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Abstract

Motivation: Genome-wide screens for structured ncRNA genes in mammals, urochordates, and
nematodes have predicted thousands of putative ncRNA genes and other structured RNA motifs.
A prerequisite for their functional annotation is to determine the reading direction with high
precision.

Results: While folding energies of an RNA and its reverse complement are similar, the differences
are sufficient at least in conjunction with substitution patterns to discriminate between structured
RNAs and their complements. We present here a support vector machine that reliably classifies
the reading direction of a structured RNA from a multiple sequence alignment and provides a
considerable improvement in classification accuracy over previous approaches.

Software: RNAstrand is freely available as a stand-alone tool from http://www.bioinf.uni-
leipzig.de/Software/RNAstrand and is also included in the latest release of RNAz, a part of the
Vienna RNA Package.

Introduction

Genome wide computational screens for structured
ncRNA genes in mammals [1-3], urochordates [4], nema-
todes [5], and drosophilids [6] resulted in tens of thou-
sands putative structured ncRNAs. Functional and
structural annotation of these predictions thus becomes a
pressing problem. Evidence for evolutionary conservation
of RNA structure alone usually does not distinguish very
well between the two possible reading directions. This
information, however, is crucial already for the most basic
annotation information. Direction information is needed
e.g. to determine whether a conserved RNA motif is
intronic, located within a coding sequence or an untrans-

lated exon, an independent ncRNA, or one of the many
classes of small RNAs associated with other transcripts [7].

The RNAstrand tool is designed specifically to predict the
reading direction of a multiple sequence alignment under
the assumption that the alignment contains an evolution-
ary conserved RNA secondary structure. Our task at hand
is a conceptually simple two class prediction problem for
which we employ a support vector machine (SVM) [8].
The basic idea is to devise descriptors that utilize both the
small asymmetry in the energy rules [9] and the asymmet-
ric effect of GU base pairs.
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| Methods

1.1 Selection of descriptors

Small differences in the measured folding energies
between an RNA molecule and its reverse complement are
captured by corresponding small asymmetries in the
standard energy model used by thermodynamic folding
algorithms [9,10]. These differences distinguish the two
reading directions even in the absence of GU pairs. In
addition, GU pairs have an asymmetric effect in multiple
sequence alignments: Suppose a particular pair of align-
ment columns exhibits a GC — GU substitution in one
reading direction; this preserves base pairing and hence is
consistent with a conserved structure. The reverse comple-
ment of the same alignment, however, displays a GC —
AC substitution which is inconsistent with a conserved
base pair. The patterns of structure conservation, and
hence the consensus structure and its associated average
folding energy, as computed by the RNAalifold algorithm
[11], thus differ between the reading directions. In con-
trast, compensatory mutations, such as GC — AU do not
provide strand-specific information.

The effects of both the asymmetries of the energy rules
and of the GU base pairs are conveniently captured in
terms of thermodynamic quantities, more precisely, in
terms of the folding energies of the consensus structure
and the individual folding energies of a set of aligned
RNAs. These parameters can be computed much more
reliably than quantities that have to be derived from pre-
dicted base pairs due to the limited accuracy of the struc-
ture prediction algorithms on individual sequences [12].
We avoid the use of sequence motifs (e.g. [13]), since this
bears the danger that the SVM is biased to the ncRNA fam-
ilies in the training set and fails to distinguish plus and
minus strands of other structured ncRNAs.

Here we use:

1) Average of the folding energies of the individual
sequences contained in the alignment, computed by the
minimum energy folding program RNAfold of the Vienna
RNA Package, version 1.6 [14] (meanmfe).

2) Mean of the energy z-scores of the individual sequences
contained in the alignment (meanz). The z-score is

defined as z = (E - E)/o, where E and o are mean and
standard deviation of the folding energy distribution of
shuffled (permuted) sequences. We use here the same
SVM-regression procedure as RNAz [15] to estimate the z-
scores from the sequence composition to avoid the time
consuming sampling of shuffled alignments.

3) Folding energy of the consensus secondary structure of
the alignment computed by RNAalifold (consmfe). The
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parameter is defined as the optimal average of the folding
energies that can be achieved when all aligned sequences
simultaneously fold into the same structure.

4) Structure conservation index (sci), which is defined as
the ratio of the consensus folding energy and the average
of the folding energies of the individual sequences, i.e. sci
= consmfe/meanmfe, [15]. An sci close to 1 indicates perfect
structure conservation, while alignments without struc-
tural conservation yield values close to 0. A more detailed
discussion of the sci can be found in [16] in the context of
RNA alignment.

The first two descriptors assess the thermodynamic stabil-
ity of the folds, while the last two evaluate structural con-
servation.

The reading direction of a structured ncRNA can be iden-
tified by evaluating the differences of the above descriptors
between both strands. To be precise, the difference Ax of
descriptor x is defined as Ax = x, - x, where x, denotes the
value of x in reading direction of the input alignment and
x_.the value of x in the reverse complementary alignment.
Hence, Ameanmfe and Ameanz capture the energetic differ-
ences between both strands, while Aconsmfe and Asci
describe the differences in structure conservation.

The proportion of true positive and false positive rate
(ROC curve) for each combination of descriptors is sum-
marized in Fig. 1. It reveals which combination of descrip-
tors achieves optimal classification of the alignments. The
ROC curves can be evaluated by the area under the curve
(AUCQC), which states the similarity of the ROC curve to a
step function. The steeper the true positive rate increases
while staying at its maximum value for different values of
false positive rates, the better the input alignments can be
separated. The best AUC of 99% is achieved when all four
descriptors are taken.

Note, that although sci = consmfe/meanmfe, i.e., these three
quantities are not independent, this is not the case for
their differences. Asci cannot be computed from Aconsmfe
and Ameanmfe. Furthermore, for alignments where the
structural conservation is very high in both reading direc-
tions the strand of the ncRNA cannot be inferred by Asci
alone. But the difference of consensus structure stability,
which is measured by Aconsmfe may still predict the strand
correctly.

Same holds for Ameanz and Ameanmfe. Both measure the
folding energy differences of the individual sequences, but
do not capture identical features of the input alignment
nor can be transformed into each other. The mean z-score
compares the average stability of individual sequences to
arandom control set. Whereas the mean of minimum free
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Figure |

Receiver operating characteristic of all descriptor combinations. Receiver operating characteristic (ROC) for all
descriptor combinations. Corresponding AUC is given in brackets. ROC curves were computed by a 5-fold cross-validation on
the training data set using plotroc.py of the libsvm 2.8 package [18] after an optimal SVM parameter set was chosen by grid.py.
True positive and false positive rates are calculated by interpreting the SVM decision values. Prediction accuracies as plotted
here are larger compared to accuracies in Table | as even though cross-validation ensures that training and testing is done on
different alignments some sequences may occur in the training as well as in the test alignments. In contrast, accuracies in Table
| are based on test alignments which do not contain any sequence attending at a training alignment.

energies of individual sequences specifies the actual
observed minimum free energies. The difference in z-
scores describes the relative loss of stability compared to a
random control set. It quantifies that the input alignment
swaps from very stable to unstable between both strands.
The difference in minimum free energy, on the other
hand, is able to specify small changes in energies, which is
needed to find the correct reading direction of the ncRNA
in case both reading directions result in very stable struc-
tures. An example are miRNAs, which are very stable on
both strands but are nevertheless successfully classified by
RNAstrand. Hence, all four descriptors carry different
information.

The significance of differences in folding energies depends
on the number of sequences in the input alignment,
denoted by n, and on sequence variation. The latter is con-
veniently quantified as the average pairwise sequence
identity H of both reading directions.

The strongest strand information comes from GU base
pairs which are unpaired in the reverse complementary
alignment. Hence, the relevance of differences depends
also on the overall number of GU base pairs in the con-
sensus structure. Therefore, we introduce

g ne
Ay = (= +—=)x100,
Mgl Mg

as last descriptor. néy;(ngy) denotes the number of GU

base pairs in the consensus secondary structure of the
reading direction of the input alignment (reverse comple-

ment of the input alignment), and nj; and ny; are the

numbers of all base pairs in the consensus structure of the
corresponding reading direction. Fig. 2 shows that align-
ments in the reading direction of a tRNA can not as easy
be separated from the reverse complementary alignments
by evaluating only Ameanmfe, Ameanz, Aconsmfe and Asci
as it is the case for alignments containing U70 snoRNAs.
The majority of tRNAs have around 0-5% GU base pairs
in their consensus secondary structure. (The percentage of
GU pairs is roughly A5,/2.) In contrast, the majority of
U70 snoRNAs have 10% to 20% GU base pairs in their
consensus structure. A, allows the SVM to find suitable

classification values depending on the fraction of GU base
pairs. Therefore, U70 snoRNAs as well as tRNAs are classi-
fied correctly with high accuracies (U70: 1.0, tRNA: 0.94).

We regard GU base pair fraction rather of the consensus
structure than of the predicted structures of the single
sequences, as the structure prediction of RNAalifold is
based on evolutionary information of a set of sequences
and hence produces a fold more similar to the real struc-
ture than RNAfold is able to predict from one single
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Figure 2

GU base pair dependency. Scatter plots depicting separa-
bility between both strands depending on GU base pair con-
tent (histograms). Red data points denote alignments in the
reading direction of the ncRNA, while black data points
belong to their realigned reverse complements. Alignments
of tRNAs and U70 snoRNAs do not have significantly differ-
ent number of sequences nor differ significantly in mean pair-
wise identity (see Additional file I). That alignments in
reading direction of U70 snoRNA are well separated from
their reverse complements compared to alignments contain-
ing tRNAs is due to high content of GU base pairs in the sec-
ondary structure of U70 snoRNAs.

sequence. We did not introduce the difference of GU base
pairs as a descriptor, because the error rate of such an
descriptor depends largely on the correctness of the pre-
dicted secondary structure. Small errors in structure pre-
diction have a large impact on the difference of GU base
pairs. In contrast, the difference in structure stability and
conservation regards all base pairs and hence depends
only very weakly on the correctness of individual base
pairs.

In summary, the SVM classification is based on seven
descriptors, of which four, Ameanmfe, Ameanz, Aconsmfe
and Asci directly measure differences between the reading
directions, while the remaining three, n, H, and A pro-
vide information on the structure of the input alignment
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that allow the SVM to interpret the significance of strand
differences.

1.2 Training of Support Vector Machine

Alignments for training were taken from the same sources
as in [15] including representatives for rRNAs, spliceo-
somal RNAs, tRNAs, miRNAs, small nucleolar RNAs,
nuclear RNaseP and SRP RNA. Sequence similarity in this
data set ranges from 47% to 99% mean pairwise identity
in alignments of 40 nt to 400 nt length and of 2 to 6
sequences. The detailed distributions of mean pairwise
identity, length, number of sequences and GU base pair
content are given in the supplementary material (see
Additional file 1). A total of 5886 ClustalW alignments,
approximately equally representing these ncRNA families,
were used for training after removing alignments that
were not recognized as structured RNA by RNAz in both
reading directions. This data set was splitted into two sub-
sets of equal size, namely the positive and negative train-
ing set. Alignments in the negative training set were
transformed to the reverse complement and realigned
with ClustalW as opposed to take just the reverse comple-
mentary alignment of the structured RNA.

The number of sequences a training alignment contains is
limited to 6 as the SVM regression procedure to estimate
the z-scores is trained with alignments of maximal 6
sequences [15]. In case an alignment has more than 6
sequences a subalignment with optimal mean pairwise
identity may be chosen with the perl script rnazWin-
dow.pl [17] of the RNAz package.

We use libsvm 2.8 [18] with SVM type C_SVC, a radial
basis function (RBF) kernel, probability estimates and
descriptor vectors scaled linearly to the interval [-1, +1].
The scaling avoids that descriptors which have a large var-
iance dominate the classification. The values for the RBF
kernel parameters y and C were identified by a grid search
in the parameter space applying grid.py of the libsvm 2.8
package with a 5-fold cross-validation on the training
data. Maximal prediction accuracy is achieved with
parameters C = 128 and y = 0.5.

The SVM returns an estimated class probability p, that the
ncRNA is found in the reading direction of the input
alignment. We convert p into a score D = 2p - 1, so that D
~ +1 means "RNA in reading direction of input align-
ment" while D ~ -1 means "RNA is reverse complement of
input alignment".

2 Results

2.1 Testing the classifier

Classification performance is evaluated using 30920 auto-
matically generated ClustalW alignments of 313 of the
503 ncRNA families from RFAM (version 7.0). All
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sequences attending at the training alignments were
excluded from the test set. For each family at most 500
ClustalW alignments were randomly constructed each for
2 to 6 sequences, resulting in maximal 2500 alignments
for a family. Since the alignments which were taken to
train the SVM are no longer than 400 nt, have a minimal
pairwise sequence identity of 60% and contain maximal
six sequences, test alignments were created which meet
the same criteria. For alignments which do not fall into
those ranges probability estimates of the SVM need to be
regarded with certainty. 8 families had no alignments
between 40 and 400 nt and were hence discarded from the
test set. 67 families are not included because they consist
of only one or two sequences. 2 families had no sampled
alignments with a mean pairwise sequence identity larger
than 60%. Lastly, the sampled alignments of 113 families
were not recognized as ncRNA by RNAz on at least one
reading direction and were also discarded from the test
data set. A list of families excluded from the test data can
be found in the supplementary material (see Additional
file 1). All alignments in the test set were used as positive
test cases and their realigned reverse complements as neg-
ative test cases.

Table 1 lists the classification rates for different threshold
values ¢, i.e., classifying the RNA as "plus strand" for D > ¢
and as "minus strand" for D < -¢, while -c < D < ¢ is inter-
preted as "undecided". We observe only a negligible loss
of accuracy when ¢ is increased from 0 to 0.9. The distri-
bution of D (see Additional file 1) demonstrates that the
majority of alignments are classified correctly with high
probability. However, RNAstrand fails to predict the cor-
rect reading direction of 53 families (e.g. 7SK). The pre-
dicted secondary structure of the reverse complementary
alignment is much more stable for these examples than
the ncRNA itself (see Additional file 1). On the other
hand, RNAstrand is able to reliably capture the reading
direction of most ncRNAs for which no representative was
given in the training set, including RNase MRP, IRES,
SECIS and 5.8S rRNA, which makes it suitable to predict
the reading direction of novel ncRNA families.

To evaluate the performance of RNAstrand on alignments
which have not been identified as structured RNA by
RNAz, we constructed a second test set which only con-
sists of alignments not classified as structured RNA by
RNAz in both reading directions. This resulted in 207
families meeting the criteria described in the first para-
graph of this section. The corresponding distributions are
shown in the supplementary material (see Additional file
1). For those alignments a dramatic decrease of structure
stability and conservation is observed which leads to
smaller descriptor values (see Additional file 1). Hence,
the classification performance is worse compared to
RNAz-positive alignments (Table 1). However, for the
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majority of alignments the correct reading direction was
inferred.

Performance measures depending on the number of
sequences in the input alignment, the length as well as the
mean pairwise identity of the sequences are given in Table
2. The number of sequences of an alignment does not
influence prediction performance significantly. But the
more the sequences are conserved the better the overall
classification accuracy. The fraction of correctly classified
alignments is also very high in case of long sequences. For
alignments of 100 to 200 nt length the accuracy is biased
to miRNAs, which are well classified by RNAstrand.

The results highlight that our classification task has an
intrinsic symmetry: the fraction of correctly classified
alignments for the "plus strand" of a ncRNA should be
similar to the accuracy of the "minus strand". However,
we observe a small but noticeable bias to predict that the
ncRNA lies in same reading direction as the input align-
ment (Table 1). The SVM model was trained with different
alignments in the positive and negative training sets,
which results in an asymmetric model. If the same align-
ments, but in different directions, were taken for training,
the SVM model would be exactly symmetric. But training
data should be independent in the different classes, hence
we refrained from enforcing this exact symmetry to avoid
potential overtraining artifacts. Another possibility to
avoid asymmetry would be to take the averaged SVM deci-
sion values of both reading directions as the final deci-
sion. But this has an unknown effect on the probability
estimates.

The distribution of decision values of the SVM is shown in
Fig. 3. The majority of alignments were classified correctly.
Most of them have large absolute decision values stating
that they belong to the corresponding class with high
probability. If RNAstrand is applied to shuffled align-
ments the decision values are more concentrated around
0, but most of them are still classified correctly. To explain
this observation we checked which combination of
descriptors performs best on shuffled alignments. We
trained a SVM model for each possible descriptor combi-
nation and calculated the true and false positive rates at
different decision levels by using plotroc.py of the libsvm
2.8 package [18]. The corresponding ROC curves are given
in Fig. 4 and indicate that except of Ameanmfe all descrip-
tors classify shuffled alignments randomly. Individual
shuffled sequences, presumably by virtue of their base
composition (see Additional file 1), still contain informa-
tion on the reading direction of the structured RNA which
is captured by Ameanmfe. This observation implies that
RNAstrand must not be used for alignments that do not
contain structured RNAs. In other words, RNAstrand can-
not be used to infer an ncRNA on the grounds that it

Page 5 of 10

(page number not for citation purposes)



http://www.almob.org/content/2/1/6

Algorithms for Molecular Biology 2007, 2:6

Table I: Evaluation of RNAstrand.

c=0 c=05 c=09
ncRNA type N, N, A A, A A I-A-u u A I-A-u u A(RNAz)
Alignments classified as structured RNA by RNAz
5S rRNA 413 | 0.990 0.993 0.988 0.978 0.006 0.016 0.958 0.000 0.042 0.973
5.85 rRNA 146 | 0.932 0.932 0.932 0.894 0.055 0.051 0.733 0.024 0.243 0.904
tRNA 286 | 0.948 0.948 0.948 0.886 0.017 0.096 0.621 0.009 0.371 0.535
miRNA 1875 43 0.981 [0.241] 0979 [0.246] 0.982[0.238] 0.965[0.261] 0.009 [0.171] 0.026 [0.147] 0.906 [0.373] 0.001 [0.003] 0.094[0.372] 0.187 [0.376]
snoRNA (C/D) 946 71 0.780[0.376] 0.785[0.374] 0.775[0.389] 0.732[0.411] 0.190[0.363] 0.078[0.256] 0.618[0.431] 0.147[0.286] 0.235[0.416] 0.654 [0.446]
snoRNA (H/ACA) 3066 53 0.909 [0.198] 0.908 [0.198] 0.909 [0.199] 0.882 [0.255] 0.062[0.160] 0.056 [0.184] 0.823 [0.352] 0.021 [0.039] 0.156 [0.339] 0.899 [0.283]
spliceos. RNA 896 6 0.877 [0.252] 0.885[0.251] 0.868 [0.254] 0.831 [0.327] 0.086 [0.212] 0.083 [0.118] 0.735[0.322] 0.042[0.125] 0.222[0.202] 0.835 [0.257]
euk. SRP RNA 891 | 0.997 0.998 0.996 0.992 0.001 0.007 0.972 0.000 0.028 0.841
nucl. RNaseP 31 | 0.694 0.710 0.677 0613 0.274 0.113 0.387 0.081 0.532 0.290
RNase MRP 140 | 0.989 0.986 0.993 0.982 0.000 0.018 0.961 0.000 0.039 0.500
IRES 170 8 0.715[0.453] 0.718[0.455] 0.712[0.452] 0.647[0.469] 0.200 [0.424] 0.153 [0.339] 0.597[0.448] 0.106 [0.433] 0.297 [0.402] 0.318 [0.424]
SECIS 76 | 0.651 0.658 0.645 0.520 0.257 0.224 0.329 0.191 0.480 0.487
75K 184 | 0.041 0.043 0.038 0.024 0916 0.060 0.011 0.802 0.188 0.038
Alignments not classified as structured RNA by RNAz
55 rRNA 525 | 0.793 0.821 0.766 0.717 0.130 0.153 0.552 0.057 0.390 -
5.85 rRNA 1000 | 0.853 0.892 0.814 0.771 0.092 0.137 0.602 0.032 0.366 -
tRNA I | 1/1 I/1 I/1 1/1 0/1 0/1 1/1 o/l 0/1 -
miRNA 0 - - - - - - - - - - -
snoRNA (C/D) 4228 105 0.563[0.397] 0.595[0.399] 0.532[0.414] 0.480[0.420] 0.353[0.363] 0.167[0.236] 0.340[0.394] 0.245[0.316] 0.415 [0.364] -
snoRNA (H/ACA) 1993 36 0.788[0.251]  0.812[0.244] 0.763[0.291] 0.735[0.314] 0.157[0.203] 0.108 [0.233] 0.644 [0.370] 0.081 [0.169] 0.274 [0.339] -
spliceos. RNA 2944 4 0.632 [0.287] 0.669 [0.287] 0.595[0.289] 0.560[0.314] 0.301 [0.261] 0.139[0.071] 0.422[0.338] 0.203 [0.200] 0.375 [0.180] -
euk. SRP RNA 3 | 33 3/3 3/3 33 0/3 0/3 3/3 0/3 0/3 -
nucl. RNaseP 2 | 2/2 2/2 2/2 2/2 0/2 0/2 172 0/2 12 -
RNase MRP 0 - - - - - - - - - - -
IRES 265 13 0.506 [0.454]  0.521 [0.454] 0.491 [0.454] 0.468[0.411] 0.457 [0.450] 0.075[0.276] 0.436 [0.401] 0.353[0.411] 0.211 [0.418] -
SECIS 43 | 0.686 0.698 0.674 0.593 0.174 0.233 0.302 0.070 0.628 -
75K 630 | 0.127 0.152 0.102 0.063 0.798 0.139 0.018 0.640 0.342 -

N,: number of alignments in test set, N: number of different RNA classes, A: accuracy, which is defined as the fraction of correctly classified input alignments, A,: accuracy of alignments in reading direction
of ncRNA, A: accuracy of reverse complementary alignments, u: fraction of undecided alignments, | - A - u: fraction of misclassified alignments, A(RNAz): fraction of alignments correctly classified by taking
the strand with the largest RNAz probability as the strand of the ncRNA. Standard deviations for RNA families with alignments from different classes are given in brackets. Note, that in case ¢ = 0 no

undecided alignments are observed.
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Table 2: Accuracies depending on different alignment features.

c=0

alignment feature N A A, A

Ng=2 4487 0824 0829 08I9
Ns=3 5311 0.833 0830 0.837
Ng=4 6388 0.828 0.830 0.827
Ng=5 7234 0797 0.805 0.789
Ns=6 7500 0.832 0.835 0.829
50 < sequence identity < 70 13187 0799 0.799 0.799
70 < sequence identity < 80 12152 0.827 0.832 0.823
80 < sequence identity < 90 5550 0.865 0.871 0.859
90 < sequence identity < 100 31 0.903 0.871 0.935
40 < length < 100 11191 0768 0.773 0.763
101 < length <200 14180 0.853 0.856 0.851
201 < length < 300 1697  0.637 0.641 0.634
301 < length < 400 3852 0945 0945 0.945
all alignments 30920 0.822 0825 0819

Performance of RNAstrand depending on various alignment features,
i.e. number of sequences (N;), sequence identity and alignment length.
N : number of alignments in the test sets, A: accuracy, which is defined
as the fraction of correctly classified input alignments, A,: accuracy of
alignments in reading direction of ncRNA, A accuracy of reverse
complementary alignments.

returned a preferred reading direction for a non-structured
input alignment. We could have also removed Ameanmfe
from the set of descriptors, because of this bias. However,
due to its high sensitivity (Fig. 1) it seems preferable to
keep it as descriptor, in particular since RNAstrand is
designed to operate on structured RNAs only.

The best cutoff ¢ can be found by plotting false positive
rates versus true positive rates at different ¢ (Fig. 5). If
Youden's index Y, i.e., true positive rate minus false posi-
tive rate, is maximal, then the classification accuracy can-
not be further improved by taking a larger cutoff [19]. We
observe Y, . ~0.644 forc<0.15. Hence, a further increase
of ¢ leads to a worse proportion of correctly and falsely
classified alignments. However, a large value of ¢ assures
that the predicted reading direction is with high probabil-
ity the correct reading direction, see Table 1 and the r.h.s.
of Fig. 5.

2.2 Comparison to naive approaches

A naive way to determine the likely reading direction is to
score an alignment and its reverse complement using
RNAz, EvoFold, or another tool for recognizing structured
RNAs. This approach was taken e.g. in [1,2,4,5]. A manual
inspection of the data, however, showed that this
approach is problematic in particular in those cases where
RNAz scores are high for both reading directions. This is

http://www.almob.org/content/2/1/6

test alignments
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[
0
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SVM decision values
shuffled test alignments
0.12 |
3
o
§ 0.09
g
= 0.06
2
$ 0.03 |
-20 -10 0 10 20
SVM decision values
Figure 3

Histogram of SVM decision values. Distribution of SVM
decision values of RNAz-positive alignments. The upper his-
togram belongs to all alignments of the test set. Whereas the
lower one shows the distribution of the decision values for
shuffled alignments. Columns of the test alignments were
randomly permuted to create shuffled alignments. Red dot-
ted bins denote alignments where the ncRNA has the same
reading direction as the alignment. Black bins belong to align-
ments where the ncRNA is contained in the reverse comple-
ment. Note that the shuffling procedure does not completely
destroy the direction information.

the case in particular for microRNA precursors, but also
for many other small house-keeping ncRNAs.

Table 1 gives the accuracy of RNAstrand compared to this
simple approach, i.e., taking the strand with the larger
RNAz probability. RNAstrand yields for all ncRNA types
an improvement. The largest increase of classification
accuracy is observed for miRNAs, RNase MRP, tRNAs,
nuclear RNaseP and IRES. Table 3 shows that the reading
direction is classified correctly in the majority of test align-
ments by RNAstrand. The misclassification rate of the
naive approach is two times higher than that of RNAs-
trand.

Finally, we compared the prediction accuracy of RNAs-
trand with the strand prediction of EvoFold. Applying
EvoFold to automatically created RNA alignments
extracted from Rfam families is not easily feasible since
EvoFold requires a meaningful phylogenetic tree (ideally
estimated from neutrally evolving sites) as input. Such
data are not available and cannot be generated easily for
most combinations of Rfam sequences. The heuristic sug-
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Figure 4

Receiver operating characteristic of all descriptor
combinations for shuffled alignments. ROC curves of
all descriptor combinations for shuffled alignments. Columns
of test alignments were randomly permuted to create shuf-
fled alignments. Corresponding AUC is given in brackets.
ROC curves were computed by training a SVM model for
each descriptor combination and testing the model on shuf-
fled alignments by utilizing plotroc.py of the libsvm 2.8 pack-
age [18]. Training was done with the original training set for
RNAstrand. SVM parameter and kernel did not change, i.e. a
radial basis function kernel with parameters C = 128 and y =
0.5 were used.

gested in [2], namely to rescale a neighbor-joining tree
generated from the input alignment, produced very poor
classification results in most cases.

Hence, we use instead the subset of known ncRNAs
among the 48479 EvoFold predictions in human assem-
bly hg17 |2].

A blast search with E < 1e - 10 against NonCode [20],
Rfam [21], mirBase [22] and snoRNA-LBME-db [23] iden-
tified only 248 unique known ncRNA loci in human.
(Note, that tRNAs and most snRNAs are multi-copy genes
and hence were deliberately excluded from the data in
[2]). To compare strand predictions of EvoFold with
RNAstrand the multiz8way alignments of 202 loci, which
are completely covered by a blast hit, were reconstructed.
The majority (177) were identified to be miRNA precur-
sors as most of the EvoFold predictions in ref. [2] are short
conserved hairpins. The direction of the blast hit indi-
rectly determines the strand of the known ncRNA when it
is compared to the strand prediction of EvoFold. For 14
(13 miRNAs and 1 U6atac) loci the multiple alignments
could not be reconstructed. The remaining 188 align-
ments were realigned and all which did not meet the pre-
requisites of RNAstrand were discarded: 15 alignments
were shorter than the minimum length for which RNAs-
trand was trained with, 5 alignments had a mean pairwise
identity smaller than 50%, and one alignment contained
of too many gaps. This leaves 167 alignments for which
the strand prediction of RNAstrand is compared to the
strand prediction of EvoFold. Alignments containing
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Figure 5
Receiver operating characteristic of test alignments.
False positive rates of RNAz-positive test alignments versus
true positive rates at different cutoff levels c. The left plot
depicts rates in case undecided alignments are included in the
calculation. Meaning that the true positive rate is defined as
ip
th+ fm+u
correctly classified to contain the ncRNA in the same reading
direction as the input alignment. fn is the number of align-
ments which have been falsely classified to contain the
ncRNA on the reverse complement, while u contains all
alignments which contain the ncRNA in the same reading
direction but RNAstrand were not able to predict a reading
direction. False positive rate is defined respectively. The right
handed plot discards unclassified alignments. Hence, the true

, where tp denotes alignments which have been

positive rate is defined as

fo
fp+n
given. Red curves denote alignments containing the ncRNA
in the reading direction of the input alignment. Black curves
belong to alignments which contain the ncRNA on the

reverse complementary strand. The values of ¢ range from 0
to 0.95 in steps of 0.05.

and the false positive rate
+ fn

as . The curves for both SVM decision classes are

more than 6 sequences were reduced to 6 sequences by
rnazWindow.pl which optimizes the final alignment for a
mean pairwise identity.

The numbers in Table 4 show that the strand prediction of
EvoFold is comparable to the strand prediction of RNAs-
trand on this relative small test set, which is, however,
dominated by microRNAs. We remark that EvoFold and
RNAz are sensitive for ncRNAs of different base composi-
tions and sequence similarities [3,24], so that neither of
these programs can be (ab)used as universal strand-strand
classificators.
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Table 3: Comparison of classification accuracies versus RNAz.

Naive RNAz-based classification

correct incorrect
RNAstrand  fwd correct 17961 7579
incorrect 1570 3810
rev correct 17855 7521
incorrect 1676 3868
all correct 35816 15100
incorrect 3246 7678

Strand prediction of RNAstrand compared to naive prediction of
RNAz. The first row of the table refers to alignments of known
ncRNA loci given in the direction of the ncRNA. The second row
belongs to the corresponding reverse complementary alignments.
The last row summarizes the first and second row.

3 Discussion

RNA molecules and their reverse complements in general
form fairly similar secondary structures [25]. For individ-
ual sequences, small differences between plus and minus
strand arise from small asymmetries in the energy model
[9]- In a multiple sequence alignment, GU pairs in an evo-
lutionary conserved stem provide information on the cor-
rect reading direction since their reverse complement, AC,
is not a canonical base pair. Nevertheless, it is a surpris-
ingly hard problem to recognize the correct reading direc-
tion of a structured RNA from a multiple sequence
alignment in practise. This is an important task in genome
annotation, however, since without reliable strand infor-
mation it is not even possible to determine whether an
evolutionarily conserved secondary structure is located in
an UTR or intron, or in an antisense transcript. The read-
ing direction is also of obvious importance in context of
recognizing class membership by means of short
sequence motifs such as SMN-binding sites [26] or a Cajal
body localization signal [27].

Table 4: Comparison of classification accuracies versus EvoFold.

Naive EvoFold-based classification

correct incorrect

RNAstrand fwd  correct 123 [111512] 16 [15;1]
incorrect 17 [17; 0] 11 [8;3]

rev  correct 121 [109;12] 12[151]

incorrect 19 [19; 0] 15[12;3]

all correct 244 [220;24] 28 [26;2]

incorrect 36 [36; 0] 26 [20;6]

Strand prediction of RNAstrand compared to naive prediction of
EvoFold. The first row of the table refers to alignments of known
ncRNA loci given in the direction of the ncRNA. The second row
belongs to the corresponding reverse complementary alignments. The
last row summarizes the first and second row. First numbers in
brackets give classifications of alignments containing miRNAs and
second numbers belong to alignments containing other ncRNAs.

http://www.almob.org/content/2/1/6

The RNAstrand tool presented in this contribution uses a
SVM to predict strand information from a set of four ther-
modynamic features that can readily be computed for any
multiple sequence alignment based on well-established
energy parameters and dynamic programming algo-
rithms. We show here that, together with basic informa-
tion on the size, sequence and GU base pair variation in
the input alignment, these features are sufficient to deter-
mine the reading direction of an RNA motif with an evo-
lutionary conserved secondary structure. The tool
RNAstrand achieves classification accuracies of 90% and
above for most ncRNA families. On microRNAs, its per-
formance is comparable to that of EvoFold. In applica-
tions to data from organisms for which not much
genomic DNA has been sequenced, RNAstrand has the
advantage that it does not require fairly accurate estimates
of evolutionary distances as input.

The main area of application for a tool like RNAstrand is
of course in large scale surveys for evolutionary conserved
ncRNAs. RNAstrand achieves a 2-fold reduction of mis-
classifications on known ncRNAs compared to the naive
approach of determining the likely reading direction by
comparing the scores of ncRNA detectors in both direc-
tions in the case of RNAz. It has therefore been integrated
into the current release 1.0 of the RNAz package [28].

Availability and requirements
Project name: RNAstrand

Project homepage: http://www.bioinf.uni-leipzig.de/Soft
ware/RNAstrand/

Operating system(s): platform independent
Programming language: C
Requirements: Vienna RNA Package http://www.tbi.uni

vie.ac.at/RNA and the LIBSVM library for support vector
machines http://www.csie.ntu.edu.tw/~cjlin/libsvm/

License: GNU GPL.
Restrictions to use by non-academics: Note that a license
is needed to include source code from the Vienna RNA

Package in commercial software projects.

Additional material

Additional File 1

Supplementary material. Supplementary material to RNAstrand: reading
direction of structured RNAs in multiple sequence alignments.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1748-
7188-2-6-S1.pdf]
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