
Arasti and Mirarab
Algorithms for Molecular Biology (2024) 19:12
https://doi.org/10.1186/s13015-024-00257-3

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Algorithms for
Molecular Biology

Median quartet tree search algorithms using
optimal subtree prune and regraft
Shayesteh Arasti1 and Siavash Mirarab2*

Abstract

Gene trees can be different from the species tree due to biological processes and inference errors. One way to obtain
a species tree is to find one that maximizes some measure of similarity to a set of gene trees. The number of shared
quartets between a potential species tree and gene trees provides a statistically justifiable score; if maximized prop-
erly, it could result in a statistically consistent estimator of the species tree under several statistical models of discord-
ance. However, finding the median quartet score tree, one that maximizes this score, is NP-Hard, motivating several
existing heuristic algorithms. These heuristics do not follow the hill-climbing paradigm used extensively in phyloge-
netics. In this paper, we make theoretical contributions that enable an efficient hill-climbing approach. Specifically,
we show that a subtree of size m can be placed optimally on a tree of size n in quasi-linear time with respect to n
and (almost) independently of m. This result enables us to perform subtree prune and regraft (SPR) rearrangements
as part of a hill-climbing search. We show that this approach can slightly improve upon the results of widely-used
methods such as ASTRAL in terms of the optimization score but not necessarily accuracy.

Keywords Phylogenetics, Gene tree discordance, Quartet score, Quartet distance, Subtree prune and regraft, Tree
search, ASTRAL

Introduction
The NP-Hard [1] problem of finding a tree that mini-
mizes the total quartet distance to a set of given trees has
found wide-ranging applications in recent years [2]. The
quartet distance between two unrooted trees is obtained
by dividing each tree into all its quartets (choices of
four taxa) and counting quartet topologies that do not
match [3]. While studying this quartet median tree prob-
lem is not new [4, 5], its renewed popularity is a result
of its connection to a broader trend in phylogenomics
– the embrace of methods that account for discordance
between gene trees and species trees [6]. While various

approaches exist for accounting for such discordance
when inferring a species tree [7], many of these methods
rely on quartets. There is a reason for the use of quartets.
As originally noted by Allman et al. [8] for the multi-
species coalescent model (MSC) [9, 10] of incomplete
lineage sorting (ILS) and later extended to models of
duplication and loss (GDL) [11, 12], HGT [13], and even
ILS+GDL [14], on a quartet species tree, the unrooted
gene tree topology matching the species tree has a higher
probability of being observed than the two alternative
topologies. Some methods (e.g., ASTRAL [15]) have used
this observation to directly use the median quartet tree
problem as a way of estimating species trees. Others (e.g.,
[16–18]) have used this observation to infer individual
quartet species trees using some criterion and then com-
bine them. Either way, taxa are divided into quartets.

Dividing n taxa naively into quartets will require
�(n4) time just to list the quartets, making any result-
ing algorithm impractical on large datasets. Some meth-
ods still use this approach but subsample quartets to

*Correspondence:
Siavash Mirarab
smirarab@ucsd.edu
1 Computer Science and Engineering Department, University
of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
2 Electrical and Computer Engineering Department, University
of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-024-00257-3&domain=pdf

Page 2 of 18Arasti and Mirarab Algorithms for Molecular Biology (2024) 19:12

an asymptotically smaller size (e.g., a quadratic or even
O(n log(n)) number [19]). However, subsampling can be
avoided while achieving high scalability using improved
data structures and algorithms. For the simplest problem
of computing the quartet distance between two trees,
which naively would require �(n4) time, a straightfor-
ward algorithm can achieve quadratic time [20]. This
requires the post-traversal of one tree and compar-
ing each node versus each node of the other tree, keep-
ing track of the number of shared children below these
nodes. This approach has been at the heart of ASTRAL
since version 2 [21]. If we allow ourselves to use much
more sophisticated data structures, we can do even bet-
ter. Brodal et al. [22] have designed a complex data struc-
ture called Hierarchical Decomposition Tree (HDT),
which, along with a host of counters and other algorith-
mic tricks, enable a O(n log2(n)) algorithm for comput-
ing quartet distance. Mai and Mirarab [23] later extended
this approach to solve the problem of adding one taxon
to a tree so that the updated tree has the minimum pos-
sible distance to a set of k input trees. Zhang and Mirarab
[24] used similar ideas to infer a tree by successively add-
ing one taxon to a growing tree in a tool called ASTER.
Thus, quadratic and sub-quadratic quartet methods with-
out subsampling are widely available.

Available quartet-based median tree inference meth-
ods differ from most other phylogenetic inference meth-
ods in their approach. ASTRAL [15], which is perhaps
the most widely used method for this problem, uses a
dynamic programming algorithm (an approach with
long history; see [25–27]) to solve the problem exactly
in exponential time or under some constraints in poly-
nomial time (O((nk)2.726) in the worst case and close to
n2k2 empirically [28]). The ASTER package [24, 29] uses
several rounds of step-wide addition with random orders
of adding taxa, followed by a dynamic programming step
similar to ASTRAL to combine these greedy results. Ear-
lier methods such as wQMC use graph-based techniques
[30]. Thus, none of these methods use the hill-climbing
search algorithms used by most other phylogenetic infer-
ence tools. While ASTRAL has been scalable, it is not
clear if the reason is the use of a constrained dynamic
programming algorithm or if an efficient hill-climb-
ing could be as efficient or perhaps even more. If the
improvements are due to constrained dynamic program-
ming, perhaps we should explore similar methods for
other problems. On the other hand, it is possible that hill
climbing can improve quartet-based estimation in terms
of running time, accuracy, or both.

Hill climbing tree search requires efficient methods of
updating the score after a rearrangement. This is often
straightforward for Nearest Neighbour Interchange
(NNI) moves around the current tree T. However, many

modern methods use Subtree Prune and Regraft (SPR)
rearrangements in addition to NNI. SPR rearrangement
is defined on an edge (u,u′) , selecting one end, say u, as
the pruning point. The (u,u′) edge is pruned at u and
is grafted back on an edge (v, v′) by creating new edges
(v, u) and (u, v′) . Assume we know the quartet distance
of a tree to another tree before an SPR move. How
should we update the distance after the move? We could
use the Brodal et al. [22] (called B13 hereafter) method
and simply recompute the score in O(n log2(n)) time.
Doing so, we would need O(n2 log2(n)) time to find the
optimal SPR move for a given (u,u′) ; one “round” of
SPR would in the worst case require trying pruning all
edges of a tree, which would need O(n3 log2(n)) . Thus, a
single SPR round can start to become infeasible, and we
need many rounds.

Our goal in this paper is to enable SPR-based hill
climbing for the quartet median tree given a set
of k input trees. Mai and Mirarab [23] extended
the B13 algorithm to optimally add a single taxon
to a tree in O(n log2(n)k) time. For a pruned sub-
tree of size m, we can repeatedly use this algo-
rithm to find the optimal grafting destination in
O((n−m)m log(n−m) log(n)k) = O(n2 log2(n)k)
time. In this paper, we show that we can do even bet-
ter: In O((n−m) log(n−m) log(n)k) time, we can find
the optimal position for the pruned subtree of size m.
Surprisingly, this time does not increase with m and
is only O(n log2(n)k) in the worst case when m and n
are of the same order. This worst-case for finding the
optimal grafting position is surprisingly the same as the
time needed for computing the quartet score. With this
algorithm, a full SPR round requires only O(n2 log2(n)k)
time because O(n) SPR sources need to be tested.

Our theoretical results enable us to design a hill-
climbing algorithm for the median quartet tree prob-
lem. We built such a tool, called Q-SPR. In simulation
and on real data, we show that starting from ASTRAL-
III trees, SPR moves can improve the quartet score
marginally; however, these improvements do not result
in meaningful improvements in accuracy. Starting
from a tree built using a stepwise addition performed
using tripVote leads to a complete hill-climbing soft-
ware, which, while competitive with ASTRAL-III in
terms of accuracy, is substantially slower in prac-
tice under the conditions we tested here. Our results
indicate that the dynamic programming strategy of
ASTRAL is indeed beneficial for achieving fast run-
ning time. However, we note that Q-SPR still is useful
for further refining ASTRAL-III output. Moreover, its
memory and running time depend on k only linearly,
which is better than ASTRAL-III, which depends on k

Page 3 of 18Arasti and Mirarab Algorithms for Molecular Biology (2024) 19:12

super-quadratically, for handling tens or hundreds of
thousands of genes.

Materials and methods
Notations
We denote a tree by T = (VT ,ET) and let LT ⊆ VT be the
leaftset. An edge (v,u) ∈ ET is directed from the parent
v to the child u. We refer to the root of a tree T by rT
and use dT to denote its maximum node degree, omitting
the subscript when clear. We use u↑ to denote the parent
of a node u∈ VT\{rT } . We let Lu denote the set of leaves
below u. Removing the edge (u↑,u) from the tree T cre-
ates two subtrees, one with and one without the vertex u,
denoted by T∨

u and T∧
u , respectively. Note that any result-

ing degree-2 node in T∧
u is suppressed, connecting its

child to its parent. We use T u
◦ T ′ to denote the placement

of a rooted subtree T ′ on the edge (u↑,u) of T: we divide
(u↑,u) to (u↑, v) and (v, u) by adding v and then connect
T ′ to v by adding the edge (v, rT ′) . When u is the root rT ,
we add a new root r∗ and create two new edges (r∗,u) and
(r∗, rT ′) . The tree T can be rerooted at an edge e = (v,u)
to obtain the rerooted tree T⊕

u ; to do so, we divide e into
(v, r) and (r, u) where r is the new root and reverse the
direction of all edges in the path from r to rT . Finally, we
remove all degree-2 nodes other than the new root by
connecting their children to their parents in the rerooted
tree T⊕

u .
A tree T can be restricted to any arbitrary set of three

leaves in LT (suppressing nodes with a single child in the
process) [31]; we call each of those a triplet of T. We call
the least common ancestor (LCA) of any three leaves in
T its anchor. We similarly define a rooted quartet and its
anchor by restricting T to any set of four leaves. Unroot-
ing this tree gives us the unrooted quartet; when not
specified, the term quartet refers to the unrooted case.
For a triplet of leaves {x, y, z} , we say T1 and T2 match, or
the triplet is matching or shared between T1 and T2 , iff
{x, y, z} ⊆ LT1 ∩ LT2 , and T1 and T2 have the same triplet
topologies when restricted to {x, y, z} . Similarly, a quartet
of leaves {w, x, y, z} is called a matching or shared quartet
of T1 and T2 iff {w, x, y, z} ⊆ LT1 ∩ LT2 , and the restricted
trees have the same unrooted topology in both trees.

Problem definition
We use S3(T1,T2) to denote the number of triplets that
match between the two trees and use S4(T1,T2) to denote
the number of quartets matching between two trees.

Definition 1 (Q-SPR Problem) Given a rooted query
tree T = (VT ,ET) , a set of arbitrarily rooted reference
trees R = {R1,R2, ...,Rk} , and p ∈ VT\{rT } , find

where u∗ is the optimal placement of the pruned subtree
T∨
p and T∧

p

u∗

◦ T∨
p gives the optimal output (Fig. 1A). Let

n = |LT | and m = |Lp| , and thus |LT∧
p
| = n−m.

The Maximum-matching Quartet Placement (MQP)
problem of Mai and Mirarab [23] is a special case of
Q-SPR where m = 1 and a single query taxon q is placed
on a given tree. They also defined a Maximum Triplet
Rooting (MTR) problem where the goal is to root a given
tree T based on a set of rooted reference trees R so that
the rooted tree T ∗ maximizes

∑k
i=1 S3(T

∗,Ri) . MQP and
MTR turn out to be equivalent: All reference trees can be
rooted at q, and q can be placed at the root of the output
of MTR to solve MQP.

Background: tripVote algorithm
Our solution to Q-SPR builds on the tripVote [23] algo-
rithm that solves MTR and MQP using an extension of
the B13 algorithm. Recall tripVote seeks to optimally root
a query tree T with respect to a reference tree R. tripVote
is based on a recursion:

where R is a single reference tree R, and the τ values are
counters defined in Table 1. Effectively, this recursion
computes the score of each rerooting T⊕

u of T based on
precomputed counters and the score of the rerooting on
the parent of the current node. The τ iu , τ ou , and τ ru counters
are computed in a top-down traversal of T, and Equation
(1) makes it trivial to find the optimal rooting once these
counters are computed.

Coloring scheme. To compute the counters, tripVote
follows the coloring scheme of B13. As it traverses T in
preorder, on visiting a node u, it recolors the leaves so
that each side of u has a different color. Thus, we need
dT colors, which we refer to with an index in [0, dT − 1] .
Around a node u of T with degree d and children
v1, . . . , vd−1 and parent u↑ , we can obtain d subtrees:
T∨
v1
, . . . ,T∨

vd−1
 , and T∧

u . After recoloring, the leaves in T∧
u

are colored 0, and the leaves in the subtrees T∨
v1
, . . . ,T∨

vd−1

are colored 1, . . . , d − 1 , respectively. Colors are marked
on leaves of both T and R, which are linked using bidi-
rectional pointers. Conceptually, the node u partitions
leaves of T into d parts, and leaves of each part can be
located anywhere in the tree R (i.e., do not necessarily
form a clade). The coloring of a leaf in R helps us track
which part (i.e., side of u in T) it belongs to. Colors are

u∗ = arg max
u∈VT∧

p

k
∑

i=1

S4(T
∧
p

u
◦ T∨

p ,Ri)

(1)S3(T
⊕
u ,R) = S3(T

⊕
u↑
,R)− τ i

u↑
− τ r

u↑
+ τ ou + τ ru

Page 4 of 18Arasti and Mirarab Algorithms for Molecular Biology (2024) 19:12

updated one leaf at a time. After all leaves are colored to
match u, we traverse R from recolored leaves to the root
and update a set of counters kept at each node of R. These
counters are functions of the colors of the leaves in R
and are used in counting the number of shared triplets
between T and R that match certain criteria specific to
node u, given in Table 1.

Hierarchical Decomposition Tree (HDT). To make
recoloring fast, B13 represent R using a data structure
called HDT (Hierarchical Decomposition Tree). HDT is a
locally balanced tree that is built on a rooted tree R with n
nodes in O(n). Each node (also called component) of the
HDT corresponds to a set of connected nodes in R. There

are four possible types of components in an HDT listed
in Table 2. An HDT is constructed in an iterative process.
Initially, every leaf and internal node of R is represented
with an L or I type component in the HDT, respectively.
During each round of construction, two components are
merged to form a new HDT component, which is their
parent (i.e., includes them). The type of the new node
depends on what types are merged (Table 2). The order
of these merge operations is specified by B13. The pro-
cess stops when we build the root component of the HDT
(R), which corresponds to the set of all nodes of R.

Once the HDT is built, its nodes are assigned counters
that keep getting updated. Each component X of the

Fig. 1 An overview of the Q-SPR problem and the algorithm. A The query tree T, a set of reference trees R (one shown), and a node p are given.
An SPR move removes a subtree T∨p (P for short) and places it somewhere on the rest of the T, denoted by T∧p (B for short). The Q-SPR problem seeks

the placement above node u denoted by T∧p
u
◦ T∨p (or B

u
◦ P for short) with the maximum number of shared unrooted quartets with the reference

tree(s). B The recursive equation of Lemma 1: each of the counters corresponds to a certain type of solo quartet, color-coded here. Subtracted
counters are to fix double-counting by other counters, as shown in Table 3. C Reference tree R is represented as an HDT. For each node u of B ,
the leaves are colored such that they correspond to the sides of that node. Outside u is colored 0, the larger child is colored 1, and the rest are
colored 2 . . . du . The recoloring of B results in the recoloring of the HDT nodes representing R. Note that query nodes are always colored −1 and are
never recolored. Overall, we need O(n log(n)) leaf recoloring during the top-down traversal of B , each of which can require a O(log(n)) bottom-up
traversal of the HDT

Page 5 of 18Arasti and Mirarab Algorithms for Molecular Biology (2024) 19:12

HDT has two main counters ρX and πX
j , defined in

Table 1 (of these, ρX is similar to B13 counters and πX
j is

specific to tripVote). Note that these counters keep
changing value as we traverse T and recolor its leaves.
After we visit a node u of T, leaf recoloring and counter
updates are triggered; after this is done, counters of the
HDT (ρX and πX

j) have values defined in Table 1 specific
to u. Each HDT counter of a component X is the sum
over all its children, plus extra triplets counted specifi-
cally at X. Due to this cumulative nature and based on
their definition (Table 1), ρX and πX

j at the root of the
HDT (R) give τ iu , τ ou , and τ ru values of T; that is, τ iu = πR

0 ,
τ ru = ρR , and τ ovj = πR

j . To recolor each leaf of the HDT,

we update ρX and πX
j counters for all its ancestors; at the

root R , we can update the corresponding τ iu , τ ou , and τ ru
counters of T. The ρX and πX

j counters, in turn, are based
on O(d2) other auxiliary counters kept for each node of
the HDT and more complex recursive equations to
update these counters (we revisit these recursions later).
These updates can be done with a time complexity that,
per node, does not depend on n, requiring O(d2) amor-
tized over all calculations.

Running time. In terms of the running time, recolor-
ing one node of the HDT requires only O(d2T log(n))
calculations because of the local balance property of the
HDT (i.e., each component of the HDT with m leaves
has O(log(m)) height). Also, as we traverse T, using a
smaller-half trick adopted from B13, we perform at most
O(n log(n)) leaf recoloring on the HDT (a naive recolor-
ing scheme would require O(n2) recolorings). Since each
counter is updated in constant time, the total recoloring
time is O(d2Tn log

2(n)) for one reference tree. If we have

k reference tree, we process them independently, obtain-
ing O(kd2Tn log

2(n)) . Note that the HDT structure can be
constructed from R in O(n) time.

Optimal quartet SPR placement in sub‑quadratic time
For ease of notation, we let B denote the backbone tree
after pruning (i.e., T∧

p), let P denote the pruned subtree

(i.e., T∨
p), and let d = dT . First, we note:

Observation 1 To find the number of shared quartets
between any potential placement of P on B and the ref-
erence tree R, we only need to count those quartets that
have a single leaf from P and three leaves from B.

Proof The topologies for quartets with zero or more
than one leaves from P do not depend on the placement
of P . Those with zero or four from P clearly have no rela-
tion to its placement. Those with two from P always have
these two leaves together, regardless of the placement of
P . Since P is rooted, those with three will have the topol-
ogy implied by the triplet from P regardless of its place-
ment. �

Based on this simple observation, we define:

Definition 2 For any instance of the Q-SPR problem, a
quartet is called solo if it includes exactly one leaf from P .
For a solo quartet, removing the sole leaf from P creates
its associated triplet. A solo quartet is said to belong to
an HDT component X when the L-type component cor-
responding to each of its four leaves is nested within X.

Observation 2 Q-SPR problem can be solved by
repeated applications of tripVote.

Proof Since only solo quartets matter, we can place
each single-leaf tree q of P independently using tripVote
to obtain the quartet score S4(B

v
◦ q,R) for every node

v ∈ VB . Then, we can compute

where C is a constant (shared quartets with zero or more
than one leaf from P), which is independent of the node v
and thus can be ignored. It is easy to see that by Observa-
tion 1, maximizing this score returns the optimal place-
ment. �

Using tripVote to solve the Q-SPR problem requires
O(kd2(n−m) log(n−m) log(n)m) time, which is
O(kd2n2 log2(n)) for m = �(n) and is thus impractical

S4(B
v
◦ P,R) = C +

∑

ti∈LP

S4(B
v
◦ ti,R)

Table 1 Each counter gives the number of triplets shared
between a query tree T (or a rerooting of T; 2nd column) that
are anchored at a particular node of T (e.g., u; 3rd column) and a
component X of the HDT (4th column)

HDT represents the reference tree R and is rooted at R

 Rerooting T at Shared triplets anchored at Under HDT
component

Counters of a node u of T

τ iu no rerooting node u R

τ ru (u↑ , u) new root of T⊕u R

τ ou (u↑ , u) new sister to u (old u↑) R

Counters of a component X of the HDT

πX
0

no rerooting node u X

ρX (u↑ , u) new root of T⊕u X

πX
j

(u, vj) new sister to vj (old u) X

Page 6 of 18Arasti and Mirarab Algorithms for Molecular Biology (2024) 19:12

for large enough n. Instead, we propose a new method to
directly solve Q-SPR, as summarized in Algorithm 1. This
algorithm borrows ideas from tripVote but moves it from
being based on triplets to quartets; that is, we directly
count the number of shared quartets between the query
tree and an arbitrary rooting of the reference tree. Thus,
we have to mark the leaves of P on reference tree(s). We

assign a new color −1 to the leaves of the query subtree
P (Fig. 1C). These leaves, which are missing from B , have
a fixed color. We will also need new counters. Below, we
focus on the case with one reference tree R but handling
multiple reference trees follows trivially.

Algorithm 1 Solution to the Q-SPR problem. du is the degree of u.

Page 7 of 18Arasti and Mirarab Algorithms for Molecular Biology (2024) 19:12

Algorithm 1 operates through a pre-order traversal
of B . Visiting each node u, it colors leaves of the HDT
representing R such that each side of u has a differ-
ent color, with 1 assigned to the largest child and 0
assigned to leaves not under u (Fig. 1C). Once leaves
have the right color, it updates a set of auxiliary coun-
ters available on the HDT for all nodes that have been
recolored (UpdateHDTCounters function). When
these updates are all done, it has computed (line: 11)
a set of counters for u, as defined in Lemma 1 and
depicted in Fig. 1B. Once the traversal of B is finished,
using these counters, and the recursion given in Lemma
1 (see Fig. 1B), the algorithm is able to count each quar-
tet shared between R and B u

◦ P . In the end, finding the
edge with the maximum score is trivial as the score for
each edge is computed.

Lemma 1 For any non-root node u ∈ VB\{rB}, the quar-
tet score can be calculated recursively using

where ϕi
u , ϕr

u , and ϕo
u are defined as the number of shared

solo quartets between the placement B u
◦ P and R such

that the associated triplet would be anchored at

• ϕi
u: node u in the given rooting of B,

• ϕr
u: the new root of the alternative rerooting B⊕

u ,
• ϕo

u: node u↑ in the alternative rerooting of B⊕
u .

The quartet score for the root of B, rB , is:

where C is a constant that can be ignored.

(2)S4(B
u
◦ P,R) = S4(B

u↑

◦ P,R)− ϕi
u↑

− ϕr
u↑

+ ϕo
u + ϕr

u

(3)S4(B
rB
◦ P,R) = C +

∑

u∈VB

ϕi
u

Proof Recall that according to Observation 1, only the
solo quartets play a role in calculating the quartet score
when comparing different placements of the query sub-
tree P on the backbone tree B . We let the constant C
include all non-solo quartets that are shared. Thus, we
only count shared solo quartets in the other terms. At the
root of the backbone tree B , it is evident that each shared
solo quartet is precisely counted once at the anchor of its
associated triplet. Thus, Eq. 3 corresponds to the quartet
score resulting from placing P on rB.

For any non-root node u ∈ VB\{rB} , we partition the
leaves of B into three sets (those under it, under its sister,
and the rest): LB∨u , LB∨

u↑
\LB∨u , and LB∧

u↑
 . We examine all

possible scenarios in which the leaves of the associated
triplets for the shared quartets between B u

◦ P and R can
be distributed among these three sets. For each case,
Table 3 establishes that the shared quartets are counted
precisely once in Eq. 2 (see Fig. 1B). A quartet that is a
shared quartet for both B u

◦ P and B u↑

◦ P (all but last case)

is counted by S4(B
u↑

◦ P,R) . In cases given in the second,
third, and fourth lines, a quartet is also counted once
with a positive sign and once with a negative sign by
other counters. In the last case, only ϕr

u counts the
quartet.�

We update the meaning of HDT counters ρX and πX
j

compared to tripVote. Assume in the preorder traversal
of B , we are on node u. Then, ρX and πX

j count the num-
ber of solo quartets that belong to the component X of
the HDT and match the solo quartets in the placement
B

u
◦ P where the associated triplet is anchored at

• ρX : the root in the alternative rerooting B⊕
u ,

• πX
0 : the node u in the alternative rerooting B⊕

u↑
,

Table 2 HDT components types

Each component in the HDT corresponds to a set of connected nodes in the reference tree R, and can have four types. To construct HDT, B13 follows the rules provided
here to compose new components and transform existing ones. B13 show that these rules applied with the appropriate order result in a locally balanced hierarchy.

Type Rule Description

I initial Corresponds to an internal node in R. Every I component is a leaf in the HDT.

L initial Corresponds to a leaf node in R. Every L component is a leaf of the HDT and is considered a C type as well.

G Corresponds to a subtree of R (i.e., every node of R descendent from any node in a G is also in that component.)

GG → G Two G components can merge if their roots are siblings in R.

C → G A C can convert to a G if it corresponds to a subtree of R.

C Corresponds to a connected subset of nodes in R. The children of a C satisfy this: there exists an R node in one child that is the
ancestor of an R node in the other child.

IG → C An I and a G component can merge when the root of G is a child of the internal node in R represented by I.

CC → C Two C components can merge if the root of one in R is the ancestor of the other in R and they form a connected subset of nodes.

Page 8 of 18Arasti and Mirarab Algorithms for Molecular Biology (2024) 19:12

• πX
j (j ≥ 1) : the node u in the alternative rerooting B⊕

vj

where vj is a child of u.

Note that rerootings of B are hypothetical (no actual
rerooting is performed). Each unrooted quartet in B will
have some arbitrary rooting in R. Once again, it is easy to
see that at the HDT root R , we can update the counters
of the B from the HDT counters:

We are now ready to state a key result:

Lemma 2 The ρX and πX
j counters of the HDT compo-

nent X can be updated in O(d2) time assuming the coun-
ters for children of X are already calculated.

Proof We derive a set of recursions for each compo-
nent, which depend on their type (Table 2). Since L types
include a single leaf and I include no leaf, no quartet
can belong to them; thus, ρX and πX

j are set to zero for
these components.

Consider a component X of types IG → C , CC → C , or
GG → G , each of which has two child components,
denoted by X1 and X2 . A quartet q belongs to X of these
types if q belongs to X1, q belongs to X2, or q has at least
one leaf from each child of X. Thus, if we let ρX

comb and
πX
combj

 count the part of ρX and πX
j coming from those

quartets with at least one leaf from each child, then,
clearly:

For IG → C components, ρX
comb and πX

combj
 are both 0

because the I component is a single internal node and
cannot contain any leaves. For other types, we use auxil-
iary counters, which lead to 62 distinct cases. In short,

(4)ϕr
u = ρR ϕi

u = πR

0 ϕo
vj
= πR

j .

ρX =ρX1 + ρX2 + ρX
comb

πX
j =π

X1
j + π

X2
j + πX

combj

• ρX
comb : For these, the rooted quartets must have either

((i, j), (−1, 0)) or ((0, 0), (−1, i)) unrooted topologies,
where i, j ∈ [1, d] . The recursive equations for these
cases are given in Additional file 1: Tables S1 and S2,
respectively. Additional file 1: Fig. S1A demonstrates
an example of how ρX is computed and also how ϕr

u is
computed using ρX.

• πX
combj

 : For these, the rooted quartets must have the
unrooted topology ((i, i), (−1, k)) where i, k ∈ [0, d]
and i, k = j . The recursions for auxiliary counters are
given in Additional file 1: Table S3.

Note that we have counted only resolved quartets. And
all solo quartets have exactly a single −1 . Thus, for each
HDT component, we have O(d2) counters each of which
is of the form (0,−1, i, j) for i, j ∈ [1, d] . Following all
recursions in Additional file 1: Tables S1–S3, we can eas-
ily check that the cost of updating all the counters amor-
tized over all counters is constant. This is because most
counters require a constant time while a constant num-
ber of counters require O(d2) time. �

We next formally state that the number of leaf color-
ings is subquadratic.

Lemma 3 The total traversal of a tree B with N nodes
using Algorithm 1 requires a total of N log(N) leaf color-
ing steps.

Proof The proof follows from B13 results and in par-
ticular its smaller-half trick. Algorithm 1 first colors
all nodes as 1, using O(N) operations. Then, during
the traversal, it recolors each node u of B only if u has
a sibling that is larger or the same size; these nodes are
colored as 1 when u is visited (line 25), as 2 ≤ i ≤ d when
u↑ is visited (line 27), and as 0 right before existing u↑
(line 29). For a tree with N leaves, the sum of the num-
ber of leaves under all nodes that have a larger or equal-
sized sibling is O

(

N log(N)
)

 ; consider the worst case, a
fully balanced tree, where the number is the solution to

Table 3 Cases for an associated triplet Lt = {t1, t2, t3} of a shared solo quartet in recursive equation (2). In each case, the quartet is
counted exactly once, as shown in column

∑

Case
S4(B

u
↑

◦ P,R) −ϕi

u↑
−ϕr

u↑
ϕo
u ϕr

u

∑

Lt ⊂ LB∨u or Lt ⊂ LB∨
u↑

\ LB∨u or Lt ⊂ LB∧
u↑

1 0 0 0 0 1

Lt ⊂ LB∨u , Lt ⊂ LB∨
u↑

\ LB∨u , and Lt ⊂ LB∨
u↑

1 −1 0 0 1 1

Lt ⊂ LB∨u , Lt ⊂ LB∧
u↑

 , and Lt ⊂ LB∨u ∪ LB∧
u↑

1 0 −1 0 1 1

Lt ⊂ LB∨
u↑

\ LB∨u , Lt ⊂ LB∧
u↑

 , and Lt ⊂ LB∧u 1 0 −1 1 1 1

t1 ∈ LB∨u , t2 ∈ LB∨
u↑

\ LB∨u , and t3 ∈ LB∧
u↑

0 0 0 0 1 1

Page 9 of 18Arasti and Mirarab Algorithms for Molecular Biology (2024) 19:12

f (N) = 2f (N/2)+ N/2 , which is N (1+ 1/2 log2(N)) .
Thus, the worst-case scenario for the total number of
recolored nodes is O(N log(N)) . �

Theorem 1 Algorithm 1 optimally solves the Q-SPR
problem in O(kd2(n−m) log(n−m) log(n)) where n
is the size of the full tree and m is the size of the pruned
subtree.

Proof The HDT data structure has a height of O(log(n))
by design [22]. According to Lemma 2, updating each
node of HDT takes O(d2) , and recoloring one node
requires traversing the HDT tree from the leaf to the
root. Thus, the total time for recoloring a single leaf is
O(d2 log(n)) . Moreover, Lemma 3 established that at
most O((n−m) log(n−m)) leaf recoloring steps are
needed for our backbone tree B of size n−m after prun-
ing. Thus, we need O(d2(n−m) log(n−m) log(n))
operations for leaf recoloring for one reference tree and
O(kd2(n−m) log(n−m) log(n)) if we have k such trees.
By Eq. 4, after recolroing the leaves under a node u of B
in the HDT, ρR and πR

j give us ϕi
u , ϕr

u , and ϕo
u . By Lemma

1, we obtain the score for placing P on each branch using
ϕi
u , ϕr

u , and ϕo
u values and a simple tree traversal; finally,

we simply choose the placement branch (u↑,u) that max-
imizes the score. �

Tree search using quartet SPR moves
Having access to an optimal and efficient SPR move, we
can now design a standard hill-climbing tree search to
find the quartet median tree with respect to a set of refer-
ence trees R. The algorithm begins with a starting tree T,
obtained using any method. We draw non-root nodes of
T randomly (without replacement) from some distribu-
tion resulting in a random permutation of non-root
nodes of T, denoted as OT . For each node p in the order
OT , we prune T∨

p from T to obtain T∧
p . We solve the

Q-SPR problem to determine the optimal place-
ment node p∗ of T∨

p . If p∗ �= p , we place T∨
p on p∗ to

obtain the improved tree T ∗ = T∧
p

p∗

◦ T∨
p and use T ∗ as

the starting tree in the next round. If not, we apply the
same approach to the complementary subtree of T∨

p ,
namely (T⊕

p)
∨

p↑
 . Let p⋆ be the optimal placement of

(T⊕
p)

∨

p↑
 on T∨

p . Similarly, if p⋆ = p , we define the improved

tree as T ⋆ = T∨
p

p⋆

◦ (T⊕
p)

∨

p↑
 , using T ⋆ as the starting tree in

the subsequent round. We repeat this process for every
node in OT until an improvement is obtained. The search
stops if, in a round, we perform SPR moves on every node
of T without finding an improvement in the quartet
score. Given that the starting tree T has 2n− 1 nodes,

and we may need to find the optimal placement for all
subtrees and their complementary subtrees, the total
running time for one round of SPR for all nodes of T has
a complexity of O(kd2n2 log2(n)).

To fully specify this algorithm, we need to specify the dis-
tribution under which we draw without replacement (i.e.,
permutate) nodes of the tree. A simple choice is a uniform
distribution, and we will explore that choice. However,
our experiments in section E3. Design of heuristics reveal
intriguing empirical patterns regarding the probability of
an SPR move improving the quartet score. To make our
search algorithm faster, we explored heuristics that assign
higher probabilities to nodes with a higher empirical prob-
ability of improving the tree. Each node u ∈ VT is assigned
a weight wu calculated using a combination of various
heuristics explained below. Each heuristic assigns a value
h(u) ∈ (0, 1] to u. When multiple heuristics are employed,
these values are summed to yield the final weight wu of a
node. Subsequently, these weights are normalized using
ŵu = wu/

∑

v∈VT
wv . At the beginning of each round of the

search algorithm, to obtain the random permutation OT ,
determining the order in which nodes of T are visited in
that round, each node u is drawn without replacement with
probability ŵu . We use three heuristics, as explained below.

Size of the subtree and its surrounding subtrees. The out-
comes of our experiments reveal an interesting trend in the
early stages of the search: Subtrees with sizes closer to n/2
or possessing siblings with this characteristic tend to have a
higher probability of enhancing the tree. Nevertheless, as
the score of the tree improves, only very small or very large
subtrees appear to significantly influence the quartet score.
For a non-root node u ∈ VT and its siblings
{s1, ..., sd−1} ⊂ VT where d is the degree of u↑ , Let |LT∨

u
| and

|LT∨
s1
|, ..., |LT∨

sd−1
| be the size of the subtree corresponding to

u and its siblings, respectively. We define the subtree
impact iu as:

The heuristic h1(u) is defined using the subtree impact
iu . In practice, we noticed that prioritizing subtrees
with larger iu score in the initial round and subtrees
with smaller subtree impact in the later rounds (e.g.,
round > 10) results in the best running time. Thus, we
assign h1(u) using a sigmoid function as follows:

Distance from the source and destination of the previous
round. Our findings in section E3. Design of heuristics

iu = max
v∈{u,s1,...,sd−1}

(

min
(

|LT∨
v
|, n− |LT∨

v
|
))

(5)

h1(u) =

(

1+ exp
(

−10(iu−1
n/2 − 0.5)

))−1
(round = 1)

1 round ∈ [2, 10]

1−
(

1+ exp
(

−10(iu−1
n/2 − 0.5)

))−1
(round ≥ 11)

Page 10 of 18Arasti and Mirarab Algorithms for Molecular Biology (2024) 19:12

also indicate that the subtrees around the two nodes asso-
ciated with the applied SPR move in a given round have a
higher likelihood of enhancing the tree in the subsequent
round. Let T∨

p be the subtree that moved in the previous
SPR round. Let ps and pd ∈ VT correspond to the parent
of the root of T∨

p before and after the SPR move, respec-
tively. For a node u ∈ VT , we define DT (u, ps) as the
number of edges on the undirected path from the sister
of u to ps in T. Similarly, DT (u, pd) is defined as the nodal
distance between the sister of u and pd. The reason we
use distance to the sister is that after a node u is pruned,
u and its parent u↑ will be absent, so, the sister to u is the
closest remaining node. Similarly, ps and pd correspond
to the nodes of T that were unchanged when performing
SPR move on T∨

p and are the sister to p before and after
being moved, respectively. Therefore, DT (p, pd) = 0.

We define two heuristics h2(u) and h3(u) based on
DT (u, ps) and DT (u, pd) , respectively, as:

For the initial round (round = 1), we set h2(u) = 1 and
h3(u) = 1 for all u ∈ VT . In a specific scenario where

(Distance from ps)

h2(u) = 1−

(

1+ exp

(

−10(
DT (u, ps)

2 log n
− 0.5)

))−1

(Distance from pd)

h3(u) = 1−
(

1+ exp
(

−10(
DT (u, pd)
2 log n

− 0.5)
))−1

DT (u, pd) = 0 , signifying that either T∨
u or T∧

u is the sub-
tree on which the last round’s SPR move was applied,
leading to a minimal chance of improvement for the
node u, we assign a very small weight to u by setting
DT (u, pd) = 2 log n.

Starting tree. The user can input a starting tree, or, in
cases where such a tree is not provided, we employ the
following strategy to construct one: Beginning with a
rooted three-taxon tree, where the taxa are randomly
selected from the leaf set of the reference trees, we iter-
atively employ tripVote to place each additional taxon
with respect to the reference trees until a complete tree
is formed. We opt for tripVote in this process because,
as evidenced by our experiments (refer to Fig. 2), it
demonstrates faster performance when the query sub-
tree is particularly small (|LP | ≤ 2). We use tripVote
in the default setting which also subsamples short
quartets.

Implementation details. Our implementation of the
Q-SPR algorithm, along with a comprehensive search-
based method for finding the median quartet tree given
a set of reference trees is publicly accessible on GitHub.
This code is built upon tripVote, which, in turn, relies
on the tqDist library [32]. tqDist is a library that cal-
culates triplet and quartet scores between two trees,
employing the B13 algorithm.

B)A)

0.99

−0.02

0.1

1.0

10.0

1 10 100
m

ru
nn

in
g

tim
e

(m
in

ut
es

)

tripVote

QSPR
1.22

1.28

1e−02

1e−01

1e+00

1e+01

1e+02

100 1000 10000
n

ru
nn

in
g

tim
e

(m
in

ut
es

)

tripVote

QSPR

Fig. 2 E1 Results. Running time versus A the query subtree size (m) or B the total tree size (n). We fix n = 500 in A and limit 30 < m < 70 in B.
Figures are log-log scale. Thus, the shown line slope is an empirical estimate of the asymptotic running time polynomial degree. Here, tripVote refers
to the method described in Observation 2

Page 11 of 18Arasti and Mirarab Algorithms for Molecular Biology (2024) 19:12

Experimental setup
We include four experiments. E1) An analysis of the time
complexity of the Q-SPR algorithm, comparing it to a
modified version of tripVote capable of quartet-based
SPR moves. E2) A comparison of the hill-climbing search
method for finding the median quartet tree with the
state-of-the-art tool ASTRAL-III. E3) Exploration of var-
ious heuristic approaches to enhance Q-SPR speed. E4)
The use of Q-SPR as a subsequent step to widely-used
tree estimation tools like ASTRAL-III and ASTER to fur-
ther enhance their optimality and accuracy.

E1: Running time comparison
We compared Q-SPR to a modified version of tripVote, as
described in Observation 2. We used an existing 10,000-
taxon simulated dataset [33] including 10 replicates
with gene trees disagreeing with the species tree due to
both ILS and Horizontal Gene Transfer (HGT), as sim-
ulated by SimPhy [34]. We used the true species tree as
the query tree T and the available gene trees estimated
using FastTree-II [35] as the reference set. Note that the
gene trees include polytomies. We randomly selected
n ∈ {50, 100, 200, 500, 1000, 10000} taxa for each replicate
and pruned both query trees and the reference trees to
contain only the selected n taxa. We also subsampled the
gene trees randomly to obtain k = 100 trees per repli-
cate. For each replicate, we applied a single round of SPR
on every subtree P of the query tree T and measured the
time each method took to find the optimal placement.
For trees of size n ≥ 1000 , we restricted these analyses to
subtrees of size m ≤ 70 . In addition to the running times,
we computed the quartet score S4(T∧

p

v
◦ P,R) for every

node v of T∧
p and compared the scores of Q-SPR to the

scores of modified tripVote to ensure the correct imple-
mentation of Q-SPR.

E2. Full quartet median tree search using heuristics
In this experiment, we tested the performance and accu-
racy of our hill-climbing search method in comparison
to ASTRAL-III. The dataset used for this experiment
was an existing Simphy-simulated ILS-only 200-taxon
dataset [21], simulated under three levels of ILS (tree
height ∈ {5× 105, 2× 106, 107} corresponding to high,
medium, and low levels of ILS, respectively). For each
ILS level, we considered the 50 replicates with the specia-
tion rate of 10−6 and a set of either 50 or 200 estimated
gene trees as our reference tree set. These gene trees can
have polytomies, and trees that have less than twice the
number of nodes of a fully resolved tree are removed, as
done by Mirarab and Warnow [21]; thus, the actual input
can include fewer than 50 or 200 gene trees. We gener-
ated the starting trees from the reference set using the
method described in section Tree search using quartet

SPR moves. For each replicate, we evaluated our optimi-
zation method compared to ASTRAL-III in terms of the
normalized quartet score of the final tree with respect to
the gene trees (i.e., the optimization score). We also com-
pared the accuracy of the tree produced by the two meth-
ods, comparing them to the true species tree in terms of
quartet score [3] and RF (Robinson-Foulds) distance [36].
Finally, we compared the running time of our method,
including the building of the starting tree, with the run-
ning time of ASTRAL-III.

E3. Exploring heuristic approaches
To develop heuristics for improving the effectiveness of
moving each subtree, we investigated how characteris-
tics of each subtree predict the likelihood of enhancing
the quartet score when moved to the optimal position.
We changed the search algorithm to execute all feasible
SPR moves in each round, recording the improvement
in the quartet score if any was achieved without updat-
ing the query tree. At the conclusion of each round, the
SPR move with the greatest improvement was applied
to the query tree. For each subtree, we examined char-
acteristics such as the size of the subtree and its neigh-
boring subtrees, the nodal distance from the root of the
subtree to the nodes associated with the optimal SPR
move in the preceding round, and the number of applied
SPR moves (i.e., the number of completed rounds). These
were chosen among a larger set of metrics examined (not
shown) which did not show as much predictive power.
Subsequently, we explored whether these characteristics
can predict the likelihood of improvements in the score
resulting from an SPR move. Based on the outcomes of
this experiment (section E3. Design of heuristics), we
formulated three heuristic functions outlined in sec-
tion Tree search using quartet SPR moves. We investi-
gated how any combination of these functions affects the
running time of our search algorithm. Where not explic-
itly specified, the combination of all three methods was
utilized as the default method. Additionally, we explored
whether the use of heuristics accelerates the convergence
of the search algorithm to the optimal score.

E4. Improving ASTER and ASTRAL‑III trees
We conducted an experiment using the highly optimized
trees produced by ASTER and ASTRAL-III as inputs
for our search algorithm to assess whether the optimal-
ity and accuracy of these trees could be further improved
through additional SPR moves. In this experiment, we
evaluated ASTRAL-III and ASTER, with the latter being
a newer algorithm shown to outperform ASTRAL-III in
handling missing data [24]. We used the gene trees made
available by Zhang and Mirarab [24] who modified the
200-taxon dataset of Mirarab and Warnow [21] used in

Page 12 of 18Arasti and Mirarab Algorithms for Molecular Biology (2024) 19:12

E2 to remove approximately 5% of taxa at random from
each estimated gene tree. We used this version with miss-
ing data because Zhang and Mirarab [24] documented
that the presence of only a small number of missing data
can impact the optimality of ASTRAL-III. Other settings
of the dataset are identical to E2.

To measure improvements after running Q-SPR, we
compared the starting tree and its output against the
gene trees and the true known species tree. We report the
quartet score and the normalized Robinson-Foulds (nRF)
[36] metric. In addition, we used ASTRAL-III to com-
pute the local posterior probability (PP) [37] and the coa-
lescent unit length for each internal branch for each tree
with respect to the gene tree. ASTRAL-III sets branch

lengths to zero when the frequency of the species tree
quartet topology is less than 1/3 among gene tees, a pat-
tern that is unexpected under MSC with a large enough
number of gene trees. Similarly, localPP would be set to
less than 1/3 under those conditions. We evaluated sup-
port and length for internal branches, with a particular
focus on the unexpected cases with zero branch length or
localPP less than 1/3.

Results
E1: running time versus m and n
Theoretical asymptotic results match our empirical run-
ning time measurements (Fig. 2). Recall that the running

Table 4 E2 Results.

Comparing the accuracy of Q-SPR and ASTRAL-III in terms of normalized quartet score and RF distance to the true species tree

Genes ILS‑Level Normalized quartet score Normalized RF

ASTRAL‑III Q‑SPR ASTRAL‑III Q‑SPR

k = 50 High 0.8810± 0.087 0.8853± 0.089 0.1767± 0.048 0.1818± 0.054

Med 0.9572± 0.053 0.9575± 0.053 0.0845± 0.041 0.0843± 0.043

Low 0.9871± 0.026 0.9871± 0.026 0.0515± 0.036 0.0519± 0.037

k = 200 High 0.9617± 0.041 0.9589± 0.042 0.0942± 0.037 0.0953± 0.039

Med 0.9720± 0.052 0.9740± 0.047 0.0501± 0.043 0.0496± 0.043

Low 0.9928± 0.019 0.9928± 0.019 0.0308± 0.029 0.0309± 0.030

64%

14%

2%

44%

6%

2%

High
ILS

Med
ILS

Low
ILS

50 200
genes

20%

8%

0%

0%

2%

0%

50 200
genes

High ILS Medium ILS Low ILS

50 genes
200 genes

0 100 200 0 25 50 75 0 10 20 30 40

−0.03

−0.02

−0.01

0.00

−0.02

−0.01

0.00

Q-SPR round

Q
ua

rt
et

 s
co

re
 (

Q
-S

P
R

 −
 A

S
T

R
A

L-
III

)

Heuristic SPR

Random SPR

Q-SPR better ASTRAL better B)A)

Fig. 3 E2 Results. A Percentage of the replicates with improved (left) and reduced (right) quartet scores compared to ASTRAL-III. These results
are based on the heuristic search. B We show the normalized quartet score of Q-SPR trees across rounds minus the normalized quartet score
of the ASTRAL-III tree (both with respect to input gene trees) as rounds progress (0: starting tree). The final delta normalized quartet score compared
to the ASTRAL is marked for each replicate.

Page 13 of 18Arasti and Mirarab Algorithms for Molecular Biology (2024) 19:12

time of Q-SPR for moving a subtree of size m from a tree
of size n is O(k(n−m) log(n−m) log(n)) compared to
O(km(n−m) log(n−m) log(n)) for tripVote. For fixed
n = 500 and changing m, the asymptotic advantage of
Q-SPR over tripVote is clear (Fig. 2A). Matching theory,
the running time of Q-SPR is nearly independent of m
(ranging between 9 and 16 seconds with a mean of 13.5).
The running time of tripVote increases linearly with m,
again, as expected. Interestingly, tripVote is faster for sub-
trees of size one or two (m ≤ 2). This is because tripVote
has fewer counters to maintain than Q-SPR, and thus has a
smaller constant factor. The benefit of Q-SPR appears only
for larger m values; e.g., for m > 100 , Q-SPR is 73 times
faster than tripVote on average. Note that the Q-SPR run-
ning time reduces slightly with m. To understand why,
note that increasing m decreases the size of the backbone
tree B , which is n−m . Thus, as m increases, Q-SPR can
become faster because it depends on the size of B and not
m.

When we change the tree size n and apply SPR to
mid-size subclades (30 < m < 70), tripVote and Q-SPR
have similar running time growth rates (Fig. 2B). This is
because the theoretical running time of both methods is
quasi-linear with respect to n; empirically, the observed
log-log slope is slightly above 1.0, matching these expec-
tations. However, note that for all n, Q-SPR is faster than
tripVote by 10 to 31 times (mean: 16). This pattern also
matches the theoretical expectations because Q-SPR is
faster than tripVote by a factor of �(m).

E2: Tree estimation using Q‑SPR search
Q-SPR obtains a better optimization score than
ASTRAL-III in 66 out of 294 cases, while ASTRAL-III
has a better score in 15 cases (Fig. 3A). Moreover, Q-SPR
improvements are more substantial than ASTRAL. Aver-
aged over all cases, Q-SPR achieves a 0.012% higher nor-
malized quartet score than ASTRAL, with this difference
being close to 0.061% when considering only the cases
where Q-SPR outperforms ASTRAL. These improve-
ments are particularly significant for the high ILS (tree
height = 5× 105) and k = 50 model condition, showing
a 0.068% improvement overall and 0.092% for the cases
with a higher score. These improvements in quartet
scores are despite the fact that the starting trees of Q-SPR
have substantially lower scores—often 1–3% (Fig. 3B). In
all but a handful of cases, Q-SPR manages to reach scores
close to or above ASTRAL-III. The number of rounds of
SPR needed ranges from as few as 4 and as high as 271,
with more rounds needed for higher ILS and fewer genes.

Enhancing the quartet score with respect to the gene
trees does not meaningfully impact the tree accuracy

(Table 4). Exact conditions where one method outper-
forms the other depend on the choice of the metric, but
in all cases, changes in accuracy are small compared to
variation across replicates. Only 35% and 59% of the cases
with improved quartet scores also exhibit higher accuracy
compared to ASTRAL-III in terms of nRF and quartet
score.

In terms of running time, ASTRAL-III is substantially
faster than the Q-SPR search (Additional file 1: Table S4).
On average, ASTRAL is 124 and 306 times faster than
Q-SPR search for k = 50 and k = 200 , respectively. It is
important to note that although ASTRAL-III is faster in
practice, all our inputs had low number of genes k. The
running time of one round of Q-SPR grows linearly with
the number of genes k, while ASTRAL-III running time
grows quadratically with k.

E3. Design of heuristics
The size of the pruned subtree has predictive power for
the probability of improvement of an SPR move in ways
that change with the number of passed rounds (Fig. 4A).
In the initial rounds, the subtrees with a size closer to
n/2 have a higher likelihood of improving the tree when
moved by an SPR move. However, as the rounds pro-
gress and the tree becomes closer to optimal, this pat-
tern reverses, and subtrees with either very small or very
large sizes become more likely to improve the score. This
observation can be explained. An SPR move on mid-
sized subtrees contributes the most to change in tree
topology and change in the quartet score. In the initial
rounds, when the tree is far from optimal, moving these
subtrees exerts the most impact. However, as the search
progresses and the tree becomes closer to optimal, these
mid-sized subtrees become less likely to move. Conse-
quently, very small or very large subtrees gain higher
chances of improvement in later rounds. Note that very
small and very large subtrees are equivalent because at
each node p, we examine moving both T∨

p and T∧
p . The

same pattern is observed when considering the impact of
the size of the sibling of the pruned node on the likeli-
hood of improvement (Fig. 4B). These observations are
the impetus for the first heuristic given in (5).

Another intriguing pattern is the impact of the distance
of a subtree from the areas affected by the SPR move in
the previous round (Fig. 4C). Our experiment suggests a
clear correlation between these distances and the likeli-
hood of improvement. Nodes close to either the source
or the destination of the previous successful SPR move
have a higher chance of having a successful SPR of their
own. This result is the basis for heuristics h2 and h3.

Page 14 of 18Arasti and Mirarab Algorithms for Molecular Biology (2024) 19:12

The set of three heuristics results in moderate reduc-
tions in running time (Fig. 4D). Using all of the three
heuristics described in section Tree search using quartet

SPR moves reduces the running time by 15 min on aver-
age (Additional 1: Table S4). Interestingly, it appears that
combining at least two of the three metrics is needed to
obtain improved speeds. Our results from E2 also show

(10,50]

(1,10]

(0,1]

2.5 7.5 15 30 50 70 90 110 130 150 170 185 195

0.10

0.15

0.20

0.25

0.025

0.050

0.075

0.100

0.00

0.02

0.04

0.06

Subtree size

Im
pr

ov
em

en
t p

ro
ba

bi
lit

y

(10,50]

(1,10]

(0,1]

2.5 7.5 15 30 50 70 90 110 130 150 170 185 195

0.10

0.15

0.20

0.25

0.30

0.04

0.06

0.08

0.10

0.00

0.02

0.04

Sibling size

Im
pr

ov
em

en
t p

ro
ba

bi
lit

y

0.00

0.03

0.06

0.09

0 10 20 30
Distance

Im
pr

ov
em

en
t p

ro
ba

bi
lit

y

Distance from

ps pd

200 genes

5

10

15

20

2

4

6

R
an

do
m

O
nl

y
si

ze

O
nl

y
ps

 d
is

t

O
nl

y
pd

 d
is

t

S
iz

e
an

d
ps

 d
is

t

S
iz

e
an

d
pd

 d
is

t

ps
 a

nd
 p

d
di

stA
ll

R
an

do
m

O
nl

y
si

ze

O
nl

y
ps

 d
is

t

O
nl

y
pd

 d
is

t

S
iz

e
an

d
ps

 d
is

t

S
iz

e
an

d
pd

 d
is

t

ps
 a

nd
 p

d
di

stA
ll

R
un

tim
e

(t
ho

us
an

d
se

co
nd

s)

50 genes

R
un

tim
e

(t
ho

us
an

d
se

co
nd

s)

A) B)

C) D)

Fig. 4 E3 Results. A, B The impact of the size of a subtree (A) or its sister (B) on the probability that an SPR applied to that subtree leads
to an improved quartet score. Panels show the impact on the first round, middle rounds (1, 10], and final runs (10, 50]. The starting tree is the result
of step-wise additions. In the first round, subtrees with a size around n/2 have a higher probability of improvement while in the final rounds,
small and larger subtrees are likely to improve speed. C Improvement probability of an SPR move compared to the distance to the source (ps)
or the destination (pd) of the previous move. For each node p, we show the distance from its sister (i.e., the closest node left in the tree after we
remove T∨p) to the node above which the previous SPR move was placed (pd) or the sister of the node that was moved in the previous SPR move
(ps). Subtrees close to the previous source or destination have a higher probability of improving the score. The reduction at distance 0 for pd
is because this case represents an attempt to move the previously moved node p, or its complement T∧p , and the former by construction has 0
probability of moving because it is already in its optimal position. D Comparison of the running time for a full Q-SPR search run between different
combinations of heuristic methods. The building time for the starting tree is also included.

Page 15 of 18Arasti and Mirarab Algorithms for Molecular Biology (2024) 19:12

A) B)

58%

4%

2%

10%

4%

0%

90%

20%

2%

60%

8%

0%

ASTRAL−III

ASTER

50 200

High
ILS

Med
ILS

Low
ILS

High
ILS

Med
ILS

Low
ILS

genes

0.00

0.04

0.08

0.12

0.00% 0.25% 0.50% 0.75% 1.00% 1.25%
Improvement in noramalized quartet score

Im
pr

ov
em

en
t i

n
sp

ec
ie

s
tre

e
(n

R
F)

−2500000

0

2500000

5000000

7500000

0.00% 0.25% 0.50% 0.75% 1.00% 1.25%
Improvement in noramalized quartet score

Im
pr

ov
em

en
t i

n
sp

ec
ie

s
tre

e
(n

R
F)

0
10
20
50
100
150

rounds

C)
High ILS Medium ILS Low ILS

50 200 50 200 50 200

−0.05

0.00

0.05

0.10

genes

D
el

ta
 s

pe
ci

es
 tr

ee
 e

rr
or

 (n
R

F)

High ILS Medium ILS Low ILS

50 200 50 200 50 200

−2500000

0

2500000

5000000

7500000

genes

D
el

ta
 s

pe
ci

es
 tr

ee
 e

rr
or

 (q
ua

rte
t)

vs.
ASTER
vs.
ASTRAL−III

D)
aster

50

aster

200

astral3

50

astral3

200

0 50 100150200250 0 20 40 60 0 50 100 150 200 0 25 50 75

0.4

0.5

0.6

0.7

round

N
or

m
al

iz
ed

 q
ua

rte
t s

co
re

−0.05

0.00

0.05

0.10

Tree
 accuracy
 improvement

Fig. 5 E4 Results. A For each input model condition, we show the percentage of the replicates with improved quartet scores, starting
from either ASTER or ASTRAL-III trees. B Improvement in the quartet score of the Q-SPR algorithm above the ASTER tree (under the High ILS model
condition and k = 50) with respect to the gene trees versus the improvement in the normalized RF or the quartet distance between the ASTER
tree and the true species tree. The number of SPR rounds performed for each replicate is shown in colors. Restricted to high ILS, 50 genes, ASTER;
see Additional file 1: Fig. S3 for all model conditions. C The difference between the normalized RF and the quartet distance of the Q-SPR tree
and the starting tree with respect to the true species tree for all tested conditions. Positive (negative) values indicate an improvement (reduction)
in the accuracy of the starting tree. D The normalized quartet score between the Q-SPR tree at the end of each SPR round and the gene trees
under the High ILS (ILS rate = 500k) model conditions. The final improvement of the Q-SPR tree with respect to the true species tree is shown
in colors. See Additional file 1: Fig. S2 for full results.

Page 16 of 18Arasti and Mirarab Algorithms for Molecular Biology (2024) 19:12

that using heuristic approaches results in a faster opti-
mization of the tree in terms of the number of rounds
(Fig. 3B).

E4. Improving ASTER and ASTRAL‑III trees
Out of 600 replicate runs tested, Q-SPR improves the
quartet score (i.e., the optimization criterion) compared
to the ASTRAL-III or ASTER starting trees in 129 repli-
cates. However, patterns of improvement in the quartet
score depend heavily on the level of ILS and the starting
tree method (Fig. 5A). ASTRAL-III is improved more
than ASTER, consistent with results of [24], showing
that ASTRAL-III output can be suboptimal for cases
with missing data and relatively few input trees. Also,
improvements are more pronounced for 50 genes com-
pared to 200 and for medium ILS compared to low ILS.
While the improvement in quartet score can be up to 6%
in rare cases, in most cases it is under 0.5% (Additional
file 1: Fig. S3).

Better optimization scores do not consistently lead to
substantially improved species trees (Fig. 5B). For low
and medium ILS, accuracy rarely changes, while some
improvements are observed for high ILS, in particular
with respect to ASTER (Fig. 5C). Out of the 129 cases with
improved quartet scores, the Q-SPR tree was more accu-
rate in only 45 or 68 cases, in terms of nRF or quartet dis-
tance, respectively. However, in a substantial number of
cases (84 or 61, for nRF and quartet distance, resp.), the
improved optimization score led to reduced accuracy. It
should be noted that when the quartet score improves but
accuracy degrades, the reductions are small (mean: 0.96%
nRF). When the quartet score does improve, the improve-
ments in accuracy can be up to 11.9% (mean: 1.91% nRF).
Cases with high accuracy improvement tend to be those
with higher increases in the quartet score (Fig. 5B and
Additional file 1: Fig. S3). Beyond accuracy, local support
values also change as a result of running Q-SPR (Addi-
tional file 1: Fig. S4). In particular, the output trees include
fewer branches that have support below 1/3 and branch
length 0, which is not expected under the MSC model.
Interestingly, it appears that compared to ASTER, Q-SPR
has more branches with 100% support as well.

The progress of Q-SPR across rounds shows high vari-
ation across replicates and model conditions (Additional
file 1: Fig. S2). While the mean number of rounds is 1 for
low ILS, 200 genes condition, for high ILS, 50 genes, we
need 13.2 rounds on average. It also appears that improved
accuracy is often obtained in challenging datasets where
the quartet score is low, to begin with, while substantial
improvements in quartet score often do not improve accu-
racy if the initial quartet score is high (Fig. 5E).

Discussion
Our main algorithmic contribution in this paper was
showing how to find the optimal SPR move for quartet
distance in time that grows quasi-linearly with the size
of the tree. The best previous method for solving this
method was repeated applications of tripVote (Observa-
tion 2), which is asymptotically slower than our method
by a factor of n. Using our efficient algorithm for SPR
moves, we were able to build a hill-climbing method for
inferring species trees from gene trees.

Our resulting method, Q-SPR, was slower than
ASTRAL-III and no more accurate than it. While this
observation reduces the immediate impact of Q-SPR in
practice, it does get us close to answering a fundamen-
tal question: Is the combined scalability and accuracy of
ASTRAL-III due to its dynamic programming algorithm?
The answer seems to be yes, as employing the traditional
hill-climbing approach achieves essentially the same
accuracy but at a much higher running time. The impli-
cation of this observation for future work is that perhaps
using a dynamic programming algorithm constrained
to a predefined search space for phylogenetic inference
problems other than quartet median tree can improve
their scalability and accuracy as well.

We showed that Q-SPR can improve on ASTRAL-III
and ASTER in terms of the objective function if those
are used as the starting tree. On a practical level, these
improvements are useful as they eliminate cases with
very low local posterior probability support, particularly
those with support below 1/3 . However, the fact that
topological accuracy does not improve despite improve-
ments in quartet score is interesting. The reason seems
to be that branches that change tend to be low support
branches that are uncertain in both resolutions. In other
words, the imperfect correlation between the quar-
tet score and accuracy given a limited number of genes
has reduced the impact of improving the quartet score
beyond what heuristics such as ASTER and ASTRAL-
III achieve. In practice, the main benefit of following
ASTRAL-III or ASTER with Q-SPR is to 1) test whether
differences between outputs of these methods and alter-
native analyses (e.g., concatenation) can be explained by
lack of optimality as opposed to other explanations, and
2) eliminate problematic branches with 0 length or sup-
port < 1/3.

In a hill-climbing search, if one can prioritize what
branches to examine, the search may converge faster. We
identified some potential ways of making such predic-
tions and observed moderate improvements in running
time as a result. We leave it to future work to examine
whether more elaborate methods, such as those proposed
by Azouri et al. [38] can further improve accuracy. Such
future work should also examine the impact of starting

Page 17 of 18Arasti and Mirarab Algorithms for Molecular Biology (2024) 19:12

from different types of starting trees or multiple starting
trees, which may impact accuracy (and will impact run-
ning time). Beyond prioritizing SPR moves, interesting
theoretical questions remain unanswered: Perhaps some
of the calculations performed in one SPR round can be
reused in the next round, or calculations for one clade
could be reused for adjacent clades. Moreover, we did not
attempt NNI moves, but those are a special case of SPR,
and perhaps those can be implemented with reduced
computational requirements. Finally, our implementation
of the search heuristic (as opposed to the Q-SPR move) is
based on a Python code without extensive performance
optimization. Future work can further optimize the code
and explore parallelism.

Supplementary Information
The online version contains supplementary material available at https:// doi.
org/ 10. 1186/ s13015- 024- 00257-3.

Additional file 1. The supplementary materials include additional tables
and figures referenced in this paper.

Author contributions
SA implemented the approach. Both authors contributed to all other steps.

Funding
This research was supported by the National Science Foundation Grant IIS
1845967 and the National Institutes of Health (NIH) Grant 1R35GM142725.

Availability of data and materials
The code is publically available at (github. com/ shaye steh99/ Quart etSPR). The
data generated during this study is available in (github. com/ shaye steh99/
Quart etSPR- Data).

Declarations

Competing interests
The authors declare no competing interests.

Received: 30 November 2023 Accepted: 13 February 2024

References
 1. Lafond M, Scornavacca C. On the Weighted Quartet Consensus problem.

Theor Comput Sci 2019;769, 1–17 https:// doi. org/ 10. 1016/j. tcs. 2018. 10.
005 . arXiv: 1610. 00505

 2. Mirarab S. Species tree estimation using ASTRAL: Practical considerations.
In: Species tree inference: a guide to methods and applications. Prince-
ton; Princeton University Press; 2023.

 3. Estabrook GF, McMorris FR, Meacham CA. Comparison of undirected
phylogenetic trees based on subtrees of four evolutionary units. Syst Biol.
1985;34(2):193–200. https:// doi. org/ 10. 2307/ sysbio/ 34.2. 193.

 4. Steel M. The complexity of reconstructing trees from qualitative char-
acters and subtrees. J Class. 1992;9(1):91–116. https:// doi. org/ 10. 1007/
BF026 18470.

 5. Snir S, Warnow T, Rao S. Short Quartet Puzzling: A New Quartet-Based
Phylogeny Reconstruction Algorithm. J Comput Biol. 2008;15(1):91–103.
https:// doi. org/ 10. 1089/ cmb. 2007. 0103.

 6. Maddison WP. Gene trees in species trees. Syst Biol. 1997;46(3):523–36.
https:// doi. org/ 10. 2307/ 24136 94.

 7. Blischak PD, Brown JM, Cao Z, Cloutier A, Cobb K, DiGiacomo, AA, Eaton
DA, Edwards SV, Gallivan KA, Gates DJ. Species tree inference: a guide to
methods and applications. Princeton: Princeton University Press; 2023.

 8. Allman ES, Degnan JH, Rhodes JA. Identifying the rooted species tree
from the distribution of unrooted gene trees under the coalescent. J
Math Biol. 2011;62:833–62.

 9. Pamilo P, Nei M. Relationships between gene trees and species trees.
Molecular biology and evolution 1988;5(5), 568–583 . ISBN: 0737-4038
(Print)

 10. Rannala B, Yang, Z. Bayes estimation of species divergence times and
ancestral population sizes using DNA sequences from multiple loci.
Genetics 2003;164(4), 1645–1656. Publisher: Department of Medical
Genetics, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.

 11. Legried B, Molloy EK, Warnow T, Roch S. Polynomial-time statistical esti-
mation of species trees under gene duplication and loss. J Comput Biol.
2021;28(5):452–68. https:// doi. org/ 10. 1089/ cmb. 2020. 0424.

 12. Hill M, Legried B, Roch S. Species tree estimation under joint modeling
of coalescence and duplication: sample complexity of quartet methods.
arXiv, 2020;2007–06697. arXiv: 2007. 06697

 13. Roch S, Snir S. Recovering the treelike trend of evolution despite
extensive lateral genetic transfer: a probabilistic analysis. J Comput Biol.
2013;20(2):93–112. https:// doi. org/ 10. 1089/ cmb. 2012. 0234.

 14. Markin A, Eulenstein O. Quartet-based inference is statistically consistent
under the unified duplication-loss-coalescence model. Bioinformatics,
2021; 414 https:// doi. org/ 10. 1093/ bioin forma tics/ btab4 14

 15. Mirarab S, Reaz R, Bayzid MS, Zimmermann T, Swenson MS, Warnow T.
ASTRAL: genome-scale coalescent-based species tree estimation. Bio-
informatics. 2014;30(17):541–8. https:// doi. org/ 10. 1093/ bioin forma tics/
btu462.

 16. Chifman J, Kubatko LS. Quartet inference from SNP data under the
coalescent model. Bioinformatics. 2014;30(23):3317–24. https:// doi. org/
10. 1093/ bioin forma tics/ btu530.

 17. Larget BR, Kotha SK, Dewey CN, Ané C. BUCKy: Gene tree/species tree
reconciliation with Bayesian concordance analysis. Bioinformatics 2010;
26(22), 2910–2911 https:// doi. org/ 10. 1093/ bioin forma tics/ btq539 . arXiv:
0912. 4472 Publisher: Department of Statistics, University of Wisconsin-
Madison, WI 53706, USA. ISBN: 03036812

 18. Sayyari E, Mirarab S. Anchoring quartet-based phylogenetic distances
and applications to species tree reconstruction. BMC Genomics.
2016;17(S10):101–13. https:// doi. org/ 10. 1186/ s12864- 016- 3098-z.

 19. Brown DG, Truszkowski, J. Towards a Practical O(n logn) Phylogeny Algo-
rithm, pp. 14–25 2011; https:// doi. org/ 10. 1007/ 978-3- 642- 23038-7_2 .

 20. Bryant D, Tsang J, Kearney PE, Li M. Computing the quartet distance
between evolutionary trees, vol. 9, pp. 285–286. Citeseer, 2000;. Issue: 11

 21. Mirarab S, Warnow T. ASTRAL-II: Coalescent-based species tree estimation
with many hundreds of taxa and thousands of genes. Bioinformatics.
2015;31(12):44–52. https:// doi. org/ 10. 1093/ bioin forma tics/ btv234.

 22. Brodal GS, Fagerberg R, Mailund T, Pedersen CNS, Sand, A. Efficient
Algorithms for Computing the Triplet and Quartet Distance Between
Trees of Arbitrary Degree. In: Proceedings of the Twenty-Fourth Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 1814–1832. Society
for Industrial and Applied Mathematics, Philadelphia, PA 2013;. https://
doi. org/ 10. 1137/1. 97816 11973 105. 130 . https:// epubs. siam. org/ doi/ 10.
1137/1. 97816 11973 105. 130

 23. Mai U, Mirarab S. Completing gene trees without species trees in sub-
quadratic time. Bioinformatics. 2022;38(6):1532–41. https:// doi. org/ 10.
1093/ bioin forma tics/ btab8 75.

 24. Zhang C, Mirarab S. Weighting by gene tree uncertainty improves
accuracy of quartet-based species trees. Mol Biol Evol. 2022;39(12):215.
https:// doi. org/ 10. 1093/ molbev/ msac2 15.

 25. Hallett M T, Lagergren, J. New algorithms for the duplication-loss model.
In: Proceedings of the Fourth Annual International Conference on Com-
putational Molecular Biology - RECOMB ’00, pp. 138–146. ACM Press, New
York, New York, USA 2000; https:// doi. org/ 10. 1145/ 332306. 332359

 26. Bryant D, Steel M. Constructing optimal trees from quartets. J Algorithms.
2001;38(1):237–59. https:// doi. org/ 10. 1006/ jagm. 2000. 1133.

 27. Than C, Nakhleh L. Species tree inference by minimizing deep coales-
cences. PLoS Comput Biol. 2009;5(9):1000501. https:// doi. org/ 10. 1371/
journ al. pcbi. 10005 01.

https://doi.org/10.1186/s13015-024-00257-3
https://doi.org/10.1186/s13015-024-00257-3
https://github.com/shayesteh99/QuartetSPR.git
https://github.com/shayesteh99/QuartetSPR-Data.git
https://github.com/shayesteh99/QuartetSPR-Data.git
https://doi.org/10.1016/j.tcs.2018.10.005
https://doi.org/10.1016/j.tcs.2018.10.005
http://arxiv.org/abs/1610.00505
https://doi.org/10.2307/sysbio/34.2.193
https://doi.org/10.1007/BF02618470
https://doi.org/10.1007/BF02618470
https://doi.org/10.1089/cmb.2007.0103
https://doi.org/10.2307/2413694
https://doi.org/10.1089/cmb.2020.0424
http://arxiv.org/abs/2007.06697
https://doi.org/10.1089/cmb.2012.0234
https://doi.org/10.1093/bioinformatics/btab414
https://doi.org/10.1093/bioinformatics/btu462
https://doi.org/10.1093/bioinformatics/btu462
https://doi.org/10.1093/bioinformatics/btu530
https://doi.org/10.1093/bioinformatics/btu530
https://doi.org/10.1093/bioinformatics/btq539
http://arxiv.org/abs/0912.4472
http://arxiv.org/abs/0912.4472
https://doi.org/10.1186/s12864-016-3098-z
https://doi.org/10.1007/978-3-642-23038-7_2
https://doi.org/10.1093/bioinformatics/btv234
https://doi.org/10.1137/1.9781611973105.130
https://doi.org/10.1137/1.9781611973105.130
https://epubs.siam.org/doi/10.1137/1.9781611973105.130
https://epubs.siam.org/doi/10.1137/1.9781611973105.130
https://doi.org/10.1093/bioinformatics/btab875
https://doi.org/10.1093/bioinformatics/btab875
https://doi.org/10.1093/molbev/msac215
https://doi.org/10.1145/332306.332359
https://doi.org/10.1006/jagm.2000.1133
https://doi.org/10.1371/journal.pcbi.1000501
https://doi.org/10.1371/journal.pcbi.1000501

Page 18 of 18Arasti and Mirarab Algorithms for Molecular Biology (2024) 19:12

 28. Zhang C, Rabiee M, Sayyari E, Mirarab S. ASTRAL-III: polynomial time
species tree reconstruction from partially resolved gene trees. BMC
Bioinform. 2018;19(S6):153. https:// doi. org/ 10. 1186/ s12859- 018- 2129-y.

 29. Zhang C, Nielsen R, Mirarab S. CASTER: Direct species tree inference from
whole-genome alignments. bioRxiv prepress 2023;https:// doi. org/ 10.
1101/ 2023. 10. 04. 560884

 30. Avni E, Cohen R, Snir S. Weighted quartets phylogenetics. Syst Biol.
2015;64(2):233–42. https:// doi. org/ 10. 1093/ sysbio/ syu087.

 31. Warnow T. Computational phylogenetics: an introduction to designing
methods for phylogeny estimation. Cambridge: Cambridge University
Press; 2017.

 32. Sand A, Holt MK, Johansen J, Brodal GS, Mailund T, Pedersen CNS. tqDist:
a library for computing the quartet and triplet distances between binary
or general trees. Bioinformatics. 2014;30(14):2079–80. https:// doi. org/ 10.
1093/ bioin forma tics/ btu157.

 33. Jiang Y, Balaban M, Zhu Q, Mirarab S. DEPP: deep learning enables
extending species trees using single genes. Syst Biol. 2022;72(1):17–34.
https:// doi. org/ 10. 1093/ sysbio/ syac0 31.

 34. Mallo D, De Oliveira Martins L, Posada D. SimPhy: phylogenomic simula-
tion of gene, locus, and species trees. Syst Biol. 2016;65(2):334–44. https://
doi. org/ 10. 1093/ sysbio/ syv082.

 35. Price MN, Dehal PS, Arkin AP. FastTree-2 - approximately maximum-
likelihood trees for large alignments. PLoS ONE. 2010;5(3):9490. https://
doi. org/ 10. 1371/ journ al. pone. 00094 90.

 36. Robinson D, Foulds L. Comparison of phylogenetic trees. Math Biosci.
1981;53(1–2):131–47.

 37. Sayyari E, Mirarab S. Fast coalescent-based computation of local branch
support from quartet frequencies. Mol Biol Evol. 2016;33(7):1654–68.
https:// doi. org/ 10. 1093/ molbev/ msw079.

 38. Azouri D, Abadi S, Mansour Y, Mayrose I, Pupko T. Harnessing machine
learning to guide phylogenetic-tree search algorithms. Nat Commun.
2021;12(1):1983. https:// doi. org/ 10. 1038/ s41467- 021- 22073-8.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1186/s12859-018-2129-y
https://doi.org/10.1101/2023.10.04.560884
https://doi.org/10.1101/2023.10.04.560884
https://doi.org/10.1093/sysbio/syu087
https://doi.org/10.1093/bioinformatics/btu157
https://doi.org/10.1093/bioinformatics/btu157
https://doi.org/10.1093/sysbio/syac031
https://doi.org/10.1093/sysbio/syv082
https://doi.org/10.1093/sysbio/syv082
https://doi.org/10.1371/journal.pone.0009490
https://doi.org/10.1371/journal.pone.0009490
https://doi.org/10.1093/molbev/msw079
https://doi.org/10.1038/s41467-021-22073-8

	Median quartet tree search algorithms using optimal subtree prune and regraft
	Abstract
	Introduction
	Materials and methods
	Notations
	Problem definition
	Background: tripVote algorithm
	Optimal quartet SPR placement in sub-quadratic time
	Tree search using quartet SPR moves
	Experimental setup
	E1: Running time comparison
	E2. Full quartet median tree search using heuristics
	E3. Exploring heuristic approaches
	E4. Improving ASTER and ASTRAL-III trees

	Results
	E1: running time versus m and n
	E2: Tree estimation using Q-SPR search
	E3. Design of heuristics
	E4. Improving ASTER and ASTRAL-III trees

	Discussion
	References

