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Abstract 

Motivation  Many bioinformatics problems can be approached as optimization or controlled sampling tasks, 
and solved exactly and efficiently using Dynamic Programming (DP). However, such exact methods are typically tai‑
lored towards specific settings, complex to develop, and hard to implement and adapt to problem variations.

Methods  We introduce the Infrared framework to overcome such hindrances for a large class of problems. Its under‑
lying paradigm is tailored toward problems that can be declaratively formalized as sparse feature networks, a gener‑
alization of constraint networks. Classic Boolean constraints specify a search space, consisting of putative solutions 
whose evaluation is performed through a combination of features. Problems are then solved using generic cluster 
tree elimination algorithms over a tree decomposition of the feature network. Their overall complexities are linear 
on the number of variables, and only exponential in the treewidth of the feature network. For sparse feature networks, 
associated with low to moderate treewidths, these algorithms allow to find optimal solutions, or generate controlled 
samples, with practical empirical efficiency.

Results  Implementing these methods, the Infrared software allows Python programmers to rapidly develop exact 
optimization and sampling applications based on a tree decomposition-based efficient processing. Instead of directly 
coding specialized algorithms, problems are declaratively modeled as sets of variables over finite domains, whose 
dependencies are captured by constraints and functions. Such models are then automatically solved by generic DP 
algorithms. To illustrate the applicability of Infrared in bioinformatics and guide new users, we model and discuss 
variants of bioinformatics applications. We provide reimplementations and extensions of methods for RNA design, 
RNA sequence-structure alignment, parsimony-driven inference of ancestral traits in phylogenetic trees/networks, 
and design of coding sequences. Moreover, we demonstrate multidimensional Boltzmann sampling. These applica‑
tions of the framework—together with our novel results—underline the practical relevance of Infrared. Remarkably, 
the achieved complexities are typically equivalent to the ones of specialized algorithms and implementations.

Availability  Infrared is available at https://​amibio.​gitla​bpages.​inria.​fr/​Infra​red with extensive documentation, includ‑
ing various usage examples and API reference; it can be installed using Conda or from source.
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Background
Typical applications of computational, “bioinformatical” 
methods to real world biological problems have inher-
ently high complexity at different levels. For example, 
these include the design of functional control elements 
for biotechnology [1, 2], identifying homologies in the 
context of RNA pseudoknots [3, 4], or the prediction of 
phylogenies considering complex inheritance patterns 
[5]. First, modeling complexity is directly inherited from 
the complexity of the biological backdrop. This requires 
bioinformatics approaches to deal with hard constraints 
and soft requirements. Moreover, many approaches need 
to target complex scores, often composed of multiple 
interdependent objectives, e.g. for predicting optimal 
solutions or generating designs. In turn, the high mode-
ling complexity is reflected in coding challenges and leads 
to high computational complexity of exact solutions. Fre-
quently, this turns bioinformaticians away from exact, 
combinatorial methods to less controlled heuristics, for 
example optimization by local search or genetic algo-
rithms [6], or sampling by MCMC (Markov Chain Monte 
Carlo)-like approaches [7, 8], which sacrifice guarantees 
on the optimality of solutions or the time and space com-
plexity of the computations.

Here, we introduce the framework Infrared to cope 
with these levels of complexity. This system lets users 
specify a large class of computational problems and 
solves them by combinatorial algorithms with parameter-
ized complexity [9]. These methods guarantee exactness 
and work efficiently, when the “complexity” (treewidth) of 
the problem instance is fixed. In practice, this limits the 
system to problems with moderately sparse dependen-
cies. The system combines various concepts of computer 
science, comprising constraint modeling [10], constraint 
and scoring networks [11, 12], tree decomposition [13], 
parameterized complexity [9, 14], random genera-
tion, and (multidimensional) Boltzmann sampling [15]. 
Along with Infrared, we advocate and hope to promote 
the use of exact methods. In place of heuristic methods, 
many NP-hard problems can be solved by algorithms of 
parameterized complexity, which our system makes more 
accessible due to proper abstractions. Other problems 
profit from building heuristic methods on top of exact 
algorithms.

Historically, the presented framework originated as 
a generalization of our own previous work on multitar-
get RNA design (RNARedprint [16]) and our origi-
nal approach has been completely reimplemented and 
extended based on Infrared (RNARedprint v21). In 
parallel to the presented research, we used an early ver-
sion of the system for original research in the area of 
negative RNA design (RNAPond, [17]). Other recent 
work has strong conceptual ties: Tree-Diet [18] (by using 

RNAPond and LicoRNA [3]) and AutoDP [19]). Moreo-
ver, as we show in this text, sequence and RNA sequence-
structure alignment can be implemented following the 
models of LicoRNA [3] and [20]; both papers introduced 
closely related solving strategies for alignment.

Our framework aims to facilitate the implementation 
of complex algorithms based on the declarative modeling 
paradigm. Instead of implementing a concrete algorithm, 
it allows users to formally describe the problem by speci-
fying the admissible solutions and their quality assess-
ments. Similar to, e.g. constraint programming or integer 
linear programming systems, those models are solved 
automatically by a built-in general mechanism.

Example 1  (Graph coloring) Let us illustrate this idea 
by modeling graph coloring as a Constraint Satisfaction 
Problem (CSP). We use this ‘toy problem’ as our run-
ning example to formally introduce our main concepts. 
For this purpose, we will later extend it beyond constraint 
satisfaction (introducing some quality of colorings).
Given a graph G = (V ,E) , see Fig. 1A, the graph coloring 
problem asks for a vertex labeling by k colors, such that 
adjacent vertices are colored differently (Fig. 1B). To solve 
this classical problem in our system, we model it as a CSP, 
i.e. as a triple of a set of variables, one domain per vari-
able, and constraints. This CSP introduces one variable 
per vertex, resulting in the set of variables {X1, . . . ,X|V |} . 
Each variable encodes the label of the corresponding ver-
tex, i.e. it takes values from 1 to k , expressed by choos-
ing the domain D(Xi) = {1, . . . , k} for each Xi . Finally, 
we define the constraint set consisting of one inequality 
constraint NotEquals between the variables Xi and Xj for 
every edge (i, j) ∈ E.

Fig. 1  The running example: graph coloring. A Example input graph. 
B One valid coloring with 4 colors, corresponding to an assignment 
of variables to colors (domain values) that satisfies all the inequality 
constraints along the edges. In our example extension, which 
minimizes the feature counting the different colors in each of its 
four cycles of length 4 , (v2, v3, v5, v6) , (v2, v5, v7, v8) , (v5, v6, v7, v8) 
and v5, v6, v8, v9 , this coloring is not optimal (e.g. recolor v3)

1  https://​gitlab.​inria.​fr/​amibio/​RNARe​dPrint.

https://gitlab.inria.fr/amibio/RNARedPrint


Page 3 of 29Yao et al. Algorithms for Molecular Biology           (2024) 19:13 	

Solving the problem means finding a valid assignment of 
values to variables that satisfies the constraints. Our sys-
tem supports constraint solving, even if pure constraint 
solving serves mostly as a basis for further extensions. 
We can directly express our graph coloring model in 
Python code.

Based on this model, Infrared finds a valid coloring 
automatically due to its built-in parameterized algo-
rithms in a time that depends on the size of the graph, 
the number of colors, and the complexity of G, i.e. its 
treewidth. For this purpose, one passes the model to the 
solver and asks for a valid solution. Since Infrared han-
dles constraint satisfaction and optimization in the same 
way, its solver is called Optimizer.

Extending CSPs by features
Beyond validity, Infrared addresses solution quality in 
terms of one or several features—conceptually, we extend 
Infrared ’s models from CSPs to feature networks. This 
allows users of the framework to more naturally model 
complex problems with multiple objectives, as they 
commonly occur in bioinformatics. Based on specified 
features, Infrared is then able to perform tasks such as 
optimization and weighted sampling.

Example 2  As a first feature example, let us pick up 
graph coloring and additionally minimize the use of dif-
ferent colors in cycles of length 4 (4-cycles). For this pur-
pose, we specify a feature by imposing one 4-ary function 
Card for each 4-cycle that counts the different colors 
in the cycle (set cardinality); the sum of function values 
defines the value of the feature.
Infrared ’s syntax supports the compositional construc-
tion and extension of models. After defining the class of 
functions Card, we can therefore add them to the previ-
ous model.
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Given this extended model, the solver automatically finds 
an assignment with optimal evaluation by the feature.

Due to the features, the dependencies between varia-
bles become more complex. Where we had a dependency 
between the variables of each edge in the basic graph col-
oring model, after the extension, all four variables of each 
4-cycle depend on each other due to the functions Card. 
Infrared ’s solver automatically adapts to this increased 
complexity of the problem.

Boltzmann sampling
Once specified by a model, a problem can be solved in 
different ways. In addition to finding optimal solutions, 
one can just as easily sample assignments from a uniform 
or Boltzmann distribution controlled by potentially mul-
tiple features and their weights.

Example 3  Continuing our example, we can generate 
random uniform colorings from the same model using a 
different solver.
In statistical mechanics, Boltzmann distributions 
describe the probabilities of states in a physical system 
depending on their energy. They are ubiquitous in phys-
ics and have numerous applications in bionformatics e.g. 
for describing the equilibrium of folding molecules [21] 
or generating energy weighted and near-optimal confor-
mations [22]. Beyond physical interpretation, Boltzmann 
distributions have applications as general tools, e.g. in 
heuristic optimization [23], for deriving probabilities in 
alignments [24, 25] or for targeting properties [15].

Through the weight, we can control the expected 
value of the feature in the generated distribution. Set-
ting a nonzero weight causes Infrared to sample from 

a nonuniform Boltzmann distribution, e.g.  setting the 
weight to +2 shifts the expectation to a large cardinality 
while setting it to −2 induces smaller cardinalities.

Positioning against prior work
As already hinted by the introductory example, Infra-
red does not focus on general constraint solving as per-
formed by constraint programming systems such as 
Gecode [26]. Adding evaluation to our models ties this 
work closer to weighted constraint problems or cost net-
works, with some superficial relations to cost function 
optimizers such as Toulbar2 [27]. While such systems 
combine search with forms of constraint consistency, our 
solving strategies come from the area of constraint pro-
cessing in constraint networks [12].

As such, our system is tailored to exactly and efficiently 
solve a specific class of problems, where it can algo-
rithmically profit from a sufficiently tree-like structure 
(parameterized complexity for the parameter treewidth). 
This characteristic still allows broad and flexible use of 
the system, e.g. in bionformatics, where many relevant 
problems and problem instances have this structure. The 
capability to solve such bioinformatics problems by com-
plete and exact algorithms with predictable complexity 
enables specific applications, e.g. it is essential for pre-
cisely controlled weighted sampling.

Overview and contributions
In the next section, we formally define the core concepts 
of modeling problems in our framework; the models 
that characterize specific problem instances are formal-
ized as feature networks. Moreover, we precisely state 
the tasks of optimization and sampling that are solved 
by the system. In Section “Algorithms for solving feature 
networks”, we describe the main algorithms to solve these 
tasks based on the model. Along with the algorithms we 
explain the underlying prerequisite key concepts of tree 
decomposition and cluster trees [12]. The given generic, 
cluster tree elimination-based, algorithms are efficient for 
fixed treewidth values of the feature network—in other 
words, they are exponential in the treewidth only. In the 
second part of the paper, we present several examples 
of modeling different classic bioinformatics problems as 
feature networks. Due to the declarative nature of the 
Infrared system, stating the feature networks is very close 
to actually implementing these algorithms. To increase 
the practical value, we put out documented Python code 
(in the form of Jupyter notebooks) for each application 
example as supplementary material. Starting with appli-
cations to showcase elementary use of Infrared, we move 
on to advanced topics, including interesting extensions to 
preceding examples and the targeting of features by mul-
tidimensional Boltzmann sampling. Finally, we discuss 
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implications for the use of the system and its application 
range, as well as future developments within and beyond 
the framework.

Feature networks for modeling problems 
in Infrared
We conceptualize the declarative models of Infrared as 
feature networks (FNs). They are defined as a form of 
weighted CSP, explicitly distinguishing several real-val-
ued features (instead of only a single or integer-valued 
score).

Definition 1  (Feature Network; FN) A feature network 
(FN) N  is a tuple (X ,D, C,F) , where

•	 X = {X1, . . . ,Xn} is a set of variables;
•	 D = {D1, . . . ,Dn} is a set of domains, one per vari-

able, where each domain is a finite set of integers;
•	 C is a finite set of constraints;
•	 F = {F1, . . . , Fℓ} is a set of features.

Those networks specify solutions to a problem instance 
as specific assignments of domain values to variables.

Definition 2  (Assignment) An assignment, for a given 
FN N  , is a set of single variable mappings Xi  → xi such 
that Xi is a variable of N  , xi is in the domain Di of Xi and 
every Xi occurs at most once. An assignment is called 
total, if every variable of N  occurs exactly once; other-
wise, it is partial.

Given X ′ ⊆ X  , we denote the set of all assignments x 
of X ′ as AX ′ . When X ′ (and the order of its variables) is 
clear, one can write assignments as tuples, e.g. (x1, . . . , xn) 
in place of X1  → x1, . . . ,Xn  → xn in the case of a total 
assignment ( X ′ = X).

Example 4  Consider the graph G = (V ,E) of Fig.  1. 
We model graph coloring for G and four colors as a fea-
ture network Ncol = (Xcol,Dcol, Ccol,Fcol) . Let us first 
define Xcol = {X1, . . . ,X9} and Dcol = {D1, . . . ,D9} ; 
Di = {1, 2, 3, 4} . This specifies one variable Xi for every 
vertex vi in the graph and one domain per variable, 
encoding the colors as integer values.
A total assignment x = {X1 �→ x1, . . . ,X9 �→ x9} ∈ AXcol

 
describes a coloring where the vertex vi ∈ V  has color xi.

Validity of assignments
 To distinguish valid from invalid assignments, we intro-
duce constraints C that need to be satisfied by valid 
assignments. In our running example, this allows us to 
define valid colorings and thus completely specify graph 
coloring as CSP.

Definition 3  (Constraint) Given N = (X ,D, C,F) , 
each constraint C ∈ C is associated with a set of vari-
ables Xi1 , . . . ,Xik ∈ X  and a Boolean function on values 
xi1 , . . . , xik . Given an assignment x containing Xij  → xij 
for all j ∈ {1, . . . , k} , we evaluate the constraint C 
w.r.t.  x by applying the Boolean function to xi1 , . . . , xik . 
The resulting evaluation is denoted C(x).

We say C is k-ary or has the arity k. Let 
vars(C) = {Xi1 , . . . ,Xik

} denote the dependency of C. Note 
that the constraint literature commonly refers to the 
dependency of a constraint as its scope.

We call an assignment x ∈ AX ′ , X ′ ⊆ X  , valid iff all 
constraints C ∈ C with vars(C) ⊆ X ′ are satisfied (i.e. 
evaluated to True) by the assignment x.

Example 5  To enforce the neighbor coloring constraint 
in our example, it is sufficient to add the constraint below 
for each edge (vi, vj) ∈ E

where δ(p) is the truth value of the expression p.

The constraint NotEquals[i,j] determines whether 
two given colors are distinct. Applying on all 
edges ensures that a valid assignment is a solu-
tion of the graph coloring problem. For example, 
both assignments xcol = (1, 2, 3, 3, 4, 2, 1, 3, 1) and 
x′col = (1, 2, 4, 3, 4, 2, 1, 3, 1) satisfy the constraints Ccol.

In addition to finding valid assignments, one often wants 
to distinguish solutions by their quality. In graph color-
ing, we can e.g.  aim for using fewer colors per 4-cycle; 
this would make x′col preferable over xcol.

C : Di1 × · · · × Dik → {True,False}

(xi1 , . . . , xik ) �→ C(xi1 , . . . , xik )

ccol =
{

NotEquals[i,j]
∣

∣

(

vi, vj
)

∈ E
}

with

NotEquals[i,j]
(

xi, xj
)

= δ
(

xi �= xj
)

,
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Evaluation of assignments by features
 Each feature F ∈ F  is a set of network functions. In this 
way, a feature can describe a global property of assign-
ments, in contrast to constraints and network functions 
which typically act on a small number of variables. This 
asymmetry is introduced intentionally to allow us to 
easily control multiple global properties. It specifies an 
evaluation as a sum over the values of the functions in 
this set; the single functions are defined in the same way 
as constraints but return real values (instead of Boolean 
ones).

Definition 4  (Network Function) Each network func-
tion f  of a feature network is associated with variables 
Xi1 , . . . ,Xik ∈ X  and a real-valued function that, given 
an assignment x, maps the values xi1 , . . . , xik to a real 
number.

Analogous to constraints, the returned value is called the 
evaluation of f  by x, denoted f(x), and the dependency is 
vars(f ) := {Xi1 , . . . ,Xik }.

Overloading notation, we define the (induced) fea-
ture evaluation (of valid assignment x by feature F) by 
F(x) =

∑

f ∈F f (x) . To account for multiple features, 
Infrared combines them linearly.

Definition 5  (Assignment evaluation) Given a feature 
network N = (X ,D, C,F) and feature weights α ; α 
defines respective weights αF for each feature F in F  . The 
evaluation of a valid assignment x ∈ AX is defined as a 
linear combination of the feature values w.r.t. α.

Example 6  We can now express our objective in the 
extended graph coloring problem in terms of a feature. 
For this purpose, we introduce network functions that 
each count the different colors in a 4-cycle (vi, vj , vk , vl) of 
the example graph,

The corresponding feature set is then Fcol = {Fcard} with

In feature network Ncol = (Xcol,Dcol, Ccol,Fcol) , 
the two assignment examples xcol and x′col are 

f : Di1 × · · · × Dik → R

(xi1 , . . . , xik ) �→ f (xi1 , . . . , xik ).

EN (x,α) =
∑

F∈F

αFF(x).

Card[i,j,k ,l](xi, xj , xk , xl) = |{xi, xj , xk , xl}|.

Fcard = {Card[2,3,5,6],Card[2,5,7,8],Card[5,6,7,8]}.

evaluated to EN (xcol, 1) = 3+ 4 + 4 = 11 and 
EN (x′col, 1) = 2+ 4 + 4 = 10 , respectively (for feature 
weight 1).

Observe that a constraint satisfaction problem (CSP) 
is a special case of a feature network (X ,D, C,F) , where 
F  is empty. Feature networks are one of many possible 
extensions of CSPs known from the literature [12] that 
add forms of quality evaluation. For example, cost net-
works typically contain only a single set of functions, 
whereas we decided to explicitly distinguish a set of con-
straints from multiple sets of functions (features).

Infrared ’s modeling syntax
Recall the code snippets from the introduction. This code 
implements the feature network Ncol that we formally 
developed above. As in our formal model description, the 
definition via Infrared ’s Python interface defines varia-
bles and domains, constraint and function types, and sets 
of constraints and functions. By providing the functional-
ity to add constraints and functions to a model, we sup-
port compositional step-by-step construction and even 
extension of existing models.

Finally, our code examples demonstrate how models 
are fed to solvers, e.g. ir.Optimizer or ir.Sampler. 
This allows finding an optimal solution or generating 
controlled samples from the same model. We formally 
state the respective Problems 1 and 2 below; these solvers 
implement the algorithms of Sec. “Algorithms for solving 
feature networks”.

To keep this article concise, we refer the reader to our 
online reference and tutorials for syntactic aspects of 
using Infrared. For further reference, we recommend 
our coding-oriented introduction in Infrared in a book 
chapter [28], which focuses on modeling of sequence and 
RNA design problems. Moreover, recall that we maintain 
an online archive of documented Infrared application 
examples (covering all examples of this paper).

Problem statements
Given a feature network model N  , there are two tasks of 
immediate particular interest: optimization and sampling 
of the solution space. Our framework addresses both 
tasks explicitly and solves them automatically based on 
the specification of N  . First, we want to optimize assign-
ments among all valid assignments of N  . Concretely, we 
ask for the assignment that optimizes the evaluation, i.e. 
the linear combination of the features given specific fea-
ture weights α.
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Problem 1  (Assignment maximization)

Input:	� Feature network N  , feature weights α
Output:	� Valid assignment x∗ ∈ AX that is maximal 

w.r.t. EN  and α : 

Furthermore, we want to use models to sample valid 
assignments from a Boltzmann distribution, i.e. each 
sample should be generated with a probability propor-
tional to the Boltzmann weight of their evaluation w.r.t. 
a given α.

Problem 2  (Assignment sampling) 

Input:	� Feature network N  , feature weights α
Output:	� Valid assignment x ∈ AX generated with a 

probability that is proportional to its Boltz-
mann weight w.r.t. EN  and α : 

Unfolding the assignment sampling problem, we realize 
that it implicitly asks for the partition function

i.e. the proportionality factor in Eq. 1, such that

Algorithms for solving feature networks
Given a feature network N  , Problem 1 asks for an opti-
mal assignment to the variables. Here, the exponen-
tially large assignment space forbids naive approaches. 
Based on a tree decomposition [29] of the network, we 
employ a form of dynamic programming that decom-
poses the computation into

•	 a ‘forward’ optimization phase to determine the 
optimal evaluation (i.e. only its numerical value), 
while storing the results of subproblems

•	 and a subsequent traceback algorithm to obtain an 
optimal assignment.

x∗ = argmax

x ∈ AX

x is valid

EN (x,α).

(1)P(x) ∝ exp (EN (x,α)).

ZN ,α :=
∑

x ∈ AX

x is valid

exp (EN (x,α)),

P(x) = exp (EN (x,α))/ZN ,α .

Our approach performs the optimization on a tree-
like structure, namely, an annotated tree decomposi-
tion of the network, called the cluster tree. Instead of 
inefficiently searching through all total assignments, it 
enumerates value combinations of variable subsets at 
tree nodes and avoids redundant computation by stor-
ing the results of subproblems/subtrees; the evaluation 
of functions and constraints is interleaved with this 
enumeration. The optimization traverses the tree in 
bottom-up order; moving top-down in the same tree, 
based on the (intermediary) results of the first phase, 
the traceback algorithm identifies one optimal assign-
ment. As such, the approach is a form of cluster tree 
elimination (CTE) [12].

Sampling resembles optimization
Assignment sampling (Problem  2) can be solved in 
a remarkably similar way to Problem  1. This task can 
also be split into two phases, namely, the computation 
of partition functions followed by stochastic trace-
back. Similar to standard traceback, stochastic trace-
back constructs solutions by tracing back through the 
partial results from the forward computation. However, 
it randomly selects values of variables based on partial 
partition functions. In this way it finally selects a total 
assignment from the intended distribution.

To emphasize the parallels between the problems, let 
us restate optimization as determining

where Id is the identity function, compared to the parti-
tion function

This breakdown into single network functions suggests 
that a general scheme can be applied to both problems, 
which specializes to either problem by the choice of alge-
bra: (max,+, Id) for optimization and (+,×, exp) for the 
partition function (and thus sampling).

Emax = max
x ∈ AX

x is valid

∑

F∈F

Id(αFF(x))

= max
x ∈ AX

x is valid

∑

F∈F

∑

f ∈F

Id(αF f (x))

ZN ,α =
∑

x ∈ AX

x is valid

∏

F∈F

exp (αFF(x))

=
∑

x ∈ AX

x is valid

∏

F∈F

∏

f ∈F

exp
(

αF f (x)
)

.



Page 8 of 29Yao et al. Algorithms for Molecular Biology           (2024) 19:13 

Computation guided by cluster trees
We will define a cluster tree as an annotated tree decom-
position of a feature network; it assigns the network 
functions and constraints to nodes (also called bags or 
clusters) where they should be evaluated. The computa-
tions process these clusters. Here, the tree decomposi-
tion determines the processing order. Processing the 
clusters bottom-up in the forward phase computes a 
result for the subtree of each cluster. For each cluster, this 
involves enumerating the assignments of cluster varia-
bles, while evaluating the constraints and functions of the 
cluster as well as previously computed results from the 
children clusters. The traceback follows the cluster tree 
top-down, partially re-evaluates the clusters and, on this 
basis, determines variables.

Dependency graphs, tree decompositions, and cluster trees
To properly guide the dynamic programming evalua-
tion, cluster trees must reflect the network dependencies 
through tree decompositions.

Definition 6  (Dependency graph) The depend-
ency graph of N = (X ,D, C,F) is the hypergraph 
GN = (X , EN ) , where the hyperedges EN  are the depend-
encies of the constraints and functions:

Definition 7  (Tree decomposition, treewidth) A tree 
decomposition of a dependency graph GN  is a pair 
(T ,χ) of a (rooted) tree T = (V ,E) and a node labeling 
χ by subsets of variables, i.e. χ : V → 2X . These subsets 
are called the bags of the tree decomposition. 

1.	 Each variable X ∈ X  is in at least one bag;
2.	 For all hyperedge e ∈ EN  , there is a node u ∈ V  , such 

that e ⊆ χ(u);
3.	 For all variables X ∈ X  , the set {u ∈ V | X ∈ χ(u)} 

induces a connected tree.

The width of a tree decomposition (T ,χ) is

The treewidth of a hypergraph is the minimum width 
among all possible tree decompositions. The tree 
decomposition and treewidth of a feature network N  
are the respective tree decomposition and treewidth of 
its dependency graph GN .

EN :=

{

vars(C) | C ∈ C
}

∪

{

vars(f ) | f ∈
⋃

F∈F

F
}

.

max
u∈V

|χ(u)| − 1.

For a tree decomposition (T ,χ) , T = (V ,E) , consider 
two nodes u, v ∈ V  , where v is the parent of u. Generally, 
we assume the tree edges to be oriented toward the root, 
such that u → v ∈ E . We define two sets:

•	 sep(u) := χ(u) ∩ χ(v) the separator set of shared 
variables between u and its parent; this set describes 
the variables whose values are passed between parent 
and child in a tree traversal;

•	 diff(u) := χ(u)\sep(u) the difference set between 
the child and its parent. These are the ‘introduced’ 
variables by the child; they will be assigned at a child 
in the top-down traversal of the traceback.

To simplify the traceback step, we require tree decom-
positions to have empty root and difference sets of size 
1 (i.e. |diff(u)| = 1 for every child node u ); we call this 
property gentle. Gentle tree decompositions have exactly 
one edge per variable. Note that any tree decomposition 
(as defined above) can be efficiently turned into a gentle 
decomposition of the same width by inserting additional 
bags wherever the difference set is too large and contract-
ing edges where no variables are introduced.

Definition 8  (Cluster Tree) A cluster tree (T ,χ ,φ) 
of an FN N = (X ,D, C,F) is a tree decomposi-
tion (T = (V ,E),χ) of GN  together with an annota-
tion φ : V → 2C ∪ 2F  ; it associates every f ∈

⋃

F  
and C ∈ C to exactly one node u ∈ V  such that 
vars(f ) and vars(C) ⊆ χ(u).

We use notations C ∈ φ(u) and f ∈ φ(u) to refer to the 
constraints and network functions assigned to node u 
of the cluster tree, respectively. Given a cluster tree, we 
write αf  to refer to the weight αF of the feature F ∈ F  
that contains f.

In addition to the general cluster tree definition, we 
assume that constraints and functions are assigned to the 
lowest possible bag (corresponding to the smallest pos-
sible subtree).

Evaluation following the cluster tree
For efficiency, Infrared evaluates constraints and net-
work functions as soon as sufficient partial information is 
available (in contrast to a generate-and-evaluate strategy, 
which would enumerate assignments and evaluate only 
total assignments).

Recall the notion of partial assignments from Defini-
tion 2. The evaluation of a constraint (resp. network func-
tion) w.r.t. the partial assignment x̄ is denoted C(x̄) (resp. 
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f (x̄) ); it is defined if the assignment assigns all variables 
of the dependency vars(C) (resp. vars(f ) ). Moreover, the 
union of partial assignments is well-defined if their vari-
able sets are disjoint; this allows for the composition of 
larger partial assignments from smaller ones.

Example 7  (Partial assignments) Consider the 
bag {X2,X5,X6,X7,X8} of Fig.  2B (root of first 
tree) from the running graph-coloring example 
with cardinality network functions Card . The set 
x̄col = {X2 �→ 2,X5 �→ 4,X6 �→ 2,X7 �→ 1,X8 �→ 3} 
is a partial assignment of the bag’s variables; it 
lets us evaluate Card[2,5,7,8] , Card[2,5,7,8](x̄col) = 4 , 
since the bag contains the dependency variables of 
this function. Consider another partial assignment 
x̄′col = {X2 �→ 2,X5 �→ 4,X6 �→ 3,X7 �→ 1,X8 �→ 3} ; x̄′col 
is not valid because NotEquals[6,8] evaluates to False 
w.r.t. x̄′col.

Given a cluster tree (T ,χ ,φ) and a node u with parent 
v, the forward optimization algorithm successively com-
putes optimal evaluations for subtrees Tu below nodes u 
(constituting subproblems of Problem 1).

The optimal evaluation of subtree Tu is

where χ(Tu) :=
⋃

c∈Tu
χ(c) and φ(Tu) :=

⋃

c∈Tu
φ(c).

To obtain total subtree evaluations, the algorithm com-
putes and stores conditional optimal subtree evaluations, 
which depend on the partial assignment to sep(u) . Thus, 
they allow decoupling the subtree from the remaining 
tree.

For a node u, these conditional evaluations are com-
puted for all such valid partial assignments, such that 
they specify network functions mu→v . We call them 

(2)
max

x̄ ∈ Aχ(Tu)

x̄ is valid

∑

f ∈φ(Tu)

αf f (x̄)

Fig. 2  Dependency graph and tree decompositions of the running example (feature network Ncol ).  A  The dependency graph contains one 
(binary) edge per dependency due to a constraint NotEquals ∈ Ccol . The dependency hyperedges due to the three network functions Card ∈ Fcard 
are colored.  B  Two possible tree decompositions of this dependency graph (and therefore Ncol ). The difference set is underlined in each bag. 
Solving of the network could be based on either one, but with different run time, which is dominated by the largest bag (bold). Due to their 
largest bags of size 5 and 6, the two tree decompositions have respective width 4 and 5. The bags handling the 4-ary functions are highlighted, 
where colors correspond to the hyperedges of A.  C  Tree decomposition of the network without 4-ary functions Card . The functions don’t allow 
any tree decomposition with width 3; thus they make the problem more complex
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messages since they are used to pass information from 
child u to parent v.

Additionally, define diff(Tu) := χ(Tu)\sep(u) as the set 
of variables introduced by Tu.

Definition 9  (Conditional optimal subtree evaluation) 
Let u be a node in the cluster tree (T ,χ ,φ) ; denote its 
parent by v. The conditional optimal subtree evalua-
tion at u under condition x̄ ∈ Asep(u) is

Since the root of T is empty, conditional optimal sub-
tree evaluations allow us to directly infer the total evalu-
ation at the root. For every child u of the root, sep(u) is 
empty; moreover, the children of the root do not have 

(3)
mu→v(x̄) = max

x̄′ ∈ Adiff(Tu)

x̄ ∪ x̄′ is valid

∑

f ∈φ(Tu)

αf f (x̄ ∪ x̄′)

any variables in common (due to the definition of tree 
decomposition). Consequently, we obtain the total eval-
uation by summing the 0-ary messages sent to the root 
from its children

See Fig. 3 for an illustration of the bottom-up compu-
tation and the subsequent top-down traceback. Follow-
ing Proposition 1 each bag u can be processed together 
with the messages sent to it from its children; thus, we 
can understand the full computation as bottom-up mes-
sage passing (Algorithm 1). The notion of message pass-
ing stems from more general formulations of CTE on 
unrooted cluster trees [30]. The algorithm is correct due 
to the following proposition (shown in Additional file 1).

Emax =
∑

child u of root

mu→ root(∅).

Fig. 3  Illustration of the forward optimal evaluation and traceback algorithms (by the running example of graph coloring; Fig. 1). We elaborate 
steps of the computation guided by the gentle tree decomposition corresponding to Fig. 2B (top). The indices of variables in the difference set are 
underlined. On the left, we sketch the computation of the messages mw→u and mu→v : For every assignment of the separator set, the algorithm 
maximizes over assignments of the difference variable (it dismisses invalid assignments); in the computation of mu→v , it used the already 
computed message mw→u . On the right, we show the corresponding computations to assign values to the underlined variables during traceback: 
given an optimal assignment to the variables in v, we first infer that X5 = 2 is an optimal continuation, and finally X3 = 2
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Proposition 1  Let u → v be a cluster tree edge and 
x̄ ∈ Asep(u) be a partial assignment of sep(u) . The condi-
tional optimal subtree evaluations mu→v(x̄) (Eq. 3) can be 
recursively computed as

Algorithms for partition functions and sampling As 
argued, the computation of partition functions (Prob-
lem 2) follows the same algorithmic structure, changing 
the algebra in Algorithm 1 from (max,+, Id) to (+,×, exp) 
and setting the initial value of t to 0 . Consequently, the 
partition function ZN ,α is obtained by multiplying all 0-
ary messages sent to the root.

Analogous to partial optimal evaluations, the modified 
Algorithm  1 with (+,×, exp)-algebra computes partial 
partition functions.

Definition 10  (Conditional subtree partition functions) 
Let u be a node in a cluster tree (T , ξ ,φ) , where v is its 
parent. The conditional partition function at u under 
condition x̄ ∈ Asep(u) is

for all x̄ ∈ Asep(u).

Partition functions are computed by a recursive algo-
rithm analogous to 1; its correctness is stated in analogy 
to Proposition 1 (shown in Additional file 1).

Proposition 2  Let u → v be a cluster tree edge and 
x̄ ∈ Asep(u) be a partial assignment of sep(u) . The con-
ditional subtree partition functions (Eq. 5) can be recur-
sively computed as

with αf  as in Prop. 1.

(4)
mu→v(x̄) = max

x̄′ ∈ Adiff(u)
x̄ ∪ x̄′ is valid

[

∑

f ∈φ(u) αf f (x̄ ∪ x̄′)
+
∑

c child of u mc→u(x̄ ∪ x̄′)

]

.

(5)

mu→v(x̄) =
∑

x̄′ ∈ Adiff(Tu)

x̄ ∪ x̄′ is valid

∏

f ∈φ(Tu)

exp(αf f (x̄ ∪ x̄′))

(6)
mu→v(x̄) =

∑

x̄′ ∈ Adiff(u)
x̄ ∪ x̄′ is valid

[

∏

f ∈φ(u) exp(αf f (x̄ ∪ x̄′))
×
∏

c child of u mc→u(x̄ ∪ x̄′)

]

Traceback
Once all messages of partial optimal score are computed 
by Algorithm  1, the optimal assignment is obtained by 
a traceback traversing the cluster tree top-down in pre-
order (Algorithm  2). At each edge u → v , an optimal 
assignment of the variables in the parent v is known. 
Infrared then determines the optimal assignment to the 
difference variables (in the singleton set diff(u) ) such 
that the evaluation of bag u equals the message sent to 
the parent bag v . Let x be the partial optimal assignment 
determined thus far in the algorithm (assigning the vari-
ables of v); the algorithm searches through x̄ ∈ Adiff(u) 
and selects one assignment x̄ that yields the optimal mes-
sage. This choice is optimal, such that the algorithm can 
continue its top-down traversal after updating x by x ∪ x̄.

For sampling, Infrared performs a stochastic traceback 
(Algorithm 3), requiring the messages from the computa-
tion of the partition function. Whereas the general struc-
ture resembles that of optimal traceback, at each edge 
u → v the algorithm randomly chooses a tracking value 
t uniformly from the range 0 and mu→v . While iterating 
through the possible assignments for diff(u) , t is gradually 
decreased with partial Boltzmann factors. The value of 
the difference variable is selected once t becomes nega-
tive. This selects the value following the desired Boltz-
mann distribution. We show the following correctness 
claim in Additional file 1.

Proposition 3  Algorithm  3 solves Problem  2 by sam-
pling assignments from the Boltzmann distribution of 
Eq. (1).

Algorithm 1  Optimal evaluation
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Algorithm 2  Optimal traceback

Algorithm 3  Stochastic traceback: sampling

Computational complexity
Note that while computational complexities can be inter-
preted as corollaries from CTE [12], we rephrase the 
arguments adapted to our concrete algorithms.

For a feature network N = (X ,D, C,F) , we state com-
plexities in terms of additional parameters: the largest 
domain size d := maxD∈D |D| , the number of variables 
n := |X | , and the total number of constraints and net-
work functions m := |C| +

∑

F∈F |F | . Let w denote the 
treewidth of dependency graph GN  . Furthermore, we 
assume that single constraints and network functions 
are evaluated in constant time. We will see later from 
the applications in Sections “Applications to concrete 
bionformatics problems” and “Model extensions and 
advanced topics” the assumption holds in practice.

Proposition 4  Algorithm  1 takes O
(

dw+1 · (m+ n)
)

 
time and O

(

dw · n
)

 space.

Proof  Algorithm  1 computes one message mu→v for 
each edge u → v of the tree decomposition of N  . In 
every child bag u, the algorithm computes message val-
ues for each assignment of the variables in sep(u) , for 
each value optimizing over assignments of diff(u) . In 
every iteration, it evaluates the constraints and functions 
in φ(u) , as well as the messages from the children.
We thus bound the computation by

where nu counts the children of u. Since sep(u) and diff(u) 
are disjoint and contain exactly the variables of in the bag 
u, there are at most dw+1 iterations per bag. We relax the 
bound to

Every constraint and function is evaluated in the itera-
tions of exactly one bag u; thus, we can amortize the 
contributions due to 

∑

u→v |φ(u)| = m . Moreover, every 
message from a child is accessed (in constant time) in the 
iterations of exactly one bag; we can thus amortize due to 
∑

u→v nu = |X | . This lets us simplify the last bound fur-
ther to derive the claim on the time complexity.

Concerning space, the algorithm stores a message at 
each edge of the tree decomposition. Per edge u → v , 
this takes space O(dsep(u)) . This bounds the space by 
O(ds · |E|) , where s = maxu sep(u) . For gentle tree 
decompositions, |E| = |X | and s ≤ w , showing the 
claim. �

Proposition 5  Algo. 2 runs in O(d · (m+ n)) time.

Proof  For each edge u → v of the tree decomposi-
tion of N  , the task is to determine the best assignment 
for variables in diff(u) , given that variables in sep(u) are 
already assigned (as guaranteed by the iteration in pre-
order). Deciding if an assignment is valid requires com-
puting constraints, while scoring them requires comput-
ing network functions (each in constant time due to our 
assumption).
It is also required to sum up nu messages mc→u for c 
children of u, where nu denotes the number of children. 

∑

u→v

∏

xi∈sep(u)

|Di| ·
∏

xi∈diff(u)

|Di| · (|φ(u)| + nu),

dw+1 ·
∑

u→v

(|φ(u)| + nu)
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Given that |diff(u)| = 1 in a gentle tree decomposi-
tion, we obtain as an upper bound of time complexity in 
Algorithm 2:

� �

Note that the complexity results for optimization and 
optimal traceback directly apply to partition function 
computation and stochastic traceback, which evaluate 
exactly the same numbers of constraints, functions and 
messages.

Complexity analysis for nonuniform domain sizes
For nonuniform domain sizes, the previous analysis 
can strongly overestimate the complexity (assuming the 
worst-case maximum domain size d for all variables). In 
several of our application examples, we can tighten the 
analysis considering that X  is composed of two (analo-
gously extensible to several) ‘series’ of variables in the 
way

with respective maximum domain sizes dX and dY  . For 
a given tree decomposition, we can define subset widths 
wX and wY  as the maximum number of respective X and 
Y variables in a bag minus 1.

Then, we bound more tightly as follows:

∑

u→v

∏

xi∈diff(u)

|Di| · (|φ(u)| + nu)

≤ d
∑

u→v

(|φ(u)| + nu) ≤ d(m+ n).

X = {X1, . . . ,XnX ,Y1, . . . ,YnY }

Corollary 1  The runtime of Algorithm 1 is in

given a feature network where X  is a disjoint union of sub-
sets X1, . . . ,Xk and a tree decomposition (T ,χ) , where 
wi = maxv∈T |{X ∈ Xi | X ∈ χ(v)}| are the respective sub-
set widths of X1, . . . ,Xk w.r.t. (T ,χ).

It becomes apparent that tree decompositions with 
minimal width do not necessarily yield best perfor-
mance in this context (e.g. [31]). We can take a shortcut 
in special cases, where variables Xi and Yi for the same 
1 ≤ i ≤ n ( n = nX = nY  ) depend on each other. Then, 
one can collapse the nodes of Xi and Yi in the depend-
ency graph, generate a standard tree decomposition opti-
mizing its width w′ , and infer a tree decomposition of the 
original dependency graph with wX = wY = w′.

Parameterized complexity classes
Based on our complexity results (Sec. “Computational 
complexity”), the Optimization (Prob.  1) and Sampling 
(Prob.  2) can be solved efficiently in the input size n at 
fixed values of the treewidth. Assuming that the num-
ber of variables and number of edges is on the order of n, 
i.e. n+m ∈ O(n) , the input-dependence of the maximum 
domain size d, d ∈ O(1) or d ∈ O(n) , determines the the-
oretical parameterized complexity class.

For problems parameterized by k, one distinguishes the 
class FPT (fixed parameter tractable), where problems 
can be solved in time f (k)nO(1) for some computable 

∑

u→v

∏

xi∈sep(u)

|Di| ·
∏

xi∈diff(u)

|Di| · (|φ(u)| + nu)

≤ d
wX+1
X · d

wY+1
Y ·

∑

u→v

(|φ(u)| + nu)

≤ d
wX+1
X · d

wY+1
Y · (m+ n).

O
(

d
w1+1
1 · · · d

wk+1
k · (m+ n)

)

,

Fig. 4  Example phylogenetic network. Optimal solutions for A hardwired parsimony. B softwired parsimony. C parental parsimony; nodes are 
labeled by character sets. The input for these problems consists of the network and the labels of only the leaves (blue).The other labels are inferred. 
The example contains one reticulation node (red)



Page 14 of 29Yao et al. Algorithms for Molecular Biology           (2024) 19:13 

function f, from the class XP with a bound of f (k)ng(k) 
[9, 14] for some computable functions f, g. The latter class 
strictly includes the former. XP algorithms are also called 
slicewise polynomial, having polynomial complexity for 
each fixed value of the parameter.

For constant d, it follows that solving in Infrared is in the 
class FPT parameterized by the treewidth of the depend-
ency graph. This is the case for the presented applications 
to RNA design, where the domain size is the number of 
nucleotides, i.e. typically 4. In our applications to pseudo-
knotted RNA alignment, the domain size d is in O(n) ; con-
sequently, we obtain an XP solving algorithm.

Computing tree decompositions
The problem of computing a tree decomposition of mini-
mal treewidth for an input graph/network is NP-hard 
[32]. However, multiple heuristics [13] and even efficient 
exact solvers [33] have been designed, motivated by the 
wide applicability of treewidth-based methods.

From a theoretical perspective, treewidth is FPT to 
compute, albeit with a prohibitive complexity of 2O(w3) 
[34]. A 4 · w + 4 approximation in O(8w · w2 · |X |2) is 
also possible [14]. Both of these results guarantee that 
FPT results remain FPT when including the computation 
of a tree decomposition prior to applying Algorithm  1 
and 2. However, the actual complexity may be affected, 
becoming the worst of the two.

Despite these theoretical results, virtually all treewidth-
based implementations, including Infrared, use the 
beforementioned heuristics or solvers to compute tree 
decompositions.

Applications to concrete bionformatics problems
Network parsimony
Parsimony for phylogenetic reconstruction
 For inferring phylogenies, one of the central missions of 
bioinformatics, parsimony methods determine the most 
parsimonious explanations for evolutionary relation-
ships. In the classical small parsimony problem the rela-
tion between n taxa is given as their phylogenetic tree. 
The leaves are labeled by ‘characters’, i.e. the taxa, and we 
ask for a labeling of the internal nodes such that the num-
ber of label differences over all tree edges is minimized. 
However, due to reticulate evolution, where lineages can 
be influenced by two or more ancestors, many real phy-
logenies are better represented by phylogenetic networks 
than trees [35]. This model captures diverse phenomena 
such as hybrid speciation, horizontal gene transfer, and 
allopolyploidity due to sexual recombination. While tree 
parsimony has well-established polynomial-time solu-
tions [36, 37], network parsimony is a topic of current 

algorithmic research. For example, Scornavacca and 
Weller [5] present artfully hand-crafted fixed-parameter 
tractable (FPT) algorithms for three variants of network 
parsimony. We will discuss modeling network parsimony 
directly in Infrared and, in this way, immediately obtain 
FPT solutions.

Definition 11  [Phylogenetic Network] A phylogenetic 
network is a rooted, connected directed acyclic graph 
G = (V ,E) . Edges point from children to their parents. 
The unique root r ∈ V  is the only node without parents; 
the leaves L ⊆ V  are the nodes without children. Reticu-
lation nodes have more than one parent.

Hardwired parsimony can be seen as a direct exten-
sion from tree to network parsimony that minimizes 
a parsimony score summing over all network edges, 
softwired parsimony inherits—in the case of multiple 
parents—only from the most favorable one, and parental 
parsimony allows embedding of different lineages in the 
network (one parent per allele) to cover allopolyploidy 
[5] (Fig. 4).

In this text, we describe in detail the modelings of 
hardwired and softwired parsimony. For Infrared models 
of all three variants of network parsimony, we refer to our 
online documentation.

Problem 3  [Hardwired network parsimony] 

Input:	� Phylogenetic network G = (V ,E) with 
leaves L, set of characters � , and leaf labe-
ling φ : L → �.

Output:	� Minimal parsimony score PS∗hw and corre-
sponding labeling ψ : V → � , where 

 here limiting ourselves, for simplicity, to distance 

d(x, y) =

{

1 x �= y
0 x = y.

Infrared network model
We model labellings as assignments, i.e. we use one vari-
able Xi per node of G, whose value encodes its label, i.e. 
the domain of internal nodes is � , while the domain of 
leaf variables is restricted by the input labeling φ . We 
can thus specify the variables and domains of the fea-
ture network Nhw = (Xhw,Dhw, Chw,Fhw) , which models 
Problem 3:

PS∗hw = min
labeling ψ

∀v ∈ L : ψ(v) = φ(v)

∑

(u,v)∈E

d(ψ(u),ψ(v)),
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•	 Xhw = {X1, . . . ,X|V |}

•	 Dhw =
{

D1, . . . ,D|V | , where 

Di =

{

{φ(i)} vi ∈ L
� otherwise

On this basis, we impose constraints and functions. In 
this case, there are no constraints (all constraints are 
expressed by restricting the domains, such that all assign-
ments are valid labellings). To express the score (by a set 
of network functions), we introduce the network func-
tion Distance[i,j] for the variables Xi and Xj is defined to 
encode the distance d(xi, xj) between their values in an 
assignment x. We finalize the model by

•	 Chw = {}

•	 Fhw = {Fhwd } with feature 

To implement and solve the problem in Infrared, it suf-
fices to translate the model to Infrared syntax and call 
its optimizer. According to Proposition 4, the framework 
determines a most parsimonious solution in time com-
plexity O((|E| + |V |) · |�|w+1) in the treewidth w of the 
input network G = (V ,E) . For this corollary observe that 
the dependency graph of the modeled feature network is 
exactly the input network; moreover the model has |E| 
functions and |V| variables with maximum domain size 
d = |�| ; functions are computed in constant time.

Beyond hardwired network parsimony
The problem of softwired network parsimony redefines 
the score of hardwired parsimony, such that it asks for

where parents(u) denotes the set of parents of u. This 
does not change the behavior at nonreticulation nodes, 
but offers a choice in the case of reticulation nodes.

Here, we restrict our model to binary networks, where 
nodes can have up to two children and up to two parents. 
Then, starting from the hardwired model, we enable this 
choice by adding a Boolean selector variable Yi for every 
reticulation node vi . The distance to the left parent is 
counted if Yi = 0 ; to the right parent, if Yi = 1 . Then, we 
replace the distance network functions by special vari-
ants at all edges between a reticulate child u and one of 
its parents v; feature Fhwd is substituted by

Fhwd = {Distance[Xi ,Xj] | (vi, vj) ∈ E}.

PS∗sw = min
labeling ψ

∀v ∈ L : ψ(v) = φ(v)

∑

u∈V
min

v∈parents(u)
d(ψ(u),ψ(v)),

where r controls the selection, i.e.

To improve over the bound of Proposition  4, we follow 
Section “Complexity analysis for nonuniform domain 
sizes”. For the purpose of a conservative worst case com-
plexity analysis, consider a tree decomposition of the 
dependency graph (which is equivalent to the input net-
work). Now, we modify the problem by adding variables 
Yi as well to all the nonreticulation nodes. A tree decom-
position of the modified problem can now be obtained 
by complementing all Xi by corresponding Yi . The subset 
widths wX and wY  are then equal to the original tree-
width w . Therefore, by Cor. 1, we obtain the complexity 
O(|�|w+12w(|V | + |E|)) for solving softwired network 
parsimony.

Discussion
 Scornavacca and Weller [5] present algorithms for 
hardwired, softwired, and parental network parsi-
mony with respective complexities of O(|�|w+1|E|) , 
O(|�|w(3w|�||V | + |E|) , and O(6w|�|4w log(c)|E|) (after 
obtaining the tree decomposition). In the hardwired case, 
we obtain the same complexity out-of-the-box.

In the case of softwired complexity for the special case 
of binary networks, we even obtain a complexity with 
a better treewidth dependence. To show this, given 
|E| < 2|V | under the assumption of binary networks, 
one simplifies our result to O(|�|w+12w|V |) and theirs to 
O(|�|w+13w|V | + |�|w2|V |) = O(|�|w+13w|V |).

We refer to our accompanying notebook for the case 
of parental parsimony. There, we provide a model that 
induces an efficient solution whenever the treewidth of 
the feature network remains bounded. In this case, the 
feature network simply consists of the input network, 
augmented by ternary constraints at reticulation nodes. 
Consequently, while obtaining an FPT algorithm even 
for this complex parsimony problem, we cannot directly 
compare its complexity to [5].

Fswd = {RDistance[Xi ,Xj ,Yi;r] | i, j ∈ (vi, vj) ∈ E,

vi is a reticulation node,

r = 1 if vj is right parent of vi else 0}

∪{Distance[Xi ,Xj] | i, j ∈ (vi, vj) ∈ E,

vi is not a reticulation node},

RDistance[Xi ,Xj ,Yi;r](xi, xj , yi)

=

{

Distance[Xi ,Xj](xi, xj) if yi = r

+∞ otherwise.
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RNA design
Designing biomolecules for specific biotechnological 
or medical applications is typically an interdisciplinary 
endeavor combining experimentation and computa-
tional design. On the computational side this calls for 
flexible, extensible systems that can express and effi-
ciently cope with various constraints and objectives—a 
paradigmatic playing field for our framework (see our 
treatment in [28]). A challenging, computationally hard 
subproblem in this area is the design of RNA sequences 
that fold into multiple target structures. The Infrared 
framework generalizes the FPT algorithm of our earlier 
work RNARedprint [16]—a method to generate RNA 
sequences w, words over A,C,G,U targeting the ener-
gies of multiple structures and specific G C content. The 
latter is defined as the amount of G and C characters, 
denoted #GC(w) . Here, we model the core problem of 
RNARedprint directly as a feature network, which 
allows its implementation in Infrared.

Definition 12  [RNA secondary structure] A second-
ary structure S of length n is a set of base pairs, i.e. 
pairs (i,  j) of sequence positions, 1 ≤ i < j ≤ n . Second-
ary structures are required to be free of base triplets, i.e. 
every base 1 ≤ i ≤ n is involved in at most one base pair. 
A secondary structure S is called crossing iff there are 
pairs (i, j), (k , l) ∈ S , such that i < k < j < l ; otherwise, it 
is noncrossing.

 Multitarget design sampling Given one or multi-
ple noncrossing RNA secondary structures as targets 
(Fig.  5A), we consider the problem of controlled sam-
pling of designs (i.e. RNA sequences) from a Boltzmann 
distribution governed by the thermodynamic energies 
of the targets and the G C content, whose respective 
influence is controlled by weights (Fig. 5B).

Problem  4  [Multitarget RNA sequence sampling] 
Given are k target structures, i.e. noncrossing secondary 
structures S1, . . . , Sk of length n , together with weights 

Fig. 5  RNA multitarget design.  A  Three target RNA secondary structures of length 100 as 2D plots (by VARNA [38]) and dot-bracket strings; taken 
from a multitarget design benchmark set [39].  B  Histograms of the features G C content (left), and the Turner energies (kcal/mol) of the three 
targets (right) in 5000 sequences sampled from the multitarget design model Ndesign at weight -5 for every feature. One can observe that (1) equal 
weights lead to different mean energies for the targets; (2) strong control of the G C weight is required to avoid extreme G C content for stable 
designs. To automate the calibration of weights (and target specific feature value combinations), we suggest multidimensional Boltzmann sampling 
in Section “Multidimensional Boltzmann sampling”
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α1, . . . ,αk and αGC . We ask for r RNA sequences of length 
n such that for each sequence s

with E(s, Sℓ) is the free-energy of the sequence s folding 
into the structure Sℓ.

Constraints and functions In common energy models 
of RNAs, such as the nearest neighbor model [40], all 
base pairs must be canonical, i.e. in

Otherwise, the energy E(s, S) is infinite. This imposes 
hard constraints on the solutions of our design problem; 
in [16], we proved that these constraints make even the 
counting of valid solutions (with implications on con-
trolled sampling) #P-hard.

In our model, in line with [16], we express a relatively 
simple energy function E(s, S) , namely

where BPEnergy : B → R is a function assigning val-
ues to single base pairs. Note that we empirically dem-
onstrated the direct use of this simple energy model for 
design sampling [16] (apart from being extensible to 
more accurate models). This is in remarkable contrast to 
structure prediction, which for relevant accuracy relies 
on models that assign energies to stabilizing and desta-
bilizing loops [40]. Figure 5B shows that sampling based 
on the simple base pair model can produce controllable 
concentrated distributions with regard to Turner ener-
gies [41]. This effect is studied in more depth in [16].

Feature network for design We express Problem  4 as 
a feature network and use Infrared to solve it. The FN 
Ndesign is composed of

•	 Xdesign = {X1, . . . ,Xn};
•	 Ddesign = {A,C,G,U}n;
•	 Cdesign = {BPCompl[i,j] | (i, j) ∈

⋃

ℓ Sℓ};
•	 Fdesign = {Fgc, F1, . . . , Fk} with features 

Fgc =
{

GC[i] |i ∈ [1, n]
}

 and Fℓ = {BPEnergy[i,j]
| (i, j) ∈ Sℓ} ( 1 ≤ ℓ ≤ k).

The constraint BPCompl[i,j](xi, xj) is True if (xi, xj) ∈ B ; 
it ensures that (i, j) is a canonical base pair in the design 
w. The network functions BPEnergy[i,j] and GC[i] decom-
pose the global properties, energy and G C content, into 
their local contributions from base pairs or bases. To 

P(s) ∝ exp (αGC · #GC(s)) ·

k
∏

ℓ=1

exp (αℓ · E(s, Sℓ))

B = {(A,U), (C,G), (G,C), (G,U), (U,A), (U,G)}.

Ebp(s, S) =
∑

(i,j)∈S

BPEnergy(si, sj)

evaluate the assignment, feature Fgc has a weight of αGC 
and each feature Fℓ has αℓ for ℓ ∈ [1, k].

Efficient solving in Infrared To randomly generate 
r designs, sampled exactly from the defined distribu-
tion of Problem  2, we encode Ndesign as an object of 
the class infrared.Model and pass it to Infrared ’s 
sampler infrared.Sampler, which is then asked 
r-times to return a sample. The efficiency of sampling 
depends exponentially on the complexity of the graph 
Gdesign = ({1, . . . , n},

⋃k
ℓ=1 Sℓ) , which combines all the 

dependencies between sequence positions due to the tar-
get structures.

Corollary 2  Infrared ’s engine solves Problem  4 in 
O((n+m) · 4w)+ r · 4(n+m)) time and O(n · 4w) space, 
where m = n+ 2

∑k
ℓ=1 |Sℓ| , i.e. the total number of func-

tions and constraints, and w is the treewidth of Gdesign.

Discussion Multitarget design well showcases the 
advantages due to a declarative system. Thus, we quickly 
developed RNARedprint v2 with extended functional-
ity and improved performance compared to our original 
C++ implementation of RNARedprint [16]. Notably, 
based on the presented model, this reimplementation has 
identical computational complexity (Cor. 2).

As expected, the declarative modeling framework in 
Python strongly facilitated the reimplementation and 
extension. The performance improvements (Fig.  11A) 
can be attributed to Infrared ’s systematic Python/C++ 
hybrid design, which allowed us to better optimize its 
generic computational engine.

Our Jupyter notebook for multitarget design shows that 
RNARedprint ’s targeted sampling functionality can be 
coded in less than 100 lines of Python. Due to Infrared, 
this code is extensible and adaptable and makes the func-
tionality well accessible for integration in larger Python 
workflows, for example, design involving negative design 
criteria that complements exact sampling with heuristic 
optimization (see [28]). Finally, the Infrared implementa-
tion can serve as a basis and “rapid prototyping” experi-
mentation platform for future extensions and ideas on 
multitarget design.

Sequence alignment
Expressing sequence alignment, one of the most promi-
nent problems of bioinformatics, in our framework 
enables solving various more expressive, even highly 
complex types of alignment by extending the model. To 
give an example, we later (Sec. “From sequence align-
ment to pseudoknot sequence-structure alignment”) 
discuss the extension to pseudoknotted RNA structure 
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alignment, close to LicoRNA [3]. We start by modeling 
the elementary problem, which has well-known efficient 
solutions [42, 43] by classic dynamic programming. The 
extension of this first model from linear to affine gap cost 
is discussed in Section “Sequence alignment with affine 
gap cost”.

Definition 13  [Sequence alignment] A sequence 
alignment A of two sequences a and b (both are words 
over � ) is a sequence of pairs (aka alignment columns) 
composed of (� ∪ {−})2\{(−,−)} such that removing − 
from the words composed of the first (resp. second) letter 
of all pairs yields a (resp. b ). Let (i, j) be a pair in the align-
ment. We say (i, j) is a match if i equals to j , an insertion 
if i is -, a deletion if j is -, and a mismatch otherwise.

For simplicity, we begin our discussion with linear gap 
cost scoring models, where the score of an alignment 
A is defined by gap cost γ and an elementwise score 
σ : �2 → R , as

where #gaps(A) denotes the number of insertions and 
deletions in A.

Consider two RNA sequences AAA​CUG​G and ACG​ACG​
C ( � = {A,C,G,U} ). Assuming similarity scores 2 for 
matching, and uniformly −1 for insertion and deletion, 
their alignment

has a score of 6− 3− 3 = 0 due to three matches, three 
insertions, and three deletions.

The alignment problem takes two sequences, denoted 
a of length n and b of length m, and an elementwise score 
σ . Assuming that σ defines a similarity, it asks for maxi-
mizing the score(A) over all alignments and an optimal 
alignment A∗.

score(A) =
∑

i:Ai match

σ(Ai)+ #gaps(A)γ ,

A1A2 −−A3C4U5G6G7−

−A1C2G3A4G5 −−G6C7

Modeling alignment We model this problem by intro-
ducing one variable Xi per position i of the first sequence, 
whose values indicate their alignment to positions in the 
second sequence. Before stating our model, we need to 
resolve a significant issue with this idea. If we express 
assignments (match/mismatch) between positions i of a 
and j of b directly as assignment of j to Xi ( xi = j ) then 
how do we express deletions of i? Naively introducing a 
special value for deletion, e.g. ⊥ := m+ 1 , makes it dif-
ficult to express the noncrossing condition on assign-
ments, namely the positions j of b can be assigned to 
positions i of a in increasing order ( i > i′ implies j > j′ ). 
More precisely, naive encoding introduces inequality-
like constraints between all pairs of variables Xi and Xi′ 
( 1 ≤ i < i′ ≤ n).

Instead, following [3, 20], we model the deletion of a 
position i by assigning the same value to Xi and Xi−1 . This 
keeps the assigned values in increasing order and allows a 
unique representation of alignments by assignments. To 
further facilitate modeling, we introduce sentinel variables 
X0 = 0 and Xn+1 = m+ 1 . As illustrated in Fig.  6, our 
example alignment is then encoded by the assignment

With this idea (illustrated in Fig. 6), the feature network 
Nali is formalized by

•	 Xali = {X0, . . . ,Xn+1};
•	 Dali = {0} × {0, . . . ,m}n × {m+ 1};
•	 Cali = {Leq[Xi−1,Xi]

| i ∈ [2, n]};
•	 Fali = {Fmatch, Finsertion, Fdeletion} with

–	 Fmatch = {Match[Xi] | i ∈ [1, n]};
–	 Fdeletion = {Deletion[Xi−1,Xi] | i ∈ [1, n]}.
–	 Finsertion = {Insertion[Xi−1,Xi] | i ∈ [1, n+ 1]};

The constraint Leq[Xi−1,Xi]
: (xi−1, xi) �→ (xi−1 ≤ xi) 

ensures an increasing order of the values in the assignment. 
The network functions express the alignment score:

i 0 1 2 3 4 5 6 7 8
xi 0 0 1 4 5 5 5 6 8

.

Fig. 6  Modeling the sequence alignment of AAA​CUG​G and ACG​ACG​C. From left to right, we illustrate the alignment model Nali ; a valid 
assignment; the corresponding alignment
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Efficient solving Infrared ’s general solving mechanism 
computes alignments based on this model in O(n ·m2) 
time, dominating the O(nm) time for the traceback, and 
O(nm) space following Propositions 4 and 5 (treewidth 1; 
n variables with domains of size m; O(n) functions, each 
evaluated in constant time).

Note that while this automatic solution is efficient, it 
is still more costly than the known dynamic program-
ming alignment algorithms by a linear factor. (In more 
detail, it does not profit from the linear cost of insertion; 
one could, within the same complexity, encode nonlinear 
insertion cost by modifying the functions Insertion .) This 
issue has been discussed and solved before for the case 
of sequence alignment based on the presented model [3, 
20]; essentially it can be solved by applying DP to pro-
cess single bags. Resolving this issue in broader general-
ity is an open problem, whereas in principle the known 
specific solutions for sequence alignment can be imple-
mented in the framework.

In practice, this issue is strongly alleviated by band-
ing strategies [44] that limit the domain size to µ << m ; 
this reduces the complexity to O(nµ2) time (and O(nµ) 
space).

Match[Xi−1,Xi](xi−1, xi)

=

{

σ(a[i], b[xi]) xi−1 < xi
0 otherwise

Deletion[Xi−1,Xi](xi−1, xi)

=

{

γ xi−1 = xi
0 otherwise

Insertion[Xi−1,Xi](xi−1, xi)

=

{

γ (xi − xi−1 − 1) xi−1 �= xi
0 otherwise.

Model extensions and advanced topics
Sequence alignment with affine gap cost
For more realistic alignments, the cost of consecutive 
runs of insertions and deletions (aka gaps) is scored in a 
nonlinear fashion; e.g. k consecutive insertions are evo-
lutionarily less costly than k independent insertions. This 
motivates redefining the score of an alignment A:

where generally gapcost(A) =
∑

gap of length ℓ inA g(ℓ). 
For g(ℓ) := γ ℓ , this score degenerates to the case of lin-
ear gap cost. The most prominent case is affine gap cost, 
where g(ℓ) := β + γ ℓ , distinguishing gap opening β from 
gap extension cost γ.

Underlining the asymmetry of Nali , we could extend 
the model to arbitrary cost of insertions by redefining 
Insertion[Xi−1,Xi](xi−1, xi) := g(xi − xi−1 − 1) ; however, 
modeling affine cost for deletions cannot be expressed 
in a direct modification of Deletion[Xi−1,Xi](xi−1, xi) since 
we lack information to distinguish gap opening and 
extension.

One can envision at least two possible fixes. First, we 
can replace the binary deletion network functions with 
ternary functions that depend on Xi−2,Xi−1,Xi . This 
extension comes at the price of increasing the tree width 
by 1 (and thus the complexity by a further factor of m.) 
Second, we can introduce additional Boolean variables Yi 
to reflect the matching state at position i: Yi is assigned to 
yi = 1 if i is matched; yi = 0 , if i is deleted. In turn, the 
deletion function can be modified to depend on Xi−1, Xi 
and Yi−1:

score′(A) =
∑

i:Ai match

σ(Ai)+ gapcost(A),

Fig. 7  Modeling sequence structure alignment. Example of a valid assignment and corresponding alignment with a pseudoknotted structure. 
The model contains one network function BPMatch per input base pair (arcs on top). These functions contribute τ for matches to canonical bases 
(dashed arcs)
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Complexity For the first idea, we derive a time complex-
ity of O(nm3) (Prop.  4), since the treewidth is 2. In the 
second model, adding Boolean variables (and ternary 
constraints to relate them to the X variables) technically 
increases the treewidth, but since the variables Yi have a 
domain size of 2, in contrast to the linear domain size of 
the variables Xi , their effect on the complexity is much 
lower (in this case, even constant in sequence length).

Here, the direct application of Proposition  4 would 
strongly overestimate; instead we follow the argumentation 
of Section “Complexity analysis for nonuniform domain 
sizes”. The introduced Yi variables each correspond to the 
Xi variable of the same index. Collapsing the nodes of these 
corresponding variables in the dependency graph, let us us 
decompose it with width 1. Thus, we bound the time com-
plexity by O(n ·m222) ; see also our discussion of the linear 
case. The Y variables thus contribute a constant factor of 4, 
comparable to the overhead of Gotoh’s algorithm [43] over 
linear gap cost alignment (approximately factor 3). Thus, 
the second model improves the first one by a linear factor—
intuitively, it allows sharing Boolean variables between bags 
instead of variables of linear domains.

From sequence alignment to pseudoknot 
sequence‑structure alignment
We will develop Infrared models for RNA alignment, 
where the first RNA is annotated by a potentially crossing 
secondary structure. We build on the previously described 
sequence alignment model Nali . Recall our definition of 
RNA secondary structure from Section “RNA design”; 
here, we will explicitly consider general secondary struc-
tures, where base pairs can cross and thereby form arbi-
trary pseudoknots. This means that we are solving the 
essentially same optimization problem as LicoRNA [3]. 
While LicoRNA implements hand-crafted, specialized 
dynamic programming algorithms, Infrared automatically 
derives closely related algorithms from a network model, 
typically from less than 100 lines of Python code. These 
algorithms solve the pseudoknotted RNA alignment prob-
lem efficiently for the same fixed treewidth parameter.

Given are two RNA sequences a and b of respective 
length n and m, additionally a general (i.e. not necessarily 
noncrossing, potentially pseudoknotted) RNA secondary 
structure S of length n; S is also called arc-annotation of a.

We are interested in optimizing a type of alignment 
score that takes the structural relations due to the arc 
annotation into account; see Fig.  7. To demonstrate the 
principle, we extend the sequence alignment score of the 

Deletion[Xi−1,Xi ,Yi−1] (xi−1, xi, yi−1)

=







β + γ xi−1 = xi and yi−1 = 0
β xi−1 = xi and yi−1 = 1
0 otherwise.

previous section by an arc match bonus τ . Let us thus 
define our sequence structure alignment score by

where B is the set of canonical base pairs (Sec. “RNA 
design”).

Problem  5  [General sequence-structure alignment] 
Given sequences a, and b annotated by S, the sequence 
structure alignment problem asks for a sequence align-
ment of a and b (Def.  13) that optimizes the sequence 
structure alignment score scoreS(A).

Our feature network model Nsali directly builds on Nali , 
extending it by network functions to encode the struc-
ture component of the score. As discussed in the previ-
ous subsection (for the purpose of modeling affine gap 
cost), we introduce Boolean variables Yi to indicate the 
match of position i in a since they let us express the arc 
match bonus more efficiently. We obtain

•	 Xsali = Xali ∪ {Y1, . . . ,Yn};
•	 Dsali extends Dali by Boolean domains {0,1} for all Yi;
•	 Csali = Cali ∪ CrelXY;
•	 Fsali = Fali ∪ {Fbpmatch};

where CrelXY is a set of constraints that relate the variables 
Yi , Xi−1 and Xi , such that yi = 1 ⇐⇒ xi−1 < xi (for all 
1 ≤ i ≤ n ) and Fbpmatch = {BPMatch[Xi ,Xj ,Yi ,Yj] | (i, j) ∈ S}

scoreS(A) = score(A)

+
�

(i,j)∈S







τ Amatches i to i′

and j to j′; (b[i′], b[j′]) ∈ B
0 otherwise,

BPMatch[Xi ,Xj ,Yi ,Yj](xi, xj , yi, yj)

=

{

τ yi = 1, yj = 1, and (b[xi], b[xj]) ∈ B
0 otherwise.

Fig. 8  Sketch of the 5-state Deterministic finite “Aho-Corasick” 
automaton accepting the three stop codons UGA​, UUA​, UUG​. We 
do not draw back-transitions to q0 , which occur implicitly for all 
not explicitly shown cases (i.e.  A,C,G in q0 ; C in q1 , C,G in q2 ; and C 
in q3 ). To forbid, instead of accept, all of the three stop codons, we 
complement the language by making all states but q4 accepting
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Note that BPMatch (for an arc (i, j) ∈ S ) cannot 
be defined in dependency of only Xi and Xj , since 
(b[xi], b[xj]) ∈ B could hold in cases where i or j are 
deleted.

Complexity As in the analysis of Section “Sequence 
alignment with affine gap cost”, we collapse each pair of 
nodes of variables Xi and Yi (of the same index i) in the 
dependency graph. The result is isomorphic to the struc-
ture graph of RNA a, consisting of its nucleotides as 
nodes, and edges due to its backbone and base pairs. For 
the treewidth w of this graph, we derive O(n2w+1mw+1) 
time complexity by Corollary 1.

Whereas in our models for network parsimony or RNA 
design the domain size is constantly bounded, here it 
depends on the input size. Consequently, solving of this 
RNA alignment problem is not in parameterized complex-
ity class FPT, but XP (Sec. “Parameterized complexity 
classes”).

Discussion The presented model extension yields 
an automatically derived solution to the pseudoknot 
sequence-structure alignment problem with param-
eterized complexity in the treewidth. Compared to 
LicoRNA, our algorithms depend on the exact same 
fixed parameter. Note that, in the current implemen-
tation, Infrared’s complexity is worse by a linear factor 
due to the same reason as we discussed for sequence 
alignment before. In practice, this is often reduced to a 
constant factor, namely the band width.

This is contrasted by general benefits due to the 
declarative implementation in Infrared (Jupyter note-
book). For example, the code is well maintainable, 
extensible by further constraints and evaluation crite-
ria, and can profit from future developments and opti-
mization of the Infrared system.

Finite state automata
A common side condition when designing RNA or DNA 
sequences is to avoid or enforce certain sequence motifs. For 
example, one could be interested in avoiding stop codons 
anywhere in the designed sequence (or avoid restriction 
sites, enforce binding sites...). Such conditions can be gener-
alized in terms of regular languages, accepted by determinis-
tic finite state automata (DFA; Fig. 8). This idea is well known 
in constraint programming; for example it is the basis of the 
global regular language membership constraint [45]. In the 
specific case of sequence design, DFAs have been introduced 
by [46] to perform such tasks efficiently for a set of sequence 
motifs. We show that finite state automata can be emulated 
in network models. Remarkably, this allows us to efficiently 
handle such requirements even in combination with other 
design objectives; e.g. the automaton model of this section 
could be merged with our model for multitarget RNA design 
Ndesign (Sec. “RNA design”).

The model is a good example for the use of several 
types of variables, as we are going to introduce, for 
every sequence position, one variable to model the 
nucleotide and one to model the automaton state.

Definition 14  [Deterministic Finite Automaton] A 
Deterministic Finite Automaton (DFA) is a 5-tuple 
(Q,�, δ, q0,QF ) with

•	 Finite set of states Q;
•	 Finite set of symbols �;
•	 Transition function δ : Q×� → Q;
•	 Initial state q0 ∈ Q;
•	 Set of final, accepting states QF ⊂ Q.

A word w = a . . .wn of length n is accepted by a DFA if 
there exists a sequence of states q = {q0, . . . , qn} ⊂ Qn+1 
starting with initial state q0 such that qn ∈ QF and 
δ(qi−1,wi) = qi for all i ∈ [1, n].

By modeling a DFA as a network model, we can use 
Infrared to sample accepted words. We consider two 
types of variables, one for the word w and the other for 
the state sequence q . Given a DFA, the accepted word 
sampling problem is formalized by the feature network 
NDFA as follows:

•	 XDFA = {X1, . . . ,Xn} ∪ {Y0, . . . ,Yn};
•	 DDFA = �n × {q0} ×Qn−1 ×QF;
•	 CDFA = {Transition[Xi ,Yi−1,Yi] | i ∈ [1, n]};
•	 FDFA = {}.

The constraint Transition[Xi ,Yi−1,Yi] : (xi, yi−1, yi)

 → (yi = δ(yi−1, xi)) encodes the DFA transition function. 
This ensures that, in each sampled assignment, y0 . . . yn is 
the state sequence of the word x1 . . . xn , which is accepted 
by DFA as the domain of Yn is the set of final states QF.

Complexity Again, we collapse the variables Xi and Yi 
for the same i in the dependency graph; let w be the tree-
width of the collapsed graph. We obtain time complex-
ity O(4w+1|Q|w+1n) by Cor. 1, where w = 1 for the pure 
automaton model (without extensions).

When forbidding/enforcing motifs in other design set-
tings, e.g. single or multitarget RNA design, the treewidth 
typically increases since the automaton model causes 
dependencies between variables of consecutive positions 
i and i + 1 , while e.g.  RNA design defines dependencies 
between nonconsecutive positions i and j for each target 
base pair (i, j). Based on this analysis, we achieve efficiency 
equivalent to that of the hand-crafted algorithm [46]. Since 
the domain size depends on the input size, specifically the 
number of states, this is another example of solving by 
Infrared in XP (Sec. “Parameterized complexity classes”).
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The complexity due to the automaton should be 
compared to simpler ideas to enforce/forbid motifs 
of maximum size k. More naively, one could intro-
duce such requirements by k-ary constraints on each 
run of k consecutive variables Xi, . . . ,Xi+k−1 (for all 

1 ≤ i ≤ n− k + 1 ). This idea results in O(4kn) without 
additional constraints. Automata thus offer a favorable 
trade-off between domain size and treewidth/exponent 
(as advocated in [46]). Infrared supports adapting the 
strategy to the concrete problem.

Algorithm 4  Multidimensional Boltzmann sampling

Fig. 9  Multidimensional Boltzmann sampling applied to RNA design. For the example of Fig. 5, we target G C content 85% and respective 
energies E1=-40, E2=-40, E3=-30 for the target structures (with tolerances of 5% GC content and 0.5 kcal/mol energy). Infrared ’s multidimensional 
Boltzmann sampling (MDBS) strategy starts from uniform sampling (weights 0 for every feature). It iteratively generates Boltzmann samples 
and updates the weights to move the (estimated) expectation closer to the targets.  A  Accepted samples as well as root mean square distance 
(RMSD) to the targets during this procedure, which considered over 70,000 total samples to generate 100 targeted samples.  B  Kernel density 
estimate plots: distributions of features for uniform sampling (blue) and sampling at the end of the MDBS run (red), where distributions are shifted 
to the targets (dashed red lines)
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Multidim. Boltzmann sampling 
Recall that Section “RNA design” demonstrated ran-
dom generation of solutions by sampling from the 
Boltzmann distribution defined by multiple features 
and weights. The histograms from Fig. 5 show the fea-
ture distributions resulting from large negative weights 
for all features in a multitarget RNA design example. In 
the example, this allows us to produce designs with low 
target structure energies and G C content.

Substantially extending the level of control, Infrared 
supports the random generation of objects with nar-
rowly defined target feature values based on multi-
dimensional Boltzmann sampling (MDBS) [15]. This 
technique was successfully demonstrated before in 
RNA design: generating sequences with defined dinu-
cleotide frequencies [47], targeting G C content in sin-
gle target RNA design by IncaRNAtion [48] and 
generating RNA designs with specific energies of mul-
tiple structures and specific G C content by RNARed-
print [16].

Problem statement Concretely, given a network 
N = (X ,D, C,F) , we look at the problem of randomly 
generating valid assignments x that satisfy constraints

for given target values τF and tolerances δF for all (or a 
subset) of the features F ∈ F  . Let us call such assign-
ments (τ , δ) -admissible.

MDBS strategy and algorithm As shown in [15] the 
problem can be solved effectively, under certain assump-
tion even with provable efficiency, by MDBS. This strat-
egy combines rejection sampling, which accepts only 
(τ , δ)-admissible samples, with a learning strategy to 
maximize its efficiency.

Here, we observe that rejection sampling is most effec-
tive, when the targeted values τF coincide with the means 
of the sampled distributions; moreover, these means 
depend on the feature weights α.

Therefore, Infrared ’s MDBS algorithm (Algorithm  4), 
starting from initial weights α (by default, α = 0 ), 

|F(x)− τF | ≤ δF ,

Fig. 10  Overview of the Infrared architecture. The C++ core engine is connected to a high-end modeling layer in Python by a hybrid connecting 
layer. The C++ core implements the computational engine to evaluate forward and traceback algorithms on cluster trees as generic code 
(e.g. supporting different algebras as evaluation policies; PF for partition function, Arctic for maximization). This optimized low-level layer 
is exposed to Python using pybind11; the core functionality is moreover extended (by tree decomposition, using module treedecomp, 
population of the cluster tree...) on the Python side to implement the full computational engine. Finally, the high-level modeling interface 
of Infrared offers functionality to model and solve feature networks, perform sampling targeting specific features (multidimensional Boltzmann 
sampling), define custom constrain and function types. Moreover, we include the module rna for RNA-specific functionality
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iteratively generates k-many samples per round. In every 
iteration, it tweaks the weights α aiming to shift the sam-
pling means closer to the targets; the update step-size 
is controlled by the tweaking factor γ . The procedure 
is repeated until K-many (τ , δ)-admissible samples are 
generated. To stabilize this heuristic strategy, Infrared 
additionally implements an annealing scheme based on 
improvement of the root mean square deviation (RMSD) 
to the targets and controlled by the cooling factor Ŵ.

MDBS for RNA design Fig.  9 illustrates this MDBS 
strategy for the example of Fig. 5 and specific energy and 
G C content targets. Showing typical behavior, the strat-
egy improves the RMSD while generating admissible and 
nonadmissible samples. In this way, it increases the effi-
ciency of generating admissible assignments (Fig.  9A). 
Figure 9B shows how MDBS shifts the multivariate dis-
tribution toward the targets (here starting from uniform 
sampling).

Targeting by proxy The multitarget design example 
showcases an interesting extension of the standard MDBS 
mechanism. Namely, in this case, we distinguish base 
pair energy from Turner energy. To target the latter, we 
use base pair energies as proxies, since they allow much 
more efficient sampling (and are sufficiently correlated to 
Turner energies; compare [16]). To shift the distributions 
during the MDBS algorithm, we thus estimate the means 
of the Turner energies; then, based on their difference 
from the target Turner energies, we update the weights of 
the corresponding base pair energy feature. Our Infrared 
implementation supports ‘targeting by proxy’ in a gener-
alized way (using a second kind of feature F whose evalu-
ations F(x) are defined explicitly, instead of being induced 
by their network functions).

Available code examples In supplemental online mate-
rial (Jupyter notebooks), we show the code to produce 
the samples and plots for Fig.  9; as a further example, 
we demonstrate effective random sequence generation 
targeting all 16 dinucleotide frequencies of a SAM ribos-
witch (RF00162; from S. thermophilum), while maintain-
ing compatibility with its pseudoknotted RNA structure.

Implementation
The Infrared software supports declarative modeling of 
problems as feature networks and treewidth-dependent 
efficient solving through a high-level Python interface. 
Figure 10 sketches its architecture. For solving, the soft-
ware relies on optimized implementations of the pre-
sented algorithms in C++. The low-level C++ engine 
is glued to a high-level ‘modeling’ layer by a pybind11-
based C++/Python interface. Thus, Infrared maintains 
a small algorithmic core in C++ (for high performance), 
while extending functionality in Python (for increased 
flexibility). For example, the C++ core engine solves 

cluster trees and focuses on necessary functionality, while 
the construction of the cluster tree from a model, as well 
as “high-level” functionality such as the declarative com-
position of models, are implemented in Python.

The C++ code is templated to generically support dif-
ferent function types and evaluation algebras, which 
keeps the code compact and maintainable; moreo-
ver it prepares future extensions of the system. For fast 
processing of bags, the core engine relies on fast back-
tracking enumeration of partial assignments (class 
AssignmentIterator), where constraints and func-
tions are evaluated as early as possible (to avoid unnec-
essary and redundant computation). Bag processing 
evaluates constraints ( Function<bool> ) and func-
tions ( Function<double> ) and, in the forward phase, 
computes messages, stored in memory as objects of 
MaterializedFunction<double>.

For completion of the Infrared solver, the connecting 
layer exposes the C++ functionality to Python, special-
izing the templates to optimization (arctic policy) and 
partition function over real-valued features. Moreover, it 
extends the core by Python wrapper classes that ‘know’ 
how to construct cluster trees from feature networks. To 
prepare the definition of function and constraint classes, 
it wraps the Boolean and real-valued C++ function 
classes. Generating tree decompositions is delegated to 
the module treedecomp. While we provide interfaces 
to different external tree decomposers and support cus-
tomization, the implemented default strategy applies a 
randomized min-fill-in heuristic [13] and returns a tree 
decomposition with heuristically minimized tree width.

Finally, the modeling interface layer enables a declara-
tive style of defining feature networks as objects of the 
class Model through Python code. Adding variables, 
constraints, and functions supports naturally specifying, 
but also extending and merging feature networks. From 
models one can construct solvers to perform different 
tasks, including optimization, Boltzmann sampling at 
specified feature weights or targeted sampling; the lat-
ter relies on a multidimensional Boltzmann strategy that 
learns weights to effectively target specific feature values.

Definition of application-specific constraints and func-
tions Infrared supports the definition of constraints and 
functions in Python by special concise syntax via the 
respective functions def_constraint_class and 
def_function_class. Examples of their use were 
given before for defining the constraint NotEquals and 
network function Card for the introductory graph col-
oring model. To create Python classes of constraints or 
network functions, the user calls these functions with 
the class name and two Python functions. The first func-
tion (init) has two roles. It defines the arguments of the 
constructor and returns the scope (or dependency list) of 
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the constraint or function. The second function (value) 
defines how the constraint/function is evaluated at spe-
cific values of the dependency variables. Using arguments 
of the same name, information can be passed from ini-
tialization to evaluation; e.g. this enables constraint/func-
tion type arguments or auxiliary data structures. For clear 
semantics (while allowing optimizations), we require ref-
erential transparency, i.e. the result of the value function 
must not vary with anything but its arguments.

Precomputation The core engine precomputes con-
straints and network functions when they are added 
to the cluster tree. For this purpose, they are evaluated 
for all partial assignments and the results are tabulated 
(MaterializedFunction). This simple mechanism 
supports the convenient specification of constraints and 
functions in Python, while resulting in fast computation 
times in practice (by significantly reducing the over-
head due to the Python computation). From a theoreti-
cal perspective, this mechanism preserves the worst case 
time complexity, since k-ary constraints and functions 
impose a bound on the treewitdh w ≥ k − 1 . The strat-
egy requires additional space in O(dkm) , for maximum 
domain size d and m constraints and functions. Space 
and time consumption due to the precomputation are 
thus dominated by the solving complexity if w > k − 1 . In 
this way, the strategy is optimized for the typical perfor-
mance-critical cases. Future implementations can speed 

up the precomputation by possibly lazy caching mecha-
nisms without changing semantics and the interface.

Discussion
The Infrared framework was motivated by the success 
of related technology in solving complex bioinformat-
ics problems; most directly, by our work on multitarget 
RNA design [16]. Thus, the system started out as a library 
that generalized the fixed-parameter tractable (FPT) 
sampling algorithm of RNARedprint and its multidi-
mensional Boltzmann sampling strategy. Since then it 
has been developed into a broadly applicable framework, 
supporting convenient declarative modeling of problems 
with multiple features, where models can be solved by a 
generic treewidth-based algorithm using different alge-
bras. This text was written to supply the reader with a 
comprehensive discussion of the techniques combined 
in the Infrared system. In contrast, our book chapter [28] 
focused on coding of design problems in Infrared and 
did not in-depth discuss Infrared’s methods in favor of 
an application-oriented introduction. Furthermore, note 
that we published a book chapter on the first version of 
RNARedprint [49], which did not make use of the Infra-
red system.

Since the system’s first application for concisely reim-
plementing RNARedprint with improved functionality 
and performance, it has proven to be a very useful tool 

Fig. 11  A Benchmark comparison of the Infrared-based RNARedPrint v2 to the original C++ implementation “v1”. Time is measured as user time; 
space, as maximum resident set size (RSS). We run the tools on the RNAfold benchmark set [16]. We let both tools generate 1000 samples at fixed 
weights; note that time and space are strongly dominated by the precomputation phase. To directly compare the implementations of the core 
algorithms, we run both tools on identical tree decompositions, although Infrared ’s default tree decomposer improves for several instances 
(including the most expensive one). One observes that the RNARedPrint v2 improves in space and time over the original implementation. Only 
for very short runtimes, at low treewidth, the C++ implementation has a slight edge, presumably due to less overhead. Both implementation show 
almost no noticable space increase at low tree widths; however the space requirements of the original implementation increase dramatically 
for treewidths larger than 10. Due to its extreme space requirement, we didn’t solve the single instance of treewidth 16 with RNARedPrint 
v1; in other cases, it failed due to a bug. For those instances, we indicate only the performance of version 2 (red crosses). B We used Infrared 
to compute the treewidths for a set of various phylogenetic networks that were collected from recent studies [52]. Using the Infrared network 
parsimony model, we count the number of reticulation nodes in the networks and calculate their treewidth. It can be seen that the treewidth rather 
correlates with the number of reticulation nodes than with network size (number of nodes and edges). Our study on ’real-world’ phylogenetic 
networks suggests that treewidths are often low in practice; consequently Infrared can effectively compute network parsimony by solving 
the presented models
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for further algorithmic developments in bioinformat-
ics [17, 19, 50]. Other previous work [3, 20, 46, 48] could 
have directly profited from the Infrared framework. For 
several previous algorithms [3, 17, 46, 48], we presented 
feature network models and discussed their solving com-
plexity. For these examples, the system yields essentially 
identical algorithms; with the exception of alignment, 
where Infrared lacks a problem-specific optimization 
(Secs. “Sequence alignment” and “From sequence align-
ment to pseudoknot sequence-structure alignment”), 
which we plan to add in the future. From the well-
researched field of network parsimony, we present fur-
ther examples where the Infrared ’s solving complexity is 
on par with state-of-the-art algorithms [5] (even improv-
ing softwired parsimony on binary networks).

Utiltity for prototyping and practical applications In 
summary, these previous works witness the suitability of 
Infrared for prototyping novel algorithmic ideas; moreo-
ver, their benchmark results show the practical utility of 
the system to solve relevant problem instances. Of par-
ticular interest, we show that—for many practically rele-
vant problem instances—the treewidth is sufficiently low 
to enable effective solving by Infrared.

In addition, we wanted to learn about Infrared ’s prac-
tical performance in relation to optimized problem-spe-
cific code in a high-performance computing language 
(Fig.  11A). Taking a unique opportunity, we compared 
our original C++ implementation of multitarget design 
[16, 49], RNARedprint  v1, to our Infrared-based reim-
plementation RNARedprint   v2. We chose the bench-
mark set “RNAfold”, e.g. used in [16, 51], comprising 400 
design instances of 3–6 structures, which were generated 
to pose ambitious challenges with treewidths up to 16. 
This experiment was performed on an Intel Core i7-4770 
CPU with 32 GB memory.

Moreover, we studied the practical applicability of tree-
width-based network parsimony algorithms (Sec. “Net-
work parsimony”) on a set of nonartificial phylogenetic 
networks [52] compiled from the literature (see https://​
phyln​et.​univ-​mlv.​fr/​recop​hync/​netwo​rkDraw.​php). This 
data set is typically used as a reference set for the com-
parison and evaluation of various algorithms on phylo-
genetic networks. For our purposes, we determined the 
treewidths of the networks in dependency on their size 
and the number of reticulation nodes (Fig.  11B). Here 
treewidth directly provides information about the solving 
efficiency of hardwired and softwired parsimony prob-
lems (Sec. “Network parsimony”). The low to moderate 
treewidths on these instances hint at permissible perfor-
mance in many real-word scenarios.

Characteristics and application range By modeling a 
series of concrete bioinformatics problems, we showed 

that Infrared is broadly applicable, going well beyond 
the selected examples. As discussed before, this extends 
to applicability in practice, where Infrared can effi-
ciently solve relevant instances of expressible problems. 
Although feature networks are virtually universal, such 
that they do not limit the system’s expressivity, Infra-
red ’s solver relies on a very specific mechanism, where 
efficiency strictly depends on the treewidth of the prob-
lem instance. Arguably, this is a prerequisite for the very 
characteristic properties of the framework. In contrast to 
heuristic methods, our tree decomposition-based solv-
ing strategy leads to predictable worst-case complexity 
guarantees for exact optimization and sampling. Notably, 
exact controlled sampling rules out many heuristic prun-
ing-type solving strategies, since it requires exact compu-
tation of partition functions.

Nevertheless, the dependency on treewidth necessar-
ily limits the practically solvable problems and instances. 
In practice, such problems (explicitly or implicitly) have 
some graph structure. Examples are graph coloring or 
multitarget RNA design, which both are NP hard, but 
efficiently solvable for specific instances, whose graphs 
are sufficiently close to trees.

Infrared was designed to handle such tree decompos-
able problems (and their low-treewidth instances) well, 
but its general solving mechanism offers the flexibility to 
go beyond. For example, the framework supports strat-
egies that limit the treewidth of considered instances 
(e.g. we controlled the maximum treewidth in our nega-
tive design approach RNAPOND [17]) or reduce the 
treewidth in controlled ways (e.g.  TreeDiet [18]). For 
this class of problems, we identify potential for future 
improvements of the Infrared solver, which could allow 
instances to be solved significantly faster or with better 
complexity. For example, we discussed the complexity of 
alignment; additionally, consistency-based methods can 
yield significant improvements over the current evalua-
tion strategy by cluster tree elimination.

Delimitation The system is, however, not designed and 
is even unsuitable for problems that cannot be modeled 
as a decomposable feature network. This comprises many 
constraint satisfaction (CSP) or constraint optimization 
problems (COP) that would typically be solved by gen-
eral constraint solvers (e.g.  the constraint programming 
system Gecode [26]), SAT solving (e.g. MiniSAT [53]), or 
solving of integer linear programs (e.g.  CPLEX [54]). In 
many classical CSP examples (e.g.  n-Queens, Sudoku), 
models induce a complete (or almost complete) depend-
ency graph. Here, Infrared does not implement strate-
gies to heuristically cope with the exponential worst case 
complexity (e.g. constraint propagation or branch and 
bound); its solving strategy would therefore be essentially 

https://phylnet.univ-mlv.fr/recophync/networkDraw.php
https://phylnet.univ-mlv.fr/recophync/networkDraw.php
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brute force. Obviously Infrared is thus not a general 
solver for CSP/COP, even if its declarative modeling par-
adigm and interface remind of such systems.

While Infrared proposes a novel form of automated 
solving of declarative problem specifications by dynamic 
programming (DP), bioinformatics already has a long tra-
dition of combining declarative methods and dynamic 
programming in the form of Algebraic Dynamic Pro-
gramming (ADP) [55].

Despite the common DP backdrop, Infrared and ADP 
pursue different, even orthogonal goals: instead of deriv-
ing a DP algorithm from a declarative problem descrip-
tion, ADP implementations such as GAPC [56] or 
ADPFusion [57, 58] aim to support the implementation 
of DP algorithms through algebraic abstraction.

Conclusions
We presented a framework for rapidly developing appli-
cations that make use of efficient exact optimization and 
sampling techniques by declaratively specifying prob-
lems in Python. As such, the framework provides flexible 
access to recent advanced algorithmic techniques—while 
specifying problems resembles common constraint mod-
eling systems.

The system allows modeling problems as feature net-
works, which we introduced as a form of weighted con-
strained networks that support several features. The 
main advantages and characteristics of the framework 
stem from combining expressive modeling with auto-
mated combinatorial solving strategies that support 
exact optimization and weighted sampling. In particular, 
exact sampling, which requires complete combinatorial 
algorithms, can be used in innovative ways. For exam-
ple, it allows generating decoys and background models 
in complex settings or targeting multiple features in its 
extension to multidimensional Boltzmann sampling.

As elaborated, these tasks are performed by generic 
solving algorithms based on tree decompositions of the 
models. Being parameterized by the treewidth, this strat-
egy profits from the often moderately low treewidth of 
many typical problems in bioinformatics.

We underline the broad range of possible applications, 
by our discussion of diverse application examples and 
their implementation (online documentation). Demon-
strating the concise reimplementation of previous bioin-
formatics methods, these applications serve as reference 
coding examples and also show the practical relevance of 
the framework.

Crucially, the system makes such methods accessi-
ble through a declarative interface in Python. Since this 
strongly facilitates their flexible use, the system pro-
motes future applications of these techniques. Increas-
ing flexibility, the system supports extension and 

refinement of existing models as well as their composi-
tion, e.g.  sequence design targeting structure RNA and 
forbidding specific sequence motifs.

Future work We plan to further optimize the Infra-
red solver due to consistency methods and/or forward 
checking (in single bag processing). In specific cases, 
such techniques even improve complexity bounds over 
the currently implemented CTE-like evaluation mecha-
nism. Moreover, we want to adapt the linear-factor 
speedup over standard evaluation for alignment prob-
lems (LicoRNA)—generalizations of this technique pose 
interesting research questions. As another path of opti-
mization, we will implement improved tree decomposi-
tion adapted to our solver.

Furthermore, the architecture of the framework ena-
bles additional solvers; for example, such solvers can 
compute Pareto-optima or perform nonredundant sam-
pling [59] based on feature network models. Moreover, it 
will be interesting to explore the use of further evaluation 
algebras, which can be used with the generic evaluation 
algorithms of Infrared ’s C++ core engine.

Finally, the system highlights benefits due to tree 
decomposition of problems that enable general solving 
by efficient combinatorial methods. While such methods 
can be tedious to implement from scratch, we demon-
strated their use through a declarative modeling inter-
face. In future work, we envision developing and making 
related methods accessible in a similar way. One exciting 
line would extend our work on tree decomposition-based 
automatic generation of dynamic programming schemes 
[19].
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