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Abstract 

The B cell lineage tree encapsulates the successive phases of B cell differentiation and maturation, transition-
ing from hematopoietic stem cells to mature, antibody-secreting cells within the immune system. Mathemati-
cally, this lineage can be conceptualized as an evolutionary tree, where each node represents a distinct stage in B 
cell development, and the edges reflect the differentiation pathways. To compare these lineage trees, a rigorous 
mathematical metric is essential. Analyzing B cell lineage trees mathematically and quantifying changes in line-
age attributes over time necessitates a comparison methodology capable of accurately assessing and measuring 
these changes. Addressing the intricacies of multiple B cell lineage tree comparisons, this study introduces a novel 
metric that enhances the precision of comparative analysis. This metric is formulated on principles of metric theory 
and evolutionary biology, quantifying the dissimilarities between lineage trees by measuring branch length distance 
and weight. By providing a framework for systematically classifying lineage trees, this metric facilitates the develop-
ment of predictive models that are crucial for the creation of targeted immunotherapy and vaccines. To validate 
the effectiveness of this new metric, synthetic datasets that mimic the complexity and variability of real B cell lineage 
structures are employed. We demonstrated the ability of the new metric method to accurately capture the evolution-
ary nuances of B cell lineages.
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Introduction
Immunoglobulins (IG), instrumental in adaptive immu-
nity, mediate antigen recognition and initiate sophisti-
cated defense mechanisms against microorganisms [1]. 
B cells, essential components of the immune response, 
carry B cell receptors (BCRs) attached to their surfaces 
[2]. Somatic mutations [3] occurring in B cells are essen-
tial for creating a wide range of diverse naive B cell vari-
ants [4]. Somatic mutations [3] in B cells are essential 
for generating diverse naive B cell variants [4], which is 
vital for devising effective therapeutic approaches [5–8]. 
IG genes undergo somatic mutations, generating diverse 

functional genes and receptors for antigen recognition 
[9]. The diversity of receptors arises from distinct recom-
bination events involving B cell segments [10].

The imperative to algorithmically discern the under-
lying principles governing B cell development and line-
age diversification requires a well-defined framework. 
The complex dynamics inherent in this process demand 
a profound understanding of the temporal sequence and 
structural patterns of mutations in B cells, crucial for elu-
cidating their ontogeny and response to antigens.

Let T  be a set of observed BCR lineage trees [11–13] 
with identical somatic mutations. Each tree Ti ∈ T  con-
tains node labels that vary partially, including unmutated 
(naive) BCR IGH nodes. The utilization of lineage trees 
emerges as an indispensable computational tool for algo-
rithmically unraveling the intricate evolutionary rela-
tionships embedded within B cell clones. A meticulous 
comparative analysis is composed to furnish nuanced 
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computational insights into various facets, including 
relatedness, clone diversity, antibody generation, mem-
ory B cell responses [14, 15], selection mechanisms, evo-
lutionary patterns, and the key mechanisms governing B 
cell lineage development.

There is a notable gap in the scientific literature regard-
ing the algorithmic exploration of comparing lineage 
trees. This paper introduces a novel quantitative metric 
grounded in the Jaccard index and Minkowski principles 
[16], establishing a theoretical foundation for this prob-
lem. Additionally, we propose algorithmic techniques 
optimized for efficiency to address this computational 
challenge rigorously. The introduced metric and algo-
rithms collectively provide an analysis tool for B cell 
lineage trees, contributing to our understanding of the 
dynamic intricacies within the immune system.

Notation and preliminaries
In the subsequent section, we define key aspects of lin-
eage trees, emphasizing their distinct features in com-
parison to phylogenetic trees [17] and clonal trees [18]. 
Topics include root identification, multifurcations result-
ing from B cell repertoire divergences, and the crucial 
role of cellular abundance in clonal expansion [19, 20], 
culminating in the introduction and application of a 
novel metric for lineage tree analysis.

Definitions
Different from phylogenetic trees, but similar to clonal 
trees lineage trees require a nuanced understanding for 
selecting appropriate metric methodologies [21] in sci-
entific research. Identifying the root in the lineage tree 
is crucial, representing the unmutated sequence. Simul-
taneous divergences within the B cell repertoire result 
in multifurcations, generating zero-length branches 
or internal nodes of degree 2 [22]. This understanding 
refines scientific investigations, particularly in genetic 
lineage analysis.

Considering the potential coexistence of mutations, 
observed sequences may manifest as either leaves or 
internal nodes [20]. Therefore, a comprehensive analysis 
encompasses all tree nodes, underscoring the importance 
of considerations related to the root and branch lengths.

Cellular abundance, linked to clonal expansion based 
on antigen affinity, assumes a crucial role. Assessing dis-
tinct sequence variations (i.e., genotypes) aids in compre-
hending B cell evolution and clonal selection.

Considering these critical factors, we introduce a cut-
ting-edge metric that adeptly incorporates node overlaps, 
branch lengths, Euclidean distance-based metrics, and 
lineage tree abundance. This innovative metric is applied 
for performance evaluation on a comprehensive data-
set. Figure 1 provides a clear illustration of the intricate 

structure of a lineage tree, comprising a total of 20 nodes. 
This lineage tree includes a discerning naive node, 14 
intricately detailed leaves, and 5 strategically positioned 
internal nodes. Notably, the size of each node reflects its 
abundance, while the lengths of the branches intricately 
portray the evolutionary period between consecutive 
nodes. A naive B cell (or naive node) generally signifies an 
unmutated progenitor cell that has not yet experienced 
somatic hypermutation or antigen-driven selection. To 
prevent complications arising from zero-length branches 
in visualizations, a naive node is assigned a distance. This 
convention ensures that the node is represented within 
the tree, even if it lacks subsequent branches or nodes.

Strong similarities with phylogenetic and clonal trees 
are easily observed. Therefore, in the next subsection, we 
have undertaken to comprehend these similarities as well 
as their differences.

Comparison between phylogenetic, lineage, and clonal 
trees
A systematic comparative examination of B cell lineage, 
clonal tumor and phylogenetic trees, elucidating shared 
attributes and distinctive features, is strongly needed to 
leverage advancements in phylogenetics within the field 
of immunology. Emphasizing the intricate interplay 
between somatic hypermutation and selection pressures 
within germinal centers, it underscores the imperative 
need for employing specialized methodologies to accu-
rately reconstruct the evolutionary history of B cell line-
age and tumor clonal trees. This analysis is presented in 
Table 1.

Table  1 illustrates the disparities (i.e., similarities and 
differences) between phylogenetic, lineage, and clonal 
trees. Phylogenetic trees focus on overall evolution-
ary relationships, representing genetic change through 
branch lengths and showcasing common ancestors. In 
contrast, lineage trees emphasize lineage splitting and 
evolution within specific groups, indicating the time or 
divergence through branch lengths and depicting lineage 
splitting events. The clonal theory of cancer, proposed 
by Nowell [18], views tumor development as an evolu-
tionary process, which illustrates the history of somatic 
mutation acquisition. While phylogenetic trees may be 
rooted or unrooted [23], lineage trees and clonal trees are 
typically rooted, and they often exhibit multifurcations. 
Additionally, lineage trees and clonal trees consider both 
leaves and internal nodes. In lineage trees nodes incorpo-
rate abundance information, a feature not present in phy-
logenetic trees and clonal trees.

Somatic hypermutation, elucidated by Odegard et al. 
[24], aligns intricately with phylogenetic hotspots, 
as expounded by Tietje et  al. [25], underscoring the 
nuanced interplay between sequence mutations and 
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their local contextual determinants. The discernible 
selection pressure operative within germinal centers 
[26, 27] serves to accentuate the convergence of B cell 
evolutionary processes with the foundational tenets of 
Darwinian evolution [28].

Notwithstanding these conceptual parallels with phylo-
genetic and clonal trees, the idiosyncratic features inher-
ent in B cell lineage trees necessitate the application of 
specialized methodologies for the precise reconstruction 
of evolutionary lineage trees. The critical importance of 
abundance, reflecting both genotypic diversity and their 

Fig. 1  Visual representation of a B cell lineage is presented, where each node corresponds to a sequence. The notation provided beneath each 
sequence corresponds to the (w, d) values associated with each node. The first value denoted by w is linked to the size of the node, reflecting 
the abundance of the corresponding sequence. The second value denoted by d represents the branch length associated with the node. The 
root is the node named naive, representing the unmutated naive B cell. Progressing through the branches of the lineage tree, the cells exhibit 
an increased affinity for the specific antigen. The distances between a node and its preceding one are directly associated with the d value assigned 
next to the node
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corresponding frequencies, emerges as a focal point for 
a nuanced understanding of B cell evolution and the 
dynamics of clonal selection.

B cell repertoires, marked by simultaneous diver-
gences [29, 30], manifest as multifurcations or zero-
length branches [31]. Considering potential mutations, 
sequences are categorized as leaves or internal nodes, 
including nodes with a degree of two.

The unmutated sequence of the naive B cell serves as 
the root in the lineage tree, establishing a distinctive 
feature when compared to traditional phylogenetics. 
Acknowledging the central role played by the unmutated 
sequence is foundational for meticulously tracking the 
progression of mutations and reconstructing the intricate 
trajectories of B cell lineages.

Related works
As the volume of biological data increases, the com-
plexity of phylogenetic tree topologies also grows. 
Consequently, it becomes challenging, and sometimes 
infeasible, to discern differences between them. Many 
researchers have proposed methods for comparing 
phylogenetic trees that focus on their properties rather 
than their topologies. One new space of phylogenetic 
trees (wald space) is developed by [32]. Wald space is 
suitable for the statistical analysis of phylogeny, utiliz-
ing a geometry founded on more biologically princi-
pled assumptions than existing spaces is developed. A 
polynomial-time algorithm is developed to complete 
phylogenetic trees and calculate the distance between 
trees that are defined on different, yet overlapping, sets 
of taxa [33]. The principles of probabilistic phylogenetic 
distances are extended to calculate tree distances under 
models of continuous trait evolution along phylogeny 

[34]. Distance measurement using Monte Carlo meth-
ods, which relies on the probability distributions of 
genetic sequence data derived from phylogenetic trees, 
is a method considered for this analysis [35].

The development of dissimilarity measures for com-
paring clonal cancer trees has become a central focus 
among computational researchers. Recent advance-
ments in this area include the GraPhyC method by 
Govek et al. [36], which employs a distance measure to 
derive consensus tumor histories, thereby enriching the 
toolkit for analyzing clonal evolution. More recently, 
DiNardo et  al. [37] introduced the Common Ancestor 
Set (CASet) distance and the Distinctly Inherited Set 
Comparison (DISC) distance, both designed to account 
for subclonal mutations. In the same year, Llabrés et al. 
[38] proposed a distance metric for multi-labeled trees 
that extends the Robinson–Foulds distance. Building 
on this foundation, Jahn et  al. [39] introduced Bour-
que distances, offering another generalization of the 
Robinson–Foulds metric. Finally, Khayatian et  al. [40] 
further advanced the field by developing k-Robinson-
Foulds dissimilarity measures specifically for labeled 
tree comparisons.

Methods
Branch Length Distance known as BLD is one well-
established metric for comparing phylogenetic trees 
based on branch length distances, [41–44]. It focuses 
on the differences in the lengths of branches, which is 
the base of our metric. By comparing branch lengths, 
the BLD metric provides a quantitative measure of how 
similar or different the phylogenetic trees are, making it 
a valuable tool for analyzing the evolutionary relation-
ships represented in the phylogenetic trees.

Table 1  Comparison of characteristics between phylogenetic trees, lineage trees, and clonal trees

Aspect Phylogenetic trees Lineage trees Clonal trees

Structure Evolutionary relationships among spe-
cies

Cell lineage splitting and evolution Tumor cell population evolution

Branch lengths Often represent genetic change 
between species

Indication of time or divergence 
between updates of cells

Evolutionary time or the accumulation 
of genetic changes

Nodes Common ancestors and relationships Lineage splitting events or divergence Distinct clones of tumor cells

Rooting Rooted or unrooted Typically rooted (naive cell) Rooted (a single progenitor normal cell)

Focus Overall evolutionary relationships 
among different species

Lineage evolution within a specific 
group of cells

Somatic mutation acquisition in tumor 
evolution

Degree of internal nodes More than three More than two (known as clonal expan-
sion)

More than two

Sequences observed Leaves Leaves and internal nodes Leaves and internal nodes

Multifurcations Rare (biologically) Common Common

Abundance/weight No Yes No
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where dT1
(i) and dT2

(i) are the vectors of the branch 
lengths between node i and the lowest common ances-
tor (LCA) of the node i in the phylogenetic trees T1 and 
T2 , respectively. LCA of any pair of nodes i and j in a 
tree, denoted as LCA(i, j), is defined as the deepest com-
mon ancestor of both i and j. Each node is considered a 
descendant of itself, so if node i is directly connected to 
node j, then j is the LCA of i. Since BLD is tailored for 
phylogenetic trees, considering all the essential charac-
teristics of lineage trees can lead to the development of a 
more appropriate metric. However, BLD (Eq. 1) has nota-
ble limitations, such as its failure to account for internal 
nodes, node abundance, and overlapping sets of leaves. 
To address these shortcomings, we propose an extension 
for BLD.

The study introduces an innovative metric methodol-
ogy that provides a precise approach for comparing the 
optimal quantity of lineage trees. The metric approach 
is based on Minkowski and Jaccard principles.

Definition 1  (Minkowski Distance) Minkowski 
distance, characterized by order h, such that 
h ∈ N

+ , between two points X = (x1, ..., xn) and 
Y = (y1, ..., yn) ∈ R

n is described as:

Definition 2  (Jaccard Distance) Jaccard distance quan-
tifies the dissimilarity between sample sets and comple-
ments the Jaccard coefficient. It is defined as:

where J(A,B) is Jaccard index, and A and B are two sets.

Evaluating whether a mathematical structure or space 
is a metric involves verifying that it satisfies certain 
properties. In this context, a specific definition is pre-
sented to enhance comprehension and clarity.

Definition 3  (Metric properties) A function 
d : X × X → R

+ is a metric on the set X if it verifies, for 
any x, y, z in X, the following properties: 

1.	 Identity/separation: d(x, y) = 0 if and only if x = y

2.	 Symmetry: d(x, y) = d(y, x)

(1)BLD(T1,T2) =

TN(T1,T2)∑

i=1

(dT1
(i)− dT2

(i))2,

(2)D(X ,Y ) = h

√
√
√
√

n∑

i=1

∣
∣xi − yi

∣
∣h.

(3)dj(A,B) = 1− J (A,B) = 1−
A ∩ B

A ∪ B
,

3.	 Positive: d(x, y) ≥ 0

4.	 Triangle inequality: d(x, y) ≤ d(x, z)+ d(z, y)

Theorem  1  The Minkowski distance is a metric, satis-
fying identity, non-negativity, symmetry, and the triangle 
inequality properties.

Our primary objective is to expand the scope of our 
calculations to encompass all specified criteria. The 
Euclidean distance [45] emerges as a robust metric 
for measuring distances between data points within a 
dataset, delineating the straight-line distance between 
points and providing an intuitive measure of their simi-
larity or dissimilarity. This metric functions as a specific 
instance within the paradigm of Minkowski distance, 
becoming apparent with the parameter h adjusted to 2.

In the context of lineage trees, Euclidean distance 
takes on a distinctive characterization, defined as 
follows:

where T1 and T2 represent lineage tree 1 and lineage tree 
2, respectively, and TN(T1,T2) is the total number of nodes 
in T1 and T2 . The distances between nodes i and j are 
denoted as dT1

(i, j) and dT2
(i, j) , representing the spatial 

separation between nodes i and j in lineage trees T1 and 
T2 respectively.

Two lineage trees must have common nodes to be 
comparable. If node i is missing in lineage tree T1 but 
present in T2 , a ghost node i with a weight and branch 
length of zero is added to T1 . This ensures that the 
branch length distances involving node i in T2 are con-
sidered when calculating the  distance between these 
two lineage trees. Including such absent nodes helps 
maintain their impact across all the lineage trees under 
comparison.

In addition to the difference in distances between all 
pairs of nodes D(T1,T2) , the difference in abundances for 
each node between two trees W(T1,T2) is added. Man-
hattan distance, derived from the Minkowski metric 
with parameter h fixed at 1, serves well for this task as 
it highlights discrepancies in dimensions, contrasting 
with Euclidean distance which measures the straight-
forward distance between points. Utilizing both dis-
tances offers a detailed understanding of the data. The 
Manhattan distance emphasizes subtle differences in 
node attributes, whereas the Euclidean distance pro-
vides a comprehensive view of the structural variations 
between family trees, thereby enhancing the overall 
analysis and interpretation.

(4)

D(T1,T2) =
1

TN(T1,T2)

√
√
√
√
√

TN(T1,T2)
−1

∑

i=1

TN(T1,T2)∑

j=i+1

∣
∣dT1

(i, j)− dT2
(i, j)

∣
∣2,
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where wT1
(i) and wT2

(i) represent the weights (i.e., abun-
dances) of node i in T1 and T2 , respectively.

Another criterion has been effectively integrated and 
fine-tuned to function as a penalty [46, 47] between 
two lineage trees, offering a more advantageous assess-
ment by considering the ratio of uncommon nodes to 
the total number of nodes.

where CN(T1,T2) is the number of common nodes between 
T1 and T2.

As the presented method extends beyond the tradi-
tional BLD, it is referred to as the Generalized Branch 
Length Distance (GBLD).

The GBLD between T1 and T2 is defined as follows:

Remark 1  Lineage trees share structural similarities 
with rooted phylogenetic trees, justifying the applica-
tion of a criterion that requires a minimum number of 
shared nodes for comparative analysis. Equation 7 applies 
to compare the lineage trees sharing a minimum of three 
common nodes, i.e., 3 ≤ CN(T1,T2) ≤ TN(T1,T2).

Initiating the process of clustering, we have system-
atically embraced a methodical approach. Our com-
mitment involves intricately decomposing the task into 
well-defined preliminary objectives, with a significant 
emphasis on  lineage trees that exhibit congruence in 
node composition. The primary goal is to precisely 
compute the GBLD distance between these two line-
age  trees, adhering rigorously to established scientific 
standards. Subsequently, our focus smoothly transi-
tions towards the systematic construction of clusters, 
incorporating multiple trees concurrently. This is exe-
cuted with a mindful awareness of statistical signifi-
cance and employing robust methodologies. The final 
stage of our systematic exploration entails meticulous 
preprocessing to refine the clustering process. This 
ensures not only its widespread applicability to line-
age trees with varying sets of nodes but also maintains 
the highest standards of scientific rigor and accuracy 
throughout the entire procedure.

(5)W(T1,T2) =
1

TN(T1,T2)

TN(T1,T2)∑

i=1

∣
∣wT1

(i)− wT2
(i)

∣
∣,

(6)P(T1,T2) = 1−
CN(T1,T2)

TN(T1,T2)

,

(7)GBLD(T1,T2) = P(T1,T2) +W(T1,T2) + D(T1,T2).

Theorem  2  The function GBLD(T1,T2) satisfies the fun-
damental properties of a metric.

Proof  The metric properties of a method render it an 
effective tool for measuring the dissimilarity between 
two lineage trees. The function GBLD(T1,T2) demonstrates 
adherence to these essential characteristics. A compre-
hensive analysis follows:

•	 Non-negativity ( GBLD(T1,T2) ≥ 0 ): The dissimilar-
ity function, GBLD(T1,T2) , manifests non-negativity, 
indicating that the dissimilarity between two trees 
is always a non-negative value. In the context of the 
dissimilarity functions, ε denotes a small positive 
value with dissimilarity based on specific conditions 
regarding distance functions. These symbols suc-
cinctly convey essential information about dissimi-
larity quantification in the mathematical expressions. 
This property is expressed formally in the probabil-
istic and weight functions. Given that the number 
of common nodes is always less than or equal to the 
total number of nodes ( TN(T1,T2) ≥ CN(T1,T2) ), it fol-
lows that the penalty is always non-negative, ranging 
from 0 to 1− ε . It is reliable to compare two lineage 
trees in which the number of common nodes is equal 
to the total number of nodes (CN(T1,T2) = TN(T1,T2)) . 
In this case, there are two possibilities as follows: 

 If TN(T1,T2) > CN(T1,T2) , the possibility of 
W(T1,T2) ≥ ε , is added to the aforementioned pos-
sibilities. Within this framework, the potential sce-
narios concerning distance, taking into account the 
likelihood of shared nodes and the total node count, 
as previously outlined in our discussion on node 
weights are presented. 

•	 Identity of Indiscernible ( GBLD(T1,T2) = 0 , if and 
only if T1 = T2 ): The identity of indiscernible prop-
erty asserts that the dissimilarity between a lineage 
tree and itself is always zero. This property holds 
true for GBLD(T1,T2) , as the components within the 
weight, and distance functions result in zero dissimi-
larity, i.e., P(T1,T2) = 0 , W(T1,T2) = 0 , and D(T1,T2) = 0

.

(8)

W(T1,T2) =

{
0, if wT1

(i) = wT2
(i), i ∈ {1, . . . ,TN(T1,T2)}.

ε, otherwise.

(9)D(T1,T2) =

{
0, if dT1

(i, j) = dT2
(i, j).

ε, otherwise.
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•	 Symmetry ( GBLD(T1,T2) = GBLD(T2,T1) ): Symmetry 
dictates that the dissimilarity between two lineage 
trees is the same, regardless of their order. This sym-
metry property is formally expressed in the probabil-
istic, weight, and distance functions: 

•	 Triangle Inequality 
( GBLD(T1,T2) + GBLD(T2,T3) ≥ GBLD(T1,T3) ): The 
triangle inequality asserts that the sum of dissimilari-
ties between two pairs of lineage trees is always greater 
than or equal to the dissimilarity between the first 
and third lineage trees. The method of GBLD is con-
structed by combining Jaccard, Manhattan, and Euclid-
ean distances. The penalty (Jaccard distance) possesses 
the property of triangular inequality [47]. For any three 
points ( wT1

 , wT2
 and wT3

 in this study), Manhattan dis-
tance satisfies the triangle inequality: 

(10)

P(T1,T2) = 1−
CN(T1,T2)

TN(T1,T2)

= 1−
CN(T2,T1)

TN(T2,T1)

= P(T2,T1).

(11)W(T1,T2) =

{
0, if wT1

(i) = wT2
(i).

ε, otherwise.

(12)D(T1,T2) =

{
0, if dT1

(i, j) = dT2
(i, j).

ε, otherwise.

 This inequality is valid because the absolute differ-
ence between two points along a coordinate axis 
remains less than or equal to the sum of the absolute 
differences between the points along that axis when 
considering a third point. To prove the triangularity 
characteristic of Euclidean distance, consider the tri-
angle formed by the distances of trees ( dT1

, dT2
 , and 

dT3
 ). Let 

−−−→
dT1,T2

 represents the distance vector from T1 
to T2 and 

−−−→
dT2,T3

 represents the distance vector from 
T2 to T3 . In line with the triangle inequality principle 
for vectors: 

 This inequality can be extended to each dimension. 

(13)

W(T1,T3) =

n∑

i=1

∣
∣wT1

(i)− wT3
(i)

∣
∣

=

n∑

i=1

∣
∣wT1

(i)− wT3
(i)± wT2

(i)
∣
∣

≤

n∑

i=1

(∣
∣wT1

(i)− wT2
(i)

∣
∣+

∣
∣wT2

(i)− wT3
(i)

∣
∣
)

≤

n∑

i=1

(∣
∣wT1

(i)− wT2
(i)

∣
∣
)

︸ ︷︷ ︸

W(T1,T2)

+

n∑

i=1

(
∣
∣wT2

(i)− wT3
(i)

∣
∣)

︸ ︷︷ ︸

W(T2,T3)

≤ W(T1,T2) +W(T2,T3).

(14)
∥
∥
∥
−−−→
dT1,T2

+
−−−→
dT2,T3

∥
∥
∥ ≤

∥
∥
∥
−−−→
dT1,T2

∥
∥
∥+

∥
∥
∥
−−−→
dT2,T3

∥
∥
∥.

(15)

√
√
√
√

n−1∑

i=1

n∑

j=i+1

∣
∣dT1

(i, j)− dT3
(i, j)

∣
∣2 ≤

√
√
√
√

n−1∑

i=1

n∑

j=i+1

∣
∣dT1

(i, j)− dT2
(i, j)

∣
∣2

+

√
√
√
√

n−1∑

i=1

n∑

j=i+1

∣
∣dT2

(i, j)− dT3
(i, j)

∣
∣2.
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 Thus, we have demonstrated that: 

 All the metric properties are preserved after nor-
malization of W(T1,T2) and D(T1,T2) because being 
metric depends on the intrinsic properties of the 
function itself, which remain unchanged by scaling 

(16)D(T1,T3) ≤ D(T1,T2) + D(T2,T3).

or normalization [48]. Combining the distances 
measured by three metrics, each obeying the prop-
erties of a metric, preserves the essential characteris-
tics of distance measurement, ensuring the resulting 
sum ( P(T1,T2) +W(T1,T2) + D(T1,T2) ) remains a metric 
[49].

Fig. 2  A graphical representation of the GBLD metric approach. A It depicts three lineage trees exhibiting variations in both the weights 
and lengths of branches. The weights of the nodes are symbolized by circles, wherein larger circles correspond to higher node weights, 
while smaller circles signify lower weights. Different paths connecting nodes i and j in trees T1 , T2 , and T3 are depicted using distinct colors; 
notably, the path in tree T1 is green, in T2 it is blue, and in T3 it is pink. B It represents the extracted data from lineage trees in the form of weight 
vectors and branch length matrices. C It displays the status of missing nodes in the context of comparing lineage trees. Vectors and matrices, 
upon manipulation that involves the incorporation of absent nodes, are prepared for pairwise subtraction



Page 9 of 14Farnia and Tahiri ﻿Algorithms for Molecular Biology           (2024) 19:22 	

Given the fulfillment of all requisite properties within 
GBLD, it is a metric. 	�  �

Remark 2  The GBLD score between two dis-
tinct lineage trees ranges from ε to infinity (i.e., 
ε ∼= GBLD(T1,T2) < ∞ ). The GBLD score closer to ε indi-
cates high similarity between the two lineage trees, and 
vice versa.

Illustration of the GBLD metric methodology
The theoretical aspects of the GBLD metric approach are 
presented in the previous sections to elucidate its nature 
as a metric method. This section includes a visual rep-
resentation of the GBLD method, aiming to elucidate its 
mechanism and enhance comprehension of this innovative 
approach.

With this objective in mind, Fig.  2 presents the math-
ematical depiction. The first row of Fig.  2 (2A) illustrates 
three lineage trees with varying weights and branch lengths 
for comparative analysis. In these three lineage trees, 
a pathway connecting nodes i and j is distinguished by 
employing three distinct colors. The second row of Fig. 2 
(2B) illustrates the mathematical representations derived 
from the extracted data of the topology of lineage trees. 
Each vector on the left side indicates the weights assigned 
to each node in each lineage tree. On the right, each matrix 
displays the distances between each pair of nodes in each 
tree.

As stated in Remark 1, a minimum of three common 
nodes is required in two lineage trees for them to be com-
parable. However, there is no restriction on the number of 
different nodes between them. In the process of comparing 

two lineage trees, any missing nodes are incorporated 
into the respective lineage trees where they are absent to 
facilitate a comprehensive analysis. In this context, node k 
exemplifies a present node in lineage trees T2 and T3 , yet 
it is not found in T1 . The last row of Fig. 2 (2C) shows the 
modified lineage trees to include all nodes. The lineage tree 
T1 acquires a hypothetical node k. Since the node k is not 
present in T1 , it is assumed that the weight of node k and 
the distances between node k and the rest of the nodes in 
T1 is zero. This assumption is made to prevent the exclusion 
of the branch length distance between node k and other 
nodes in the other lineage trees when calculating the GBLD 
score. Incorporating absent nodes not only preserves the 
influence of these nodes in other trees that contain them 
but also plays a vital role in facilitating the preparation for 
the calculation and alignment of weight vectors and branch 
length matrices to achieve uniformity in the dimension.

Algorithm
In order to give a better understanding of the GBLD 
method, Algorithm  1, containing three algorithms, is 
provided to show the most prominent steps in the cal-
culation of GBLD score. Three inner algorithms of Algo-
rithm 1 are the components of Eq. 7. The main objective 
of this Algorithm is using the data of lineage trees and 
evaluate the GBLD score regardless of the form of the 
data. Although it is possible to use the original lineage 
trees and calculate the differences in weights and dis-
tances between nodes through a recursive process or by 
using Newick formats, it is preferred to use precalculated 
distance matrices and weight vectors to avoid losing the 
focus of Algorithm 1. The details of this process are illus-
trated in the previous subsection, specifically in Fig. 2.

Algorithm 1  Calculate GBLD score
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Lemma 3  Algorithm  1 computes the solution of the 
GBLD  problem in O(n2) time, where n and m are the 
sizes of the two lineage trees T1 and T2, and n > m.

Proof  The overall time complexity for Algorithm S1, 
iterating over NT1

 and checking membership in NT2
 is 

O(n) . On the other hand, iterating over the nodes set in 
the Algorithm S2, having at most n+m elements takes 
O(n+m) time. Algorithm S3 containing two nested 
loops, takes O(n+m)2 time which is the largest time 
compared to the other algorithms. Combining the com-
plexities of all the algorithms, the overall time complexity 
of Algorithm 1 is dominated by Algorithm S3. If n > m , 
time complexity of Algorithm 1 is O(n2) . 	�  �

Materials
Simulated dataset
In this section, we provide a detailed explanation of our 
data collection and processing approach, with a specific 
focus on generating simulated datasets. We subsequently 
validate this approach through the application of math-
ematical methods.

Simulated data are derived from the GCtree simula-
tor [50]. GCtree simulator aims to produce data similar 

to experimental BCR sequencing results. Simulation 
parameters are calibrated using summary statistics on 
sequences and abundances to match characteristics of 
real data, without directly involving tree inference in 
the calibration process.

The GBLD metric methodology involves a meticulous 
examination of three attributes within lineage trees, 
aimed at precisely quantifying their similarities and 
dissimilarities. Consequently, we intentionally manipu-
lated the magnitudes of these characteristics within lin-
eage trees to systematically assess the robustness of this 
methodology and rigorously scrutinize its accuracy.

To rigorously evaluate the performance of GBLD, one 
simulated dataset was generated. The configurations of 
this dataset which is comprised of 10 lineage trees are 
illustrated in Fig. 3. Examining this figure reveals vari-
ations in the characteristics of the lineage trees. The 
lineage trees depicted in Fig.  3 possess a spectrum of 
common and uncommon, which impart a distinct col-
oration pattern to each tree. In comparing one lineage 
tree to another, certain nodes within these trees may 
have the same weight and branch length distances. 
However, this lineage tree might show different lev-
els of variation in weight and/or branch lengths when 
compared with another lineage tree.

Providing detailed insights into the dataset facilitates 
the establishment of a perspective for interpreting the 

Fig. 3  The topological structure of the simulated dataset. It exhibits ten lineage trees, which feature various common nodes
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final GBLD matrix. In this dataset, all lineage trees, 
with the exceptions of T5 , T6 , and T8 , feature a naive 
node with significant weight. Lineage trees labeled T3 
and T5 , containing 27 and 28 nodes respectively, exhibit 
a higher node count compared to others; however, 
these two lineage trees demonstrate fewer similarities 
in terms of the weights and branch lengths. Trees T2 , 
T7 , and T10 possess nearly common nodes, with the 
weights of these nodes being very similar. Trees T1,T4 , 
and T9 share nearly the same nodes as T2 , T7 , and T10 , 
yet the weights of the nodes within each group exhibit 
slight variations.

Real dataset
To validate the GBLD metric, one public database, from 
[51], comprising over 37 million unique BCR sequences 
of three healthy adult donors is utilized, which is signifi-
cantly more comprehensive than any existing resource. 
Each adult donor contains BCR sequences of naive (N) 
and memory (M) B cell repertoires. A sample of 150 BCR 
sequences was selected from the dataset, which was com-
posed of nucleotide sequences with detailed information 
on their frequency, genetic composition, and formation 
via V(D)J recombination. Subsequently, the sequences 
(in fasta format) were aligned using MUSCLE [52] of 
BioPython version 1.84 [53] to identify regions of simi-
larity. Then, distance matrices between sequences were 
calculated using the class ’Bio.Phylo.TreeConstruction.
DistanceCalculator(’identity’)’ [53] from the BioPython. 
Finally, a phylogenetic tree (in Newick format) was con-
structed using the Neighbor-Joining (NJ) method [54]. 
The default values were used for all parameters.

The degree of overlapping nodes between two inde-
pendent replicates of the naive repertoire of donor 
1 (D1-Na and D1-Nb) is almost higher than in other 
comparisons. Additionally, there is a significant over-
lap between the naive and memory repertoires of each 
donor. Despite the large size and diversity of the B cell 
repertoire, the overall overlap between donors is small, 
with only 11 common nodes identified.

Results of this study [51] demonstrate that the simi-
larities between two independent replicates of the naive 
repertoire of donor 1 are almost greater than those 
between different donors. Furthermore, the naive and 
memory B cell populations within each donor are more 
similar to each other than to those of different donors, 
aligning with the results of the GBLD method.

Results and discussion
Simulated dataset
The GBLD metric method is applied to the provided 
simulated dataset. The following steps elucidate how 
the features of two lineage trees under comparison are 
incorporated into the GBLD metric method. Firstly, the 
weights of all nodes in both lineage trees are included 
in Eq. 5. Then, the branch length distances of each pair 
of nodes are integrated into Eq. 4. The total and com-
mon number of nodes are counted and placed in the 
penalty index specified by Eq. 6. Finally, the Eq. 7 gives 
the final GBLD score between two lineage trees.

The ultimate outcomes of comparing the lineage trees 
are consolidated in the subsequent symmetric matrix. 

GBLD =





















0.0 0.78 1.04 0.77 1.13 0.75 0.53 0.76 0.49 0.67

0.78 0.0 1.13 0.44 1.23 0.88 0.7 0.96 0.74 0.64

1.04 1.13 0.0 1.14 0.49 1.07 0.98 0.92 1.01 1.01

0.77 0.44 1.14 0.0 1.24 0.93 0.69 0.98 0.77 0.72

1.13 1.23 0.49 1.24 0.0 1.14 1.11 0.98 1.04 1.12

0.75 0.88 1.07 0.93 1.14 0.0 0.71 0.89 0.69 0.81

0.53 0.7 0.98 0.69 1.11 0.71 0.0 0.81 0.59 0.52

0.76 0.96 0.92 0.98 0.98 0.89 0.81 0.0 0.84 0.66

0.49 0.74 1.01 0.77 1.04 0.69 0.59 0.84 0.0 0.89

0.67 0.64 1.01 0.72 1.12 0.81 0.52 0.66 0.89 0.0





















To optimally partition lineage trees based on their 
GBLD scores, the DBSCAN [55] method proves to be 
effective. This method is advantageous as it facilitates 
the identification of outliers and supports the forma-
tion of a single cluster. DBSCAN works by grouping 
points that are closely packed together, marking them 
as core points if they have a sufficient number of neigh-
bors within a specified radius, or as border points if 

Table 2  GBLD score for three healthy individuals

It displays the GBLD score obtained from applying the GBLD metric to the B cell sequences of three individuals

D1-M D1-Na D1-Nb D2-M D2-N D3-M D3-N

D1-M 0 1.35 1.6 1.99 2.18 2.1 2.17

D1-Na 1.35 0 0.78 2.06 2.27 2.2 2.31

D1-Nb 1.6 0.78 0 2.33 2.49 2.4 2.51

D2-M 1.99 2.06 2.33 0 0.98 2.18 2.27

D2-N 2.18 2.27 2.49 0.98 0 2.36 2.46

D3-M 2.1 2.2 2.4 2.18 2.36 0 0.68

D3-N 2.17 2.31 2.51 2.27 2.46 0.68 0
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they are close to core points but do not have enough 
neighbors to be considered core points. Points that lie 
alone in low-density regions are marked as outliers. 
This characteristic makes it particularly suited for sce-
narios where the cluster structure is not strictly spheri-
cal and when dealing with noise in the dataset.

Based on the DBSCAN the optimal scenario occurs 
when there are two clusters.

The following outlines the optimal partition for the 
dataset.

•	 Cluster 1: T1,T2,T4,T6,T7,T8,T9,T10

•	 Cluster 2: T3,T5

As stated in Remark 2, a GBLD score approaching zero 
indicates a higher degree of similarity, whereas a higher 
score implies greater dissimilarity.

The smallest GBLD scores are associated with T2 and 
T4 (0.44), and T1 and T9 (0.49), which are almost one 
third the magnitude of the largest scores, observed 
between T4 and T5 (1.24), and T2 and T5 (1.23). This 
indicates that the degree of similarity between the line-
age trees of T2 , T4 and T1 , T9 exceeds that of others.

The GBLD score between lineage trees T3 and T5 is 
(0.49), which shows a high similarity between them in 
comparison with other lineage trees. Additionally, the 
GBLD scores of lineage trees T3 and T5 with other lineage 
trees are not small enough and have a negligible impact 
on the final partitioning.

Real dataset
Evaluation of pairwise overlap between repertoires in 
the public database of memory and naive B cell recep-
tor sequences [51] highlights the necessity of the penalty 
index in the GBLD metric. It is also noted that shared 
sequences (those present in two or three subjects) tend 
to have higher maximum occupancy. GBLD metric effec-
tively incorporates the examination of shared sequences 
with high weights, and high common weights do not sig-
nificantly increase the GBLD score. Applying the GBLD 
metric to the sampled data results in the following GBLD 
matrix.

According to Table  2, the lowest values corre-
spond to the repetitions of naive cells for donor 1 
( GBLD(D1−Na,D1−Nb) = 0.78 ), and the comparisons 
between naive and memory cells within each individual 
( GBLD(D1−M,D1−Na) = 1.35 , GBLD(D1−M,D1−Nb) = 1.6 , 
GBLD(D2−M,D2−N ) = 0.98 , and GBLD(D3−M,D3−N ) = 0.68).

Comparing these values with the other values in the 
GBLD matrix corroborates the findings of the previ-
ous study [51], and validates the accuracy of the GBLD 
metric.

Revisiting the section on the design of the simulated 
dataset and analyzing the GBLD matrix, it becomes 
apparent that lineage trees with a greater number of 
common nodes and higher similarity in weights and 
branch lengths generally exhibit lower GBLD scores. 
While the detection of these similarities is relatively 
simple in smaller datasets, it would be more difficult in 
larger, more complex datasets. Nevertheless, the GBLD 
metric method provides a proficient approach for iden-
tifying these similarities, bypassing the challenges posed 
by complex topologies.

In our investigation, some common nodes in lineage 
trees were observed that shared the same length and 
weight but were positioned differently. This discrepancy 
in position resulted in varying branch length distances 
between this node and others in the lineage trees, leading 
to the oversight of certain topology details. As a prospec-
tive initiative, it is beneficial to explore an index associ-
ated with the topologies of compared lineage trees. This 
new index can raise the GBLD score, improving the accu-
racy of the GBLD metric method and upholding its met-
ric integrity.

Conclusion
Our research focuses on introducing an innovative tech-
nique that enables a comprehensive evaluation of line-
age tree attributes. The primary objective is to achieve 
optimal partitioning while maintaining the metric prop-
erties of the proposed method. Our metric approach is 
diligent in incorporating the most crucial features of lin-
eage trees, ensuring a nuanced analysis. To validate our 
method, we adopt the DBSCAN algorithm, which offers a 
robust framework for determining the optimal number of 
clusters and outliers.

To fully comprehend the findings of our study, it is cru-
cial to have a deep understanding of lineage tree topolo-
gies. The GBLD score is a major metric that provides 
valuable insights into how two lineage trees are similar. 
This, in turn, helps us make more accurate predictions 
about how B cells react to viruses. Such knowledge can 
significantly improve the precision of immunotherapy 
and vaccine development by offering a more nuanced 
understanding of B cell behavior.

We discovered that variations in the structures of lin-
eage trees have a significant impact on the GBLD score. 
This finding emphasizes the importance of this particular 
feature. In upcoming research, we plan on incorporating 
this observation into our metric framework. We believe 
that doing so will lead to more accurate assessments of 
lineage tree dynamics. These advancements will offer val-
uable insights to the scientific community, particularly in 
comprehending and regulating B cell immune responses.
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To improve our novel metric, we need to carefully 
manage nodes both internally and externally to avoid 
potential biases in the metric. To address this, we are 
considering the possibility of adding leaves on both 
sides of the lineage trees, which would include all nodes 
in the dataset. This approach is inspired by the RF(+) 
method [56]. We will introduce branches and nodes that 
are absent in one tree but present in the other, align-
ing with established methodologies in the field during 
preprocessing.

Acknowledgements
The authors would like to thank the Department of Computer Science, Univer-
sity of Sherbrooke, Quebec, Canada for providing the necessary resources to 
conduct this research. The authors also thank the reviewers and the Editor for 
their valuable comments on this paper.

Author contributions
Both authors contributed equally for the development of this article.

Funding
This work was supported by the Natural Sciences and Engineering Research 
Council of Canada (Grant no. RGPIN-2022-04322), Fonds de recherche du 
QuÃ©bec - Nature and technologies (Grant no. 326911), and the University of 
Sherbrooke grant.

Availability of data and materials
The datasets generated and analyzed during the current study along with the 
GBLD metric programs (C++ source code and Python scripts) are freely avail-
able at: https://​github.​com/​tahiri-​lab/​Clona​lTree​Clust​ering.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no cmpeting interests.

Received: 17 June 2024   Accepted: 24 September 2024

References
	1.	 Schwab I, Nimmerjahn F. Intravenous immunoglobulin therapy: 

how does IgG modulate the immune system? Nat Rev Immunol. 
2013;13(3):176–89.

	2.	 Lefranc MP. Immunoglobulin and T cell receptor genes: IMGT® and the 
birth and rise of immunoinformatics. Front Immunol. 2014;5:22.

	3.	 Zhang L, Vijg J. Somatic mutagenesis in mammals and its implications for 
human disease and aging. Annu Rev Genet. 2018;52:397–419.

	4.	 Ruprecht CR, Lanzavecchia A. Toll-like receptor stimulation as a third 
signal required for activation of human naive B cells. Eur J Immunol. 
2006;36(4):810–6.

	5.	 de Bourcy CF, Angel CJL, Vollmers C, Dekker CL, Davis MM, Quake SR. 
Phylogenetic analysis of the human antibody repertoire reveals quantita-
tive signatures of immune senescence and aging. Proc Natl Acad Sci. 
2017;114(5):1105–10.

	6.	 Greaves M, Maley CC. Clonal evolution in cancer. Nature. 
2012;481(7381):306–13.

	7.	 Hoehn KB, Fowler A, Lunter G, Pybus OG. The diversity and molecu-
lar evolution of B-cell receptors during infection. Mol Biol Evol. 
2016;33(5):1147–57.

	8.	 Nouri N, Kleinstein SH. Somatic hypermutation analysis for improved 
identification of B cell clonal families from next-generation sequencing 
data. PLoS Comput Biol. 2020;16(6): e1007977.

	9.	 Li A, Rue M, Zhou J, Wang H, Goldwasser MA, Neuberg D, et al. Utiliza-
tion of Ig heavy chain variable, diversity, and joining gene segments in 
children with B-lineage acute lymphoblastic leukemia: implications for 
the mechanisms of VDJ recombination and for pathogenesis. Blood. 
2004;103(12):4602–9.

	10.	 Alt FW, Oltz EM, Young F, Gorman J, Taccioli G, Chen J. VDJ recombination. 
Immunol Today. 1992;13(8):306–14.

	11.	 Tabibian-Keissar H, Zuckerman NS, Barak M, Dunn-Walters DK, Steiman-
Shimony A, Chowers Y, et al. B-cell clonal diversification and gut-lymph 
node trafficking in ulcerative colitis revealed using lineage tree analysis. 
Eur J Immunol. 2008;38(9):2600–9.

	12.	 Uduman M, Shlomchik MJ, Vigneault F, Church GM, Kleinstein SH. 
Integrating B cell lineage information into statistical tests for detecting 
selection in Ig sequences. J Immunol. 2014;192(3):867–74.

	13.	 Barak M, Zuckerman NS, Edelman H, Unger R, Mehr R. IgTree: creating 
immunoglobulin variable region gene lineage trees. J Immunol Methods. 
2008;338(1–2):67–74.

	14.	 Kurosaki T, Kometani K, Ise W. Memory B cells. Nat Rev Immunol. 
2015;15(3):149–59.

	15.	 Seifert M, Küppers R. Human memory B cells. Leukemia. 
2016;30(12):2283–92.

	16.	 Walter S. Minkowski, mathematicians, and the mathematical theory of 
relativity. Expand Worlds Gen Relativity. 1999;7:45–86.

	17.	 Woese CR. Interpreting the universal phylogenetic tree. Proc Natl Acad 
Sci. 2000;97(15):8392–6.

	18.	 Nowell PC. The clonal evolution of tumor cell populations: acquired 
genetic lability permits stepwise selection of variant sublines and under-
lies tumor progression. Science. 1976;194(4260):23–8.

	19.	 DeWitt WS III, Mesin L, Victora GD, Minin VN, Matsen FA IV. Using 
genotype abundance to improve phylogenetic inference. Mol Biol Evol. 
2018;35(5):1253–65.

	20.	 Abdollahi N, Jeusset L, de Septenville A, Davi F, Bernardes JS. Reconstruct-
ing B cell lineage trees with minimum spanning tree and genotype 
abundances. BMC Bioinform. 2023;24(1):70.

	21.	 Buneman P. A note on the metric properties of trees. J Combin Theory 
Ser B. 1974;17(1):48–50.

	22.	 Davidsen K, Matsen FA IV. Benchmarking tree and ancestral sequence 
inference for B cell receptor sequences. Front Immunol. 2018;9:2451.

	23.	 Górecki P, Eulenstein O. A Robinson-Foulds measure to compare 
unrooted trees with rooted trees. In: International symposium on bioin-
formatics research and applications. Springer; 2012. p. 115–26.

	24.	 Odegard VH, Schatz DG. Targeting of somatic hypermutation. Nat Rev 
Immunol. 2006;6(8):573–83.

	25.	 Tietje M, Antonelli A, Forest F, Govaerts R, Smith SA, Sun M, et al. Global 
hotspots of plant phylogenetic diversity. N Phytol. 2023;240(4):1636–46.

	26.	 Hamza N, Hershberg U, Kallenberg CG, Vissink A, Spijkervet FK, Bootsma 
H, et al. Ig gene analysis reveals altered selective pressures on Ig-pro-
ducing cells in parotid glands of primary Sjögren’s syndrome patients. J 
Immunol. 2015;194(2):514–21.

	27.	 Chan TD, Brink R. Affinity-based selection and the germinal center 
response. Immunol Rev. 2012;247(1):11–23.

	28.	 Mesin L, Ersching J, Victora GD. Germinal center B cell dynamics. Immu-
nity. 2016;45(3):471–82.

	29.	 Riedel R, Addo R, Ferreira-Gomes M, Heinz GA, Heinrich F, Kummer J, 
et al. Discrete populations of isotype-switched memory B lymphocytes 
are maintained in murine spleen and bone marrow. Nat Commun. 
2020;11(1):2570.

	30.	 Hershberg U, Luning Prak ET. The analysis of clonal expansions in 
normal and autoimmune B cell repertoires. Philos Trans R Soc B Biol Sci. 
2015;370(1676):20140239.

	31.	 Hoehn KB, Kleinstein SH. B cell phylogenetics in the single cell era. Trends 
Immunol. 2023;45:62–74.

	32.	 Garba MK, Nye TM, Lueg J, Huckemann SF. Information geometry for 
phylogenetic trees. J Math Biol. 2021;82:1–39.

https://github.com/tahiri-lab/ClonalTreeClustering


Page 14 of 14Farnia and Tahiri ﻿Algorithms for Molecular Biology           (2024) 19:22 

	33.	 Koshkarov A, Tahiri N. Novel algorithm for comparing phylogenetic trees 
with different but overlapping taxa. Symmetry. 2024;16(7):790.

	34.	 Adams RH, Blackmon H, DeGiorgio M. Of traits and trees: probabilistic dis-
tances under continuous trait models for dissecting the interplay among 
phylogeny, model, and data. Syst Biol. 2021;70(4):660–80.

	35.	 Garba MK, Nye TM, Boys RJ. Probabilistic distances between trees. Syst 
Biol. 2018;67(2):320–7.

	36.	 Govek K, Sikes C, Oesper L. A consensus approach to infer tumor evolu-
tionary histories. In: Proceedings of the 2018 ACM international confer-
ence on bioinformatics, computational biology, and health informatics; 
2018. p. 63–72.

	37.	 DiNardo Z, Tomlinson K, Ritz A, Oesper L. Distance measures for tumor 
evolutionary trees. Bioinformatics. 2020;36(7):2090–7.

	38.	 Llabrés M, Rosselló F, Valiente G. A generalized Robinson-Foulds distance 
for clonal trees, mutation trees, and phylogenetic trees and networks. In: 
Proceedings of the 11th ACM international conference on bioinformatics, 
computational biology and health informatics; 2020. p. 1–10.

	39.	 Jahn K, Beerenwinkel N, Zhang L. The Bourque distances for mutation 
trees of cancers. Alg Mol Biol. 2021;16(1):9.

	40.	 Khayatian E, Valiente G, Zhang L. The k-Robinson-Foulds dis-
similarity measures for comparison of labeled trees. J Comput Biol. 
2024;31(4):328–44.

	41.	 Kuhner MK, Felsenstein J. A simulation comparison of phylogeny 
algorithms under equal and unequal evolutionary rates. Mol Biol Evol. 
1994;11(3):459–68.

	42.	 Semple C, Steel M, et al. Phylogenetics, vol. 24. Oxford: Oxford University 
Press on Demand; 2003.

	43.	 Soria-Carrasco V, Talavera G, Igea J, Castresana J. The K tree score: quan-
tification of differences in the relative branch length and topology of 
phylogenetic trees. Bioinformatics. 2007;23(21):2954–6.

	44.	 Duchêne DA, Tong KJ, Foster CS, Duchêne S, Lanfear R, Ho SY. Linking 
branch lengths across sets of loci provides the highest statistical support 
for phylogenetic inference. Mol Biol Evol. 2020;37(4):1202–10.

	45.	 Danielsson PE. Euclidean distance mapping. Comput Graph Image 
Process. 1980;14(3):227–48.

	46.	 Jaccard P. Étude comparative de la distribution florale dans une portion 
des Alpes et des Jura. Bull Soc Vaudoise Sci Nat. 1901;37:547–79.

	47.	 Kosub S. A note on the triangle inequality for the Jaccard distance. Pat-
tern Recogn Lett. 2019;120:36–8.

	48.	 Yianilos PN. Normalized forms for two common metrics. NEC Res Inst: 
Rep; 2002. p. 91–082.

	49.	 Doboš J. Metric preserving functions. Štroffek Košice; 1998.
	50.	 DeWitt I, William S, Mesin L, Victora GD, Minin VN, Matsen I, Frederick A. 

Using genotype abundance to improve phylogenetic inference. Mol Biol 
Evol. 2018;35(5):1253–65.

	51.	 DeWitt WS, Lindau P, Snyder TM, Sherwood AM, Vignali M, Carlson CS, 
et al. A public database of memory and naive B-cell receptor sequences. 
PLoS ONE. 2016;11(8): e0160853.

	52.	 Edgar RC. MUSCLE: a multiple sequence alignment method with reduced 
time and space complexity. BMC Bioinform. 2004;5:1–19.

	53.	 Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al. Biopy-
thon: freely available Python tools for computational molecular biology 
and bioinformatics. Bioinformatics. 2009;25(11):1422.

	54.	 Saitou N, Nei M. The neighbor-joining method: a new method for recon-
structing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–25.

	55.	 Schubert E, Sander J, Ester M, Kriegel HP, Xu X. DBSCAN revisited, revis-
ited: why and how you should (still) use DBSCAN. ACM Trans Database 
Syst TODS. 2017;42(3):1–21.

	56.	 Cotton JA, Wilkinson M. Majority-rule supertrees. Syst Biol. 
2007;56(3):445–52.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	New generalized metric based on branch length distance to compare B cell lineage trees
	Abstract 
	Introduction
	Notation and preliminaries
	Definitions
	Comparison between phylogenetic, lineage, and clonal trees

	Related works
	Methods
	Illustration of the GBLD metric methodology
	Algorithm

	Materials
	Simulated dataset
	Real dataset

	Results and discussion
	Simulated dataset
	Real dataset

	Conclusion
	Acknowledgements
	References


