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Abstract 

FM-indexes are crucial data structures in DNA alignment, but searching with them usually takes at least one random 
access per character in the query pattern. Ferragina and Fischer [1] observed in 2007 that word-based indexes often 
use fewer random accesses than character-based indexes, and thus support faster searches. Since DNA lacks natural 
word-boundaries, however, it is necessary to parse it somehow before applying word-based FM-indexing. In 2022, 
Deng et al. [2] proposed parsing genomic data by induced suffix sorting, and showed that the resulting word-based 
FM-indexes support faster counting queries than standard FM-indexes when patterns are a few thousand characters 
or longer. In this paper we show that using prefix-free parsing—which takes parameters that let us tune the aver-
age length of the phrases—instead of induced suffix sorting, gives a significant speedup for patterns of only a few 
hundred characters. We implement our method and demonstrate it is between 3 and 18 times faster than compet-
ing methods on queries to GRCh38, and is consistently faster on queries made to 25,000, 50,000 and 100,000 SARS-
CoV-2 genomes. Hence, it seems our method accelerates the performance of count over all state-of-the-art methods 
with a moderate increase in the memory. The source code for PFP-FM is available at https://​github.​com/​Aaron​
Hong1​024/​afm.

Keywords  FM-index, Pangenomics, Word-based indexing, Random access

Introduction
The FM-index [3] is one of the most famous data struc-
tures in bioinformatics as it has been applied to countless 
applications in the analysis of biological data. Due to the 
long-term impact of this data structure, Burrows, Ferra-
gina, and Manzini earned the 2022 ACM Paris Kanella-
kis Theory and Practice Award.1 It is the data structure 
behind important read aligners—e.g., Bowtie [4] and 
BWA [5]—which take one or more reference genomes 
and build the FM-index for these genomes and use the 

resulting index to find short exact alignments between 
a set of reads and the reference(s) which then can be 
extended to approximate matches [4, 5]. Briefly, the FM-
index consists of a sample of the suffix array (denoted as 
SA) and the Burrows–Wheeler transform (BWT) array. 
Given an input string S and a query pattern Q, count 
queries that answer the number of times the longest 
match of Q appears in S, can be efficiently supported 
using the BWT. To locate these occurrences a sampling 
of SA is used. Together the FM-index efficiently supports 
both count and locate queries. We mathematically 
define the SA and BWT in the next section.

There has been a plethora of research papers on reduc-
ing the size of the FM-index (see, e.g., [6–8]) and on 
speeding up queries. The basic query, count, returns 
the number of times a pattern Q appears in the indexed 
text S, but usually requires at least |Q| random accesses 
to the BWT of S, which are usually much slower than the 
subsequent computations we perform on the informa-
tion those accesses return. More specifically, a count 
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query for Q uses rank queries at |Q| positions in the BWT; 
if we answer these using a single wavelet tree for the 
whole BWT, then we may use a random access for every 
level we descend in the wavelet tree, or �(|Q| log σ) ran-
dom access in all, where σ is the size of the alphabet; if 
we break the BWT into blocks and use a separate wavelet 
tree for each block [7], we may need only one or a few 
random accesses per rank query, but the total number of 
random accesses is still likely to be �(|Q|) . As far back 
as 2007, Ferragina and Fischer [1] addressed compressed 
indexes’ reliance on random access and demonstrated 
that word-based indexes perform fewer random accesses 
than character-based indexes:“The space reduction of the 
final word-based suffix array impacts also in their query 
time (i.e. less random access binary-search steps!), being 
faster by a factor of up to 3.” 

Thus, one possibility of accelerating the random access 
to genomic data—where it is widely used—is to break 
up the sequences into words or phrases. In light of this 
insight, Deng, Hon, Köppl and Sadakane  [2] in 2022 
applied a grammar [9] that factorizes S into phrases based 
on the leftmost S-type suffixes (LMS) [10]. (Crescenzi 
et al. [11] proposed a similar idea earlier.) Unfortunately, 
one round of that LMS parsing leads to phrases that are 
generally too short, so they obtained a speedup only 
when Q was thousands of characters. The open problem 
was how to control the length of phrases with respect to 
the input to get longer phrases that would enable larger 
advances in the acceleration of the random access.

Here, we apply the concept of prefix-free parsing to the 
problem of accelerating count in the FM-index. Prefix-
free parsing uses a rolling hash to first select a set of strings 
(referred to as trigger strings) that are used to define a parse 
of the input string S; i.e., the prefix-free parse is a parsing 
of S into phrases that begin and end at a trigger string and 
contain no other trigger string. All unique phrases are 
lexicographically sorted and stored in the dictionary of 
the prefix-free parse, which we denote as D . The prefix-
free parse can be stored as an ordered list of the phrases’ 
ranks in D . Hence, prefix-free parsing breaks up the input 
sequence into phrases, whose size is more controllable by 
the selection of the trigger strings. This leads to a more 
flexible acceleration than Deng et al. [2] obtained.

We assume that we have an input string S of length n. 
Now suppose we build an FM-index for S, an FM-index 
for the parse P , and a bitvector B of length n with 1’s 
marking characters in the BWT of S that immediately 
precede phrase boundaries in S, i.e., that immediately 
precede a trigger string. We note that all the 1  s are 
bunched into at most as many runs as there are dis-
tinct trigger strings in S. Also, as long as the ranks of 
the phrases are in the same lexicographic order as the 
phrases themselves, we can use a rank query on the 

bitvector to map from the interval in the BWT of S for 
any pattern starting with a trigger string to the corre-
sponding interval in the BWT of P , and vice versa with a 
select query. This means that, given a query pattern Q, 
we can backward search for Q character by character 
in the FM-index for S until we hit the left end of the 
rightmost trigger string in Q, then map into the BWT of 
P and backward search for Q phrase by phrase until we 
hit the left end of the leftmost trigger string in Q, then 
map back into the BWT of S and finish backward search-
ing character by character again.

We implement this method, which we refer to as 
PFP-FM , and extensively compare against the FM-
index implementation in sdsl [12], RLCSA [13], 
RLFM [6, 14], and FIGISS [2] using sets of SARS-
CoV-2 genomes taken from the NCBI website, and 
the Genome Reference Consortium Human Build 38 
with varying query string lengths. When we compare 
PFP-FM to FM-index in sdsl using 100,000 SARS-
CoV-2 genomes, we witnessed that PFP-FM was able to 
perform between 2.1 times and 2.8 times more queries. 
In addition, PFP-FM was between 64.38% and 74.12%, 
59.22% and 78.23%, and 49.10% and 90.70% faster than 
FIGISS, RLCSA, and RLFM, respectively, on 100,000 
SARS-CoV-2 genomes. We evaluated the performance 
of PFP-FM on the Genome Reference Consortium 
Human Build 38, and witnessed that it was between 
3.86 and 7.07, 2.92 and 18.07, and 10.14 and 25.46 times 
faster than RLCSA, RLFM, and FIGISS, respectively. 
With respect to construction time, PFP-FM had the 
most efficient construction time for all SARS-CoV-2 
datasets and was the second fastest for Genome Refer-
ence Consortium Human Build 38. All methods used 
less than 60 GB for memory for construction on the 
SARS-CoV-2 datasets, making the construction fea-
sible on any entry level commodity server—even the 
build for the 100,000 SARS-CoV-2 dataset. Construc-
tion for the Genome Reference Consortium Human 
Build 38 required between 26 GB and 71 GB for all 
methods, with our method using the most memory. In 
summary, we developed and implemented a method for 
accelerating the FM-index, and achieved an accelera-
tion between 2 and 25 times, with the greatest accelera-
tion witnessed with longer patterns. Thus, accelerated 
FM-index methods—such as the one developed in 
this paper—are highly applicable to finding very long 
matches (125 to 1000 in length) between query 
sequences and reference databases. As reads get longer 
and more accurate (i.e., Nanopore data), we will soon 
be prepared to align long reads to reference databases 
with efficiency that surpasses traditional FM-index 
based alignment methods. The source code is publicly 
available at https://​github.​com/​Aaron​Hong1​024/​afm.

https://github.com/AaronHong1024/afm
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Preliminaries
Basic definitions
A string S of length n is a finite sequence of symbols 
S = S[0..n− 1] = S[0] · · · S[n− 1] over an alphabet 
� = {c1, . . . , cσ } . We assume that the symbols can be 
unambiguously ordered. We denote by ε the empty string, 
and the length of S as |S|. Given a string S, we denote the 
reverse of S as rev(S), i.e., rev(S) = S[n− 1] · · · S[0].

We denote by S[i..j] the substring S[i] · · · S[j] of S start-
ing in position i and ending in position j, with S[i..j] = ε if 
i > j . For a string S and 0 ≤ i < n , S[0..i] is called the i-th 
prefix of S, and S[i..n− 1] is called the i-th suffix of S. We 
call a prefix S[0..i] of S a proper prefix if 0 ≤ i < n− 1 . 
Similarly, we call a suffix S[i..n− 1] of S a proper suffix if 
0 < i < n.

Given a string S, a symbol c ∈ � , and an integer i, we 
define S. rankc(i) (or simply rank if the context is clear) 
as the number of occurrences of c in S[0..i − 1] . We also 
define S. selectc(i) as min({j − 1 | S. rankc(j) = i} ∪ {n}) , 
i.e., the position in S of the i-th occurrence of c in S if it 
exists, and n otherwise. For a bitvector B[0..n− 1] , that 
is a string over � = {0, 1} , to ease the notation we will 
refer to B. rank1(i) and B. select1(i) as B. rank (i) and 
B. select (i) , respectively.

SA, BWT, and backward search
We denote the suffix array [15] of a given a string 
S[0..n− 1] as SAS , and define it to be the permutation 
of {0, . . . , n− 1} such that S[ SAS[i]..n− 1] is the i-th 
lexicographical smallest suffix of S. We refer to SAS as 
SA when it is clear from the context. For technical rea-
sons, we assume that the last symbol of the input string is 
S[n− 1] = $ , which does not occur anywhere else in the 
string and is smaller than any other symbol.

We consider the matrix W containing all sorted rota-
tions of S, called the BWT matrix of S, and let F and 
L be the first and the last column of the matrix. The 
last column defines the BWT array, i.e., BWT = L . 
Now let C[c] be the number of suffixes starting 
with a character smaller than c. We define the LF-
mapping as LF (i, c) = C[c] + BWT. rankc(i) and 
LF (i) = LF (i,BWT[i]) . With the LF-mapping, it is pos-
sible to reconstruct the string S from its BWT. It is in fact 
sufficient to set an iterator s = 0 and S[n− 1] = $ and for 
each i = n− 2, . . . , 0 do S[i] = BWT [s] and s = LF (s) . 
The LF-mapping can also be used to support count by 
performing the backward search, which we now describe.

Given a query pattern Q of length m, the backward 
search algorithm consists of m steps that preserve the 
following invariant: at the i-th step, p stores the posi-
tion of the first row of W prefixed by Q[i,  m] while q 
stores the position of the last row of W prefixed by 

Q[i,  m]. To advance from i to i − 1 , we use the LF-
mapping on p and q, p = C[c] + BWT. rankc(p) and 
q = C[c] + BWT . rankc(q + 1)− 1.

FM‑index and count queries
Given a query string Q[0..m− 1] and an input string 
S[0..n− 1] , two fundamental queries are: (1) count 
which counts the number of occurrences of Q in S; 
(2) locate which finds the location of each of these 
matches in S. Ferragina and Manzini [3] showed that, by 
combining SA with the BWT, both count and locate 
can be efficiently supported. Briefly, backward search on 
the BWT is used to find the lexicographical range of the 
occurrences of Q in S; the size of this range is equal to 
count. The SA positions within this range are the posi-
tions where these occurrences are in S.

Prefix‑free parsing
As we previously mentioned, the Prefix-Free Parsing 
(PFP) takes as input a string S[0..n− 1] , and positive 
integers w and p, and produces a parse of S (denoted as 
P ) and a dictionary (denoted as D ) of all the unique sub-
strings (or phrases) of the parse. Parameter w defines 
the length of the trigger strings and parameter  p influ-
ences the rolling-hash function. We briefly go over the 
algorithm for producing this dictionary D and parse 
P . First, we assume there exists two symbols, say # and 
$ , which are not contained in � and are lexicographi-
cally smaller than any symbol in � . Next, we let T be an 
arbitrary set of w-length strings over � and call it the 
set of trigger strings. As mentioned before, we assume 
that S[n− 1] = $ and consider S to be cyclic, i.e., for 
all i, S[i] = S[i mod n] . Furthermore, we assume that 
$S[0..w − 2] = S[n− 1..n+ w − 2] ∈ T  , i.e., the sub-
string of length w that begins with $ is a trigger string.

We let the dictionary D = {d1, .., d
∣

∣ D
∣

∣

} be a (lexico-

graphically sorted) maximum set of substrings of S such 
that the following holds for each di : i) exactly one proper 
prefix of di is contained in T, ii) exactly one proper suffix 
of di is contained in T, iii) and no other substring of di is 
in T. These properties allow for the SA and BWT to be 
constructed since the lexicographical placement of each 
rotation of the input string can be identified unambigu-
ously from D and P [16–18]. An important consequence 
of the definition is that D is prefix-free, i.e., for any i  = j , 
di cannot be a prefix of dj.

Since we assumed S[n− 1..n+ w − 2] ∈ T  , we can con-
struct D by scanning S′ = $S[0..n− 2]S[n− 1..n+ w − 2] 
to find all occurrences of T and adding to D each sub-
string of S′ that starts and ends at a trigger string being 
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inclusive of the starting and ending trigger string. We can 
also construct the list of occurrences of D in S′ , which 
defines the parse P.

We choose T by a Karp-Rabin fingerprint f of strings 
of length w. We slide a window of length w over S′ , and 
for each length w substring r of S′ , include r in T if and 
only if f (r) ≡ 0 (mod p) or r = S[n− 1..n+ w − 2] . 
Let 0 = s0 < · · · < sk−1 be the positions in S′ such that 
for any 0 ≤ i < k , S′[si..si + w − 1] ∈ T  . The diction-
ary is D = {S′[si..si+1 + w − 1] | i = 0, . . . , k − 1} , 
and the parse is defined to be the sequence 
of lexicographic ranks in D of the substrings 
S′[s0..s1 + w − 1], . . . , S′[sk−2..sk−1 + w − 1].

As an example, suppose we have 

, where the trigger strings are highlighted in 
red, blue, or green. It follows that we have 
D = {$AGAC,AC$A,ACGAC,ACT#AGATAC,

ACT#AGATTC,TCG AGA C} and P = 0, 2, 3, 4, 5, 2, 1 . In 
our experiment, as illustrated in Fig. 3, we observed that 
increasing the value of w usually decreases the average 
phrase length. Conversely, increasing p usually increases 
the average phrase length. We note, however, that these 
trends may vary in real-world applications.

Methods
We now make use of the prefix-free parsing reviewed in 
section  "Prefix-free parsing" to build a word-based FM-
index in a manner in which the lengths of the phrases can 
be controlled via the parameters w and p. To explain our 
data structure, we first describe the components of our 
data structure, and then explain how to support count 
queries in a manner that is more efficient than the stand-
ard FM-index.

Data structure design
It is easiest to explain our two-level design with an exam-
ple, so consider a text

S[0..n− 1] = TCCAGAAGAGTATCT

CCTCGACATGTTGA

AGACATATGAT$

of length n = 41 that is terminated by a special end-of-
string character $ lexicographically less than the rest 
of the alphabet. Suppose we parse S using w = 2 and a 
Karp-Rabin hash function such that the trigger strings 
occurring in S are AA, CG and TA. We consider S as 
cyclic, and we have $S[0..w − 2] = $ T as a special trig-
ger string, so the dictionary D is

with the phrases sorted in lexicographic order. (Recall 
that phrases consecutive in S overlap by w = 2 char-
acters.) If we start parsing at the $, then the prefix-free 
parse for S is

where each element (or phrase ID) in P is the lexico-
graphic rank of the phrase in D.

Next, we consider the BWT matrix for P . Figure 1 illus-
trates the BWT matrix of P for our example. We note that 
since there is only one $ in S, it follows that there is only 
one 0 in P ; we can regard this 0 as the end-of-string char-
acter for (a suitable rotation of ) P corresponding to $ in 
S. If we take the i-th row of this matrix and replace the 
phrase IDs by the phrases themselves, collapsing over-
laps, then we get the lexicographically i-th cyclic shift of 
S that start with a trigger string, as shown on the right of 
the figure. This is one of the key insights that we will use 
later on.

Lemma 1  The lexicographic order of rotations of P cor-
respond to the lexicographic order of their corresponding 
rotations of S.

Proof  The characters of P are the phrase IDs that act as 
meta-characters. Since the meta-characters inherit the 
lexicographic rank of their underlying characters, and 
due to the prefix-freeness of the phrases, the suffix array 
of P permutes the meta-characters of P in the same way 
as the suffix array of S permutes the phrases of S. This 

D [0..5] ={$TCC AGA A, AAG ACA TA,

AAG AGT A, CGA CAT GTT GAA ,

TAT CTC CTCG, TAT GAT $T},

P [0..5] = (0, 2, 4, 3, 1, 5),

Fig. 1  The BWT matrix for our prefix-free parse P (left) and the cyclic shifts of S that start with a trigger string (right), in lexicographic order
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means that the order of the phrases in the BWT of S is 
the same as the order of the phrase IDs in P . � �

Next, we let B[0..n− 1] be a bitvector marking these 
cyclic shifts’ lexicographic rank among all cyclic shifts of 
S, i.e., where they are among the rows of the BWT matrix 
of S. Figure  2 shows the SA, BWT matrix and BWT of S, 
together with B; we highlight the BWT—the last column 
of the matrix—in red, and the cyclic shifts from Fig.  1 
are highlighted in blue. We note that B contains at most 
one run of 1’s for each distinct trigger string in S, so it 
is usually highly run-length compressible in practice, 
While this compressibility is partly due to the generally 
small size of D observed in repetitive data, it is also influ-
enced by the limited number of distinct trigger strings. 
For example, for 200 copies of of chromosome 19 the size 
of D was 0.16 GB and with 2200 additional copies the 
size of D was still less than 1 GB, i.e., 0.56 GB [19]. This 

suggests a compact representation, especially in repeti-
tive sequences where distinct strings of length w are 
fewer, as approximately a 1/p fraction of these strings will 
be trigger strings.

In addition to the bitvector, we store a hash function h 
on phrases and a map M from the hashes of the phrases 
in D to those phrases’ lexicographic ranks, which are 
their phrase IDs; M returns NULL when given any other 
key, where NULL semantically represents an invalid ID@. 
Therefore, in total, we build the FM-index for S, the FM-
index for P , the bitvector B marking the cyclic rotations, 
the hash function h on the phrases and the map M. For 
our example, suppose

and M(x) = NULL for any other value of x.
If we choose the range of h to be reasonably large then 

we can still store M in space proportional to the number 
of phrases in D with a reasonably constant coefficient and 
evaluate M(h(·)) in constant time with high probability, 
but the probability is negligible that M(h(γ ))  = NULL 
for any particular string γ not in D . This means that in 
practice we can use M(h(·)) as a membership dictionary 
for D , and not store D itself.

Query support
Next, given the data structure that we define above, we 
describe how to support count queries for a given pattern 
Q. We begin by parsing Q using the same Karp-Rabin hash 
we used to parse S, implying that we will have all the same 
trigger strings as we did before and possibly additional 
ones that did not occur in S. However, we will not consider 
Q to be cyclic nor assume an end-of-string symbol that 
would assure that Q starts and ends with a trigger string.

If Q is a substring of S, then, since Q contains the same 
trigger strings as its corresponding occurrence in S, the 
sequence of phrases induced by the trigger strings in 
Q must be a substring of the sequence of phrases of S. 
Together with the prefix and suffix of Q that are a suf-
fix and prefix of the phrases in S to the left and right of 
the shared phrases, we call this the partial encoding of Q, 
defined formally as follows.

Definition 1  (partial encoding) Given a substring S[i..j] 
of S, the partial encoding of S[i..j] is defined as follows: If 
no trigger string occurs in S[i..j], then the partial encod-
ing of S[i..j] is simply S[i..j] itself. Otherwise, the partial 

h($TCCAGAA) = 91785

h(AAGACATA) = 34865

h(AAGAGTA) = 49428

h(CGACATGTTGAA) = 98759

h(TATCTCCTCG) = 37298

h(TATGAT$T) = 68764

M(91785) = 0

M(34865) = 1

M(49428) = 2

M(98759) = 3

M(37298) = 4

M(68764) = 5

Fig. 2  The SA, BWT matrix and BWT of T, together with the bitvector 
B in which 1 s indicate rows of the matrix starting with trigger strings. 
The BWT is highlighted in red, while the columns marked by 1 s are 
highlighted in blue
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encoding of S[i..j] is the concatenation of: (1) the short-
est prefix α of S[i..j] that does not start with a trigger 
string and ends with a trigger string, followed by (2) the 
sequence of phrase IDs of phrases completely contained 
in S[i..j], followed by (3) the shortest suffix β of S[i..j] that 
begins with a trigger string and does not end with a trig-
ger string.

So the partial encoding partitions S[i..j] into a prefix α , 
a list of phrase IDs, and a suffix β . If S[i..j] begins (respec-
tively ends) with a trigger string, then α (respectively β ) is 
the empty string.

Parsing Q can be done in time linear in the length of Q.

Lemma 2  We can represent M with a data structure 
taking space (in words) proportional to the number of 
distinct phrases in D . Given a query pattern Q, this data 
structure returns NULL with high probability if Q con-
tains a complete phrase that does not occur in S. Other-
wise (complete phrases of Q occur in S), it returns the par-
tial encoding of Q. In either case, this query takes O(|Q|) 
time.

Proof  We keep the Karp-Rabin (KR) hashes of the 
phrases in D , with the range of the KR hash function 
mapping to [1..n3] so the hashes each fit in O(log n) bits. 
We also keep a constant-time map (implemented as 
a hash table with a hash function that is perfect for the 
phrases in D ) from the KR hashes of the phrases in D to 
their IDs, that returns NULL given any value that is not a 
KR hash of a phrase in D . We set M to be the map com-
posed with the KR hash function.
Given Q, we scan it to find the trigger strings in it, and 
convert it into a sequence of substrings consisting of: (a) 
the prefix α of Q ending at the right end of the first trig-
ger string in Q; (b) a sequence of PFP phrases, each start-
ing and ending with a trigger string with no trigger string 
in between; and (c) the suffix β of Q starting at the left 
end of the last trigger string in Q.

We apply M to every complete phrase in (b). If M returns 
NULL for any complete phrase in (b), then that phrase 
does not occur in S, so we return NULL; otherwise, we 
return α , the sequence of phrase IDs M returned for the 
phrases in (b), and β.
Notice that, if a phrase in Q is in S, then M will map it 
to its lexicographic rank in D ; otherwise, the probabil-
ity the KR hash of any particular phrase in Q but not in 
D collides with the KR hash of a phrase in D , is at most 
n/n3 = 1/n2 . It follows that, if Q contains a complete 
phrase that does not occur in S, then we return NULL 
with high probability; otherwise, we return Q’s partial 
encoding. � �

Corollary 1  If we allow O(|Q|) query time with high 
probability, then we can modify M to always report NULL 
when Q contains a complete phrase not in S.

Proof  We augment each Karp-Rabin (KR) hash stored 
in the hash table with the actual characters of its phrase 
such that we can check, character by character, whether a 
matched phrase of Q is indeed in D . In case of a collision 
we recompute the KR hashes of D and rebuild the hash 
table. That is possible since we are free to choose differ-
ent Karp-Rabin fingerprints for the phrases in D . � �

Continuing from our example above where the trigger 
strings are AA, CG and TA, suppose we have a query pat-
tern Q,

we can compute the parse of Q to obtain the following 
parse string

Next, we use M(h(·)) to map the complete phrases of this 
parse of Q to their phrase IDs—which are their rank val-
ues in D . If any complete phrase maps to NULL then we 
know Q does not occur in T. Using our example, we have 
the partial encoding

Next, we consider all possible cases matching Q with an 
occurrence in S. First, we consider the case that the last 
substring β in our parse of Q ends with a trigger string, 
which implies that it is a complete phrase. Here, we can 
immediately start backward searching for the parse of Q 
in the FM-index for P . Next, if β is not a complete phrase 
then we backward search for β in the FM-index for S. 
If this backward search for β returns nothing then we 
know Q does not occur in S. If the backward search for 
β returns an interval in the BWT of P that is not contained 
in the BWT interval for a trigger string then β does not 
start with a trigger string so Q = β and we are done back-
ward searching for Q.

Finally, we consider the case when β is a proper pre-
fix of a phrase and the backward search for β returns a 
BWTS interval contained in the BWTS interval for a trig-
ger string. In our example, β = TAT and our backward 
search for β in the FM-index for S returns the interval 
BWTS[31..32] , which is the interval for the trigger string 
TA. Next, we use B to map the interval for β in the BWTS 
to the interval in the BWT P that corresponds to the 
cyclic shifts of S starting with β.

Q[0..34] = �����������������������������������

�����,�������,����������,
������������,��������,���.

CAGAA, 2, 4, 3, 1,TAT.
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Lemma 3  We can store, in space (in words) proportional 
to the number of distinct trigger strings in S, a data struc-
ture B with which,

•	 Given the lexicographic range of suffixes of S starting 
with a string β such that β starts with a trigger string 
and contains no other trigger string, in O(log log n) 
time we can find the lexicographic range of suffixes of 
P starting with phrases that start with β;

•	 Given a lexicographic range of suffixes of P such that 
the corresponding suffixes of S all start with the same 
trigger string, in O(log log n) time we can find the 
lexicographic range of those corresponding suffixes 
of S.

Proof  Let B[0..n− 1] be a bitvector with 1  s marking 
the lexicographic ranks of suffixes of S starting with trig-
ger strings. There are at most as many runs of 1 s in B as 
there are distinct trigger strings in S, so we can store B in 
space proportional to that number and support rank and 
select operations on it in O(log log n) time (e.g. with the 
data structure of [20]).
If BWTS[i..j] contains the characters immediately pre-
ceding, in S, occurrences of a string β that starts with a 
trigger string and contains no other trigger strings, then 
BWT P [B. rank1(i)..B. rank1(j)] contains the phrase IDs 
immediately preceding, in P , the IDs of phrases starting 
with β.

If BWT P [i..j] contains the phrase IDs immediately pre-
ceding, in P , suffixes of P such that the corresponding 
suffixes of S all start with the same trigger string, then 
BWTS[B. select1(i + 1)..B. select1(j + 1)] contains the 
characters immediately preceding the corresponding suf-
fixes of S.

The correctness follows from Lemma 1.�  �

Continuing with our example, mapping BWTS[31..32] to 
BWT P yields the following interval:

as shown in Fig. 1. Starting from this interval in BWT P , 
we now backward search in the FM-index for P for the 
sequence of complete phrase IDs in the parse of Q. In our 
example, we have the interval BWT P [4..5] which yields 
the following phrase IDs: 2 4 3 1.

If this backward search in the FM-index for P returns 
nothing, then we know Q does not occur in S. Otherwise, 

BWT P [B. rank1(31),B. rank1(32)] = BWT P [4..5]

it returns the interval in BWT P corresponding to cyclic 
shifts of S starting with the suffix of Q that starts with 
Q’s first complete phrase. In our example, if we start with 
BWT P [4..5] and backward search for 2 4 3 1 then we 
obtain BWT P [2] , which corresponds to the cyclic shift

of S that starts with the suffix

of Q that is parsed into 2, 4, 3, 1,TAT.
To finish our search for Q, we use B to map the inter-

val in BWT P to the corresponding interval in the BWTS , 
which is the interval of rows in the BWT matrix for S 
which start with the suffix of Q we have sought so far. In 
our example, we have that BWT P [2] maps to

We note that our examples contain BWT intervals with 
only one entry because our example is so small, but 
in general they are longer. If the first substring α in our 
parse of Q is a complete phrase then we are done back-
ward searching for Q. Otherwise, we start with this inter-
val in BWTS and backward search for α in the FM-index 
for S, except that we ignore the last w characters of α 
(which we have already sought, as they are also contained 
in the next phrase in the parse of Q).

In our example, α = CAGAA so, starting with BWTS[2] 
we backward search for CAG , which returns the interval 
BWTS[14] . As shown in Fig. 2,

indeed starts with

This concludes our explanation of count.
To conclude, we give some intuition as to why we 

expect that our two-level FM-index is faster in practice 
than standard backward search. Following the reasoning 
of Deng et  al. [2], on the one hand, standard backward 
search takes linear time in the length of Q and usually 
uses at least one random access to the BWT of S per 
character in Q. On the other hand, prefix-free parsing Q, 
like the LMS-parsing of Deng et al., takes linear time but 
does not use random access to S or the BWT of S; back-
ward search in the FM-index of S is the same as standard 
backward search but we use it only for the first and last 
substrings in the parse of Q. Backward search in the FM-
index for P is likely to use about lg | D | random accesses 

�����������������������������������������

AAGAGTATCTCCTCGACATGTTGAAGACATAT

BWTS[B. select1(2+ 1)] = BWTS[2].

S[ SA [4]..n] = S[2..n] = ������������������������

���������������

Q = � � �����������������������������������.
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for each complete phrase in the parse of Q: the BWT of P 
is over an effective alphabet whose size is the number of 
phrases in D . Therefore, a balanced wavelet tree to sup-
port rank on that BWT should have depth about lg | D | 
and we should use at most about one random access for 
each level in the tree.

In summary, if we can find settings of the prefix-free 
parsing parameters w and p such that

•	 Most query patterns will span several phrases,
•	 Most phrases in those patterns are fairly long,
•	 lg | D | is significantly smaller than those phrases’ 

average length, then the extra cost of parsing Q 
should be more than offset by using fewer random 
accesses.

Results
We implemented our algorithm and measured its per-
formance against all known competing methods. We ran 
all experiments on a server with AMD EPYC 75F3 CPU 
with Red Hat Enterprise Linux 7.7 (64 bit, kernel 3.10.0). 
The compiler was g++ version 12.2.0. The running time 
and memory usage was recorded by Snakemake bench-
mark facility [21]. We set a memory limitation of 128 GB 
and a time limitation of 24 h.

Datasets We used the following datasets. First, we 
considered sets of SARS-CoV-2 genomes taken from 
the NCBI website. We used three collections of 25, 000, 
50, 000, and 100, 000 SARS-CoV-2 genomes from EMBL-
EBI’s COVID-19 data portal. Each collection is a super-
set of the previous. We denote these as SARS-25k, and 
SARS-50k, SARS-100k. Next, we considered a single 
human reference genome, which we denote as GRCh38, 
downloaded from NCBI. We report the size of the data-
sets as the number of characters in each in Table 1. We 
denote n as the number of characters.

Implementation We implemented our method in C++ 
11 using the sdsl-lite library [12] and extended the 
prefix-free parsing method of Oliva, whose source code 
is publicly available here https://​github.​com/​marco-​oliva/​
pfp. The source code for PFP-FM is available at https://​
github.​com/​Aaron​Hong1​024/​afm.

Competing methods We compared PFP-FM against 
the following methods the standard FM-index found 
in sdsl-lite library [12], RLCSA [13], RLFM [6, 14], 
Bowtie [4],  Bowtie2 [4, 22, 23] and FIGISS [2]. 
The source code of RLCSA and FIGISS is publicly avail-
able, while RLFM is provided only as an executable. We 
performed the comparison by selecting 1000 strings at 
random of the specified length from the FASTA file con-
taining all the genomes, performing the count opera-
tion on each query pattern, and measuring the time usage 
for all the methods under consideration.

As a side note, FIGISS and RLCSA only support 
count queries where the string is provided in an input 
text file. More specifically, the original FIGISS imple-
mentation supports counting with the entire content of 
a file treated as a single pattern. To overcome this limi-
tation, we modified the source code to enable the pro-
cessing of multiple query patterns within a single file. In 
addition to the time required for answering count, we 
measured the time and memory required to construct 
the data structure.

Acceleration versus baseline
In this subsection, we compare PFP-FM versus the stand-
ard FM-index in sdsl with varying values of window 
size (w) and modulo value (p), and varying the length of 
the query pattern. We calculated the number of count 
queries performed per CPU second with PFP-FM ver-
sus the standard FM-index. We generated heatmaps that 
illustrate the number of count queries of PFP-FM ver-
sus sdsl for various lengths of query patterns, namely, 
125, 250, 500, and 1000. We performed this for both 
SARS-CoV-2 set of genomes and GRCh38 human ref-
erence genome. Figure  3 shows the resulting heatmaps 
for SARS-100K. As shown in this figure, PFP-FM was 
between 2.178 and 2.845 times faster than the standard 
FM-index with the optimal values of w and p. In par-
ticular, an optimal performance gain of 2.6, 2.3, 2.2, and 
2.9 was witnessed for pattern lengths of 125, 250, 500, 
and 1,000, respectively. The (w, p) pairs that correspond 
to these results are (6,  50), (6,  30), (8,  50), and (8,  50). 
Additionally, as depicted in Fig.  4, which focuses on the 
GRCh38 dataset, the speed of PFP-FM ranges from 1.672 
to 2.943 times faster than that of the standard FM-index 
when optimal values of w and p are used. For pattern 
lengths of 125, 250, 500, and 1,000, the acceleration fac-
tors achieved by PFP-FM are 1.96, 1.81, 2.45, and 2.94, 
corresponding to these lengths. The specific (w, p) pairs 
for these improvements are (4,  50) for the 125 pattern 
length, (8, 50) for 250, (4, 50) for 500, and (6, 40) for the 
1000 length. As detailed in Table 1, these outcomes were 
obtained under conditions of comparable memory usage 
and constructing time.

Results on SARS‑CoV‑2 genomes
We used the optimal parameters that were obtained 
from the previous experiment for this section. We 
constructed the index using these parameters for each 
SARS-CoV-2 dataset and assessed the time consump-
tion for performing 1000 count queries using all com-
peting methods and PFP-FM . We illustrate the result 
of this experiment in Fig.  5, where PFP-FM consist-
ently exhibits the lowest time consumption. For the 
SARS-25K dataset, the time consumption of FIGISS 

https://github.com/marco-oliva/pfp
https://github.com/marco-oliva/pfp
https://github.com/AaronHong1024/afm
https://github.com/AaronHong1024/afm
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was between 451% and 568% higher than our method. 
And the time consumption of RLCSA and RLFM 
was between 780% and 1598%, and 842% and 1705% 
more than PFP-FM , respectively. The performance 
of FIGISS surpasses that of RLFM and RLCSA when 
using the SARS-25k dataset; however for the larger 
datasets FIGISS and RLCSA converge in their perfor-
mance. Neither method was substantially better than 
the other. In addition, on the larger datasets, when the 
query pattern length was 125 and 250, RLFM performed 
better than RLCSA and FIGISS but was slower for the 
other query lengths. Hence, it is very clear that PFP-FM 

accelerates the performance of count over all state-of-
the-art methods.

The gap in performance between PFP-FM and the 
competing methods increased with the dataset size. For 
SARS-50K, FIGISS, RLCSA and RLFM were between 
3.65 and 13.44, 3.65 and 16.08, and 4.25 and 12.39 times 
slower, respectively. For SARS-100K, FIGISS, RLCSA 
and RLFM were between 2.81 and 3.86, 2.45 and 4.59, 
and 1.96 and 10.75 times slower, respectively.

Next, we consider the time and memory required for 
construction, which is given in Table  1. Our experi-
ments revealed that all methods used less than 60 GB 

Fig. 3  Illustration of the impact of w, p and the length of the query pattern on the acceleration of the FM-index. Here, we used the SARS-100K 
dataset and varied the length of the query pattern to be equal to 125, 250, 500, and 1000. The y-axis corresponds to p and the x-axis corresponds 
to w. The heatmap illustrates the number of queries that can be performed in a CPU second with the acceleration versus the standard FM-index 
from sdsl, which employs a Huffman-shaped wavelet tree, i.e., PFP-FM / sdsl. The second value in each block represents the average length 
of the phrases
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of memory on all SARS-CoV-2 datasets; PFP-FM used 
the most memory with the peak being 54 GB on the 
SARS-100K dataset. Yet, PFP-FM exhibited the most 
efficient construction time across all datasets for gen-
erating the FM-index, and this gap in the time grew 
with the size of the dataset. More specifically, for the 
SARS-100K dataset, PFP-FM used 71.04%, 65.81%, 
and 73.41% less time compared to other methods. In 
summary, PFP-FM significantly accelerated the count 
time, and had the fastest construction time. All meth-
ods used less than 60 GB, which is available on most 
commodity servers. In comparison with Bowtie [4] 

and Bowtie 2 [22, 24], our study finds a notable trade-
off for highly repetitive datasets; while Bowtie and 
Bowtie2 are more memory-efficient, it significantly 
increases processing time. In our experiments, Bowtie 
required at least ten times more time in constructing 
the index than our approach. We note that these meth-
ods have significant larger capability than our methods 
so this comparison should approached codicillary.

We observe in these experiments that the PFP-FM 
algorithm manifests a moderately larger index size 
compared to other algorithms. This can be attributed 
to the PFP-FM algorithm’s methodology of storing the 

Fig. 4  Illustration of the impact of w, p and the length of the query pattern on the acceleration of the FM-index. Here, we used the GRCh38 
dataset and varied the length of the query pattern to be equal to 125, 250, 500, and 1000. The y-axis corresponds to p and the x-axis corresponds 
to w. The heatmap illustrates the number of queries that can be performed in a CPU second with the acceleration versus the standard FM-index 
from sdsl, which employs a Huffman-shaped wavelet tree, i.e., PFP-FM / sdsl. The second value in each block represents the average length 
of the phrases
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Fm-index for both string S and parse P , the suffix array 
( SA ) for S , and a bitvector B. Of these, the SA contrib-
utes the most to the overall size. In an effort to mitigate 
this, the SA was substituted with a Compressed Suffix 
Array ( CSA ), as delineated in the work of Grossi et al. 
(2014) [12]. This substitution significantly diminishes 
the index size. Consequently, this modified approach 
has been designated as PFP-FM-CSA . As indicated in 
Table  1, when applied to the SARS-CoV-2 dataset, the 
PFP-FM-CSA algorithm requires more memory and 
time for construction. However, it notably reduces the 
index size to one-third of what is observed with the 
original PFP-FM algorithm.

We next assessed the query times of the 
PFP-FM-CSA algorithm in comparison with other 
algorithms, which is shown in Fig. 6. For the GRCH38 
dataset, due to the computation time of PFP-FM-CSA 
exceeding two days, we did not record the data. In 
other datasets, the PFP-FM-CSA showed superior per-
formance, outpacing all other algorithms. Specifically, 
relative to the PFP-FM algorithm, PFP-FM-CSA was 
faster by 39.31% and 29.28%.

Thus, in conclusion, we see a trade-off between 
memory usage and construction time but note that 
this work contributes to the growing interested index-
ing data structures in bioinformatics. As novel imple-
mentations of construction algorithms for compressed 

Fig. 5  Illustration of the impact of the dataset size, and the length of the query pattern on the query time for answering count. We vary 
the length of the query pattern to be equal to 125, 250, 500, and 1000, and report the times for SARS-25K, SARS-50K, and SARS-100K. We 
illustrate the cumulative time required to perform 1,000 count queries. The y-axis is in log scale

Fig. 6  Impact of Dataset Size and Query Pattern Length on Query 
Execution Time. This figure presents a comparative analysis of query 
times for count operations across various datasets: SARS-25K, 
SARS-50K, SARS-100K, and GRCH38, using a consistent 
query pattern length of 1,000. The cumulative time required 
for executing 1000 count queries is illustrated, with the y-axis 
representing time in log scale. Note that for the GRCH38 dataset, 
due to the computation time exceeding two days, the data were 
not recorded

Fig. 7  Comparison of query times for count between the described 
solutions when varying the length of the query pattern. For each 
pattern length equal to 125, 250, 500, and 1000, we report 
the times for the GRCH38 dataset. We plot the cumulative time 
required to perform 1000 count queries. The y-axis is in log scale. 
PFP-FM is shown in blue, RLFM is shown in orange, RLCSA 
is shown in red, and FIGISS is shown in green
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suffix arrays are developed, they can be integrated in 
our method.

Results on human reference genome
After measuring the time and memory usage required 
to construct the data structure across all methods using 
the GRCh38 dataset, we observed that PFP-FM exhib-
ited the second most efficient construction time but used 
the most construction space (71 GB vs. 26 GB to 45 GB). 
More specifically, PFP-FM was able to construct the 

index between 1.25 and 1.6 times faster than the FIGISS 
and RLFM.

Next, we compare the performance of PFP-FM against 
other methods by performing 1000 count queries on, 
and illustrate the results in Fig. 7. Our findings demon-
strate that PFP-FM consistently outperforms all other 
methods. The RLCSA method performs better than 
RLFM and FIGISS when the pattern length is over 125 
but is still 3.9, 6.2, 3.4, and 7.1 times slower than PFP-FM . 
Meanwhile, the RLFM method exhibits a steady increase 

Table 1  Comparison of the construction performance with the construction time and memory for all datasets

The number of characters in each dataset (denoted as n) is in the second column

The construction time is reported in seconds (denoted as CONSTRUCT TIME)

The construction memory is reported in gigabytes (denoted as CONSTRUCT MEM)

The index size is reported in gigabytes (denoted as INDEX SIZE)

The implementation of the FM-index that we used was sourced from the sdsl library

Dataset n Method CONSTRUCT​ INDEX CONSTRUCT​
MEMORY SIZE TIME

SARS-25k 751,526,774 RLCSA 9.90 0.026 322.85

RLFM 3.47 0.136 363.74

FIGISS 4.89 0.003 378.49

PFP-FM 12.99 4.318 117.29

PFP-FM-CSA 15.68 1.689 772.98

FM-index 13.35 4.399 120.08

Bowtie 3.55 0.47 7851.35

Bowtie2 3.54 0.59 6847.03

SARS-50k 1,503,252,577 RLCSA 19.88 0.051 679.89

RLFM 6.94 0.278 701.36

FIGISS 12.44 0.006 795.70

PFP-FM 26.12 8.763 233.04

PFP-FM-CSA 30.95 3.078 1546.75

FM-index 26.12 8.490 237.50

Bowtie 7.09 0.94 28238.74

Bowtie2 7.09 1.18 15242.00

SARS-100k 3,004,588,730 RLCSA 39.47 0.099 1690.22

RLFM 25.01 0.571 1432.16

FIGISS 25.57 0.009 1840.80

PFP-FM 53.90 18.156 489.45

PFP-FM-CSA 61.86 5.758 3150.72

FM-index 51.85 16.73 434.55

Bowtie 14.20 1.884 32143.48

Bowtie2 14.19 2.37 33914.46

GRCh38 3,189,750,467 RLCSA 45.45 2.022 924.60

RLFM 26.31 3.101 1839.25

FIGISS 34.65 1.538 1440.19

PFP-FM 71.13 37.862 1154.12

FM-index 70.93 32.54 877.43

PFP-FM-CSA N/A N/A N/A

Bowtie 13.99 1.833 2160.76

Bowtie2 14.00 2.31 2170.32
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in time usage, and it is 2.9, 14.2, 12.8, and 18.07 times 
slower than PFP-FM . It is worth noting that the FIGISS 
grammar is less efficient for non-repetitive datasets, as 
demonstrated in the research by Akagi et al. [25], which 
explains its (worse) performance on GRCh38 versus the 
SARS-100K dataset. Hence, FIGISS is 10.1, 25.5, 13.6, 
and 14.8 times slower than PFP-FM . These results are in 
line with the performance of our previous results, and 
demonstrate that PFP-FM has both competitive con-
struction memory and time, and achieves a significant 
acceleration. Additionally, it is important to highlight 
that Bowtie exhibits higher efficiency in processing non-
repetitive datasets. Despite its minimal memory require-
ments and smaller index size, Bowtie’s processing is 
notably time-consuming.

Conclusion and future work
Hong et  al. [26] recently gave a method for computing 
LZ77 parses quickly using PFP and, at least in theory, 
we can do the same. The key idea is that storing a data 
structure supporting range-minimum queries (RMQs) 
over the suffix array makes an FM-index for the string S 
partially persistent: to check whether a pattern Q occurs 
in S[0..i − 1] for some given i, we can search for Q in the 
FM-index for S, perform an RMQ over the suffix-array 
interval for Q, and check that the smallest value j such 
that S[j..j + |Q| − 1] = Q has j + |Q| − 1 ≤ i − 1 . In fact, 
if we store the FM-index for the reverse of S, use range-
maximum queries instead of range-minimum queries, 
and check the suffix array after searching for every char-
acter of Q, then we can efficiently find the longest prefix 
of Q that occurs in S[0..i − 1] . This allows us to compute 
efficiently the LZ77 parse of S. We are now working to 
compare how this approach compares to Hong et al.’s.

Notice that, when the query pattern Q starts and ends 
with trigger strings, we can perform the whole search in 
the FM-index for the parse P and need not use the FM-
index for the string S at all. (See also related discussion in 
the arXiv preprint [27].) In fact, we are also now working 
to replace the FM-index for S by other data structures, in 
all cases. If Q starts with a trigger string but does not end 
with one, then instead of searching in the FM-index for 
S, we can find the lexicographic range of phrases in the 
dictionary D starting with the suffix of Q starting at the 
start of the rightmost trigger string. Once we have that 
range, we can begin the search in the FM-index for P 
with the corresponding range in the BWT of P. Finally, 
if Q neither starts nor ends with a trigger string, then we 
can use 2-dimensional range reporting on a grid with a 
point (x, y) whenever the co-lexicographically xth phrase 
in D appears in P before the lexicographically yth suffix 

of P (with the phrase and suffix overlapping at the trigger 
string). Specifically, we 

1.	 find for the lexicographic range of phrases in D start-
ing with the suffix of Q starting at the start of the 
rightmost trigger string,

2.	 start a search in the FM-index for P from the corre-
sponding range in the BWT of P,

3.	 find the co-lexicographic range of phrases in D end-
ing with the prefix of Q ending at the end of the left-
most trigger string,

4.	 use 2-dimensional range search on the grid to find all 
the substrings T of S in which the prefix of T ending 
at the end of T’s leftmost trigger string matches the 
corresponding prefix of Q, and the suffix of T starting 
at the start of T’s leftmost trigger string matches the 
corresponding suffix of Q — meaning T matches Q.
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