on every node 
of T without finding an improvement in the quartet 
score. Given that the starting tree T has 2n− 1 nodes, 

and we may need to find the optimal placement for all 
subtrees and their complementary subtrees, the total 
running time for one round of SPR for all nodes of T has 
a complexity of O(kd2n2 log2(n)).

To fully specify this algorithm, we need to specify the dis-
tribution under which we draw without replacement (i.e., 
permutate) nodes of the tree. A simple choice is a uniform 
distribution, and we will explore that choice. However, 
our experiments in section E3. Design of heuristics reveal 
intriguing empirical patterns regarding the probability of 
an SPR move improving the quartet score. To make our 
search algorithm faster, we explored heuristics that assign 
higher probabilities to nodes with a higher empirical prob-
ability of improving the tree. Each node u ∈ VT is assigned 
a weight wu calculated using a combination of various 
heuristics explained below. Each heuristic assigns a value 
h(u) ∈ (0, 1] to u. When multiple heuristics are employed, 
these values are summed to yield the final weight wu of a 
node. Subsequently, these weights are normalized using 
ŵu = wu/

∑

v∈VT
wv . At the beginning of each round of the 

search algorithm, to obtain the random permutation OT , 
determining the order in which nodes of T are visited in 
that round, each node u is drawn without replacement with 
probability ŵu . We use three heuristics, as explained below.

Size of the subtree and its surrounding subtrees. The out-
comes of our experiments reveal an interesting trend in the 
early stages of the search: Subtrees with sizes closer to n/2 
or possessing siblings with this characteristic tend to have a 
higher probability of enhancing the tree. Nevertheless, as 
the score of the tree improves, only very small or very large 
subtrees appear to significantly influence the quartet score. 
For a non-root node u ∈ VT and its siblings 
{s1, ..., sd−1} ⊂ VT where d is the degree of u↑ , Let |LT∨

u
| and 

|LT∨
s1
|, ..., |LT∨

sd−1
| be the size of the subtree corresponding to 

u and its siblings, respectively. We define the subtree 
impact iu as:

The heuristic h1(u) is defined using the subtree impact 
iu . In practice, we noticed that prioritizing subtrees 
with larger iu score in the initial round and subtrees 
with smaller subtree impact in the later rounds (e.g., 
round > 10 ) results in the best running time. Thus, we 
assign h1(u) using a sigmoid function as follows:

Distance from the source and destination of the previous 
round. Our findings in section  E3. Design of heuristics 

iu = max
v∈{u,s1,...,sd−1}

(

min
(

|LT∨
v
|, n− |LT∨

v
|
))

(5)

h1(u) =



















(

1+ exp
(

−10( iu−1
n/2 − 0.5)

))−1
(round = 1)

1 round ∈ [2, 10]

1−
(

1+ exp
(

−10( iu−1
n/2 − 0.5)

))−1
(round ≥ 11)
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also indicate that the subtrees around the two nodes asso-
ciated with the applied SPR move in a given round have a 
higher likelihood of enhancing the tree in the subsequent 
round. Let T∨

p  be the subtree that moved in the previous 
SPR round. Let ps and pd ∈ VT correspond to the parent 
of the root of T∨

p  before and after the SPR move, respec-
tively. For a node u ∈ VT , we define DT (u, ps) as the 
number of edges on the undirected path from the sister 
of u to ps in T. Similarly, DT (u, pd) is defined as the nodal 
distance between the sister of u and pd. The reason we 
use distance to the sister is that after a node u is pruned, 
u and its parent u↑ will be absent, so, the sister to u is the 
closest remaining node. Similarly, ps and pd correspond 
to the nodes of T that were unchanged when performing 
SPR move on T∨

p  and are the sister to p before and after 
being moved, respectively. Therefore, DT (p, pd) = 0.

We define two heuristics h2(u) and h3(u) based on 
DT (u, ps) and DT (u, pd) , respectively, as:

For the initial round ( round = 1 ), we set h2(u) = 1 and 
h3(u) = 1 for all u ∈ VT . In a specific scenario where 

(Distance from ps)

h2(u) = 1−

(

1+ exp

(

−10(
DT (u, ps)

2 log n
− 0.5)

))−1

(Distance from pd)

h3(u) = 1−
(

1+ exp
(

−10(
DT (u, pd)
2 log n

− 0.5)
))−1

DT (u, pd) = 0 , signifying that either T∨
u  or T∧

u  is the sub-
tree on which the last round’s SPR move was applied, 
leading to a minimal chance of improvement for the 
node u, we assign a very small weight to u by setting 
DT (u, pd) = 2 log n.

Starting tree. The user can input a starting tree, or, in 
cases where such a tree is not provided, we employ the 
following strategy to construct one: Beginning with a 
rooted three-taxon tree, where the taxa are randomly 
selected from the leaf set of the reference trees, we iter-
atively employ tripVote to place each additional taxon 
with respect to the reference trees until a complete tree 
is formed. We opt for tripVote in this process because, 
as evidenced by our experiments (refer to Fig.  2), it 
demonstrates faster performance when the query sub-
tree is particularly small ( |LP | ≤ 2 ). We use tripVote 
in the default setting which also subsamples short 
quartets.

Implementation details. Our implementation of the 
Q-SPR algorithm, along with a comprehensive search-
based method for finding the median quartet tree given 
a set of reference trees is publicly accessible on GitHub. 
This code is built upon tripVote, which, in turn, relies 
on the tqDist library [32]. tqDist is a library that cal-
culates triplet and quartet scores between two trees, 
employing the B13 algorithm.
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Fig. 2 E1 Results. Running time versus A the query subtree size (m) or B the total tree size (n). We fix n = 500 in A and limit 30 < m < 70 in B. 
Figures are log-log scale. Thus, the shown line slope is an empirical estimate of the asymptotic running time polynomial degree. Here, tripVote refers 
to the method described in Observation 2
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Experimental setup
We include four experiments. E1) An analysis of the time 
complexity of the Q-SPR algorithm, comparing it to a 
modified version of tripVote capable of quartet-based 
SPR moves. E2) A comparison of the hill-climbing search 
method for finding the median quartet tree with the 
state-of-the-art tool ASTRAL-III. E3) Exploration of var-
ious heuristic approaches to enhance Q-SPR speed. E4) 
The use of Q-SPR as a subsequent step to widely-used 
tree estimation tools like ASTRAL-III and ASTER to fur-
ther enhance their optimality and accuracy.

E1: Running time comparison
We compared Q-SPR to a modified version of tripVote, as 
described in Observation 2. We used an existing 10,000-
taxon simulated dataset [33] including 10 replicates 
with gene trees disagreeing with the species tree due to 
both ILS and Horizontal Gene Transfer (HGT), as sim-
ulated by SimPhy [34]. We used the true species tree as 
the query tree T and the available gene trees estimated 
using FastTree-II [35] as the reference set. Note that the 
gene trees include polytomies. We randomly selected 
n ∈ {50, 100, 200, 500, 1000, 10000} taxa for each replicate 
and pruned both query trees and the reference trees to 
contain only the selected n taxa. We also subsampled the 
gene trees randomly to obtain k = 100 trees per repli-
cate. For each replicate, we applied a single round of SPR 
on every subtree P of the query tree T and measured the 
time each method took to find the optimal placement. 
For trees of size n ≥ 1000 , we restricted these analyses to 
subtrees of size m ≤ 70 . In addition to the running times, 
we computed the quartet score S4(T∧

p

v
◦ P,R) for every 

node v of T∧
p  and compared the scores of Q-SPR to the 

scores of modified tripVote to ensure the correct imple-
mentation of Q-SPR.

E2. Full quartet median tree search using heuristics
In this experiment, we tested the performance and accu-
racy of our hill-climbing search method in comparison 
to ASTRAL-III. The dataset used for this experiment 
was an existing Simphy-simulated ILS-only 200-taxon 
dataset [21], simulated under three levels of ILS (tree 
height ∈ {5× 105, 2× 106, 107} corresponding to high, 
medium, and low levels of ILS, respectively). For each 
ILS level, we considered the 50 replicates with the specia-
tion rate of 10−6 and a set of either 50 or 200 estimated 
gene trees as our reference tree set. These gene trees can 
have polytomies, and trees that have less than twice the 
number of nodes of a fully resolved tree are removed, as 
done by Mirarab and Warnow [21]; thus, the actual input 
can include fewer than 50 or 200 gene trees. We gener-
ated the starting trees from the reference set using the 
method described in section  Tree search using quartet 

SPR moves. For each replicate, we evaluated our optimi-
zation method compared to ASTRAL-III in terms of the 
normalized quartet score of the final tree with respect to 
the gene trees (i.e., the optimization score). We also com-
pared the accuracy of the tree produced by the two meth-
ods, comparing them to the true species tree in terms of 
quartet score [3] and RF (Robinson-Foulds) distance [36]. 
Finally, we compared the running time of our method, 
including the building of the starting tree, with the run-
ning time of ASTRAL-III.

E3. Exploring heuristic approaches
To develop heuristics for improving the effectiveness of 
moving each subtree, we investigated how characteris-
tics of each subtree predict the likelihood of enhancing 
the quartet score when moved to the optimal position. 
We changed the search algorithm to execute all feasible 
SPR moves in each round, recording the improvement 
in the quartet score if any was achieved without updat-
ing the query tree. At the conclusion of each round, the 
SPR move with the greatest improvement was applied 
to the query tree. For each subtree, we examined char-
acteristics such as the size of the subtree and its neigh-
boring subtrees, the nodal distance from the root of the 
subtree to the nodes associated with the optimal SPR 
move in the preceding round, and the number of applied 
SPR moves (i.e., the number of completed rounds). These 
were chosen among a larger set of metrics examined (not 
shown) which did not show as much predictive power. 
Subsequently, we explored whether these characteristics 
can predict the likelihood of improvements in the score 
resulting from an SPR move. Based on the outcomes of 
this experiment (section  E3. Design of heuristics), we 
formulated three heuristic functions outlined in sec-
tion  Tree search using quartet SPR moves. We investi-
gated how any combination of these functions affects the 
running time of our search algorithm. Where not explic-
itly specified, the combination of all three methods was 
utilized as the default method. Additionally, we explored 
whether the use of heuristics accelerates the convergence 
of the search algorithm to the optimal score.

E4. Improving ASTER and ASTRAL‑III trees
We conducted an experiment using the highly optimized 
trees produced by ASTER and ASTRAL-III as inputs 
for our search algorithm to assess whether the optimal-
ity and accuracy of these trees could be further improved 
through additional SPR moves. In this experiment, we 
evaluated ASTRAL-III and ASTER, with the latter being 
a newer algorithm shown to outperform ASTRAL-III in 
handling missing data [24]. We used the gene trees made 
available by Zhang and Mirarab [24] who modified the 
200-taxon dataset of Mirarab and Warnow [21] used in 
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E2 to remove approximately 5% of taxa at random from 
each estimated gene tree. We used this version with miss-
ing data because Zhang and Mirarab [24] documented 
that the presence of only a small number of missing data 
can impact the optimality of ASTRAL-III. Other settings 
of the dataset are identical to E2.

To measure improvements after running Q-SPR, we 
compared the starting tree and its output against the 
gene trees and the true known species tree. We report the 
quartet score and the normalized Robinson-Foulds (nRF) 
[36] metric. In addition, we used ASTRAL-III to com-
pute the local posterior probability (PP) [37] and the coa-
lescent unit length for each internal branch for each tree 
with respect to the gene tree. ASTRAL-III sets branch 

lengths to zero when the frequency of the species tree 
quartet topology is less than 1/3 among gene tees, a pat-
tern that is unexpected under MSC with a large enough 
number of gene trees. Similarly, localPP would be set to 
less than 1/3 under those conditions. We evaluated sup-
port and length for internal branches, with a particular 
focus on the unexpected cases with zero branch length or 
localPP less than 1/3.

Results
E1: running time versus m and n
Theoretical asymptotic results match our empirical run-
ning time measurements (Fig. 2). Recall that the running 

Table 4 E2 Results.

Comparing the accuracy of Q-SPR and ASTRAL-III in terms of normalized quartet score and RF distance to the true species tree

Genes ILS‑Level Normalized quartet score Normalized RF

ASTRAL‑III Q‑SPR ASTRAL‑III Q‑SPR

k = 50 High 0.8810± 0.087 0.8853± 0.089 0.1767± 0.048 0.1818± 0.054

Med 0.9572± 0.053 0.9575± 0.053 0.0845± 0.041 0.0843± 0.043

Low 0.9871± 0.026 0.9871± 0.026 0.0515± 0.036 0.0519± 0.037

k = 200 High 0.9617± 0.041 0.9589± 0.042 0.0942± 0.037 0.0953± 0.039

Med 0.9720± 0.052 0.9740± 0.047 0.0501± 0.043 0.0496± 0.043

Low 0.9928± 0.019 0.9928± 0.019 0.0308± 0.029 0.0309± 0.030
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time of Q-SPR for moving a subtree of size m from a tree 
of size n is O(k(n−m) log(n−m) log(n)) compared to 
O(km(n−m) log(n−m) log(n)) for tripVote. For fixed 
n = 500 and changing m, the asymptotic advantage of 
Q-SPR over tripVote is clear (Fig.  2A). Matching theory, 
the running time of Q-SPR is nearly independent of m 
(ranging between 9 and 16 seconds with a mean of 13.5). 
The running time of tripVote increases linearly with m, 
again, as expected. Interestingly, tripVote is faster for sub-
trees of size one or two ( m ≤ 2 ). This is because tripVote 
has fewer counters to maintain than Q-SPR, and thus has a 
smaller constant factor. The benefit of Q-SPR appears only 
for larger m values; e.g., for m > 100 , Q-SPR is 73 times 
faster than tripVote on average.  Note that the Q-SPR run-
ning time reduces slightly with m. To understand why, 
note that increasing m decreases the size of the backbone 
tree B , which is n−m . Thus, as m increases, Q-SPR can 
become faster because it depends on the size of B and not 
m.

When we change the tree size n and apply SPR to 
mid-size subclades ( 30 < m < 70 ), tripVote and Q-SPR 
have similar running time growth rates (Fig. 2B). This is 
because the theoretical running time of both methods is 
quasi-linear with respect to n; empirically, the observed 
log-log slope is slightly above 1.0, matching these expec-
tations. However, note that for all n, Q-SPR is faster than 
tripVote by 10 to 31 times (mean: 16). This pattern also 
matches the theoretical expectations because Q-SPR is 
faster than tripVote by a factor of �(m).

E2: Tree estimation using Q‑SPR search
Q-SPR obtains a better optimization score than 
ASTRAL-III in 66 out of 294 cases, while ASTRAL-III 
has a better score in 15 cases (Fig. 3A). Moreover, Q-SPR 
improvements are more substantial than ASTRAL. Aver-
aged over all cases, Q-SPR achieves a 0.012% higher nor-
malized quartet score than ASTRAL, with this difference 
being close to 0.061% when considering only the cases 
where Q-SPR outperforms ASTRAL. These improve-
ments are particularly significant for the high ILS (tree 
height = 5× 105 ) and k = 50 model condition, showing 
a 0.068% improvement overall and 0.092% for the cases 
with a higher score. These improvements in quartet 
scores are despite the fact that the starting trees of Q-SPR 
have substantially lower scores—often 1–3% (Fig. 3B). In 
all but a handful of cases, Q-SPR manages to reach scores 
close to or above ASTRAL-III. The number of rounds of 
SPR needed ranges from as few as 4 and as high as 271, 
with more rounds needed for higher ILS and fewer genes.

Enhancing the quartet score with respect to the gene 
trees does not meaningfully impact the tree accuracy 

(Table  4). Exact conditions where one method outper-
forms the other depend on the choice of the metric, but 
in all cases, changes in accuracy are small compared to 
variation across replicates. Only 35% and 59% of the cases 
with improved quartet scores also exhibit higher accuracy 
compared to ASTRAL-III in terms of nRF and quartet 
score.

In terms of running time, ASTRAL-III is substantially 
faster than the Q-SPR search (Additional file 1: Table S4). 
On average, ASTRAL is 124 and 306 times faster than 
Q-SPR search for k = 50 and k = 200 , respectively. It is 
important to note that although ASTRAL-III is faster in 
practice, all our inputs had low number of genes k. The 
running time of one round of Q-SPR grows linearly with 
the number of genes k, while ASTRAL-III running time 
grows quadratically with k.

E3. Design of heuristics
The size of the pruned subtree has predictive power for 
the probability of improvement of an SPR move in ways 
that change with the number of passed rounds (Fig. 4A). 
In the initial rounds, the subtrees with a size closer to 
n/2 have a higher likelihood of improving the tree when 
moved by an SPR move. However, as the rounds pro-
gress and the tree becomes closer to optimal, this pat-
tern reverses, and subtrees with either very small or very 
large sizes become more likely to improve the score. This 
observation can be explained. An SPR move on mid-
sized subtrees contributes the most to change in tree 
topology and change in the quartet score. In the initial 
rounds, when the tree is far from optimal, moving these 
subtrees exerts the most impact. However, as the search 
progresses and the tree becomes closer to optimal, these 
mid-sized subtrees become less likely to move. Conse-
quently, very small or very large subtrees gain higher 
chances of improvement in later rounds. Note that very 
small and very large subtrees are equivalent because at 
each node p, we examine moving both T∨

p  and T∧
p  . The 

same pattern is observed when considering the impact of 
the size of the sibling of the pruned node on the likeli-
hood of improvement (Fig.  4B). These observations are 
the impetus for the first heuristic given in (5).

Another intriguing pattern is the impact of the distance 
of a subtree from the areas affected by the SPR move in 
the previous round (Fig. 4C). Our experiment suggests a 
clear correlation between these distances and the likeli-
hood of improvement. Nodes close to either the source 
or the destination of the previous successful SPR move 
have a higher chance of having a successful SPR of their 
own. This result is the basis for heuristics h2 and h3.
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The set of three heuristics results in moderate reduc-
tions in running time (Fig.  4D). Using all of the three 
heuristics described in section Tree search using quartet 

SPR moves reduces the running time by 15 min on aver-
age (Additional  1: Table S4). Interestingly, it appears that 
combining at least two of the three metrics is needed to 
obtain improved speeds. Our results from E2 also show 
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Fig. 4 E3 Results. A, B The impact of the size of a subtree (A) or its sister (B) on the probability that an SPR applied to that subtree leads 
to an improved quartet score. Panels show the impact on the first round, middle rounds (1, 10], and final runs (10, 50]. The starting tree is the result 
of step-wise additions. In the first round, subtrees with a size around n/2 have a higher probability of improvement while in the final rounds, 
small and larger subtrees are likely to improve speed. C Improvement probability of an SPR move compared to the distance to the source (ps) 
or the destination (pd) of the previous move. For each node p, we show the distance from its sister (i.e., the closest node left in the tree after we 
remove T∨p  ) to the node above which the previous SPR move was placed (pd) or the sister of the node that was moved in the previous SPR move 
(ps). Subtrees close to the previous source or destination have a higher probability of improving the score. The reduction at distance 0 for pd 
is because this case represents an attempt to move the previously moved node p, or its complement T∧p  , and the former by construction has 0 
probability of moving because it is already in its optimal position. D Comparison of the running time for a full Q-SPR search run between different 
combinations of heuristic methods. The building time for the starting tree is also included.
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that using heuristic approaches results in a faster opti-
mization of the tree in terms of the number of rounds 
(Fig. 3B).

E4. Improving ASTER and ASTRAL‑III trees
Out of 600 replicate runs tested, Q-SPR improves the 
quartet score (i.e., the optimization criterion) compared 
to the ASTRAL-III or ASTER starting trees in 129 repli-
cates. However, patterns of improvement in the quartet 
score depend heavily on the level of ILS and the starting 
tree method (Fig.  5A). ASTRAL-III is improved more 
than ASTER, consistent with results of [24], showing 
that ASTRAL-III output can be suboptimal for cases 
with missing data and relatively few input trees. Also, 
improvements are more pronounced for 50 genes com-
pared to 200 and for medium ILS compared to low ILS. 
While the improvement in quartet score can be up to 6% 
in rare cases, in most cases it is under 0.5% (Additional 
file 1: Fig. S3).

Better optimization scores do not consistently lead to 
substantially improved species trees (Fig.  5B). For low 
and medium ILS, accuracy rarely changes, while some 
improvements are observed for high ILS, in particular 
with respect to ASTER (Fig. 5C). Out of the 129 cases with 
improved quartet scores, the Q-SPR tree was more accu-
rate in only 45 or 68 cases, in terms of nRF or quartet dis-
tance, respectively. However, in a substantial number of 
cases (84 or 61, for nRF and quartet distance, resp.), the 
improved optimization score led to reduced accuracy. It 
should be noted that when the quartet score improves but 
accuracy degrades, the reductions are small (mean: 0.96% 
nRF). When the quartet score does improve, the improve-
ments in accuracy can be up to 11.9% (mean: 1.91% nRF). 
Cases with high accuracy improvement tend to be those 
with higher increases in the quartet score (Fig.  5B and 
Additional file 1: Fig. S3). Beyond accuracy, local support 
values also change as a result of running Q-SPR (Addi-
tional file 1: Fig. S4). In particular, the output trees include 
fewer branches that have support below 1/3 and branch 
length 0, which is not expected under the MSC model. 
Interestingly, it appears that compared to ASTER, Q-SPR 
has more branches with 100% support as well.

The progress of Q-SPR across rounds shows high vari-
ation across replicates and model conditions (Additional 
file 1: Fig. S2). While the mean number of rounds is 1 for 
low ILS, 200 genes condition, for high ILS, 50 genes, we 
need 13.2 rounds on average. It also appears that improved 
accuracy is often obtained in challenging datasets where 
the quartet score is low, to begin with, while substantial 
improvements in quartet score often do not improve accu-
racy if the initial quartet score is high (Fig. 5E).

Discussion
Our main algorithmic contribution in this paper was 
showing how to find the optimal SPR move for quartet 
distance in time that grows quasi-linearly with the size 
of the tree. The best previous method for solving this 
method was repeated applications of tripVote (Observa-
tion 2), which is asymptotically slower than our method 
by a factor of n. Using our efficient algorithm for SPR 
moves, we were able to build a hill-climbing method for 
inferring species trees from gene trees.

Our resulting method, Q-SPR, was slower than 
ASTRAL-III and no more accurate than it. While this 
observation reduces the immediate impact of Q-SPR in 
practice, it does get us close to answering a fundamen-
tal question: Is the combined scalability and accuracy of 
ASTRAL-III due to its dynamic programming algorithm? 
The answer seems to be yes, as employing the traditional 
hill-climbing approach achieves essentially the same 
accuracy but at a much higher running time. The impli-
cation of this observation for future work is that perhaps 
using a dynamic programming algorithm constrained 
to a predefined search space for phylogenetic inference 
problems other than quartet median tree can improve 
their scalability and accuracy as well.

We showed that Q-SPR can improve on ASTRAL-III 
and ASTER in terms of the objective function if those 
are used as the starting tree. On a practical level, these 
improvements are useful as they eliminate cases with 
very low local posterior probability support, particularly 
those with support below 1/3 . However, the fact that 
topological accuracy does not improve despite improve-
ments in quartet score is interesting. The reason seems 
to be that branches that change tend to be low support 
branches that are uncertain in both resolutions. In other 
words, the imperfect correlation between the quar-
tet score and accuracy given a limited number of genes 
has reduced the impact of improving the quartet score 
beyond what heuristics such as ASTER and ASTRAL-
III achieve. In practice, the main benefit of following 
ASTRAL-III or ASTER with Q-SPR is to 1) test whether 
differences between outputs of these methods and alter-
native analyses (e.g., concatenation) can be explained by 
lack of optimality as opposed to other explanations, and 
2) eliminate problematic branches with 0 length or sup-
port < 1/3.

In a hill-climbing search, if one can prioritize what 
branches to examine, the search may converge faster. We 
identified some potential ways of making such predic-
tions and observed moderate improvements in running 
time as a result. We leave it to future work to examine 
whether more elaborate methods, such as those proposed 
by Azouri et al. [38] can further improve accuracy. Such 
future work should also examine the impact of starting 
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from different types of starting trees or multiple starting 
trees, which may impact accuracy (and will impact run-
ning time). Beyond prioritizing SPR moves, interesting 
theoretical questions remain unanswered: Perhaps some 
of the calculations performed in one SPR round can be 
reused in the next round, or calculations for one clade 
could be reused for adjacent clades. Moreover, we did not 
attempt NNI moves, but those are a special case of SPR, 
and perhaps those can be implemented with reduced 
computational requirements. Finally, our implementation 
of the search heuristic (as opposed to the Q-SPR move) is 
based on a Python code without extensive performance 
optimization. Future work can further optimize the code 
and explore parallelism.
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