
BioMed CentralAlgorithms for Molecular Biology

ss
Open AcceResearch
The approximability of the String Barcoding problem
Giuseppe Lancia* and Romeo Rizzi

Address: Dipartimento di Matematica ed Informatica, Universitá di Udine, Via delle Scienze 206, Udine, Italy

Email: Giuseppe Lancia* - lancia@dimi.uniud.it; Romeo Rizzi - rizzi@dimi.uniud.it

* Corresponding author    

Abstract
The String Barcoding (SBC) problem, introduced by Rash and Gusfield (RECOMB, 2002), consists
in finding a minimum set of substrings that can be used to distinguish between all members of a set
of given strings. In a computational biology context, the given strings represent a set of known
viruses, while the substrings can be used as probes for an hybridization experiment via microarray.
Eventually, one aims at the classification of new strings (unknown viruses) through the result of the
hybridization experiment. In this paper we show that SBC is as hard to approximate as Set Cover.
Furthermore, we show that the constrained version of SBC (with probes of bounded length) is also
hard to approximate. These negative results are tight.

Background
The following setting was introduced by Rash and Gus-
field in [1]: Given a set V of n strings v1,...,vn (representing
the genomes of n known viruses), and an extra string s
(representing a virus in V, but not yet classified), we aim
at recognizing s as one of the known viruses through an
hybridization experiment. In the experiment, we utilize a
set ∏ of k probes (DNA strings) and we will are able to
determine which ones are contained in s (as substrings)
and which are not. The result of the experiment is there-
fore a binary k-vector (called, in [1] a barcode) which can
be seen as the signature of s with respect to the given
probes. In order for the barcode to be able to discriminate
between all the viruses, it must be true that, for each pair
of viruses vi, vj, with 1 ≤ i <j ≤ n, there exists at least one π
∈ ∏ which is a substring of either vi or vj but not of both.
This amounts to saying that the barcodes of all vi's must be
distinct binary k-vectors. The cost of the hybridization
experiment turns out to be proportional to k, and there-
fore the goal of the optimization problem, known as Min-
imum String Barcoding (SBC), is to find a feasible set ∏ of
smallest possible cardinality. The problem has been pop-

ularized by Rash and Gusfield [1], who proposed an Inte-
ger Programming approach for its solution. In [2,3],
DasGupta et al. describe a greedy algorithm for robust bar-
coding (i.e., where each pair of viruses must be distin-
guished by at least a given number l of probes), which
scales well to whole-genome sequences. For real-life
instances, this algorithm is more effective than alternative
approaches [1,4] whose time complexity grows very
quickly with the length of the input sequences.

In [1], Rash and Gusfield stated that a variant of SBC, in
which the maximum length of each probe is bounded by
a constant, and the alphabet size is at least 3, is NP-hard.
As for the unconstrained case, where no bound is given on
the length of each probe, they left as an open problem to
determine whether this version of SBC is NP-complete or
not. In this paper we prove that both SBC and uncon-
strained SBC are in fact NP-complete already for binary
alphabets. We do so by actually linking the approximabil-
ity of SBC (both constrained and unconstrained) to the
approximability of the classical Set Cover problem. This
way, a sharp log n bound on the best achievable approxi-

Published: 08 August 2006

Algorithms for Molecular Biology 2006, 1:12 doi:10.1186/1748-7188-1-12

Received: 16 May 2006
Accepted: 08 August 2006

This article is available from: http://www.almob.org/content/1/1/12

© 2006 Lancia and Rizzi; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 7
(page number not for citation purposes)

http://www.almob.org/content/1/1/12
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16895600
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


Algorithms for Molecular Biology 2006, 1:12 http://www.almob.org/content/1/1/12
mation ratio is established for both versions of SBC. It
must here be said that essentially the same result has inde-
pendently been obtained, and already published, by Ber-
man et al. [5]. The inapproximability result in [5] actually
holds for a very general family of Minimum Test Collec-
tion problems which includes unconstrained SBC as a
special case. However, our inapproximability result for
constrained SBC is not covered by the general framework
proposed in [5]. Note that the very nature of the hybridi-
zation experiment imposes that the used probes cannot be
too long for technological and biological reasons (such as
possible self-hybridization of the probes). Therefore, the
bounded-length SBC problem is quite important in prac-
tice. In [5] the authors also obtain a (1 + log n)-approxi-
mation algorithm for the general Minimum Test
Collection problem. Their result is the first improvement
over the log n2 = 2 log n approximation ratio that can
essentially be achieved by a standard reduction of Mini-
mum Test Collection to Set Cover followed by a run of the
classical set covering greedy algorithm. Thanks to this pos-
itive result, all the bounds on the approximability ratios
obtained either here or in [5] are tight also in terms of the
multiplicative constant of the log n factor. This (1 + log n)-
approximation proposed in [5] is a greedy algorithm in
which the choice of the test set to be added at each step is
driven by a suitable entropy function. The analysis of the
algorithm, also given in [5], is an elegant and non-trivial
reinterpretation of the celebrated proof by Lovasz of the
approximation ratio of the greedy algorithm for set cover.

The remainder of the paper is organized as follows. In next
section, we introduce the Minimum Test Collection prob-
lem (MTC), a known NP-complete problem (see, e.g.,
Garey and Johnson [6]) for which set-cover-like inapprox-
imability results are known [7]. We also introduce a
restricted version of MTC and we show that the same inap-
proximability results hold for this restricted version as
well. In the following section, we address the computa-
tional complexity of SBC and show that the approxima-
tion algorithm by Berman, DasGupta and Kao [5] delivers
an essentially tight approximation ratio even for con-
strained SBC. More precisely, in the opening of the section
we introduce formally the string barcoding problems
studied and also point out that every SBC instance (either
constrained or unconstrained) can be formulated as an
MTC instance, which directly implies set-cover-like
approximability results for SBC. We also observe here that
the constrained SBC problem, when parameterized over
the maximum probe length and the alphabet size, is in
FPT and, in particular, it can be solved in linear time
whenever these parameters are fixed (for a comprehensive
treatment of FPT theory, see [8]). Next, we prove set-cover-
like inapproximability results for SBC and for the maxi-
mum-length version of SBC via a common reduction
from the restricted version of MTC introduced in the first

section. (The NP-hardness of the maximum-length ver-
sion of SBC had been already stated in [1], although with-
out reporting the proof).

A starting problem: the Min Test Collection
In this section we introduce the Minimum Test Collection
(MTC) problem, both in its general form and in a
restricted version. We also report (and obtain) set-cover-
like inapproximability results for MTC and its restricted
version. Both the inapproximability of MTC and that of its
restricted version will be used in later sections, when char-
acterizing the approximability of the two variants of SBC.

The MTC problem, as defined in [6], is the following
problem.

MTC INSTANCE
D = {d1,...,dp}: a set of (ground) elements.

 = {T1,...,Tq}: a set of subsets of D (representing tests

that may succeed or fail on the elements. A test T succeeds

on d if d ∈ T and fails on d otherwise).

MTC PROBLEM

Find a minimum-size set  ⊆  such that for any pair

of elements d, d' ∈ D there is at least one test T ∈  such

that |{d, d'} ∩ T| = 1 (i.e., the test fails on one element and
succeeds on the other). A set that verifies this property is

called a testing set of D;  is a minimum testing set of D.

The MTC problem appears in many contexts. For example,
the elements may represent a set of p diseases, and the Ti
are diagnostic tests, that can verify the presence/absence of
q symptoms. The goal is to minimize the number of symp-
toms whose presence/absence should be verified in order
to correctly diagnose the disease. In [6], Garey and John-
son proved that MTC is NP-complete by reducing 3-
dimensional Matching (3DM), which is NP-complete [9],
to it. In [7] it was also proven by means of a reduction
from Set Cover that no fully polynomial-time approxima-
tion scheme exists for MTC, unless P = NP. Later in this
section we essentially employ this reduction. The same
reduction had also been reconsidered in [10] where it was
shown that MTC is not approximable within (1 - ε) log p
for any ε > 0. We now introduce a special type of MTC
instances, which we call standard. In this version of the
problem, some particular tests must always be part of the
problem instance.

In order to define these particular instances, assume the
elements in D are ordered as d1,...,dp and let Dj = {dj,...,dp}

for j = 1,...,p. A set of tests  is called suffix-closed if Dj ∩



′ 
′

′



Page 2 of 7
(page number not for citation purposes)



Algorithms for Molecular Biology 2006, 1:12 http://www.almob.org/content/1/1/12
T ∈  for each T ∈  and j = 1,...,p. A suffix-closed set

of tests  is called standard if Dj ∈  and {dj} ∈  for

each j = 1,...,p. An instance (D, ) of MTC is standard

when  is standard. In other words, a standard instance
of MTC consists of a finite set D = {d1,...,dp} and a set of

tests  which can be written as  = D ∪ I ∪ A ∪

E, where

D = {S1,...,Sq'}: a generic set of subsets of D;

I = {Sq'+1,...,Sq'+p} = {{di} | i = 1,...,p};

A = {Sq'+p+1,...,Sq'+2p} = {Dj | 1 ≤ j ≤ p};

E = {Sq'+2p+1,...,Sp(q'+2)} = {S ∩ Dj | S ∈ D, 2 ≤ j ≤ p}.

Note that D, I, A and E may have non-empty

intersection. In other words, where we assume  =
{T1,...,Tq} with q = p(q' + 2) and Ti = Si for i = 1,2,...,q, then

it might be the case that Ti = Tj with i ≠ j.

We now prove the following result.

Theorem 1 Minimum Test Collection (MTC) cannot be
approximated within (1 - ε) log p for any ε > 0 even when
restricted to standard instances.

We prove the above theorem by a reduction from the Set
Cover (SC) problem, which is defined ([11]) as follows.

SC INSTANCE

A finite set S = {s1,...,sm} and a collection  = {C1,...,Cn}

⊆ 2S such that S = .

SC PROBLEM

Find a minimum-size collection  ⊆  such that every

element in S belongs to at least one subset in , i.e.

We say that any  satisfying (1) covers S, and we call such
a set a set cover for S.

It is well known that SC cannot be approximated within
(1 - ε) log m for any ε > 0 (see [12]).

Let S = {s1,...,sm} and  = {C1,...,Cn} ⊆ 2S be an arbitrary

instance of SC. We show how to obtain a standard
instance of MTC representing the given instance of SC.

First, let K := 2k be the smallest power of 2 such that K ≥ m.
To each j ∈ {1, 2,..., K}, we associate a unique binary
string b(j) of length k. Let R := {r1,...,rK}, be a set of size K
with R ∩ S = ∅. The set of elements D is defined as D = R
∪ S, with a particular order:

D = {r1, s1, r2, s2, ..., rm, sm, rm+1, rm+2 ..., rK}

(i.e., D = {d1, ..., dp} with p = m + K). The set of tests  is

constructed in the following way. First, for each i = 1,...,k,
we call Ti the test containing all the rj and sj such that the

bit in position i of the binary string b(j) is set to 1. Then

let  = D ∪ I ∪ A ∪ E where

D =  ∪ {Ti | i = 1,...,k},

I = {{di} | i = l,...,p},

A = {Dj | 1 ≤ j ≤ p},

E = {T ∩ Dj | T ∈ D, 2 ≤ j ≤ p}.

The following two lemmas investigate the properties of
the proposed reduction.

Lemma 1 If S has a set cover  ⊆ of size h, then D has a

testing set  ⊆ of size at most h + k.

Proof: Let  ⊆  be a set cover for S of size h. We claim

that  :=  ∪ {Ti | i = 1,...,k} is a testing set for D, which

proves the lemma. Indeed, consider two elements si (or ri)

and sj (or rj). If i ≠ j then the binary strings associated to i

and j differ in some position x, and hence Tx distinguishes

between them. Otherwise, if i = j and the two elements
still differ, then we are talking about si and ri, for some i =

1,...,m. Notice that si is contained in at least one set C in

 since  covers S. Moreover, ri ∉ C since C ⊆ S. It fol-

lows that there exists some set in , and hence in ,
which distinguishes between si and ri.  �

Lemma 2 If D has a testing set  ⊆ of size h, then S has

a set cover  ⊆ of size at most h.

 
  




    








 

   




Cii
n
=1∪

′ 
′

S C
C

= ( )
∈ ′
∪ . 1

′





    

 





 

′ 
′ 

′ 
′ ′

′ ′
′ ′

′ 
′ 
Page 3 of 7
(page number not for citation purposes)



Algorithms for Molecular Biology 2006, 1:12 http://www.almob.org/content/1/1/12
Proof: Let  ⊆  be a testing set of D of size h. We pro-

pose a polynomial-time algorithm to produce a set  ⊆

 with | | ≤ | | such that  ∪ {Ti | i = 1,...,k} is also

a testing set of D. At the end, we argue that such a  must
be a set cover of S.

Let X = . Clearly, X ∪ {Ti | i = 1,...,k} distinguishes all

the elements in D, and this invariant will be maintained

throughout the algorithm. If X ⊆ , then we just let  =

X, and stop. Otherwise, let T ∈ X \ . Notice that all pairs

of elements which are not distinguished by (X \ {T}) ∪
{Ti | i = 1,...,k} necessarily belong to the set P = {{si, ri} | i

= 1,...,m}. Our plan is hence to replace T by any set in 
which distinguishes all the pairs in P that are distin-
guished by T. It remains to show that such a set in 

always exists. Indeed, if T is a test Dj with j = 2i and j ≤ 2m,

then the ordering we have imposed among the elements
of D implies that T distinguishes only the pair {si, ri} of P,

so it can be replaced by any C ∈  with si ∈ ; if T is a

test Dj with j odd or j > 2m, then T distinguishes no pair in

D, so that T can be dropped from X without the need for

any replacement. If T is a test of the form Ti ∩ Dj, then it

again distinguishes at most one pair in P, and a similar

reasoning holds. The same holds if T ∈ TI, that is, T = {d}

for some d ∈ D. Finally, if T is a test C ∩ Dj for some C ∈

, then, clearly, it can be replaced with C. Hence, by sub-

stituting every test T ∈ X \  by tests in  as shown, we

obtain that X ⊆ , and we let  = X.

We now argue simply that, since  ∪ {Ti | i = 1,...,k} is a

testing set of D, then  is a set cover of S. Indeed, no pair
in P is distinguished by a set Ti. Therefore, for each j =

1,...,m, the pair {rj, sj} is distinguished by some test  ∈

. Moreover, since rj ∉ T for any T ∈  ⊆ , it must be

that sj ∈ . Therefore, each sj is covered, and  is a set

cover of S.  �

With Lemmas 1 and 2, we are now ready to prove Theo-
rem 1.

Proof of Theorem 1: We first remark that SC is not

approximable within (1 - ε) log m even when restricted to

instances for which opt = ω(log m). Indeed, just consider
duplicating a generic instance of SC into t := Llog2 mO =

ω(log m) identical and disjoint copies to obtain a new

instance (S*, *) with |S*| = tm. Let opt denote the opti-

mum value for the original instance (S, ) and opt* the

optimum value for the instance (S*, *). Then opt* = t

opt ≥ t = ω(log|S*|). Notice also that a solution to the

instance (S*, *) of size at most opt*(1 - ε) log|S*| could
be immediately translated into a solution to the instance
(S, ) of size at most

Here, ε > 0 and log t = o(log m), in contrast with the inap-
proximability results explicitly derived in [12]. In the
analysis to follow we therefore assume that opt = ω(log m).

Denote now by opt and opt' the optimal solution values for
the original problem (SC) and the transformed problem
(MTC) respectively, and by apx and apx' the values of the
respective approximated solutions that we can produce in
polynomial time. By Lemma 1,

opt' ≤ opt + k = opt + o(opt).

Then, if we assume that we can obtain an approximate
solution

apx' ≤ f(|D|)opt'

for the MTC problem, we can also guarantee that

apx' ≤ f(|D|)(opt + o(opt)).

Since the proof of Lemma 2 is constructive, we obtain that

apx ≤ apx' ≤ f(|D|)(opt + o(opt)).

Notice that p := |D| ≤ 2m. Consequently, since we know
that SC is not approximable within (1 - ε) log m for any ε
> 0, then we can conclude that MTC is not approximable
within (1 - ε) log p for any ε > 0.  �

The String Barcoding problems
The following is a formal definition of the String Barcod-
ing problem (SBC):

SBC INSTANCE
An alphabet Σ (e.g., Σ = {A, C, G, T}) and a set V =
{v1,...,vn} of strings over Σ (representing virus genomes).

SBC PROBLEM
Find a minimum-size set ∏ of strings such that for any
pair of strings v, v' ∈ V there is at least one string π ∈ ∏
such that π is a substring of v or v', but not of both. A set

′ 
′

 ′ ′ ′
′

′

 ′






 


 

 ′

′
′

T

′ ′ 
T ′










1
1 1 1

t
opt S opt S m t opt*( )log | *| ( )log | *| ( )(log log ) .− = − = − +ε ε ε
Page 4 of 7
(page number not for citation purposes)



Algorithms for Molecular Biology 2006, 1:12 http://www.almob.org/content/1/1/12
that verifies this property is called a testing set of V; ∏ is a
minimum testing set of V.

Rash and Gusfield state in [1] that it is unknown whether
the basic String Barcoding problem is NP-hard or not and
they also state that a variant of SBC called Max-length
String Barcoding (MLSBC) is NP-hard when the underly-
ing alphabet contains at least three elements. In this vari-
ant, a constraint on the maximum length of the substrings
in ∏ is specified in input. More formally, MLSBC is the
following problem:

MLSBC INSTANCE
An alphabet Σ, a set V = {v1,...,vn} of strings over Σ and a
constant L.

MLSBC PROBLEM
Find a testing set ∏ of V such that the length of each string
π ∈ ∏ is less than or equal to L, and ∏ has smallest possi-
ble cardinality among such testing sets.

The main point of this paper is to link the approximability
of SBC (both constrained and unconstrained) to the
approximability of the classical Set Cover problem.
Indeed, both SBC and MLSBC can be naturally regarded as
instances of MTC, for which, in turn, a natural reduction
to Set Cover is well known. In the next section we provide
reductions for the reverse direction. These reductions will
characterize the approximability of SBC and MLSBC from
a computational complexity point of view. To better
appreciate some aspects of these reductions, we make the
following remark.

Fact 1 MLSBC can be solved in linear time whenever L and |Σ|
are bounded by a constant.

Proof: Indeed, the number of strings π which may possibly
end up in the testing set ∏ is bounded by

whence the number of possible solutions is bounded by
2f(|Σ|,L). Thus we have a constant number of possible solu-
tions, and each can be checked in linear time.  �.

Inapproximability of SBC and MLSBC
In this subsection we prove the inapproximability of both
SBC and MLSBC by means of a common reduction from
the restricted form of MTC introduced in Section.

Theorem 2 The String Barcoding (SBC) problem cannot be
approximated within (1 - ε) log n for any ε > 0. This negative
result holds already for binary alphabets.

Theorem 3 The Max-length String Barcoding problem cannot
be approximated within (1 - ε) log n for any ε > 0. This nega-
tive result holds already for binary alphabets.

Let D = {d1,...,dp} and  = {T1,...,Tq} = D ∪ I ∪ A

∪ E be a standard instance of MTC, with

D = {T1,...,Tq'},

I = {Tq'+1,...,Tq'+p},

A = {Tq'+p+1,...,Tq'+2p},

E = {Tq'+2p+1,...,Tp(q'+2)}.

Where Ω is a set of strings, �σ∈Ω(σ) denotes the string
obtained as the concatenation of all the strings in Ω lined
up in lexicographic order (as a matter of fact, for the pur-
pose of our reduction to work, the strings in Ω could be
concatenated in any order, but we prefer to refer to a spe-
cific order so that the instance generated through the pro-
posed reduction is uniquely defined).

An instance of SBC (or of MLSBC) is obtained in the fol-

lowing way. First, let k = Llog2 qO. Then, let Σ = {A, B} and

Σ+ = {A, B, X} (the dummy symbol X will be used as a sep-

arator, to divide the really interesting substrings, made

only of As and Bs). We will often treat Σ and Σ+ as alpha-

bets, even if the intermediate symbols A, B, and X actually
stand for binary strings according to the rules: A # 10101,
B # 11011, and X # 00000. Thanks to these rules, any

given string in Σ* or  ultimately represents a unique

binary string in Σ = {0,1}*. Let Σl denote the set of all the

strings of length l over the alphabet Σ. Finally, uniquely

encode each different test T ∈  by a string fT ∈ Σk (called

the signature of T) and let F = {fT | T ∈ }; certainly this

is possible since |Σk| = 2k ≥ q = | |. Now, the instance of
SBC is completed by constructing the set of strings V = {vj

| j = 1,...,p} such that each string vj ∈ V contains all the

strings in Σ2k-1 plus the signatures f ∈ F of those tests T ∈
 that succeed on dj (that is, such that dj ∈ T). More for-

mally, the codification of an element dj ∈ D is the string

seen as a binary string. Notice that the role of X is to sep-
arate the substrings, and that a different number of X char-
acters is used in each string v in order to uniquely identify

f L t

t

L L
(| |, ) : | |

| |

| |
,∑ = ∑ = ∑ −

∑ −=

+

∑
1

1 1

1

   










∑+
*








v X X f f Xj
k j k j

T d T T
k j

k
j

= +
∈∑

+
∋

+
−

2 2 2
2 1○ ○σ σ( ) ( ) 
Page 5 of 7
(page number not for citation purposes)



Algorithms for Molecular Biology 2006, 1:12 http://www.almob.org/content/1/1/12
it when dealing with one of its substrings which includes
a whole block of X's. The MLSBC instance is the same as
the SBC instance plus the bound L = 10 k.

The number and size of the strings constructed above, and
hence the above described transformation from an MTC
instance to either an SBC instance or an MLSBC instance,
is polynomial. With the next two lemmas we show that
this is an objective-function preserving reduction from
MTC to either SBC or MLSBC whence Theorems 2 and 3
follow.

Lemma 3 If D has a testing set  ⊆ of size h, then V has

a testing set ∏ of size at most h. Furthermore, |π| ≤ L for every

π ∈ ∏.

Proof: Consider the set of strings ∏ = {fTfT | fT is the signa-

ture of T ∈ }. Clearly, |∏| ≤ | | and we aim at show-

ing that ∏ is a testing set for V. More precisely, we claim
that the binary string fTfT is a substring of the binary string

vj if and only if dj ∈ T. Indeed, when dj ∈ T, it follows

immediately from the construction of vj that fTfT is a sub-

string of vj. As for the converse, when fTfT is a substring of

vj, then the shift of any of its occurrences within vj is nec-

essarily a multiple of 5, and hence fTfT is actually a sub-

string of vj also when fTfT and vj are regarded as strings over

Σ+. It follows that dj ∈ T. Notice moreover that |π| = 10 k

≤ L for every π ∈ ∏.  �

Lemma 4 If V has a testing set of size h, then D has a testing

set  ⊆ of size at most h.

Proof: We want to show that, given a testing set ∏ for V,

there exists a testing set  ⊆  for D with | | ≤ |∏|.
We actually commit ourselves to show that for every

binary string π ∈ ∏ we can find a Tπ ∈  such that, for

each j = 1,...,p, the string π occurs as a substring of vj if and

only if dj ∈ Tπ. In following this plan of action, for each π

∈ ∏, we can clearly assume that π is a substring of some vj

∈ V but not all. Thus, if π contains a substring of the form
10y1 for some y > 1, then y is a multiple of 5, that is, y = 5t,

and, actually, t = 2k + j with 1 ≤ j ≤ p, in which case we can
take Tπ := {dj}. This works since vj is the only string in V of

which π is a substring. Similarly, in case the string π con-
tains no symbol 1 except in the first (or except in the last)

x ≤ 2 positions, and where t = L(|π| - x)/5O (here we are
assuming that the symbol in position x is forced to be a 1

if x > 0), then t = 2k + j with 1 <j ≤ p, in which case we can

take Tπ := Dj. This works since vi contains π as a substring

if and only if i ≥ j. Furthermore, in case 00 is not a sub-

string of π, and since π is a substring of some vj ∈ V but not

all, then 10 k - 8 ≤ |π| ≤ 10 k + 2.

Actually, where π' is the longest substring of π which both

begins and ends with 1, then 10 k - 8 ≤ |π'| ≤ 10 k, and π'

is a substring of  for precisely one  ∈  – and in

this case Tπ :=  works. We are left with the case π =

0a1α10b with α containing no 00 substring and where one

of a or b may possibly be 0 but M := max{a, b} ≥ 2. Assume
w.l.o.g. that a = M. Again, let t = LM/5O. Clearly, we can

assume t ≤ 2k + p. If t ≤ 2k + 1, then we can also assume

that 1α10b is a substring of 0b for precisely one  ∈

 – in this case Tπ :=  works since the set of those

strings in V having π as a substring is precisely {vj | dj ∈

}. We hence turn to consider t = 2k + j with 1 <j ≤ p. We

can also assume that |α| ≤ 10 k - 2. Let z be an indicator

variable whose value is 1 if b ≠ 0 and 0 otherwise. If |1α1|
+ z < 5 k - 3 then consider Tπ := Dj, which works since the

set of those strings in V having π as a substring is precisely

{vi | i ≥ j} = {vi | di ∈ Dj}. (Actually, for the sake of preci-

sion, it can be observed that whenever |1α1| ≥ 10 k - 5, the

string 001α100 will be a substring of all vi, or none at all).

If |1α1| + z ≥ 5 k - 3 then 1α10 is a substring of 0 for

precisely one  ∈  and Tπ :=  ∩ Dj works since the set

of those strings in V having π as a substring is precisely {vi

| i ≥ j, di ∈ } = {vi | di ∈ Dj ∩ }.  �

Authors' contributions
All authors equally contributed to this paper. All authors
read and approved the final manuscript.

Acknowledgements
We thank two anonymous referees for their careful reading of the paper. 
In particular, the first referee is acknowledged for pointing out to us the 
important reference [5], and the second referee for his detailed list of sug-
gestions which greatly helped in improving the presentation. Part of this 
work was supported through MIUR grants P.R.I.N. and the F.I.R.B. project 
"Bioinformatica per la Genomica e la Proteomica".

References
1. Rash S, Gusfield D: String Barcoding: Uncovering Optimal

Virus Signatures.  In Proceedings of the Annual International Confer-
ence on on Computational Molecular Biology (RECOMB) ACM press;
2002:254-261. 

′ 

′ ′

′ 

′  ′



f fT T� �
�T 

�T

f fT T� �
�T

 �T

�T

f fT T� �

�T  �T

�T �T
Page 6 of 7
(page number not for citation purposes)



Algorithms for Molecular Biology 2006, 1:12 http://www.almob.org/content/1/1/12
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

2. DasGupta B, Konwar KM, Mandoiu II, Shvartsman A: Highly scala-
ble algorithms for robust string barcoding.  Int J of Bioinf Res and
Appls 2005, 1(2):145-161.

3. DasGupta B, Konwar KM, Mandoiu II, Shvartsman A: DNA-BAR:
distinguisher selection for DNA barcoding.  Bioinf 2005,
21(16):3424-3426.

4. Borneman J, Chrobak M, Della Vedova G, Figueroa A, Jiang T: Probe
selection algorithms with applications in the analysis of
microbial communities.  Bioinf 2001, 17(Suppl 1):39-48.

5. Berman P, DasGupta B, Kao MY: Tight approximability results
for test set problems in bioinformatics.  J of Comp and Sys Sc
2004, 71(2):145-162. [Also in Proc. Workshop on Algorithm Theory, Lec
Notes in Comp Sc, Springer, 3111:39–50, 2004]

6. Garey MR, Johnson DS: Computers and Intractability: A Guide to the The-
ory of NP-Completeness San Francisco: W. H. Freeman and Co; 1979. 

7. Moret BME, Shapiro HD: On minimizing a set of tests.  SIAM J on
Sc and Stat Comp 1985, 6:983-1003.

8. Downey RG, Fellows MR: Parametrized Complexity Berlin: Springer-
Verlag; 1998. 

9. Karp RM: Reducibility among combinatorial problems.  Compl
and Comp Computations 1972.

10. De Bontridder KMJ, Halldórsson BV, Halldórsson MM, Hurkens CAJ,
Lenstra JK, Ravi R, Stougie L: Approximation algorithms for the
test cover problem.  Math Prog B 2003, 1–3:477-491.

11. Cormen TH, Leiserson CE, Rivest RL: Introduction to Algorithms Bos-
ton: MIT press; 2001. 

12. Feige U: A threshold of for approximating set cover.  J ACM
1998, 45:634-652.
Page 7 of 7
(page number not for citation purposes)

http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	A starting problem: the Min Test Collection
	MTC INSTANCE
	MTC PROBLEM
	SC INSTANCE
	SC PROBLEM

	The String Barcoding problems
	SBC INSTANCE
	SBC PROBLEM
	MLSBC INSTANCE
	MLSBC PROBLEM
	Inapproximability of SBC and MLSBC


	Authors' contributions
	Acknowledgements
	References

