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Abstract
Transcriptional regulatory network (TRN) discovery from one method (e.g. microarray analysis,
gene ontology, phylogenic similarity) does not seem feasible due to lack of sufficient information,
resulting in the construction of spurious or incomplete TRNs. We develop a methodology, TRND,
that integrates a preliminary TRN, microarray data, gene ontology and phylogenic similarity to
accurately discover TRNs and apply the method to E. coli K12. The approach can easily be extended
to include other methodologies. Although gene ontology and phylogenic similarity have been used
in the context of gene-gene networks, we show that more information can be extracted when
gene-gene scores are transformed to gene-transcription factor (TF) scores using a preliminary
TRN. This seems to be preferable over the construction of gene-gene interaction networks in light
of the observed fact that gene expression and activity of a TF made of a component encoded by
that gene is often out of phase. TRND multi-method integration is found to be facilitated by the
use of a Bayesian framework for each method derived from its individual scoring measure and a
training set of gene/TF regulatory interactions. The TRNs we construct are in better agreement
with microarray data. The number of gene/TF interactions we discover is actually double that of
existing networks.

Background
The growing number of gene expression datasets and
availability of hundreds of bacterial genomes accelerated
the quest for the construction of bacterial transcriptional
regulatory networks (TRNs). In most prokaryotic genes,
transcription initiation is controlled by DNA sequence
elements recognized by RNA polymerase. The activity of
RNA polymerase (RP) is regulated through interaction
with transcription factors (TFs) which alter the binding

affinity of RP. Discovery of TRNs advances our under-
standing of mechanisms of cellular processes and
responses, and is of particular importance in biotechnical
applications and identifying the nature of diseases from a
genome-wide perspective. Our objective in this work is to
develop a robust methodology to use known TRN infor-
mation as a training set and augment it by discovering
new gene/TF interactions using a variety of approaches
integrated via an objective Bayesian scheme.
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We apply the methodology to E. coli as it is believed to
have the most well understood TRN; therefore it serves as
an excellent test case. However, out of roughly 4300 genes
and around 300 predicted TFs [1], the current E. coli TRN
includes only 984 genes and 144 TFs. Hence, it is clear
that we only know a fraction of the network. According to
Babu and Teichmann three-quarters of the TFs are two-
domain proteins, i.e., DNA-binding domain and regula-
tory domain (mostly for small molecules), showing the
importance of TFs in adapting to environmental condi-
tions [1]. Like most biological interaction networks, the E.
coli network seems to follow a power law (scale free) dis-
tribution, suggesting that TRNs tend to be connected
among high-degree nodes and low-degree ones [2].
Another important property of TRNs is the statistically
overrepresented network motifs. Shen-Orr et al. showed
that the feed forward motif (two TFs co-regulating one
gene and one TF regulating the other) is overrepresented
by a factor of 8 in the known E. coli TRN [3]. These studies
advance our understanding of design principles in bacte-
rial TRNs. However, they do not have a direct impact on
the construction of TRNs.

There have been numerous approaches to TRN inference
from gene expression data. Most studies considered gene-
gene networks rather than gene-TF networks. Among
them are principal component analysis [4] and independ-
ent component analysis [5]. Network component analysis
(NCA) is a TF-based methodology which differs from
other techniques in that the structure of the gene regula-
tory network is assumed to be known [6]. Therefore,
NCA's use is limited to cases in which the network is fairly
well known and has strong structural limitations. In real-
ity, only an incomplete and possibly biased TRN is avail-
able due to the limited spectrum of experimental
conditions imposed. Gardner et al. proposed a methodol-
ogy to construct the gene-gene control network structure
for small networks using microarray data, limiting the
number of interactions per gene [7]. We tested a similar
approach for large networks and showed that even when
there are just a few interactions per gene, there can be
thousands of networks that can explain the same micro-
array data with essentially the same accuracy. Kyoda et al.
developed a methodology that employs mutation experi-
ments to arrive at the TRN [8]. However, it is questionable
whether their approach can be applied to large TRNs.
Liang et al. presented a methodology for Boolean net-
works and applied it to a small 50 gene system with at
most 3 interactions per gene [9]. Boolean networks are an
oversimplification of gene expression as they use a binary
approximation (fully on or off) [10]. Cluster analysis is
based on statistical techniques wherein correlations are
sought between the responses of genes [11,12]. However
the coordination can be extremely complex and circui-
tous, i.e. genes may be involved in a multi-branch feed-

back loop with several TFs made or activated/deactivated
by the proteins they encode. These time-delayed, complex
relationships are revealed by our methodology as it dis-
covers and quantifies many of these feedback relation-
ships. Although cluster analysis might suggest groups of
genes that may be involved in related pathways, it is not
an accurate methodology to suggest gene/TF interactions.
D'haeseleer et al. applied clustering based on the correla-
tion of microarray data [13].

To assess the feasibility of inferring gene-gene networks
from expression data only, we used two independent gene
expression data sets and a TRN for E. coli [14]. We calcu-
lated the linear correlation of genes that encode a TF and
genes that are known to be regulated by the same TF. We
also obtained correlation coefficients for all gene-gene
pairs. Fig. 1 shows the probability of correlation between
two randomly chosen genes and that for known pairs with
similar known gene/TF interactions. Throughout the
manuscript we compute probability densities. These
probability density functions are normalized to have unit
area although their value at any score can exceed unity

( ). The actual probability can then be calcu-p x dx( )′ ′ =
−∞

∞

∫ 1

Probability distribution for correlation (Pearson) between a random pair and known gene/TF regulatory interaction for E. coliFigure 1
Probability distribution for correlation (Pearson) between a 
random pair and known gene/TF regulatory interaction for E. 
coli. Square markers refer to the dataset obtained from the 
U. of Oklahoma E. coli database. Diamond markers refer to 
the datasets obtained from the NIH omnibus service (GSE7, 
GSE8, GSE9; 65 datasets). The solid and hollow markers 
show the probability distribution for correlation between a 
random gene pair and known gene/TF regulatory interaction, 
respectively. As these probability distributions are indistin-
guishable, it does not seem feasible to construct the TRN 
using expression data alone. We also calculated probability 
distributions for mutual information which yielded similar 
findings.
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lated by taking the integral of the function p(x) by the inte-
gration interval of the input variable x. The similarity of
these distributions demonstrates that successful recon-
struction of the network using expression data alone does
not seem likely. Mutual information seems to have simi-
lar limitations [15]. However, this does not mean that cor-
relation and mutual information-based methods are not
able to discover interesting gene-gene relationships; rather
their potential to infer gene/TF interactions is very limited.
Therefore, the main assumption in constructing gene-
gene networks, i.e. that the TF activity follows the expres-
sion of the encoding gene seems to be unreliable. We
address this problem by constructing approximate TF
activity profiles using a preliminary TRN as discussed
below.

The difficulty with the above studies is the gap between
the complexity of the network and the quantity of infor-
mation in just one methodology. The solution is to use as
much information as possible to rule out spurious net-
works. Segal et al. assumed that genes in the same path-
way are activated together and their protein products
often interact [16]. This led them to the use of protein-
protein interaction information in their predictions.
Brazma et al. studied the similarities of the upstream
regions of genes that have a similar expression pattern
[17]. A similar study was presented by Haverty et al. who
used statistical methods for identifying overabundant TF
binding motifs (from TRANSFAC and JASPER) and micro-
array data to infer the TRN [18]. Lee et al. presented a con-
ceptual framework to integrate diverse functional
genomics data (including expression data, gene-fusions,
phylogenetic profiles, co-citation, and protein interaction
data) and applied it to investigate gene-gene network in
Saccharomyces cerevisiae [19]. The major difference
between [19] and this work is that we are interested in
constructing gene/TF networks rather than gene-gene net-
works.

Gene ontology (GO) and phylogenic similarity as
approaches to functional module prediction have been
explored by [20]. This work is based on the hypothesis
that a pair of genes with high GO or phylogenic similarity
score is likely in the same functional module (operon or
regulon). In this study, we extend their work to include
gene expression analysis, and focus on TRN construction.
We show that GO and phylogenic similarity can be used
to greatest advantage if they are based on a gene/TF inter-
action model.

Methods
Network definition
The TRN we seek to discover is a list of genes for each of
which a set of TFs with up/down regulation is provided
(bin = +1/-1 for gene i up/down regulated by TF n). The
gene-gene regulation network often considered is implied
as the components of each TF and the genes that encode
them are also included in our TRNs. This TRN definition
provides a unifying framework for all the individual TRN
discovery methods we developed, as well as a methodol-
ogy for the integration of multiple methods. We use mul-
tiple methodologies to suggest enhanced TRNs based on
three hypotheses and a training set TRN to test them. The
result of each methodology is weighed proportional to its
success rate using the training set. This approach goes
beyond studies that focus on gene-gene networks as it pro-
vides more detailed information (such as gene A is up reg-
ulated by TF B) that can be tested experimentally and used
in medical and biotechnical applications. We demon-
strate that methodologies such as gene ontology and phy-
logenic similarity provide better results when a
preliminary set of gene/TF interactions is used instead of
a training set of gene-gene data. A simple algorithm,
described below, is used to calculate gene-TF scores from
gene-gene similarity scores and a preliminary TRN. In
addition, we use a novel approach to first approximate TF
activity profiles using the preliminary TRN and gene
expression data, and then using these TF activities to sug-
gest additional gene/TF interactions via a gene-TF correla-
tion scheme.

From gene-gene scores to gene-TF scores
Two of the methodologies (GO and phylogeny) used in
this study generate gene-gene similarity scores. As our
interest is the discovery of TRNs as defined above, the
question is how one can use the gene-gene similarity
scores and the preliminary TRN to score gene/TF interac-
tions. For a system of Ngene genes, there are Ngene × (Ngene -
1)/2 gene-gene pairs. In order to find the score for gene A
and TF B, we first seek all genes regulated by TF B in the
preliminary TRN. Then we calculate the gene-gene simi-
larity score for the gene of interest with each gene regu-
lated by TF B. We assign the maximum of these scores to
the gene A/TF B interaction. Although this appears to be a
rough estimation of the gene-TF score, our computational
experiments with gene-gene similarity based on gene
ontology and phylogeny have shown that this score
clearly distinguishes the probability distributions of the
training and random sets of gene/TF interactions.

Gene ontology analysis
In this analysis we use the biological process ontology
developed by the Gene Ontology (GO) consortium
[21,22], the GO annotations from EMBL-EBI [23] and
hypothesize that the likelihood for a gene pair to be regu-
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lated in the same manner increases with the similarity of
their GO description. GO analysis was proposed by [20]
who applied it to find functional modules in E. coli. How-
ever, here a training set of gene/TF interactions is used
instead of a gene-gene pair-based one. In particular, we
use a preliminary E. coli TRN and transform the gene-gene
scores to gene-TF scores. Each GO is structured as a
directed acyclic graph. The GO similarity score between
two gene products is based on the number of shared
ancestors. As a gene product might be assigned with mul-
tiple GO terms, we seek the maximum similarity score
between all possible combinations. Let gene i and gene j
be assigned hi and hj GO terms, respectively. Then the GO
similarity for the gene (i, j) pair is taken to be the maxi-
mum number of shared ancestors for all combinations of
the hi and hj.

Phylogenic similarity analysis
Phylogenic similarity analysis, also proposed by [20], is
based on the hypothesis that a pair of genes with large
phylogenic similarity score is likely in the same functional
operon, regulon or pathway. Our implementation differs
in that we suggest that if two genes have high phylogenic
similarity score, then they would be regulated in the same
manner by the same set of TFs. Based on this hypothesis
we extend the preliminary TRN.

Our approach is to calculate phylogenic similarity for
gene-gene pairs follows the methodology proposed by
[20] (referred to as 'likelihood of neighboring profiles' in
their work). In this analysis all bacteria sequence informa-
tion is downloaded from [24] and all preliminary gene/TF
interactions are from [14]. Once we have phylogenic sim-
ilarity scores for all gene pairs, we calculate the gene/TF
scores based on the methodology described in the From
Gene-Gene Scores to Gene/TF Scores Section.

Calculation of the phylogenic similarity
We first construct a vector for each gene in E. coli, the
dimension of the vector being the number of genomes
used in the analysis (in this study 229). We applied
BLASTP to identify probable orthologous genes of a target
genome in 229 reference genomes. The most significant
BLASTP hit from each reference species was considered
the true ortholog of the target species if the expectation
value was less than 1.0e-10 [25]. If there is an orthologous
gene in the ith genome, then the ith entry in this vector is
assigned the order of the orthologous gene in the ith

genome. If an orthologous gene does not exist in the ith

genome, then this entry is taken to be 0. Once such a vec-
tor for each E. coli gene is constructed, we compute a phy-
logenic similarity measure for each gene pair. Given two
vectors Xi = [xi1, xi2,...,xi229] for gene i and similarly Xj for
gene j, we use the following phylogenic similarity measure
for a gene pair:

Here P(xik, xjk), the likelihood of genes i and j, is calculated
from

where

pik is the probability that gene i is present in genome k.

Nk is the total number of genes in reference genome k

d(xik, xjk) = abs(xik - xjk).

To calculate pik, we grouped 229 reference genomes into
subgroups based on information gathered from [26,27]
(see Table 1). It is assumed that pik is identical within each
subgroup for each gene. Then pik is taken to be the ratio of
number of genomes that has an orthologous gene to the
total number of genomes in the subgroup.

Microarray analysis
Kinetic cell models hold great promise for predicting cell
behavior [28-32]. Unfortunately there is a lack of infor-
mation about many of the rate and equilibrium constants
for the reaction and transport processes involved [33,34].
Simultaneously calibrating all the reaction/transport rate
parameters and discovering the gene/TF interaction net-
work structure from available data does not appear to be
feasible. Therefore, instead of using a kinetic approach as
a basis of TRN construction, we have developed FTF (Fast
Transcription Factor analyzer) for network construction
via (1) TF activity estimation, (2) statistical arguments,
and (3) a preliminary TRN. Once a reliable TRN is
obtained using FTF, it can then be used to calibrate the
rate and equilibrium constants that appear in transcrip-
tion/translation kinetic models. An example of such an
approach is available at [35].

FTF was designed based on the following notions:

• a method based on TFs has the advantage that micro-
array noise, and errors in preliminary TRN, can be over-
come by statistics – i.e. the regulation of many genes by a
given TF;

• due to data uncertainty, there is not usually enough
information content in many single-gene responses to
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Table 1: The list of bacteria used in the phylogenic similarity analysis.

Subgroup Bacteria

Actinobacteria Bifidobacterium longum NCC2705, Corynebacterium diphtheriae NCTC 13129, Corynebacterium efficiens YS-314, 
Corynebacterium glutamicum ATCC13032, Corynebacterium glutamicum ATCC 13032, Leifsonia xyli subsp. xyli str. 
CTCB07, Mycobacterium avium subsp. paratuberculosis str. k10, Mycobacterium bovis AF2122/97, Mycobacterium leprae 
TN, Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis CDC1551, Nocardia farcinica IFM 10152, 
Propionibacterium acnes KPA171202, Streptomyces avermitilis MA-4680, Streptomyces coelicolor A3(2), 
Symbiobacterium thermophilum IAM 14863, Tropheryma whipplei TW08/27, Tropheryma whipplei str. Twist

Aquificae Aquifex aeolicus VF5

Bacteroidetes Bacteroides fragilis YCH46, Bacteroides fragilis NCTC 9343, Bacteroides thetaiotaomicron VPI-5482, Porphyromonas 
gingivalis W83

Cyanobacteria Prochlorococcus marinus subsp. marinus str. CCMP1375, Prochlorococcus marinus str. MIT 9313

Chlamydiae Chlamydophila abortus S26/3, Chlamydia muridarum Nigg, Chlamydia trachomatis D/UW-3/CX, Chlamydophila caviae 
GPIC, Chlamydophila pneumoniae AR39, Chlamydophila pneumoniae CWL029, Chlamydophila pneumoniae J138, 
Chlamydophila pneumoniae TW-183, Parachlamydia sp. UWE25

Chlorobi Chlorobium tepidum TLS

Chloroflexi Dehalococcoides ethenogenes 195

Crenarchaeota Aeropyrum pernix K1, Pyrobaculum aerophilum str. IM2, Sulfolobus solfataricus P2, Sulfolobus tokodaii str. 7

Cyanobacteria Gloeobacter violaceus PCC 7421, Nostoc sp. PCC 7120, Prochlorococcus marinus subsp. pastoris str. CCMP1986, 
Synechococcus elongatus PCC 6301, Synechococcus sp. WH 8102, Synechocystis sp. PCC 6803, Thermosynechococcus 
elongatus BP-1

Deinococcus-Thermus Deinococcus radiodurans R1, Thermus thermophilus HB27, Thermus thermophilus HB8

Euryarchaeota Archaeoglobus fulgidus DSM 4304, Haloarcula marismortui ATCC 43049, Halobacterium sp. NRC-1, 
Methanothermobacter thermautotrophicus str.Delta H, Methanocaldococcus jannaschii DSM 2661, Methanococcus 
maripaludis S2, Methanopyrus kandleri AV19, Methanosarcina acetivorans C2A, Methanosarcina mazei Go1, Picrophilus 
torridus DSM 9790, Pyrococcus abyssi GE5, Pyrococcus furiosus DSM 3638, Pyrococcus horikoshii OT3, Thermococcus 
kodakaraensis KOD1, Thermoplasma acidophilum DSM 1728, Thermoplasma volcanium GSS1

Firmicutes Bacillus anthracis str. Ames, Bacillus anthracis str. 'Ames Ancestor', Bacillus anthracis str. Sterne, Bacillus cereus ATCC 
14579, Bacillus cereus ATCC 10987, Bacillus cereus ZK, Bacillus clausii KSM-K16, Bacillus halodurans C-125, Bacillus 
licheniformis ATCC 14580, Bacillus subtilis subsp. subtilis str. 168, Bacillus thuringiensis serovar konkukian str. 97-27, 
Clostridium acetobutylicum ATCC 824, Clostridium perfringens str. 13, Clostridium tetani E88, Enterococcus faecalis 
V583, Geobacillus kaustophilus HTA426, Lactobacillus acidophilus NCFM, Lactobacillus johnsonii NCC 533, Lactobacillus 
plantarum WCFS1, Lactococcus lactis subsp. lactis Il1403, Listeria innocua Clip11262, Listeria monocytogenes EGD-e, 
Listeria monocytogenes str. 4b F2365, Mesoplasma florum L1, Mycoplasma gallisepticum R, Mycoplasma genitalium G-37, 
Mycoplasma hyopneumoniae 232, Mycoplasmamobile 163K, Mycoplasma mycoides subsp. mycoides SC str. PG1, 
Mycoplasma penetrans HF-2, Mycoplasma pneumoniae M129, Mycoplasma pulmonis UAB CTIP, Oceanobacillus iheyensis 
HTE831, Onion yellows phytoplasma OY-M, Staphylococcus aureus subsp. aureus COL, Staphylococcus aureus subsp. 
aureus MW2, Staphylococcus aureus subsp. aureus Mu50, Staphylococcus aureus subsp. aureus N315, Staphylococcus 
aureus subsp. aureus MRSA252, Staphylococcus aureus subsp. aureus MSSA476, Staphylococcus epidermidis ATCC 12228, 
Staphylococcus epidermidis RP62A, Streptococcus agalactiae 2603V/R, Streptococcus agalactiae NEM316, Streptococcus 
mutans UA159, Streptococcus pneumoniae R6, Streptococcus pneumoniaeTIGR4, Streptococcus pyogenes M1 GAS, 
Streptococcus pyogenes MGAS10394, Streptococcus pyogenes MGAS315, Streptococcus pyogenes MGAS8232, 
Streptococcus pyogenes SSI-1, Streptococcus thermophilus CNRZ1066, Streptococcus thermophilus LMG 18311, 
Thermoanaerobacter tengcongensis MB4, Ureaplasma parvum serovar 3 str. ATCC 700970

Fusobacteria Fusobacterium nucleatum subsp. nucleatum ATCC 25586

Nanoarchaeota Nanoarchaeum equitans Kin4-M

Planctomycetes Rhodopirellula baltica SH 1
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Proteobacteria Acinetobacter sp. ADP1, Agrobacterium tumefaciens str. C58, Agrobacterium tumefaciens str. C58, Anaplasma marginale 
str. St. Maries, Azoarcus sp. EbN1, Bartonella henselae str. Houston-1, Bartonella quintana str. Toulouse, Bdellovibrio 
bacteriovorus HD100, Candidatus Blochmannia floridanus, Bordetella bronchiseptica RB50, Bordetella parapertussis 
12822, Bordetella pertussis Tohama I, Bradyrhizobium japonicum USDA 110, Brucella abortus biovar 1 str. 9–941, Brucella 
melitensis 16M, Brucella suis 1330, Buchnera aphidicola str. Bp (Baizongia pistaciae), Buchnera aphidicola str. Sg (Schizaphis 
graminum), Buchnera aphidicola str. APS (Acyrthosiphon pisum), Burkholderia mallei ATCC 23344, Burkholderia 
pseudomallei K96243, Campylobacter jejuni subsp. jejuni NCTC 11168, Campylobacter jejuni RM1221, Caulobacter 
crescentus CB15, Chromobacterium violaceum ATCC 12472, Coxiella burnetii RSA 493, Desulfotalea psychrophila LSv54, 
Desulfovibrio vulgaris subsp. vulgaris str. Hildenborough, Ehrlichia ruminantium str. Gardel, Ehrlichia ruminantium str. 
Welgevonden, Ehrlichia ruminantium str. Welgevonden, Erwinia carotovora subsp. atroseptica SCRI1043, Escherichia coli 
CFT073, Escherichia coli K12, Escherichia coli O157:H7 EDL933, Escherichia coli O157:H7, Francisella tularensis subsp. 
tularensis Schu 4, Gluconobacter oxydans 621H, Geobacter sulfurreducens PCA, Haemophilus ducreyi 35000HP, 
Haemophilus influenzae Rd KW20, Helicobacter hepaticus ATCC 51449, Helicobacter pylori 26695, Helicobacter pylori 
J99, Idiomarina loihiensis L2TR, Legionella pneumophila str. Lens, Legionella pneumophila str. Paris, Legionella 
pneumophila subsp. pneumophila str. Philadelphia 1, Mannheimia succiniciproducens MBEL55E, Mesorhizobium loti 
MAFF303099, Methylococcus capsulatus str. Bath, Neisseria gonorrhoeae FA 1090, Neisseria meningitidis MC58, 
Neisseria meningitidis Z2491, Nitrosomonas europaea ATCC 19718, Pasteurella multocida subsp.multocida str. Pm70, 
Photobacterium profundum SS9, Photorhabdus luminescens subsp. laumondii TTO1, Pseudomonas aeruginosa PAO1, 
Pseudomonas putida KT2440, Pseudomonas syringae pv. syringae B728a, Pseudomonas syringae pv. tomato str. DC3000, 
Ralstonia solanacearum GMI1000, Rhodopseudomonas palustris CGA009, Rickettsia conorii str. Malish 7, Rickettsia 
prowazekii str. Madrid E, Rickettsia typhi str. Wilmington, Salmonella enterica subsp. enterica serovar Choleraesuis str. 
SC-B67, Salmonella enterica subsp. enterica serovar Paratyphi A str. ATCC 9150, Salmonella enterica subsp. enterica 
serovar Typhi str. CT18, Salmonella enterica subsp. enterica serovar Typhi Ty2, Salmonella typhimurium LT2, Shewanella 
oneidensis MR-1, Shigella flexneri 2a str. 301, Silicibacter pomeroyi DSS-3, Sinorhizobium meliloti 1021, Shigella flexneri 2a 
str. 2457T, Vibrio cholerae O1 biovar eltor str. N16961, Vibrio fischeri ES114, Vibrio parahaemolyticus RIMD 2210633, 
Vibriovulnificus CMCP6, Vibrio vulnificus YJ016, Wigglesworthia glossinidia endosymbiont of Glossina brevipalpis, 
Wolbachia endosymbiont strain TRS of Brugia malayi, Wolbachia endosymbiont of Drosophila melanogaster, Wolinella 
succinogenes DSM 1740, Xanthomonas campestris pv. campestris str. ATCC 33913, Xylella fastidiosa 9a5c, Xanthomonas 
axonopodis pv. citri str. 306, Xanthomonas campestris pv. campestris str. 8004, Xanthomonas oryzae pv. oryzae 
KACC10331, Xylella fastidiosa Temecula1, Yersinia pestis biovar Medievalis str. 91001, Yersinia pestis CO92, Yersinia 
pestis KIM, Yersinia pseudotuberculosis IP 32953, Zymomonas mobilis subsp. mobilis ZM4

Spirochaetes Borrelia burgdorferi B31, Borrelia garinii PBi chromosome linear, Leptospira interrogans serovar Copenhageni str. Fiocruz 
L1-130, Leptospira interrogans serovar Lai str. 56601, Treponema denticola ATCC 35405, Treponema pallidum subsp. 
pallidum str. Nichols

Thermotogae Thermotoga maritima MSB8

Table 1: The list of bacteria used in the phylogenic similarity analysis. (Continued)
unambiguously determine the effect of all TFs regulating
it; and

• TRN discovery requires many automated trials of possi-
ble networks, so the algorithm must be efficient.

Calculation of TF activities using FTF
The essential equation on which FTF is based was arrived
at empirically after extensive numerical experimentation
with synthetic data. In this way we actually know the TRN,
TF activities, and the nature of noise added to the expres-
sion data, and thereby could quantitatively assess the
accuracy of FTF predictions. FTF is based on the following
ansatz:

where  = activity of TF n at condition or time r,  =

microarray response of gene i at condition r, bin = TRN (bin

= +1/-1for gene i up/down regulated by TF n, bin = 0 for no

regulation), H(x) = ± 1 for x > or < 0, = 0 for x = 0, and Ψin

= /(Mn(  - 1)) for Li = number of TFs controlling

gene i and Mn = number of genes TF n regulates. If there

are Nexpression times or conditions, then eq. (1) constitutes

Nexpression × (Nexpression -1)/2 equations for the Nexpression activ-

ities  for each of the TFs. Therefore, the problem is over-

determined. In our approach the problem is solved via
normal equations, i.e. using a least square approach so
that all the expression data is utilized and thereby statis-
tics can help to overcome data uncertainty.

Once TF activities are calculated in this manner, the linear
(Pearson) correlation is calculated for all possible gene-TF
pairs. This serves as a score used to construct probability
distributions for the training set (known gene/TF interac-
tions) and random set (all possible gene/TF pairs). Com-
parison of these probability distributions gives an idea
about the fitness of the preliminary TRN and expression
data, and to which degree we can rely on the predictions
of FTF. If the preliminary TRN is too small or of poor qual-
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ity, or if there are too few expression datasets, the training
versus random set probability distributions are difficult to
distinguish. The scores can also be used to rank genes that
are more likely to have expression data which is inconsist-
ent with the preliminary TRN.

To test FTF we generated a TRN that consists of 1000 genes
and 100 TFs. The properties of the TRN are shown in Fig.
2. The synthetic expression data was generated by
assumed random TF activities. Expression data for gene i

was generated using . Here,  is the

expression level of gene i at experiment r,  is the activity

of TF n at experiment r, NTF is the number of TFs, and Qin

is a measure of the binding affinity of TF n and gene i.

To construct a synthetic TRN, for each TF we assigned un =

c1 +  where c1, c2, c3 are constants (taken to be 0.02,

0.15, and 5, respectively) and z is a random number
(between 0 and 1). Then for each gene/TF pair, we
assigned a random number hin (between 0 and 1). For

parameter e, which determines how dense the synthetic

TRN is, if hinun <e we set bin = -1 (down regulation), if e ≤
hinun < 2e, we set bin = 1 (up regulation), assuming the

probability of up and down regulation is the same. The
Qin were allowed to change 20 fold and were generated

randomly (in the logarithmic scale). TF activities were
assumed to be random as well. Our synthetic examples
with large TRNs show that, despite the simplicity of the
FTF approach, the constructed TF activity profiles are reli-
able. To test the approach, one can compare the TF activi-
ties constructed and those used in the generation of
synthetic expression data. For example, for a TRN that has
the properties shown in Fig. 2, even when we eliminate
50% of the TRN to create a "preliminary TRN", 90% of the
constructed TF activities have a Pearson correlation coeffi-
cient of at least 0.70 with the TF activities used to generate
the synthetic expression data (when 20 or more micro-
array experimental conditions were used). Fig. 3 shows
the dependence of the results on the number of experi-
ments. This graph shows that, for practical reason, it is not
feasible to recover the full network. Fig. 4a shows the
effect of network structure on the results. As the network
gets denser, the percentage of the network that can be
recovered decreases. Fig. 4b illustrates the dependence of
the percentage of recovery on the degree of incomplete-
ness in the preliminary TRN. As anticipated, more com-
plete preliminary TRNs allow a higher percentage of the
unknown part of the network to be recovered using
expression data. These results suggest that in a real world
application such as E. coli (for which we have probably
less than 40% of the TRN – based on the number of gene/
TF interactions known and expected number of TFs), one
can not expect to construct the full TRN using expression
data alone, regardless of the number of expression data-
sets available.

Multi-method TRND integration

Each of the above individual methods provides a score for
each gene/TF interaction. The statistical significance of the
score is assessed by the ratio of the probability of that
score in the training set to that in the random set. For a
given method we determine a score R for each gene/TF
interaction as above. An experimentally-verified TRN of E.
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Properties of TRNs used in the synthetic examplesFigure 2
Properties of TRNs used in the synthetic examples. Net-
works that consist of 1000 genes and 100 TFs are generated 
using the probability distribution for the number of genes 
regulated by a given TF shown in (a). The corresponding 
probability distribution for the number of regulators per 
gene is shown in (b). The average number of regulators per 
gene is 3.62, 5.22, and 7.02 for Networks 1, 2 and 3, respec-
tively. Equal likelihood is chosen for up versus down regula-
tion.
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coli [14] is used as the training set to determine (R), the

fraction of the known interactions in the training set in
each of a number of intervals of R for methodology k, sim-

ilarly (R) is obtained for randomly chosen gene/TF

interactions for methodology k. If (R)/ (R) >> 1,

an interaction with a score R for a given method is highly
likely to be correct. These Bayesian ratios are computed for
each method and gene/TF interaction. The sum of the
log10 of these ratios is taken to be the multi-method con-

fidence measure Kin:

where wk is a weighting factor, Nmeth is the number of TRN

construction methodologies,  is the score for TF n and

gene i using methodology k,  and  are the proba-

bility distributions for the training set and random set,
respectively. If a methodology fails to have a prediction
for a gene-TF pair, it is excluded in the above calculation.
The weighting factors are taken to be unity in this study.

Results
Our methodology requires a preliminary TRN which is
used as the training set in all three methodologies pre-
sented below. We gathered this training set from EcoCyc
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Effect of TRN propertiesFigure 4
Effect of TRN properties. We used Networks 1, 2 and 2 of 
Fig. 2 to generate 100 synthetic expression data sets, and 
eliminated 50% of the gene/TF interactions in the TRN. 
Shown is the percentage of the deleted network recovered 
as a function of success rate. As the number interactions 
increases, the percentage of the network that can be recov-
ered decreases. b) Same as a) except we used Network 1 
and eliminated 25%, 50%, and 75% of the network. As 
expected, higher percentage of the deleted network is recov-
erable when a more complete network is known.

Reconstruction of TRNsFigure 3
Reconstruction of TRNs. We have used the Network 1 of 
Fig. 2 and generated synthetic expression data. Then, we 
eliminated 50% of the network (randomly), and used FTF to 
reconstruct the deleted network. Fig. a) shows the percent-
age of the deleted network recovered as a function of suc-
cess rate, a measure of the likelihood that an interaction is 
correct, as estimated from the training set (known interac-
tions). As the number of microarray experiments increases, a 
higher percentage of the network can be reconstructed. 
However, full reconstruction requires too many experi-
ments. Fig. b) shows success rate as a function of the abso-
lute value of the linear correlation between the constructed 
TF activity profiles and gene expression data.
Page 8 of 13
(page number not for citation purposes)



Algorithms for Molecular Biology 2007, 2:2 http://www.almob.org/content/2/1/2
[14]. EcoCyc describes E. coli operons, promoters, TFs,
and TF binding sites. The database describes the mecha-
nisms of transcriptional regulation of E. coli genes, and
contains the most complete description of the genetic net-
work of any organism. EcoCyc and RegulonDB [36] are
curated to ensure that their data content is the same. The
preliminary TRN used in this study included 984 genes,
144 TFs, and 2007 gene/TF interactions. Out of 2007
gene/TF interactions, 1124 were up regulation, 766 were
down regulation, 5 were uncertain, and 112 were dual reg-
ulation (both up/down). Basic properties of the prelimi-
nary E. coli TRN are illustrated in Fig. 5.

We applied the FTF methodology to E. coli using expres-
sion datasets obtained from the NIH omnibus service:
GSE7 (physiological and genetic changes that affect tryp-
tophan metabolism), GSE8 (chromosomal replication
forks in synchronized cells) and GSE9 (UV exposure).
These 65 sets were chosen as the experiments were per-

formed on the same platform. One single run of FTF on a
PC (Xeon 2.4 GHz) takes about 15 minutes and requires
700 MB memory. The probability distributions for the
absolute value of the Pearson correlation coefficient
between the constructed TF activities (using equation 2)
and expression data are shown in Fig. 6 for both the train-
ing and random sets. A comparison of Fig. 6 and Fig. 1
shows that by constructing TF activities using a prelimi-
nary TRN, we significantly increase the amount of infor-
mation extracted from expression data.

Using the biological process ontology developed by the
Gene Ontology Consortium, we calculated GO similarity
scores. We then calculated gene/TF scores using the
approach described in From Gene-Gene Scores to Gene-
TF Scores Section. Fig. 7 shows the probability distribu-
tions for the training (gene/TF interactions in the prelim-
inary TRN) and complete (all possible gene/TF
interactions) sets. The significant variation between the
training and random sets provides evidence that the like-
lihood for a gene pair to be regulated in the same manner
increases with the similarity of their GO description. A
comparison of Fig. 7 and Fig. 2 of Wu et al. (2005) shows
that our approach is more successful in distinguishing the
training and random sets (Note that [20] included path-
way data in their training set whereas we only used the E.
coli TRN).

We extended the number of genomes used in the phylo-
genic similarity analysis from 134 to 229 and used the E.
coli TRN as the training set in contrast to the gene-gene
pair training set suggested by [20]. Fig. 8 shows the prob-

Probability distribution of FTF similarity scores of the training set (dashed) with respect the random set (solid)Figure 6
Probability distribution of FTF similarity scores of the training 
set (dashed) with respect the random set (solid). x-axis 
refers to FTF similarity score while y-axis refers to its proba-
bility distribution. A comparison with Fig. 1 (diamond mark-
ers) shows that our approach is superior to the gene-gene 
correlation approach.

a) Probability distribution for the number of genes regulated by a given TF, b) probability distribution for the number of gene/TF interactions per geneFigure 5
a) Probability distribution for the number of genes regulated 
by a given TF, b) probability distribution for the number of 
gene/TF interactions per gene. These graphs are based on 
the preliminary TRN taken from [14].
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ability distributions for the training (gene/TF interactions
in the preliminary TRN) and complete (all possible gene/
TF interactions) sets. Phylogenic similarity outperforms
the GO and FTF methodologies. As in the case for GO sim-
ilarity, the results are better than those obtained earlier
(Fig. 4 of [20]) due to the gene-TF versus the gene-gene
based approach.

The probability distributions of the integrated confidence
score for the training and complete gene/TF sets are
shown in Fig. 9. We applied a threshold of 1.3 to this score
to find the most likely gene/TF interactions. To facilitate
the use of our results by the research community, they are
posted at [37] where users can view/download the results
and perform search queries. As our procedure is auto-
mated, when new information and microarray or other
data become available, the entire procedure can be readily
repeated.

To provide an objective measure of deviations between
two probability distributions, we calculated the chi-
square scores for GO, phylogenic, and FTF analysis as well
as the final integrated probability distributions (Figs. 6, 7,
8, 9). We created 4 bins for all distributions and calculated
the number of gene/TF scores in each bin. Note that a chi-
square score of 16.27 gives a p-value of 0.001 for a system
with three degrees of freedom (number of bins minus
one). We found the chi-square scores to be 49667 (phylo-
genic similarity), 13005 (GO), 579 (FTF), and 79584

(integrated). These scores indicate and GO and phylo-
genic similarity measures provide better predictions than
expression analysis. Higher chi-square score for the inte-
grated probability distributions justifies the integration
scheme. A cross examination of scores from different
methodologies has shown that if a gene/TF interaction
scores high for one of the three methodologies, this
doesn't imply that the remaining two methods will sup-
port this prediction. For example, out of the 1000 highest
phylogenic similarity scores, only 48 and 3 of them were
found in the top 1000 GO and FTF scores.

The suggested TRN includes 3694 new gene/TF interac-
tions. If the training TRN is a random sampling of the
actual TRN, then, for a sufficiently large training TRN, it is
expected to exhibit the basic functional properties of the
actual TRN. The suggested TRN is denser than the training
TRN. However, as illustrated in Fig. 10, probability distri-
butions for the number of gene/TF interactions per gene
for both the training and suggested TRNs show a high
degree of similarity. Clearly, our training set is vastly
incomplete. Not only we don't have any regulatory infor-
mation for over 3,000 genes, but we likely know only a
fraction of the number of TFs regulating those 984 genes
for which at least one regulating TF is known. Therefore,
the true E. coli TRN is likely to be denser, as predicted here.

After we performed the calculations we found 206 more
gene/TF interactions in the RegulonDB and EcoCyc data-

Comparison of the probability distributions of Phylogenic Similarity scores of the training set (dashed) and the random set (solid)Figure 8
Comparison of the probability distributions of Phylogenic 
Similarity scores of the training set (dashed) and the random 
set (solid). x-axis refers to Phylogenic Similarity Score while 
y-axis refers to its probability distribution. The training set is 
based on all known gene/TF interactions from [14]. The ran-
dom set consists of all possible gene/TF interactions. It is 
seen that higher score implies higher likelihood of a gene/TF 
interaction, particularly when the similarity score is greater 
than 500.

Comparison of the probability distributions of GO similarity scores of the training set (square markers) and the random set (diamond markers)Figure 7
Comparison of the probability distributions of GO similarity 
scores of the training set (square markers) and the random 
set (diamond markers). The training set consists of all known 
E. coli gene/TF interactions for those genes with GO terms 
assigned. The random set consists of all possible gene/TF 
interactions for those genes with GO terms assigned. It is 
seen that higher GO similarity score implies higher likelihood 
of a gene/TF interaction, particularly when the GO similarity 
score is larger than 8.
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bases that were not included in the training set. 44 out of
206 regulatory interactions were predicted by our meth-
odology. Out of 44 interactions, the nature of regulation
was correctly predicted for 33 of them. Regulation type
couldn't be obtained for 7 interactions. Regulation nature
was incorrectly predicted for the remaining 4 interactions
(Table 2). We obtained the p-value for predicting at least
44 out of 206 gene/TF interactions to be less than 1.0e-50
(expected proportion = 3.5e-04, number observed = 44,
sample size = 3694).

We also used the gene expression data (described above in
the microarray analysis section) to further test the sug-
gested TRN as follows. We obtained approximate TF activ-
ities for both the training and suggested TRNs. Then, for
each gene we calculated the linear correlation coefficient
between the expression data and the sum of TF activity
profiles (accounting separately up versus down regula-
tion). Higher scores indicate better consistency between
expression data and TRN. The average scores for the train-
ing and suggested TRNs were calculated to be 0.47 and
0.54, respectively, showing an improvement in the overall
consistency of the TRN with gene expression profiles.

Conclusion
We believe our results on E. coli demonstrate the viability
of the multi-method approach for bacteria. The focus on
gene/TF interactions rather than the gene/gene interaction
approach apparently is a key to the approach and also
yields more detailed information on the nature of the
TRN. The Bayesian framework provides the objective
interaction methodology.

The multi-method integration scheme straightforwardly
generalizes to other techniques; thus we are presently add-
ing promoter analysis and protein-protein interaction
modules to the integrated scoring. We hope this type of
computational analysis will guide experimental studies
and accelerate research in the discovery of TRNs. We are
applying the methodology to other bacteria of interest,
notably Geobacter sulfurreducens and Bacillus anthracis.
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