
Hong et al. Algorithms for Molecular Biology (2024) 19:15
https://doi.org/10.1186/s13015-024-00260-8

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Algorithms for
Molecular Biology

Pfp‑fm: an accelerated FM‑index
Aaron Hong1, Marco Oliva1, Dominik Köppl2,3, Hideo Bannai3, Christina Boucher1* and Travis Gagie4 

Abstract 

FM-indexes are crucial data structures in DNA alignment, but searching with them usually takes at least one random
access per character in the query pattern. Ferragina and Fischer [1] observed in 2007 that word-based indexes often
use fewer random accesses than character-based indexes, and thus support faster searches. Since DNA lacks natural
word-boundaries, however, it is necessary to parse it somehow before applying word-based FM-indexing. In 2022,
Deng et al. [2] proposed parsing genomic data by induced suffix sorting, and showed that the resulting word-based
FM-indexes support faster counting queries than standard FM-indexes when patterns are a few thousand characters
or longer. In this paper we show that using prefix-free parsing—which takes parameters that let us tune the aver-
age length of the phrases—instead of induced suffix sorting, gives a significant speedup for patterns of only a few
hundred characters. We implement our method and demonstrate it is between 3 and 18 times faster than compet-
ing methods on queries to GRCh38, and is consistently faster on queries made to 25,000, 50,000 and 100,000 SARS-
CoV-2 genomes. Hence, it seems our method accelerates the performance of count over all state-of-the-art methods
with a moderate increase in the memory. The source code for PFP-FM is available at https://​github.​com/​Aaron​
Hong1​024/​afm.

Keywords  FM-index, Pangenomics, Word-based indexing, Random access

Introduction
The FM-index [3] is one of the most famous data struc-
tures in bioinformatics as it has been applied to countless
applications in the analysis of biological data. Due to the
long-term impact of this data structure, Burrows, Ferra-
gina, and Manzini earned the 2022 ACM Paris Kanella-
kis Theory and Practice Award.1 It is the data structure
behind important read aligners—e.g., Bowtie [4] and
BWA [5]—which take one or more reference genomes
and build the FM-index for these genomes and use the

resulting index to find short exact alignments between
a set of reads and the reference(s) which then can be
extended to approximate matches [4, 5]. Briefly, the FM-
index consists of a sample of the suffix array (denoted as
SA) and the Burrows–Wheeler transform (BWT) array.
Given an input string S and a query pattern Q, count
queries that answer the number of times the longest
match of Q appears in S, can be efficiently supported
using the BWT. To locate these occurrences a sampling
of SA is used. Together the FM-index efficiently supports
both count and locate queries. We mathematically
define the SA and BWT in the next section.

There has been a plethora of research papers on reduc-
ing the size of the FM-index (see, e.g., [6–8]) and on
speeding up queries. The basic query, count, returns
the number of times a pattern Q appears in the indexed
text S, but usually requires at least |Q| random accesses
to the BWT of S, which are usually much slower than the
subsequent computations we perform on the informa-
tion those accesses return. More specifically, a count

*Correspondence:
Christina Boucher
christinaboucher@ufl.edu
1 Department of Computer and Information Science and Engineering,
University of Florida, Gainesville, Florida 32611, USA
2 Faculty of Engineering, University of Yamanashi, Kōfu 400‑8510, Japan
3 M &D Data Science Center, Tokyo Medical and Dental University, Tokyo,
Japan
4 Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia,
Canada

1  https://​awards.​acm.​org/​kanel​lakis.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-024-00260-8&domain=pdf
https://github.com/AaronHong1024/afm
https://github.com/AaronHong1024/afm
https://awards.acm.org/kanellakis

Page 2 of 14Hong et al. Algorithms for Molecular Biology (2024) 19:15

query for Q uses rank queries at |Q| positions in the BWT;
if we answer these using a single wavelet tree for the
whole BWT, then we may use a random access for every
level we descend in the wavelet tree, or �(|Q| log σ) ran-
dom access in all, where σ is the size of the alphabet; if
we break the BWT into blocks and use a separate wavelet
tree for each block [7], we may need only one or a few
random accesses per rank query, but the total number of
random accesses is still likely to be �(|Q|) . As far back
as 2007, Ferragina and Fischer [1] addressed compressed
indexes’ reliance on random access and demonstrated
that word-based indexes perform fewer random accesses
than character-based indexes:“The space reduction of the
final word-based suffix array impacts also in their query
time (i.e. less random access binary-search steps!), being
faster by a factor of up to 3.”

Thus, one possibility of accelerating the random access
to genomic data—where it is widely used—is to break
up the sequences into words or phrases. In light of this
insight, Deng, Hon, Köppl and Sadakane [2] in 2022
applied a grammar [9] that factorizes S into phrases based
on the leftmost S-type suffixes (LMS) [10]. (Crescenzi
et al. [11] proposed a similar idea earlier.) Unfortunately,
one round of that LMS parsing leads to phrases that are
generally too short, so they obtained a speedup only
when Q was thousands of characters. The open problem
was how to control the length of phrases with respect to
the input to get longer phrases that would enable larger
advances in the acceleration of the random access.

Here, we apply the concept of prefix-free parsing to the
problem of accelerating count in the FM-index. Prefix-
free parsing uses a rolling hash to first select a set of strings
(referred to as trigger strings) that are used to define a parse
of the input string S; i.e., the prefix-free parse is a parsing
of S into phrases that begin and end at a trigger string and
contain no other trigger string. All unique phrases are
lexicographically sorted and stored in the dictionary of
the prefix-free parse, which we denote as D . The prefix-
free parse can be stored as an ordered list of the phrases’
ranks in D . Hence, prefix-free parsing breaks up the input
sequence into phrases, whose size is more controllable by
the selection of the trigger strings. This leads to a more
flexible acceleration than Deng et al. [2] obtained.

We assume that we have an input string S of length n.
Now suppose we build an FM-index for S, an FM-index
for the parse P , and a bitvector B of length n with 1’s
marking characters in the BWT of S that immediately
precede phrase boundaries in S, i.e., that immediately
precede a trigger string. We note that all the 1 s are
bunched into at most as many runs as there are dis-
tinct trigger strings in S. Also, as long as the ranks of
the phrases are in the same lexicographic order as the
phrases themselves, we can use a rank query on the

bitvector to map from the interval in the BWT of S for
any pattern starting with a trigger string to the corre-
sponding interval in the BWT of P , and vice versa with a
select query. This means that, given a query pattern Q,
we can backward search for Q character by character
in the FM-index for S until we hit the left end of the
rightmost trigger string in Q, then map into the BWT of
P and backward search for Q phrase by phrase until we
hit the left end of the leftmost trigger string in Q, then
map back into the BWT of S and finish backward search-
ing character by character again.

We implement this method, which we refer to as
PFP-FM , and extensively compare against the FM-
index implementation in sdsl [12], RLCSA [13],
RLFM [6, 14], and FIGISS [2] using sets of SARS-
CoV-2 genomes taken from the NCBI website, and
the Genome Reference Consortium Human Build 38
with varying query string lengths. When we compare
PFP-FM to FM-index in sdsl using 100,000 SARS-
CoV-2 genomes, we witnessed that PFP-FM was able to
perform between 2.1 times and 2.8 times more queries.
In addition, PFP-FM was between 64.38% and 74.12%,
59.22% and 78.23%, and 49.10% and 90.70% faster than
FIGISS, RLCSA, and RLFM, respectively, on 100,000
SARS-CoV-2 genomes. We evaluated the performance
of PFP-FM on the Genome Reference Consortium
Human Build 38, and witnessed that it was between
3.86 and 7.07, 2.92 and 18.07, and 10.14 and 25.46 times
faster than RLCSA, RLFM, and FIGISS, respectively.
With respect to construction time, PFP-FM had the
most efficient construction time for all SARS-CoV-2
datasets and was the second fastest for Genome Refer-
ence Consortium Human Build 38. All methods used
less than 60 GB for memory for construction on the
SARS-CoV-2 datasets, making the construction fea-
sible on any entry level commodity server—even the
build for the 100,000 SARS-CoV-2 dataset. Construc-
tion for the Genome Reference Consortium Human
Build 38 required between 26 GB and 71 GB for all
methods, with our method using the most memory. In
summary, we developed and implemented a method for
accelerating the FM-index, and achieved an accelera-
tion between 2 and 25 times, with the greatest accelera-
tion witnessed with longer patterns. Thus, accelerated
FM-index methods—such as the one developed in
this paper—are highly applicable to finding very long
matches (125 to 1000 in length) between query
sequences and reference databases. As reads get longer
and more accurate (i.e., Nanopore data), we will soon
be prepared to align long reads to reference databases
with efficiency that surpasses traditional FM-index
based alignment methods. The source code is publicly
available at https://​github.​com/​Aaron​Hong1​024/​afm.

https://github.com/AaronHong1024/afm

Page 3 of 14Hong et al. Algorithms for Molecular Biology (2024) 19:15 	

Preliminaries
Basic definitions
A string S of length n is a finite sequence of symbols
S = S[0..n− 1] = S[0] · · · S[n− 1] over an alphabet
� = {c1, . . . , cσ } . We assume that the symbols can be
unambiguously ordered. We denote by ε the empty string,
and the length of S as |S|. Given a string S, we denote the
reverse of S as rev(S), i.e., rev(S) = S[n− 1] · · · S[0].

We denote by S[i..j] the substring S[i] · · · S[j] of S start-
ing in position i and ending in position j, with S[i..j] = ε if
i > j . For a string S and 0 ≤ i < n , S[0..i] is called the i-th
prefix of S, and S[i..n− 1] is called the i-th suffix of S. We
call a prefix S[0..i] of S a proper prefix if 0 ≤ i < n− 1 .
Similarly, we call a suffix S[i..n− 1] of S a proper suffix if
0 < i < n.

Given a string S, a symbol c ∈ � , and an integer i, we
define S. rankc(i) (or simply rank if the context is clear)
as the number of occurrences of c in S[0..i − 1] . We also
define S. selectc(i) as min({j − 1 | S. rankc(j) = i} ∪ {n}) ,
i.e., the position in S of the i-th occurrence of c in S if it
exists, and n otherwise. For a bitvector B[0..n− 1] , that
is a string over � = {0, 1} , to ease the notation we will
refer to B. rank1(i) and B. select1(i) as B. rank (i) and
B. select (i) , respectively.

SA, BWT, and backward search
We denote the suffix array [15] of a given a string
S[0..n− 1] as SAS , and define it to be the permutation
of {0, . . . , n− 1} such that S[SAS[i]..n− 1] is the i-th
lexicographical smallest suffix of S. We refer to SAS as
SA when it is clear from the context. For technical rea-
sons, we assume that the last symbol of the input string is
S[n− 1] = $ , which does not occur anywhere else in the
string and is smaller than any other symbol.

We consider the matrix W containing all sorted rota-
tions of S, called the BWT matrix of S, and let F and
L be the first and the last column of the matrix. The
last column defines the BWT array, i.e., BWT = L .
Now let C[c] be the number of suffixes starting
with a character smaller than c. We define the LF-
mapping as LF (i, c) = C[c] + BWT. rankc(i) and
LF (i) = LF (i,BWT[i]) . With the LF-mapping, it is pos-
sible to reconstruct the string S from its BWT. It is in fact
sufficient to set an iterator s = 0 and S[n− 1] = $ and for
each i = n− 2, . . . , 0 do S[i] = BWT [s] and s = LF (s) .
The LF-mapping can also be used to support count by
performing the backward search, which we now describe.

Given a query pattern Q of length m, the backward
search algorithm consists of m steps that preserve the
following invariant: at the i-th step, p stores the posi-
tion of the first row of W prefixed by Q[i, m] while q
stores the position of the last row of W prefixed by

Q[i, m]. To advance from i to i − 1 , we use the LF-
mapping on p and q, p = C[c] + BWT. rankc(p) and
q = C[c] + BWT . rankc(q + 1)− 1.

FM‑index and count queries
Given a query string Q[0..m− 1] and an input string
S[0..n− 1] , two fundamental queries are: (1) count
which counts the number of occurrences of Q in S;
(2) locate which finds the location of each of these
matches in S. Ferragina and Manzini [3] showed that, by
combining SA with the BWT, both count and locate
can be efficiently supported. Briefly, backward search on
the BWT is used to find the lexicographical range of the
occurrences of Q in S; the size of this range is equal to
count. The SA positions within this range are the posi-
tions where these occurrences are in S.

Prefix‑free parsing
As we previously mentioned, the Prefix-Free Parsing
(PFP) takes as input a string S[0..n− 1] , and positive
integers w and p, and produces a parse of S (denoted as
P ) and a dictionary (denoted as D ) of all the unique sub-
strings (or phrases) of the parse. Parameter w defines
the length of the trigger strings and parameter p influ-
ences the rolling-hash function. We briefly go over the
algorithm for producing this dictionary D and parse
P . First, we assume there exists two symbols, say # and
$ , which are not contained in � and are lexicographi-
cally smaller than any symbol in � . Next, we let T be an
arbitrary set of w-length strings over � and call it the
set of trigger strings. As mentioned before, we assume
that S[n− 1] = $ and consider S to be cyclic, i.e., for
all i, S[i] = S[i mod n] . Furthermore, we assume that
$S[0..w − 2] = S[n− 1..n+ w − 2] ∈ T  , i.e., the sub-
string of length w that begins with $ is a trigger string.

We let the dictionary D = {d1, .., d
∣

∣ D
∣

∣

} be a (lexico-

graphically sorted) maximum set of substrings of S such
that the following holds for each di : i) exactly one proper
prefix of di is contained in T, ii) exactly one proper suffix
of di is contained in T, iii) and no other substring of di is
in T. These properties allow for the SA and BWT to be
constructed since the lexicographical placement of each
rotation of the input string can be identified unambigu-
ously from D and P [16–18]. An important consequence
of the definition is that D is prefix-free, i.e., for any i = j ,
di cannot be a prefix of dj.

Since we assumed S[n− 1..n+ w − 2] ∈ T  , we can con-
struct D by scanning S′ = $S[0..n− 2]S[n− 1..n+ w − 2]
to find all occurrences of T and adding to D each sub-
string of S′ that starts and ends at a trigger string being

Page 4 of 14Hong et al. Algorithms for Molecular Biology (2024) 19:15

inclusive of the starting and ending trigger string. We can
also construct the list of occurrences of D in S′ , which
defines the parse P.

We choose T by a Karp-Rabin fingerprint f of strings
of length w. We slide a window of length w over S′ , and
for each length w substring r of S′ , include r in T if and
only if f (r) ≡ 0 (mod p) or r = S[n− 1..n+ w − 2] .
Let 0 = s0 < · · · < sk−1 be the positions in S′ such that
for any 0 ≤ i < k , S′[si..si + w − 1] ∈ T  . The diction-
ary is D = {S′[si..si+1 + w − 1] | i = 0, . . . , k − 1} ,
and the parse is defined to be the sequence
of lexicographic ranks in D of the substrings
S′[s0..s1 + w − 1], . . . , S′[sk−2..sk−1 + w − 1].

As an example, suppose we have

, where the trigger strings are highlighted in
red, blue, or green. It follows that we have
D = {$AGAC,AC$A,ACGAC,ACT#AGATAC,

ACT#AGATTC,TCG AGA C} and P = 0, 2, 3, 4, 5, 2, 1 . In
our experiment, as illustrated in Fig. 3, we observed that
increasing the value of w usually decreases the average
phrase length. Conversely, increasing p usually increases
the average phrase length. We note, however, that these
trends may vary in real-world applications.

Methods
We now make use of the prefix-free parsing reviewed in
section "Prefix-free parsing" to build a word-based FM-
index in a manner in which the lengths of the phrases can
be controlled via the parameters w and p. To explain our
data structure, we first describe the components of our
data structure, and then explain how to support count
queries in a manner that is more efficient than the stand-
ard FM-index.

Data structure design
It is easiest to explain our two-level design with an exam-
ple, so consider a text

S[0..n− 1] = TCCAGAAGAGTATCT

CCTCGACATGTTGA

AGACATATGAT$

of length n = 41 that is terminated by a special end-of-
string character $ lexicographically less than the rest
of the alphabet. Suppose we parse S using w = 2 and a
Karp-Rabin hash function such that the trigger strings
occurring in S are AA, CG and TA. We consider S as
cyclic, and we have $S[0..w − 2] = $ T as a special trig-
ger string, so the dictionary D is

with the phrases sorted in lexicographic order. (Recall
that phrases consecutive in S overlap by w = 2 char-
acters.) If we start parsing at the $, then the prefix-free
parse for S is

where each element (or phrase ID) in P is the lexico-
graphic rank of the phrase in D.

Next, we consider the BWT matrix for P . Figure 1 illus-
trates the BWT matrix of P for our example. We note that
since there is only one $ in S, it follows that there is only
one 0 in P ; we can regard this 0 as the end-of-string char-
acter for (a suitable rotation of) P corresponding to $ in
S. If we take the i-th row of this matrix and replace the
phrase IDs by the phrases themselves, collapsing over-
laps, then we get the lexicographically i-th cyclic shift of
S that start with a trigger string, as shown on the right of
the figure. This is one of the key insights that we will use
later on.

Lemma 1  The lexicographic order of rotations of P cor-
respond to the lexicographic order of their corresponding
rotations of S.

Proof  The characters of P are the phrase IDs that act as
meta-characters. Since the meta-characters inherit the
lexicographic rank of their underlying characters, and
due to the prefix-freeness of the phrases, the suffix array
of P permutes the meta-characters of P in the same way
as the suffix array of S permutes the phrases of S. This

D [0..5] ={$TCC AGA A, AAG ACA TA,

AAG AGT A, CGA CAT GTT GAA ,

TAT CTC CTCG, TAT GAT $T},

P [0..5] = (0, 2, 4, 3, 1, 5),

Fig. 1  The BWT matrix for our prefix-free parse P (left) and the cyclic shifts of S that start with a trigger string (right), in lexicographic order

Page 5 of 14Hong et al. Algorithms for Molecular Biology (2024) 19:15 	

means that the order of the phrases in the BWT of S is
the same as the order of the phrase IDs in P . � �

Next, we let B[0..n− 1] be a bitvector marking these
cyclic shifts’ lexicographic rank among all cyclic shifts of
S, i.e., where they are among the rows of the BWT matrix
of S. Figure 2 shows the SA, BWT matrix and BWT of S,
together with B; we highlight the BWT—the last column
of the matrix—in red, and the cyclic shifts from Fig. 1
are highlighted in blue. We note that B contains at most
one run of 1’s for each distinct trigger string in S, so it
is usually highly run-length compressible in practice,
While this compressibility is partly due to the generally
small size of D observed in repetitive data, it is also influ-
enced by the limited number of distinct trigger strings.
For example, for 200 copies of of chromosome 19 the size
of D was 0.16 GB and with 2200 additional copies the
size of D was still less than 1 GB, i.e., 0.56 GB [19]. This

suggests a compact representation, especially in repeti-
tive sequences where distinct strings of length w are
fewer, as approximately a 1/p fraction of these strings will
be trigger strings.

In addition to the bitvector, we store a hash function h
on phrases and a map M from the hashes of the phrases
in D to those phrases’ lexicographic ranks, which are
their phrase IDs; M returns NULL when given any other
key, where NULL semantically represents an invalid ID@.
Therefore, in total, we build the FM-index for S, the FM-
index for P , the bitvector B marking the cyclic rotations,
the hash function h on the phrases and the map M. For
our example, suppose

and M(x) = NULL for any other value of x.
If we choose the range of h to be reasonably large then

we can still store M in space proportional to the number
of phrases in D with a reasonably constant coefficient and
evaluate M(h(·)) in constant time with high probability,
but the probability is negligible that M(h(γ)) = NULL
for any particular string γ not in D . This means that in
practice we can use M(h(·)) as a membership dictionary
for D , and not store D itself.

Query support
Next, given the data structure that we define above, we
describe how to support count queries for a given pattern
Q. We begin by parsing Q using the same Karp-Rabin hash
we used to parse S, implying that we will have all the same
trigger strings as we did before and possibly additional
ones that did not occur in S. However, we will not consider
Q to be cyclic nor assume an end-of-string symbol that
would assure that Q starts and ends with a trigger string.

If Q is a substring of S, then, since Q contains the same
trigger strings as its corresponding occurrence in S, the
sequence of phrases induced by the trigger strings in
Q must be a substring of the sequence of phrases of S.
Together with the prefix and suffix of Q that are a suf-
fix and prefix of the phrases in S to the left and right of
the shared phrases, we call this the partial encoding of Q,
defined formally as follows.

Definition 1  (partial encoding) Given a substring S[i..j]
of S, the partial encoding of S[i..j] is defined as follows: If
no trigger string occurs in S[i..j], then the partial encod-
ing of S[i..j] is simply S[i..j] itself. Otherwise, the partial

h($TCCAGAA) = 91785

h(AAGACATA) = 34865

h(AAGAGTA) = 49428

h(CGACATGTTGAA) = 98759

h(TATCTCCTCG) = 37298

h(TATGAT$T) = 68764

M(91785) = 0

M(34865) = 1

M(49428) = 2

M(98759) = 3

M(37298) = 4

M(68764) = 5

Fig. 2  The SA, BWT matrix and BWT of T, together with the bitvector
B in which 1 s indicate rows of the matrix starting with trigger strings.
The BWT is highlighted in red, while the columns marked by 1 s are
highlighted in blue

Page 6 of 14Hong et al. Algorithms for Molecular Biology (2024) 19:15

encoding of S[i..j] is the concatenation of: (1) the short-
est prefix α of S[i..j] that does not start with a trigger
string and ends with a trigger string, followed by (2) the
sequence of phrase IDs of phrases completely contained
in S[i..j], followed by (3) the shortest suffix β of S[i..j] that
begins with a trigger string and does not end with a trig-
ger string.

So the partial encoding partitions S[i..j] into a prefix α ,
a list of phrase IDs, and a suffix β . If S[i..j] begins (respec-
tively ends) with a trigger string, then α (respectively β ) is
the empty string.

Parsing Q can be done in time linear in the length of Q.

Lemma 2  We can represent M with a data structure
taking space (in words) proportional to the number of
distinct phrases in D . Given a query pattern Q, this data
structure returns NULL with high probability if Q con-
tains a complete phrase that does not occur in S. Other-
wise (complete phrases of Q occur in S), it returns the par-
tial encoding of Q. In either case, this query takes O(|Q|)
time.

Proof  We keep the Karp-Rabin (KR) hashes of the
phrases in D , with the range of the KR hash function
mapping to [1..n3] so the hashes each fit in O(log n) bits.
We also keep a constant-time map (implemented as
a hash table with a hash function that is perfect for the
phrases in D ) from the KR hashes of the phrases in D to
their IDs, that returns NULL given any value that is not a
KR hash of a phrase in D . We set M to be the map com-
posed with the KR hash function.
Given Q, we scan it to find the trigger strings in it, and
convert it into a sequence of substrings consisting of: (a)
the prefix α of Q ending at the right end of the first trig-
ger string in Q; (b) a sequence of PFP phrases, each start-
ing and ending with a trigger string with no trigger string
in between; and (c) the suffix β of Q starting at the left
end of the last trigger string in Q.

We apply M to every complete phrase in (b). If M returns
NULL for any complete phrase in (b), then that phrase
does not occur in S, so we return NULL; otherwise, we
return α , the sequence of phrase IDs M returned for the
phrases in (b), and β.
Notice that, if a phrase in Q is in S, then M will map it
to its lexicographic rank in D ; otherwise, the probabil-
ity the KR hash of any particular phrase in Q but not in
D collides with the KR hash of a phrase in D , is at most
n/n3 = 1/n2 . It follows that, if Q contains a complete
phrase that does not occur in S, then we return NULL
with high probability; otherwise, we return Q’s partial
encoding. � �

Corollary 1  If we allow O(|Q|) query time with high
probability, then we can modify M to always report NULL
when Q contains a complete phrase not in S.

Proof  We augment each Karp-Rabin (KR) hash stored
in the hash table with the actual characters of its phrase
such that we can check, character by character, whether a
matched phrase of Q is indeed in D . In case of a collision
we recompute the KR hashes of D and rebuild the hash
table. That is possible since we are free to choose differ-
ent Karp-Rabin fingerprints for the phrases in D . � �

Continuing from our example above where the trigger
strings are AA, CG and TA, suppose we have a query pat-
tern Q,

we can compute the parse of Q to obtain the following
parse string

Next, we use M(h(·)) to map the complete phrases of this
parse of Q to their phrase IDs—which are their rank val-
ues in D . If any complete phrase maps to NULL then we
know Q does not occur in T. Using our example, we have
the partial encoding

Next, we consider all possible cases matching Q with an
occurrence in S. First, we consider the case that the last
substring β in our parse of Q ends with a trigger string,
which implies that it is a complete phrase. Here, we can
immediately start backward searching for the parse of Q
in the FM-index for P . Next, if β is not a complete phrase
then we backward search for β in the FM-index for S.
If this backward search for β returns nothing then we
know Q does not occur in S. If the backward search for
β returns an interval in the BWT of P that is not contained
in the BWT interval for a trigger string then β does not
start with a trigger string so Q = β and we are done back-
ward searching for Q.

Finally, we consider the case when β is a proper pre-
fix of a phrase and the backward search for β returns a
BWTS interval contained in the BWTS interval for a trig-
ger string. In our example, β = TAT and our backward
search for β in the FM-index for S returns the interval
BWTS[31..32] , which is the interval for the trigger string
TA. Next, we use B to map the interval for β in the BWTS
to the interval in the BWT P that corresponds to the
cyclic shifts of S starting with β.

Q[0..34] = �����������������������������������

�����,�������,����������,
������������,��������,���.

CAGAA, 2, 4, 3, 1,TAT.

Page 7 of 14Hong et al. Algorithms for Molecular Biology (2024) 19:15 	

Lemma 3  We can store, in space (in words) proportional
to the number of distinct trigger strings in S, a data struc-
ture B with which,

•	 Given the lexicographic range of suffixes of S starting
with a string β such that β starts with a trigger string
and contains no other trigger string, in O(log log n)
time we can find the lexicographic range of suffixes of
P starting with phrases that start with β;

•	 Given a lexicographic range of suffixes of P such that
the corresponding suffixes of S all start with the same
trigger string, in O(log log n) time we can find the
lexicographic range of those corresponding suffixes
of S.

Proof  Let B[0..n− 1] be a bitvector with 1 s marking
the lexicographic ranks of suffixes of S starting with trig-
ger strings. There are at most as many runs of 1 s in B as
there are distinct trigger strings in S, so we can store B in
space proportional to that number and support rank and
select operations on it in O(log log n) time (e.g. with the
data structure of [20]).
If BWTS[i..j] contains the characters immediately pre-
ceding, in S, occurrences of a string β that starts with a
trigger string and contains no other trigger strings, then
BWT P [B. rank1(i)..B. rank1(j)] contains the phrase IDs
immediately preceding, in P , the IDs of phrases starting
with β.

If BWT P [i..j] contains the phrase IDs immediately pre-
ceding, in P , suffixes of P such that the corresponding
suffixes of S all start with the same trigger string, then
BWTS[B. select1(i + 1)..B. select1(j + 1)] contains the
characters immediately preceding the corresponding suf-
fixes of S.

The correctness follows from Lemma 1.� �

Continuing with our example, mapping BWTS[31..32] to
BWT P yields the following interval:

as shown in Fig. 1. Starting from this interval in BWT P ,
we now backward search in the FM-index for P for the
sequence of complete phrase IDs in the parse of Q. In our
example, we have the interval BWT P [4..5] which yields
the following phrase IDs: 2 4 3 1.

If this backward search in the FM-index for P returns
nothing, then we know Q does not occur in S. Otherwise,

BWT P [B. rank1(31),B. rank1(32)] = BWT P [4..5]

it returns the interval in BWT P corresponding to cyclic
shifts of S starting with the suffix of Q that starts with
Q’s first complete phrase. In our example, if we start with
BWT P [4..5] and backward search for 2 4 3 1 then we
obtain BWT P [2] , which corresponds to the cyclic shift

of S that starts with the suffix

of Q that is parsed into 2, 4, 3, 1,TAT.
To finish our search for Q, we use B to map the inter-

val in BWT P to the corresponding interval in the BWTS ,
which is the interval of rows in the BWT matrix for S
which start with the suffix of Q we have sought so far. In
our example, we have that BWT P [2] maps to

We note that our examples contain BWT intervals with
only one entry because our example is so small, but
in general they are longer. If the first substring α in our
parse of Q is a complete phrase then we are done back-
ward searching for Q. Otherwise, we start with this inter-
val in BWTS and backward search for α in the FM-index
for S, except that we ignore the last w characters of α
(which we have already sought, as they are also contained
in the next phrase in the parse of Q).

In our example, α = CAGAA so, starting with BWTS[2]
we backward search for CAG , which returns the interval
BWTS[14] . As shown in Fig. 2,

indeed starts with

This concludes our explanation of count.
To conclude, we give some intuition as to why we

expect that our two-level FM-index is faster in practice
than standard backward search. Following the reasoning
of Deng et al. [2], on the one hand, standard backward
search takes linear time in the length of Q and usually
uses at least one random access to the BWT of S per
character in Q. On the other hand, prefix-free parsing Q,
like the LMS-parsing of Deng et al., takes linear time but
does not use random access to S or the BWT of S; back-
ward search in the FM-index of S is the same as standard
backward search but we use it only for the first and last
substrings in the parse of Q. Backward search in the FM-
index for P is likely to use about lg | D | random accesses

���

AAGAGTATCTCCTCGACATGTTGAAGACATAT

BWTS[B. select1(2+ 1)] = BWTS[2].

S[SA [4]..n] = S[2..n] = ������������������������

���������������

Q = � � �����������������������������������.

Page 8 of 14Hong et al. Algorithms for Molecular Biology (2024) 19:15

for each complete phrase in the parse of Q: the BWT of P
is over an effective alphabet whose size is the number of
phrases in D . Therefore, a balanced wavelet tree to sup-
port rank on that BWT should have depth about lg | D |
and we should use at most about one random access for
each level in the tree.

In summary, if we can find settings of the prefix-free
parsing parameters w and p such that

•	 Most query patterns will span several phrases,
•	 Most phrases in those patterns are fairly long,
•	 lg | D | is significantly smaller than those phrases’

average length, then the extra cost of parsing Q
should be more than offset by using fewer random
accesses.

Results
We implemented our algorithm and measured its per-
formance against all known competing methods. We ran
all experiments on a server with AMD EPYC 75F3 CPU
with Red Hat Enterprise Linux 7.7 (64 bit, kernel 3.10.0).
The compiler was g++ version 12.2.0. The running time
and memory usage was recorded by Snakemake bench-
mark facility [21]. We set a memory limitation of 128 GB
and a time limitation of 24 h.

Datasets We used the following datasets. First, we
considered sets of SARS-CoV-2 genomes taken from
the NCBI website. We used three collections of 25, 000,
50, 000, and 100, 000 SARS-CoV-2 genomes from EMBL-
EBI’s COVID-19 data portal. Each collection is a super-
set of the previous. We denote these as SARS-25k, and
SARS-50k, SARS-100k. Next, we considered a single
human reference genome, which we denote as GRCh38,
downloaded from NCBI. We report the size of the data-
sets as the number of characters in each in Table 1. We
denote n as the number of characters.

Implementation We implemented our method in C++
11 using the sdsl-lite library [12] and extended the
prefix-free parsing method of Oliva, whose source code
is publicly available here https://​github.​com/​marco-​oliva/​
pfp. The source code for PFP-FM is available at https://​
github.​com/​Aaron​Hong1​024/​afm.

Competing methods We compared PFP-FM against
the following methods the standard FM-index found
in sdsl-lite library [12], RLCSA [13], RLFM [6, 14],
Bowtie [4], Bowtie2 [4, 22, 23] and FIGISS [2].
The source code of RLCSA and FIGISS is publicly avail-
able, while RLFM is provided only as an executable. We
performed the comparison by selecting 1000 strings at
random of the specified length from the FASTA file con-
taining all the genomes, performing the count opera-
tion on each query pattern, and measuring the time usage
for all the methods under consideration.

As a side note, FIGISS and RLCSA only support
count queries where the string is provided in an input
text file. More specifically, the original FIGISS imple-
mentation supports counting with the entire content of
a file treated as a single pattern. To overcome this limi-
tation, we modified the source code to enable the pro-
cessing of multiple query patterns within a single file. In
addition to the time required for answering count, we
measured the time and memory required to construct
the data structure.

Acceleration versus baseline
In this subsection, we compare PFP-FM versus the stand-
ard FM-index in sdsl with varying values of window
size (w) and modulo value (p), and varying the length of
the query pattern. We calculated the number of count
queries performed per CPU second with PFP-FM ver-
sus the standard FM-index. We generated heatmaps that
illustrate the number of count queries of PFP-FM ver-
sus sdsl for various lengths of query patterns, namely,
125, 250, 500, and 1000. We performed this for both
SARS-CoV-2 set of genomes and GRCh38 human ref-
erence genome. Figure 3 shows the resulting heatmaps
for SARS-100K. As shown in this figure, PFP-FM was
between 2.178 and 2.845 times faster than the standard
FM-index with the optimal values of w and p. In par-
ticular, an optimal performance gain of 2.6, 2.3, 2.2, and
2.9 was witnessed for pattern lengths of 125, 250, 500,
and 1,000, respectively. The (w, p) pairs that correspond
to these results are (6, 50), (6, 30), (8, 50), and (8, 50).
Additionally, as depicted in Fig. 4, which focuses on the
GRCh38 dataset, the speed of PFP-FM ranges from 1.672
to 2.943 times faster than that of the standard FM-index
when optimal values of w and p are used. For pattern
lengths of 125, 250, 500, and 1,000, the acceleration fac-
tors achieved by PFP-FM are 1.96, 1.81, 2.45, and 2.94,
corresponding to these lengths. The specific (w, p) pairs
for these improvements are (4, 50) for the 125 pattern
length, (8, 50) for 250, (4, 50) for 500, and (6, 40) for the
1000 length. As detailed in Table 1, these outcomes were
obtained under conditions of comparable memory usage
and constructing time.

Results on SARS‑CoV‑2 genomes
We used the optimal parameters that were obtained
from the previous experiment for this section. We
constructed the index using these parameters for each
SARS-CoV-2 dataset and assessed the time consump-
tion for performing 1000 count queries using all com-
peting methods and PFP-FM . We illustrate the result
of this experiment in Fig. 5, where PFP-FM consist-
ently exhibits the lowest time consumption. For the
SARS-25K dataset, the time consumption of FIGISS

https://github.com/marco-oliva/pfp
https://github.com/marco-oliva/pfp
https://github.com/AaronHong1024/afm
https://github.com/AaronHong1024/afm

Page 9 of 14Hong et al. Algorithms for Molecular Biology (2024) 19:15 	

was between 451% and 568% higher than our method.
And the time consumption of RLCSA and RLFM
was between 780% and 1598%, and 842% and 1705%
more than PFP-FM , respectively. The performance
of FIGISS surpasses that of RLFM and RLCSA when
using the SARS-25k dataset; however for the larger
datasets FIGISS and RLCSA converge in their perfor-
mance. Neither method was substantially better than
the other. In addition, on the larger datasets, when the
query pattern length was 125 and 250, RLFM performed
better than RLCSA and FIGISS but was slower for the
other query lengths. Hence, it is very clear that PFP-FM

accelerates the performance of count over all state-of-
the-art methods.

The gap in performance between PFP-FM and the
competing methods increased with the dataset size. For
SARS-50K, FIGISS, RLCSA and RLFM were between
3.65 and 13.44, 3.65 and 16.08, and 4.25 and 12.39 times
slower, respectively. For SARS-100K, FIGISS, RLCSA
and RLFM were between 2.81 and 3.86, 2.45 and 4.59,
and 1.96 and 10.75 times slower, respectively.

Next, we consider the time and memory required for
construction, which is given in Table 1. Our experi-
ments revealed that all methods used less than 60 GB

Fig. 3  Illustration of the impact of w, p and the length of the query pattern on the acceleration of the FM-index. Here, we used the SARS-100K
dataset and varied the length of the query pattern to be equal to 125, 250, 500, and 1000. The y-axis corresponds to p and the x-axis corresponds
to w. The heatmap illustrates the number of queries that can be performed in a CPU second with the acceleration versus the standard FM-index
from sdsl, which employs a Huffman-shaped wavelet tree, i.e., PFP-FM / sdsl. The second value in each block represents the average length
of the phrases

Page 10 of 14Hong et al. Algorithms for Molecular Biology (2024) 19:15

of memory on all SARS-CoV-2 datasets; PFP-FM used
the most memory with the peak being 54 GB on the
SARS-100K dataset. Yet, PFP-FM exhibited the most
efficient construction time across all datasets for gen-
erating the FM-index, and this gap in the time grew
with the size of the dataset. More specifically, for the
SARS-100K dataset, PFP-FM used 71.04%, 65.81%,
and 73.41% less time compared to other methods. In
summary, PFP-FM significantly accelerated the count
time, and had the fastest construction time. All meth-
ods used less than 60 GB, which is available on most
commodity servers. In comparison with Bowtie [4]

and Bowtie 2 [22, 24], our study finds a notable trade-
off for highly repetitive datasets; while Bowtie and
Bowtie2 are more memory-efficient, it significantly
increases processing time. In our experiments, Bowtie
required at least ten times more time in constructing
the index than our approach. We note that these meth-
ods have significant larger capability than our methods
so this comparison should approached codicillary.

We observe in these experiments that the PFP-FM
algorithm manifests a moderately larger index size
compared to other algorithms. This can be attributed
to the PFP-FM algorithm’s methodology of storing the

Fig. 4  Illustration of the impact of w, p and the length of the query pattern on the acceleration of the FM-index. Here, we used the GRCh38
dataset and varied the length of the query pattern to be equal to 125, 250, 500, and 1000. The y-axis corresponds to p and the x-axis corresponds
to w. The heatmap illustrates the number of queries that can be performed in a CPU second with the acceleration versus the standard FM-index
from sdsl, which employs a Huffman-shaped wavelet tree, i.e., PFP-FM / sdsl. The second value in each block represents the average length
of the phrases

Page 11 of 14Hong et al. Algorithms for Molecular Biology (2024) 19:15 	

Fm-index for both string S and parse P , the suffix array
( SA ) for S , and a bitvector B. Of these, the SA contrib-
utes the most to the overall size. In an effort to mitigate
this, the SA was substituted with a Compressed Suffix
Array ( CSA ), as delineated in the work of Grossi et al.
(2014) [12]. This substitution significantly diminishes
the index size. Consequently, this modified approach
has been designated as PFP-FM-CSA . As indicated in
Table 1, when applied to the SARS-CoV-2 dataset, the
PFP-FM-CSA algorithm requires more memory and
time for construction. However, it notably reduces the
index size to one-third of what is observed with the
original PFP-FM algorithm.

We next assessed the query times of the
PFP-FM-CSA algorithm in comparison with other
algorithms, which is shown in Fig. 6. For the GRCH38
dataset, due to the computation time of PFP-FM-CSA
exceeding two days, we did not record the data. In
other datasets, the PFP-FM-CSA showed superior per-
formance, outpacing all other algorithms. Specifically,
relative to the PFP-FM algorithm, PFP-FM-CSA was
faster by 39.31% and 29.28%.

Thus, in conclusion, we see a trade-off between
memory usage and construction time but note that
this work contributes to the growing interested index-
ing data structures in bioinformatics. As novel imple-
mentations of construction algorithms for compressed

Fig. 5  Illustration of the impact of the dataset size, and the length of the query pattern on the query time for answering count. We vary
the length of the query pattern to be equal to 125, 250, 500, and 1000, and report the times for SARS-25K, SARS-50K, and SARS-100K. We
illustrate the cumulative time required to perform 1,000 count queries. The y-axis is in log scale

Fig. 6  Impact of Dataset Size and Query Pattern Length on Query
Execution Time. This figure presents a comparative analysis of query
times for count operations across various datasets: SARS-25K,
SARS-50K, SARS-100K, and GRCH38, using a consistent
query pattern length of 1,000. The cumulative time required
for executing 1000 count queries is illustrated, with the y-axis
representing time in log scale. Note that for the GRCH38 dataset,
due to the computation time exceeding two days, the data were
not recorded

Fig. 7  Comparison of query times for count between the described
solutions when varying the length of the query pattern. For each
pattern length equal to 125, 250, 500, and 1000, we report
the times for the GRCH38 dataset. We plot the cumulative time
required to perform 1000 count queries. The y-axis is in log scale.
PFP-FM is shown in blue, RLFM is shown in orange, RLCSA
is shown in red, and FIGISS is shown in green

Page 12 of 14Hong et al. Algorithms for Molecular Biology (2024) 19:15

suffix arrays are developed, they can be integrated in
our method.

Results on human reference genome
After measuring the time and memory usage required
to construct the data structure across all methods using
the GRCh38 dataset, we observed that PFP-FM exhib-
ited the second most efficient construction time but used
the most construction space (71 GB vs. 26 GB to 45 GB).
More specifically, PFP-FM was able to construct the

index between 1.25 and 1.6 times faster than the FIGISS
and RLFM.

Next, we compare the performance of PFP-FM against
other methods by performing 1000 count queries on,
and illustrate the results in Fig. 7. Our findings demon-
strate that PFP-FM consistently outperforms all other
methods. The RLCSA method performs better than
RLFM and FIGISS when the pattern length is over 125
but is still 3.9, 6.2, 3.4, and 7.1 times slower than PFP-FM .
Meanwhile, the RLFM method exhibits a steady increase

Table 1  Comparison of the construction performance with the construction time and memory for all datasets

The number of characters in each dataset (denoted as n) is in the second column

The construction time is reported in seconds (denoted as CONSTRUCT TIME)

The construction memory is reported in gigabytes (denoted as CONSTRUCT MEM)

The index size is reported in gigabytes (denoted as INDEX SIZE)

The implementation of the FM-index that we used was sourced from the sdsl library

Dataset n Method CONSTRUCT​ INDEX CONSTRUCT​
MEMORY SIZE TIME

SARS-25k 751,526,774 RLCSA 9.90 0.026 322.85

RLFM 3.47 0.136 363.74

FIGISS 4.89 0.003 378.49

PFP-FM 12.99 4.318 117.29

PFP-FM-CSA 15.68 1.689 772.98

FM-index 13.35 4.399 120.08

Bowtie 3.55 0.47 7851.35

Bowtie2 3.54 0.59 6847.03

SARS-50k 1,503,252,577 RLCSA 19.88 0.051 679.89

RLFM 6.94 0.278 701.36

FIGISS 12.44 0.006 795.70

PFP-FM 26.12 8.763 233.04

PFP-FM-CSA 30.95 3.078 1546.75

FM-index 26.12 8.490 237.50

Bowtie 7.09 0.94 28238.74

Bowtie2 7.09 1.18 15242.00

SARS-100k 3,004,588,730 RLCSA 39.47 0.099 1690.22

RLFM 25.01 0.571 1432.16

FIGISS 25.57 0.009 1840.80

PFP-FM 53.90 18.156 489.45

PFP-FM-CSA 61.86 5.758 3150.72

FM-index 51.85 16.73 434.55

Bowtie 14.20 1.884 32143.48

Bowtie2 14.19 2.37 33914.46

GRCh38 3,189,750,467 RLCSA 45.45 2.022 924.60

RLFM 26.31 3.101 1839.25

FIGISS 34.65 1.538 1440.19

PFP-FM 71.13 37.862 1154.12

FM-index 70.93 32.54 877.43

PFP-FM-CSA N/A N/A N/A

Bowtie 13.99 1.833 2160.76

Bowtie2 14.00 2.31 2170.32

Page 13 of 14Hong et al. Algorithms for Molecular Biology (2024) 19:15 	

in time usage, and it is 2.9, 14.2, 12.8, and 18.07 times
slower than PFP-FM . It is worth noting that the FIGISS
grammar is less efficient for non-repetitive datasets, as
demonstrated in the research by Akagi et al. [25], which
explains its (worse) performance on GRCh38 versus the
SARS-100K dataset. Hence, FIGISS is 10.1, 25.5, 13.6,
and 14.8 times slower than PFP-FM . These results are in
line with the performance of our previous results, and
demonstrate that PFP-FM has both competitive con-
struction memory and time, and achieves a significant
acceleration. Additionally, it is important to highlight
that Bowtie exhibits higher efficiency in processing non-
repetitive datasets. Despite its minimal memory require-
ments and smaller index size, Bowtie’s processing is
notably time-consuming.

Conclusion and future work
Hong et al. [26] recently gave a method for computing
LZ77 parses quickly using PFP and, at least in theory,
we can do the same. The key idea is that storing a data
structure supporting range-minimum queries (RMQs)
over the suffix array makes an FM-index for the string S
partially persistent: to check whether a pattern Q occurs
in S[0..i − 1] for some given i, we can search for Q in the
FM-index for S, perform an RMQ over the suffix-array
interval for Q, and check that the smallest value j such
that S[j..j + |Q| − 1] = Q has j + |Q| − 1 ≤ i − 1 . In fact,
if we store the FM-index for the reverse of S, use range-
maximum queries instead of range-minimum queries,
and check the suffix array after searching for every char-
acter of Q, then we can efficiently find the longest prefix
of Q that occurs in S[0..i − 1] . This allows us to compute
efficiently the LZ77 parse of S. We are now working to
compare how this approach compares to Hong et al.’s.

Notice that, when the query pattern Q starts and ends
with trigger strings, we can perform the whole search in
the FM-index for the parse P and need not use the FM-
index for the string S at all. (See also related discussion in
the arXiv preprint [27].) In fact, we are also now working
to replace the FM-index for S by other data structures, in
all cases. If Q starts with a trigger string but does not end
with one, then instead of searching in the FM-index for
S, we can find the lexicographic range of phrases in the
dictionary D starting with the suffix of Q starting at the
start of the rightmost trigger string. Once we have that
range, we can begin the search in the FM-index for P
with the corresponding range in the BWT of P. Finally,
if Q neither starts nor ends with a trigger string, then we
can use 2-dimensional range reporting on a grid with a
point (x, y) whenever the co-lexicographically xth phrase
in D appears in P before the lexicographically yth suffix

of P (with the phrase and suffix overlapping at the trigger
string). Specifically, we

1.	 find for the lexicographic range of phrases in D start-
ing with the suffix of Q starting at the start of the
rightmost trigger string,

2.	 start a search in the FM-index for P from the corre-
sponding range in the BWT of P,

3.	 find the co-lexicographic range of phrases in D end-
ing with the prefix of Q ending at the end of the left-
most trigger string,

4.	 use 2-dimensional range search on the grid to find all
the substrings T of S in which the prefix of T ending
at the end of T’s leftmost trigger string matches the
corresponding prefix of Q, and the suffix of T starting
at the start of T’s leftmost trigger string matches the
corresponding suffix of Q — meaning T matches Q.

Author contributions
AH and MO implemented the software, downloaded the data, and ran all the
experiments.CB and TG oversaw the software development and experiment-
sAH, MO, TG and CB drafted the paper.All authors helped write and edit the
paper.

Funding
The funding details for the authors are as follows: 1. Aaron Hong and Marco
Oliva: Supported by the NIH/NHGRI grant R01HG011392 to Ben Langmead.
Supported by the NSF/BIO grant DBI-2029552 to Christina Boucher. 2.
Dominik Köppl: Supported by the JSPS KAKENHI Grant Numbers JP21K17701,
JP22H03551, and JP23H04378. 3. Hideo Bannai: Supported by the JSPS
KAKENHI Grant Number JP20H04141. 4. Christina Boucher: Supported by the
NIH/NHGRI grant R01HG011392 to Ben Langmead. Supported by the NSF/
BIO grant DBI-2029552 to Christina Boucher. Supported by the NSF/SCH
grant INT-2013998 to Christina Boucher. Supported by the NIH/NIAID Grant
R01AI14180 to Christina Boucher. 5. Travis Gagie: Supported by the NIH/NHGRI
grant R01HG011392 to Ben Langmead. Supported by the NSERC grant RGPIN-
07185-2020 to Travis Gagie. Supported by the NSF/BIO grant DBI-2029552 to
Christina Boucher.

Availability of data and materials
In our experiments, two datasets were employed: GRCH38 and SARS-
CoV-2. The GRCH38 dataset can be accessed at https://​www.​ncbi.​nlm.​nih.​
gov/​datas​ets/​genome/​GCF_​00000​1405.​26/, while the SARS-CoV-2 dataset
is available at https://​www.​ncbi.​nlm.​nih.​gov/​nucco​re/​17981​74254.

Declarations

Competing interests
The authors declare no competing interests.

Received: 24 October 2023 Accepted: 12 March 2024

References
	1.	 Ferragina P, Fischer J. Suffix arrays on words. In: Ma B, Zhang K, editors.

Proceedings of the 18th Annual Symposium Combinatorial Pattern
Matching (CPM). London: Springer; 2007. p. 328–39.

https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000001405.26/
https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000001405.26/
https://www.ncbi.nlm.nih.gov/nuccore/1798174254

Page 14 of 14Hong et al. Algorithms for Molecular Biology (2024) 19:15

	2.	 Deng J-J, Hon W-K, Köppl D. Sadakane K, FM-indexing grammars induced
by suffix sorting for long patterns. In: Deng JJ, editor. Proceedings of the
IEEE Data Compression Conference (DCC). Snowbird: IEEE; 2022. p. 63–72.

	3.	 Ferragina P, Manzini G. Indexing compressed text. J ACM. 2005;52:552–81.
	4.	 Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-

efficient alignment of short DNA sequences to the human genome.
Genome Biol. 2009;10(3):25–25.

	5.	 Li H. Aligning sequence reads, clone sequences and assembly contigs
with BWA-MEM. Cornell Univ. 2013. https://​doi.​org/​10.​48550/​arXiv.​1303.​
3997.

	6.	 Mäkinen V, Navarro G. Succinct suffix arrays based on run-length encod-
ing. In: Apostolico A, Crochemore M, Park K, editors. Proceedings of the
annual symposium on combinatorial pattern matching. Jeju Island:
Springer; 2005. p. 45–56.

	7.	 Gog S, Kärkkäinen J, Kempa D, Petri M, Puglisi SJ. Fixed block com-
pression boosting in fm-indexes: theory and practice. Algorithmica.
2019;81:1370–91.

	8.	 Gagie T, Navarro G, Prezza N. Fully functional suffix trees and optimal text
searching in BWT-runs bounded space. J ACM. 2020;67(1):1–54.

	9.	 Nunes DSN, Louza FA, Gog S, Ayala-Rincón M, Navarro G. A grammar
compression algorithm based on induced suffix sorting. In: Nunes DSN,
editor. 2018 Data Compression Conference. IEEE: Snowbird; 2018. p.
42–51. https://​doi.​org/​10.​1109/​DCC.​2018.​00012.

	10.	 Nong G, Zhang S, Chan WH. Two efficient algorithms for linear time suffix
array construction. IEEE Trans Comput. 2011;60(10):1471–84. https://​doi.​
org/​10.​1109/​TC.​2010.​188.

	11.	 Crescenzi P, Lungo AD, Grossi R, Lodi E, Pagli L, Rossi G. Text sparsification
via local maxima. Theor Comput Sci. 2003;304(1–3):341–64.

	12.	 Gog S, Beller T, Moffat A, Petri M. From theory to practice: plug and play
with succinct data structures. In: Gog S, editor. Proceedings of the 13th
symposium on experimental algorithms (SEA). Copenhagen: Springer;
2014. p. 326–37.

	13.	 Siren J. Compressed suffix arrays for massive data. In: Karlgren J, Tarhio J,
Hyyro H, editors. Proceedings of the 16th International Symposium String
Processing and Information Retrieval (SPIRE). Berlin: Springer; 2009. p.
63–74.

	14.	 Mäkinen V, Navarro G. Run-length FM-index. In: Proceedings of the
DIMACS Workshop: “The Burrows-Wheeler Transform: Ten Years Later”.
2004; pp. 17–19.

	15.	 Manber U, Myers GW. Suffix arrays: a new method for on-line string
searches. SIAM J Comput. 1993;22(5):935–48.

	16.	 Boucher C, Gagie T, Kuhnle A, Langmead B, Manzini G, Mun T. Prefix-free
parsing for building big BWTs. Algorithms Mol Biol. 2019;14(1):13–11315.

	17.	 Boucher C, Gagie T, Kuhnle A, Manzini G. Prefix-free parsing for build-
ing big BWTs. Algorithms Biol (WABI). 2018. https://​doi.​org/​10.​1186/​
s13015-​019-​0148-5.

	18.	 Mun T, Kuhnle A, Boucher C, Gagie T, Langmead B, Manzini G. Matching
reads to many genomes with the r-index. J Comput Biol. 2020;27(4):514–
8. https://​doi.​org/​10.​1089/​cmb.​2019.​0316.

	19.	 Oliva M, Gagie T, Boucher C. Recursive prefix-free parsing for building big
BWTs. In: Oliva M, editor. 2023 data compression conference (DCC). IEEE:
Snowbird; 2023. p. 62–70.

	20.	 Golynski A. Optimal lower bounds for rank and select indexes.
2006;387:370–81. https://​doi.​org/​10.​1007/​11786​986_​33.

	21.	 Mölder F, Jablonski KP, Letcher B, Hall MB, Tomkins-Tinch CH, Sochat V,
Forster J, Lee S, Twardziok SO, Kanitz A, et al. Sustainable data analysis
with Snakemake. F1000Research. 2021;10:33.

	22.	 Langmead B, Wilks C, Antonescu V, Charles R. Scaling read aligners to
hundreds of threads on general-purpose processors. Bioinformatics.
2018;35(3):421–32. https://​doi.​org/​10.​1093/​bioin​forma​tics/​bty648.

	23.	 Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat
Methods. 2012;9(4):357–9.

	24.	 Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome.
Genome Biol. 2009;10(3):25. https://​doi.​org/​10.​1186/​gb-​2009-​10-3-​r25.

	25.	 Akagi T, Köppl D, Nakashima Y, Inenaga S, Bannai H, Takeda M. Grammar
index by induced suffix sorting. In: Lecroq T, Touzet H, editors. Proceed-
ings of the 28th international symposium on string processing and
information retrieval (SPIRE). Cham: Springer; 2021. p. 85–99.

	26.	 Hong A, Rossi M, Boucher C. LZ77 via prefix-free parsing. In: Hong A,
editor. The proceedings of the symposium on algorithm engineering and
experiments (ALENEX). Philadelphia: SIAM; 2023. p. 123–34.

	27.	 Deng JJ, Hon W, Köppl D, Sadakane K. FM-indexing grammars induced by
suffix sorting for long patterns. Snowbird: IEEE; 2021.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.48550/arXiv.1303.3997
https://doi.org/10.48550/arXiv.1303.3997
https://doi.org/10.1109/DCC.2018.00012
https://doi.org/10.1109/TC.2010.188
https://doi.org/10.1109/TC.2010.188
https://doi.org/10.1186/s13015-019-0148-5
https://doi.org/10.1186/s13015-019-0148-5
https://doi.org/10.1089/cmb.2019.0316
https://doi.org/10.1007/11786986_33
https://doi.org/10.1093/bioinformatics/bty648
https://doi.org/10.1186/gb-2009-10-3-r25

	Pfp-fm: an accelerated FM-index
	Abstract
	Introduction
	Preliminaries
	Basic definitions
	SA, BWT, and backward search
	FM-index and count queries
	Prefix-free parsing

	Methods
	Data structure design
	Query support

	Results
	Acceleration versus baseline
	Results on SARS-CoV-2 genomes
	Results on human reference genome

	Conclusion and future work
	References

