
BioMed CentralAlgorithms for Molecular Biology

ss
Open AcceResearch
Finding the region of pseudo-periodic tandem repeats in biological
sequences
Xiaowen Liu* and Lusheng Wang*

Address: Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong

Email: Xiaowen Liu* - liuxw@cs.cityu.edu.hk; Lusheng Wang* - lwang@cs.cityu.edu.hk

* Corresponding authors

Abstract
Summary: The genomes of many species are dominated by short sequences repeated
consecutively. It is estimated that over 10% of the human genome consists of tandemly repeated
sequences. Finding repeated regions in long sequences is important in sequence analysis.

We develop a software, LocRepeat, that finds regions of pseudo-periodic repeats in a long
sequence. We use the definition of Li et al. [1] for the pseudo-periodic partition of a region and
extend the algorithm that can select the repeated region from a given long sequence and give the
pseudo-periodic partition of the region.

Availability: LocRepeat is available at http://www.cs.cityu.edu.hk/~lwang/software/LocRepeat

Background
Finding pseudo-periodic repeats (or tandem repeats) is an
important task in biological sequence analysis [1-3]. The
genomes of many species are dominated by short
sequences repeated consecutively. It is estimated that over
10% of the human genome consists of tandemly repeated
sequences. About 10–25% of all known proteins have
some form of repeated structure ranging from simple
homopolymers to multiple duplications of entire globu-
lar domains. An instance (originally from Jaitly et al. [2])
of a human tandem repeat appears below (Gen-
bank:10120313):

CCTCCTCCTCCACCTCCTCCTCCTCCTCCTCCTCCTC-
CGCCTTCTCATCCTCCTCCACTT

CCTCCTCCTCCTCCTCCTCCCCTTCTCATCCTCCTC-
CTCTTCATCTACCC

This tandem repeat consists of 35 approximate copies of
the repeated pattern CCT.

Variation in the pseudo-periodic repeats demonstrates
biologically important information. Sensitive tools for
finding those regions containing pseudo-periodic repeats
are required in practice. Repeats occur frequently in bio-
logical sequences, but they may not be exact in many
cases. If the repeats are exact, the problem can be easily
solved from computation point of view. However, repeats
are seldom exact in biological sequences. The errors in
those repeats make it difficult to find regions of those
repeats. Many measures and algorithms have been pro-
posed.

Landau and Schmidt [4] studied the problem of finding
the two consecutive copies in a sequence of length n such
that the edit distance (a match costs 0 and a mismatch/
indel costs 1) between the two copies is at most k. The run-
ning time of the algorithm is O(kn log k log(n/kL)).

Published: 28 February 2006

Algorithms for Molecular Biology2006, 1:2 doi:10.1186/1748-7188-1-2

Received: 23 February 2006
Accepted: 28 February 2006

This article is available from: http://www.almob.org/content/1/1/2

© 2006Liu and Wang; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 8
(page number not for citation purposes)

http://www.almob.org/content/1/1/2
http://creativecommons.org/licenses/by/2.0
http://www.cs.cityu.edu.hk/~lwang/software/LocRepeat
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=10120313
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

Algorithms for Molecular Biology 2006, 1:2 http://www.almob.org/content/1/1/2
Schmidt [5] used weighted grid digraphs for finding all
non-overlapping pairs of substrings (not necessarily con-
secutive) with the highest scores in a given string of length
n. The algorithm can handle any score scheme. It requires
O(n2 log n) time and Θ(n2) space. In both [4] and [5], only
two copies of the pattern are considered.

Measures for finding repeats
Three measures can be used to give partitions of repeated
regions.

Quasiperiodicty
Wan and Song proposed a measure in which all the
repeated copies (except the last one) have the same length
[6]. For this measure, a linear time and space algorithm
was given [6].

Approximate periods

Sim et al. [7] introduced a notion of approximation peri-
ods (approximate period) using edit distance or relative edit
distance. The problem in general is defined as follows:
given a string x, find a repeated pattern p such that x can

be partitioned as x = p1p2...pk and is mini-

mized. Here d(p, pl) is the relative edit distance which is

 the edit distance, where L = (|p| + |pl|)/2 is the average

length of the two strings p and pl. Note that, the normali-

zation of the edit distance is important for finding
repeated patterns since otherwise, one can give a partition
in which each pattern has one letter and the edit distance
is at most 1 (small). The problem in general is NP-hard
[7]. When the repeated pattern p is assumed to be a sub-
string of x, The problem can be solved in O(|x|4) time.
Note that the second measure is more general than the
first since it allows insertions and deletions. Both meas-
ures in [7] and [6] use the bottleneck function that finds
the repeated pattern p and assumes that each copy pi in the

long string is close to the repeated pattern p, i.e., d(pi, p) ≤

δ and δ is minimized. However, in biological sequences,
copies of the repeated patterns may change gradually so
that some repeats in the region may have very little in

max (,)l
k

ld p p=1

1
L

×

Table 2: Pseudo periodic repeats of LPXA_ECOLI (matrix:blosum62, gap penalty: -4)

Unit Pseudo-periodic unit Length Similarity with previous unit

1 MIDKSAFVHPTAIVEEGA 18
2 SIGANAHIGPFCIVGPHV 18 14
3 EIGEGTVLKSHVVVNGHT 18 16
4 KIGRDNEIYQFASI 14 -7
5 GEVNQDLKYAGEPTR 15 -3
6 VEIGDRNRIRESVTI 15 2
7 HRGTVQGGGL 10 -14
8 TKVGSDNLLMINAHIAHD 18 -24
9 CTVGNRCILANNATLAGH 18 20
10 VSVDDFAIIGGMTAVHQF 18 4
11 CIIGAHVMVGGCSGV 15 4

Table 1: Pseudo periodic repeats of 1SRY (matrix:blosum62, gap penalty: -4)

Unit Pseudo-periodic unit Length Similarity with previous unit

1 MVDLKRLR 8
2 QEPEVFHR 8 -5
3 AIREKGVA 8 -10
4 LDLEALLA 8 -1
5 LDREVQEL 8 7
6 KKRLQEVQ 8 6
7 TERNQVA 7 6
8 KRVPKAP 7 -4
9 PEEKEAL 7 -2
10 IARGKAL 7 3
11 GEEAKRL 7 3
12 EEALRE 6 10
13 KEARLE 6 12
14 ALLLQV 6 -6
15 PLPP 4 -8
Page 2 of 8
(page number not for citation purposes)

Algorithms for Molecular Biology 2006, 1:2 http://www.almob.org/content/1/1/2
common. For example, it is well-known that the N-termi-
nal non-globular region of Thermus thermophilus seryl-
tRNA synthetase (PDB:1SRY) [1,8] has weak 7-residue
repeats. See Table 1. The similarity score between two con-
secutive patterns is calculated using Blosum62 matrix and
the gap penalty is set to be -4. The repeated patterns grad-
ually changes from the 4-th unit LDLEALLA to the 13-th
unit KEARLE. The average similarity score for the nine
pairs of consecutive patterns is 4.56. But the similarity
score between the 4-th unit and the 8-th unit is -11. In this
case, the algorithms based on the bottleneck function may
fail to find the multiple repeats.

Pseudo-periodic repeats
Li et al. [1] gave the first measure that allows gradual
changes of patterns and changes of pattern lengths in the
region. The repeats they defined are called the pseudo-peri-
odic repeats. Given a repeated region (a string) x and a par-
tition X = s1s2...sk, the pseudo periodic score is

where d(·) is the edit distance, |si| is the length of si, and c
is a factor that control the penalty of the two ends of the
partition. Li et al. [1] gave a O(|x|2) algorithm to compute
an optimal partition of a given repeated region x. It was
shown that the pseudo-periodic score can accurately give
partitions for tandem repeated regions, where the
repeated patterns are weakly similar.

Example: The example is from [1]. The sequence of the
LbH domain of members of the LpxA family consists of
the imperfect tandem repetition of hexapeptide units [9-
11]. These imperfect tandem repeats (partitions) have
been accurately detected by the algorithm using the
pseudo periodic score [1]. (See Table 2).

In sequence analysis, we may have a long sequence s and
only a substring t (or a few substrings) of s contains the
consecutive repeats. The problem here is to find out the
substring t and give an optimal pseudo-periodic partition.
We call this problem the local pseudo-periodic problem. In
this paper, we define the maximization version of the

pseudo-periodic partition and develop an algorithm that
solves the local pseudo-periodic problem in O(n2) time,
where n is the length of the input sequence s.

Definitions
In this section, we first give a definition of the pseudo-peri-
odic partition of a string that is originally proposed in Li et
al. [1]. We then give a definition of the local pseudo-periodic
partition of a string.

Pseudo-periodic Partition
Let s = a1a2...an be a string of length n. A partition π(s) = {s1,
s2, ..., sk} of s is a set of substrings of s such that s = s1s2...sk
(si's are also called repeats). When s is clear, we use π
instead of π(s). Π(s) denotes the set of all partitions of s.
Let si and si+1 be two strings. The similarity measure µ(si, si+1)
between si and si+1 is the maximum alignment value for si
and si+1. For any two letters (possibly spaces) x and y, µ(x,
y) is the similarity score between the two letters. For exam-
ple, one can use the following score scheme I: a match
costs 1, a mismatch costs -1, and an insertion or deletion
costs -1. Here we choose to use maximization version
since for protein sequences, there are popular similarity
matrices, e.g., PAM matrix.

d s s c s si i k
i

k
(,) (),+

=

−
+ × +∑ 1 1

1

1

The alignment for π(sB)Figure 2
The alignment for π(sB).

The alignment for π(sA)Figure 1
The alignment for π(sA).
Page 3 of 8
(page number not for citation purposes)

Algorithms for Molecular Biology 2006, 1:2 http://www.almob.org/content/1/1/2
Let c be a negative constant. We call the granularity fac-

tor. Let ∆ denotes a space in an alignment. In this paper,

we assume that > µ(x, ∆) for any letter x in the given

sequence.

Let us consider the following example. sA = s1s2s3s4s5 and

π(sA) = {s1, s2, s3, s4, s5}, where s1 = aaa, s2 = aat, s3 = att, s4

= ttt and s5 = tta. The self-alignment of this partition is

show in Figure 1. The value of the self-alignment is

, where |s1| and |s5|

are the penalty scores for the two segments s1 and s5

aligned to spaces.

Note that the score for insertion and deletion would be

different from the granularity factor . If there is a gap at

the right end of the alignment between s4 and s5, there is

ambiguity in the calculation of the self-alignment value.
Therefore, we need a more precise definition for the value
of the self-alignment corresponding to a partition.

Let s = s1s2...sk be the string and π(s) = {s1, s2, ..., sk}. |s|

denotes the length of the string. pre(s, i) is the length-i pre-
fix of s and suf(s, i) is the length-i suffix of s. Note that the
gap at the right end of the self-alignment of s only appears
in the segments sk-1 and sk. Denote by se the suffix sk-1sk of

s. We can designate that only the last i letters in se are

mapped to spaces with score each, for 1 ≤ i ≤ |se|. Now

let us consider the remain part pre(se, |se| - i) of se. There are

two cases: (1) If i ≥ |sk|, pre(se, |se| - i) is a prefix of sk-1 and

is optimally aligned with sk. (2) If i < |sk|, pre(se, |se| - i)

contains sk-1 and a prefix of sk. In this case, sk-1 is optimally

aligned with sk and the letters in the prefix of sk are scored

as µ(x, ∆) each.

For a partition π of s and a fixed i, 1 ≤ i ≤ |se|, let V(π, c, i)

be the value of the self-alignment such that s1 is mapped

to spaces with score each, sj is optimally aligned with

sj+1 for j = 1, 2, ..., k -2, pre(se, |se| - i) is scored according to

the above two cases, and the last i letters in se are mapped

to spaces with score each. We have

In V(π, c, i), the alignment between s1s2...sk-2pre(se, |se| - i)

and s2s3...sk is called the middle alignment. The value of the

self-alignment of π is defined as

.

For example, let sB = s1s2s3 and π(sB) = {s1, s2, s3}, where s1

= aaaa, s2 = aaat and s3 = aaa. We use score scheme I and c

= -1. The valid value of i is 1, 2, ..., 7 since |s2s3| = 7. For i

c

2

c

2

µ(,) ()s s
c

s si ii += + +∑ 11
4

1 52
c

2
c

2

c

2

c

2

c

2

c

2

V c i
s s pre s s i s

c
s ij j e e kj

k

(, ,)
(,) ((,),) ()

π
µ µ

=
+ − + × ++=

−∑ 1 11
2

2
if ii s

s s x s i
c

s i i s

k

j j kj
k

k

≥

+ × − + × + <






+=
−∑

;

(,) (,) () () .µ µ1 11
1

2
∆ if







V c V c ii
se(,) max (, ,)π π= =1

Dynamic programming algorithm and local alignment for s = CAGAGTFigure 3
Dynamic programming algorithm and local alignment for s =
CAGAGT.

Table 3: Results for the speed test of LocRepeat

Length 2000 4000 6000 8000 10000
DNA 0.5s 2.2s 4.8s 7.0s 10.8s

PROTEIN 1.1s 4.3s 10.0s 17.7s 26.9s
Page 4 of 8
(page number not for citation purposes)

Algorithms for Molecular Biology 2006, 1:2 http://www.almob.org/content/1/1/2
= 5 ≥ |s3|, pre(s2, 2) is optimally aligned with s3, s1 and

suf(s2s3, 5) is scored as (Figure 2(a)). So V(π(sB), c, 5) =

µ(s1, s2) + µ(pre(s2, 2), s3) + × (|s1| + 5) = . For i = 2

< |s3|, s2 is optimally aligned with s3, pre(s3, 1) is scored as

µ(x, ∆) and suf(s3, 2) is scored as (Figure 2(b)). In this

case, V(π(sB), c, 2) = µ(s1, s2) + µ(s2, s3) + µ(x, ∆) × 1 +

× (|s1| + 2) = 0. For i = 4, at the right ends of the optimal

self-alignment of π(sB) (Figure 2(c)), there are 4 letters

that match spaces. The last letter t in s2 matches a space at

the right end of the alignment. The assumption that >

µ(x, ∆) forces this column to have score instead of µ(t,

∆) to maximize V(π, c). We have V(π(sB), c) = V(π(sB), c, 4)

= 1. For i = 1, 3, 6, 7, the values are lower than V(π(sB), c)

= V(π(sB), c, 4) = 1.

Let Π(s) be the set of all possible partitions of s. Bc(s) =
maxπ∈Π(s) V(π, c) is the optimal V(·) value of partitions. A
partition πq = {s1, s2, ..., sk} of s is called the pseudo-peri-
odic partition of s if Bc(s) = V(πq, c). In Li et al. [1], it was
demonstrated that the numerical measure Bc(s) (in fact,
the minimization version) is sensitive for partitioning s
into repeats that allow the gradual changes of patterns and
changes of pattern lengths.

In practice, we are given a long string s. We want to find a
region (substring) t of s that contains pseudo-periodic
repeats. Once the region t is found, we want to get the
pseudo-periodic partition of t. The mathematical problem
is defined as follows:

Local pseudo-periodic partition problem
Given a string s, find a substring t (the local optimal
pseudo-periodic region) of s such that

where Sub(s) is the subset of all substrings of s.

The algorithm
Let s be the given string. We want to find a substring t of s
with the maximum self-alignment value . Let s[1, j] be the
substring of s that consists of the first j letters. Informally,
we use w(i, j) to denote the maximum self-alignment
value of a suffix tj of s[1, j] such that there are i letters at the

right end of the self-alignment of tj that are aligned with

spaces and scored as . Note that, the right end of the

self-alignment of tj could contain more than i spaces.

However, only the last i spaces are scores as each and

the rest of them are scored as the score for µ(x, ∆).

Let Tj be the set of all suffixes of s[1, j]. For a substring t of
s and an integer i, Π(t, i) = {π(t)|π(t) ∈ Π(t) and |tk-1tk| ≥
i}, where tk-1, tk are the last two repeats in π(t). We define

c

2
c

2
− 3

2

c

2
c

2

c

2
c

2 B t B tc
t Sub s

c() max (),
()

= ′
′∈

c

2

c

2

w i j V t c i
t T t t ij

(,) max ((), ,)
& () (,)

= ()
∈ ∈∏π

π 1

LocRepeat interfaceFigure 4
LocRepeat interface.

Table 4: Local optimal pseudo-periodic region for PRNP

Unit Position Length Unit

1 215–238 24 ggtggtggctgggggcagcctcat
2 239–262 24 ggtggtggctgggggcagcctcat
3 263–286 24 ggtggtggctgggggcagccccat
4 287–310 24 ggtggtggctggggacagcctcat
5 311–327 17 ggtggtggctggggtca
Page 5 of 8
(page number not for citation purposes)

Algorithms for Molecular Biology 2006, 1:2 http://www.almob.org/content/1/1/2
to be the maximum V(·, c, i) value of all the partitions in
Π(t, i), where t is a substring in Tj. To compute w(i, j) using
dynamic programming method, we first consider the
boundary values of w(i, j). We set w(0, j) = -∞ since we do
not allow suf(tk-1tk, i) to be empty. Note that, by defini-
tion, i ≤ j.

Lemma 1 For a sequence s of length n, w(j, j) = c·j for 1 ≤ j
≤ n.

Proof. For a partition π(t) = {t1, t2, ..., tk} satisfying t ∈ Tj

and π(t) ∈ Π(t, j), from the definition of Π(t, j), |tk-1tk| ≥ j.

Since t is a suffix of s[1, j] and |t| ≥ |tk-1tk| ≥ j, we have t =

s[1, j] and 1 ≤ k ≤ 2. Consider the self alignment of π(t)
such that the last j letters in t are mapped to spaces with

score . Two cases arise. Case 1: k = 1 and t = t1 = s[1, j].

In this case, the middle alignment is empty. Thus, V(π(t),

c, j) = × (|t1| + j) = c·j. Case 2: k = 2 and t = t1t2 = s[1, j].

In this case, the middle alignment is the alignment

between |t2| spaces and t2. By the assumption that >

µ(∆, x), V(π(t), c, j) = |t2| × µ(∆, x) + × (|t1| + j) <c·j. �

From the above analysis, the initial and boundary values
are

w(0, j) = -∞, w(j, j) = c·j (2)

Theorem 2 For a sequence s of length n and 2 ≤ j ≤ n, 1 ≤ i <j,

Proof. Consider the partition π(t) = {t1, t2, ..., tk} such that
t ∈ Tj, π(t) ∈ Π(t, i) and V(π(t), c, i) = w(i, j). We analyze
the value of V(π(t), c, i) based on different cases.

case 1. π(t) has only one repeat. We have |t| = |t1| = i and

the middle alignment is empty. Therefore V(π(t), c, i) =

× (|t1| + i) = c·i.

case 2. π(t) has k ≥ 2 repeats. In this case, the middle align-
ment is not empty since it contains tk. The last column in

the middle alignment has three configurations: (a) the last
column contains two letters s[j - i] and s[j], (b) the last col-
umn contains a space and the letter s[j], (c) the last col-
umn contains the letter s[j - i] and a space. For sub-case
(a), if we take away the last letter s[j] from the self align-

ment of π(t), we can get a self alignment of π'(t'), where t'

∈ Tj-1, π'(t') ∈ Π(t', i) and V(π'(t'), c, i) = w(i, j - 1). By com-

paring the two self alignment, we have V(π(t , c, i =

V(π'(t'), c, i) + µ(s[j - i], s[j]) = w(i, j - 1) + µ(s[j - i], s[j]).
For sub-case (b), if we take away the last letter s[j] and

space aligned with s[j] from the self alignment of π(t), we

can get a self alignment of π'(t'), where t' ∈ Tj-1, π'(t') ∈

Π(t', i - 1) and V(π'(t'), c, i) = w(i - 1, j - 1). Notice that in

c

2

c

2

c

2
c

2

w i j

c i

w i j s j i s j

w i j s j(,) max

,

(,) ([], []),

(,) (, [])=

⋅
− + −

− − +

1

1 1

µ

µ ∆ ++

+ + − −















()c

w i j s j i
c
2

1
2

3,

(,) ([],) .µ ∆

c

2

Table 5: Local optimal pseudo-periodic region for LGR6

Unit Position Length Unit

1 30–53 24 LSMNNLTELQPGLFHHLRFLEELR
2 54–77 24 LSGNHLSHIPGQAFSGLYSLKILM
3 78–101 24 LQNNQLGGIPAEALWELPSLQSL

D
4 102–124 23 LNYNKLQEFPVAIRTLGRLQELG
5 125–148 24 FHNNNIKAIPEKAFMGNPLLQTI

H
6 149–172 24 FYDNPIQFVGRSAFQYLPKLHTLS
7 173–195 23 LNGAMDIQEFPDLKGTTSLEILT
8 196–219 24 LTRAGIRLLPSGMCQQLPRLRVLE
9 220–241 22 LSHNQIEELPSLHRCQKLEEIG
10 242–265 24 LQHNRIWEIGADTFSQLSSLQAL

D
11 266–289 24 LSWNAIRSIHPEAFSTLHSLVKLD
12 290–311 22 LTDNQLTTLPLAGLGGLMHLKL
Page 6 of 8
(page number not for citation purposes)

Algorithms for Molecular Biology 2006, 1:2 http://www.almob.org/content/1/1/2
the end of the self alignment of π'(t'), there are only i - 1

letters mapped to spaces with score , and there is one

more letter in the self alignment of π(t) mapped to spaces

with score . Thus, V(π(t), c, i) = w(i - 1, j - 1) + µ(∆, s[j])

+ . For sub-case (c), π(t) ∈ Π(t, i + 1). We can impose

that the alignment of the letter s[j - i] and the space is

scored as , not µ(s[j - i], ∆). From V(π(t), c, i + 1) = w(i

+ 1, j), we have V(π(t), c, i) = w(i + 1, j) + µ(s[j - i], ∆) - .

�

Based on Theorem 2, a dynamic programming algorithm
is designed. Let n be the length of the input sequence s. We
compute w(i, j) in the order shown below:

for j = 1 to n do

for i = j downto 1 do

compute w(i, j) based on Theorem 2.

Obviously, the time complexity is O(n2), where n is the
length of the whole string. A standard backtracking proc-
ess allows us to find the local optimal pseudo-periodic
region t.

The following example illustrates the algorithm. Let s =
CAGAGT. We set c = -2 and use the following score
scheme: a match costs 10, a mismatch costs -10, and an
insertion or a deletion costs -10. The table constructed by
using the dynamic programming algorithm is shown in
Figure 3. The table is constructed in from the top to the
bottom. For every row in the table, the w(i, j)'s are com-
puted from left to right. From the table, it is easy to see
that the maximum value of w(i, j) is w(2, 5) = 16. From the
maximum value w(2, 5) = 16, we know that the local opti-
mal pseudo-periodic region t is a suffix of s[1, 5] = CAGAG

and there are 2 letters aligned with spaces and scored as

at the right end of the self alignment of the local optimal
pseudo-periodic region t. From w(2, 5), we can backtrack

w(2, 5) → w(2, 4) → w(2, 3) and stop at w(2, 3) since
w(2,3) gets its value from c·i indicating the first segment
of the partition of t ends at 3-th letter in s and the length
of the segment is 2. Thus, we get t = AGAG. From the self

alignment, it is easy to get the partition of π(t) = {AG,
AG}.

The space complexity required is also O(n2) if we are not
careful. However, we can release the space whenever they
are no longer useful. Thus, only two columns, are required
for the computation. For each of the two columns, we use
two arrays: one array stores the value of w(i, j) and the
other array stores the starting position of the subsequence
t that maximizes w(i, j). Therefore, the space complexity is
O(n) for computing all w(i, j)'s. After w(i, j)'s are com-
puted, we know the substring t that leads to the optimal w
value. Therefore, we can reconstruct the alignment for t in

 time and space, where n1 is the length of t, the

repeated region. If n1 is still big, we can use the standard

technique in [12] to reduce the space to O(n1) by dou-

bling the computation time for reconstructing the align-
ment of t.

In practice, a sequence may contain more than one
repeated region. To find all the repeated regions, we can
select the best k values of w(i, j)'s for some pre-defined
value k. Each backtracking gives a repeated region.
Another way to set a threshold for the value of w(i, j) and
select all w(i, j)'s with value greater than the threshold.

Implementation
We have implemented the algorithm using Visual C++ 6.0
and Windows XP. The software is called LocRepeat and
has a user-friendly GUI (See Figure 4). Another version
without GUI that works for Linux is also available.

LocRepeat accepts three kinds of sequence: DNA, RNA
and Protein. The user can either click 'New Data' button to
directly input the sequence at the input area, or click
'Input Data from File' button to input a sequence from a
file. The user can click 'Set Parameters' button to set
parameters, such as granularity factor, gap penalty and
similarity score matrix. After the sequence is input and the
parameters are set, click the 'Start' button to begin the
computation.

Experiment results
We have done experiments to test the speed and sensitiv-
ity of the software.

Speed Testing
The time complexity of the algorithm is O(n2). To test the
speed in practice, we use arbitrarily generated DNA and
protein sequences. We ran our software on a PC with Pen-
tium 4 3.4G CPU and 1GB memory, the result is shown in
Table 3. We can see that for long DNA and protein

c

2

c

2
c

2

c

2
c

2

c

2

O n()1
2

Page 7 of 8
(page number not for citation purposes)

Algorithms for Molecular Biology 2006, 1:2 http://www.almob.org/content/1/1/2
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

sequences, our software can get the result in short time.
For example, if the length of the sequence is 10000, it
takes about 10.8 seconds and 26.9 seconds for DNA
sequences and protein sequences, respectively. In some
real applications, the length of sequences could be much
longer than 10000. In this case, one can cut the long
sequence into several short pieces and find out the
repeated regions for each piece. If a region covers two
pieces, then we can re-cut that segment to get that region.

Sensitivity testing using real data
We applied LocRepeat to the DNA sequence gene PRNP
which contains tandem repeats (GenBank:M13667). The
length of the sequence is 2420. We find the local optimal
pseudo-periodic region [215,327], that contains 5
pseudo-periodic units (Table 4). The pseudo-periodic
region misses the first several sites of the tandem repeats,
but the region and the partitions show the tandem repeats
correctly.

We also applied LocRepeat to the protein sequence LGR6
(Swiss-Prot: Q9HBX8). The length of the sequence is 828.
We use PAM120 as the similarity score matrix and find the
local units (Table 5).

In conclusion, the algorithm presented in this paper offers
the possibility to find regions of pseudo-periodic repeats
in a long sequence.

Acknowledgements
We thank the referees for their helpful suggestions. This work is fully sup-
ported by a grant from the Research Grants Council of the Hong Kong Spe-
cial Administrative Region, China [Project No. CityU 1070/02E].

References
1. Li L, Jin R, Kok P, Wan H: Pseudo-periodic partitions of biologi-

cal sequences. Bioinformatics 2004, 20:295-306.
2. Jaitly D, Kearney PE, Lin G, Ma B: Methods for reconstructing the

history of tandem repeats and their application to the
human genome. Journal of Computer and System Sciences 2002,
65(3):494-507.

3. Tang M, Waterman M, Yooseph S: Zinc finger gene clusters and
tandem gene duplication. In Proceedings of the Fifth Annual Interna-
tional Conference on Computational Biology, April 22–25 2001 Montreal,
Canada, ACM; 2001:297-304.

4. Landau GM, Schimidt JP: An algorithm for approximate tandem
repeats. In Proceedings of the Fourth Annual Symposium on Combinato-
rial Pattern Matching New York, LNCS 684, Springer-Verlag;
1993:120-133.

5. Schmidt JP: All highest scoring paths in weighted grid graphs
and their application to finding all repeats in strings. SIAM
Journal on Computing 1998, 27:972-992.

6. Wan H, Song E: Quasiperiodic biosequences and modulo inci-
dence matrices. Proceedings of the 16th International Parallel and Dis-
tributed Processing Symposium 2002:280.

7. Sim JS, Iliopoulos CS, Park K, Smyth WF: Approximate period of
strings. Theoretical Computer Science 2001, 262:557-568.

8. Biou V, Yaremchuk A, Tykalo M, Cusack MS: The 2.9 Å crystal
structure of T. thermophilus seryl-tRNA synthetase com-
plexed with tRNA(Ser). Science 1994, 263:1404-1410.

9. Vaara M: Eight bacterial proteins, including UDP-N-acetylglu-
cosamine acyltransferase (LpxA) and three other trans-
ferases of Escherichia coli, consist of a six-residue periodicity
theme. FEMS Microbiology Letter 1992, 76:249-254.

10. Vuorio R, Harkonen T, Tolvanen M, Vaara M: The novel hexapep-
tide motif found in the acyltransferases LpxA and LpxD of
lipid A biosynthesis is conserved in various bacteria. FEBS Let-
ter 1994, 337:289-292.

11. Raetz CRH, Roderick SL: A left-handed parallel beta helix in the
structure of UDP-N -acetylglucosamine acyltransferase. Sci-
ence 1995, 270:997-1000.

12. Myers EW, Miller W: Optimal alignments in linear space. Com-
puter Applications in the Biosciences 1988, 4:11-17.
Page 8 of 8
(page number not for citation purposes)

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=M13667
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14960455
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14960455
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8128220
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8128220
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7481807
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3382986
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Summary
	Availability

	Background
	Measures for finding repeats
	Quasiperiodicty
	Approximate periods
	Pseudo-periodic repeats

	Definitions
	Pseudo-periodic Partition
	Local pseudo-periodic partition problem

	The algorithm
	Implementation
	Experiment results
	Speed Testing
	Sensitivity testing using real data

	Acknowledgements
	References

