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Abstract
Background: The optimal score for ungapped local alignments of infinitely long random sequences
is known to follow a Gumbel extreme value distribution. Less is known about the important case,
where gaps are allowed. For this case, the distribution is only known empirically in the high-
probability region, which is biologically less relevant.

Results: We provide a method to obtain numerically the biologically relevant rare-event tail of the
distribution. The method, which has been outlined in an earlier work, is based on generating the
sequences with a parametrized probability distribution, which is biased with respect to the original
biological one, in the framework of Metropolis Coupled Markov Chain Monte Carlo. Here, we first
present the approach in detail and evaluate the convergence of the algorithm by considering a
simple test case. In the earlier work, the method was just applied to one single example case.
Therefore, we consider here a large set of parameters:

We study the distributions for protein alignment with different substitution matrices (BLOSUM62
and PAM250) and affine gap costs with different parameter values. In the logarithmic phase (large
gap costs) it was previously assumed that the Gumbel form still holds, hence the Gumbel
distribution is usually used when evaluating p-values in databases. Here we show that for all cases,
provided that the sequences are not too long (L > 400), a "modified" Gumbel distribution, i.e. a
Gumbel distribution with an additional Gaussian factor is suitable to describe the data. We also
provide a "scaling analysis" of the parameters used in the modified Gumbel distribution.
Furthermore, via a comparison with BLAST parameters, we show that significance estimations
change considerably when using the true distributions as presented here. Finally, we study also the
distribution of the sum statistics of the k best alignments.

Conclusion: Our results show that the statistics of gapped and ungapped local alignments deviates
significantly from Gumbel in the rare-event tail. We provide a Gaussian correction to the
distribution and an analysis of its scaling behavior for several different scoring parameter sets, which
are commonly used to search protein data bases. The case of sum statistics of k best alignments is
included.
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Background
Sequence alignment is a powerful tool in bioinformatics
[1,2] to detect evolutionarily related proteins by compar-
ing their sequences of amino acids. Basically one wants to
determine the "similarity" of the sequences. For example,
given a protein in a database like PDB [3], such similarity
analysis can be used to detect other proteins, which are
evolutionary close to it. Related approaches are also used
for the comparison of DNA sequences, i.e. shotgun DNA
sequencing [4], but the application to DNA is not consid-
ered in this article.

Alignment algorithms find optimum alignments and
maximum alignment scores S of two or more sequences
for a given scoring system. Needleman and Wunsch sug-
gested a method to compute global alignments [5],
whereas the Smith-Waterman algorithm [6] aims at find-
ing local similarities. Insertions and deletions of residues
are taken into account by allowing for gaps in the align-
ment. Gaps yield a negative contribution to the alignment
score and are usually modeled by a gap-length l depend-
ing score function g (l). Widely used are affine gap costs
because for two given sequences of length L and M,

because fast algorithms with running time  (LM) are
available for this case [7]. Note that for database queries
even this is too complex, hence fast heuristics like BLAST
[8] are used there.

By itself, the alignment score, which measures the similar-
ity of two given sequences, does not contain any informa-
tion about the statistical significance of an alignment.
One approach to quantify the statistical significance is to
compute the p-value for a given score S. This means under
a random sequence model one wants to know the proba-
bility for the occurrence of at least one hit with a score S
greater than or equal to some given threshold value b, i.e.
(S ≥ b). Often E-values are used instead. They describe the
number of expected hits with a score greater than or equal
to some threshold value. One possible access to the statis-
tical significance can be achieved under the null model of
random sequences. Then the optimal alignment score S
becomes a random variable and the probability of occur-
rence of S under this model P (s) =  (S = s) provides esti-
mates for p-values. Analytic expressions for P (s) are only
known asymptotically in the case of gapless alignments of
long sequences, where an extreme value distribution (also
called Gumbel distribution) [9,10] was found. For align-
ments with gaps, such analytical expressions are not avail-
able. Approximation for scenarios with gaps based on
probabilistic alignment [11-13], large deviations [14] and
a Poisson model [15] had been developed. Altschul and
Gish [16] investigated the score statistics of random
sequences for a number of scoring systems and gap

parameters by computer simulations: They obtained his-
tograms of optimum scores for randomly sampled pairs
of sequences by simple sampling. By curve fitting, they
showed that in the region of high probability the extreme
value distribution describes the data well, also for gapped
alignments of finite sequences. Additionally, they found
that the theoretical predictions for the relation between
the scoring system on one side and the Gumbel parame-
ters on the other side hold approximately for gapped
alignments. In this context they obtained two improve-
ments: Using a correction to account for finite sequence
lengths and sum statistics of the k-best alignments, theo-
retical predictions for ungapped alignments could be
applied more accurately to gapped alignments. Recently
Olsen et al. introduced the "island method" [17,18],
which accelerates sampling time. BLAST [8] uses precom-
puted data, generated with the island method, to estimate
E-values. In any case, as already pointed out, the studies in
Ref. [16] and [18] give reliable data in the region where P
(s) is large only. This is outside the region of biological
interest because pairs of biologically related sequences
have a higher similarity than pairs of purely randomly
drawn sequences.

To overcome this drawback a rare-event sampling tech-
nique was proposed recently [19], which is based on
methods from statistical physics. This general approach
allows to obtain the distribution over a wide range, in the
present case down to P (s) = 10-40. So far this method has
been applied to one relevant case only, namely protein
alignment with the BLOSUM 62 score matrix [7] and aff-
ine gap costs with α = 12 opening and β = 1 extension
costs. It turned out that at least for one scoring matrix and
one set of gap-cost parameters, the distribution deviates
from the Gumbel form in the biologically relevant rare-
event tail, where simple sampling methods fail. Empiri-
cally, a Gaussian correction to the original distribution
was proposed for this case.

Results as in Ref. [19] are only useful if one obtains the
distribution for a large range of parameter values which
are commonly used in bioinformatics. It is the purpose of
this work to study the distribution of S for other relevant
cases. Here we consider the BLOSUM62 and the PAM250
score matrices in connection with various parameters α ,
β of affine gap costs.

The paper is organized as follows. In the second section
we define alignments formally and state a few main
results on the statistics of local sequence alignment. Next,
we state the rare-event approach used here and in the
fourth section we explain our approach in detail. We
introduce some toy examples which are also used to eval-
uate the convergence properties of the algorithm. In the
fifth section, we present our results for BLOSUM62 and
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PAM 250 matrices in conjunction with different affine gap
costs. We show also our results for the sum statistics of the
k largest alignments. In the last section, we summarize
and discuss our results.

Statistics of local sequence alignment
In this section, we define sequence alignment, and state
some analytical results for the distribution of the opti-
mum scores S over pairs of random sequences.

Let x = x1x2 ... xL and y = y1y2 ... yM be two sequences over a

finite alphabet Σ with r = |Σ| letters(e.g. nucleic acids or
amino acids). An alignment  is a set  = {(ik, jk} of K

pairs of "non-crossing" indices (k = 1, 2, ..., K - 1, 1 ≤ ik
<ik+1 ≤ L and 1 ≤ jk <jk+1 ≤ M) identifying pairs of letters

from the two sequences. Letters, which are not paired are
called unpaired or gapped. A gap g of length lg is a substring

of lg gapped letters from one sequence. Note, that this rep-

resentation [14] of an alignment is equivalent to an intro-
duction of a gap symbol, as commonly used. Formally the
gap cost function can be defined by considering the length
of a gap beginning at the kth pairing in sequence x or
sequence y respectively, in detail

The score (x, y, ) of the local alignment of the two
sequences is composed of a sum over all aligned pairs and
a sum over all gaps of both sequences:

where σ (a, b) a, b ∈  is the given score matrix (or substi-
tution matrix) and g (l) the gap-cost function with g (0) = 0.
Note that the alignment is local, because the (possibly
large) gaps at the beginning and the end of each sequence
are not included in the scoring function. Otherwise the
alignment would be global. Here, we consider the
BLOSUM62 [20] and the PAM250 [21,22] matrices and

affine gap costs, i.e. g (l) = α + β (l -1). The similarity of the
sequences is the optimum alignment with the maximum
score

which can be obtained in (LM) time [7].

In the case of gapless optimum local alignments of two
random sequences of L and M independent letters from Σ
with frequencies {fa } with a ∈ Σ and ∑a fa = 1, referred as
null model, the score statistics can be calculated analyti-
cally in the asymptotic regime of long sequences [9,10].

In this case one obtains the Gumbel distribution (Karlin-
Altschul statistics) [23]

(S ≥ b) = 1 - exp [- KLM e-λb] (3)

or

PGumble (s) = (S = s) = λ KLM exp [-λ s - KLM e-λ s]
(4)

The parameters λ and K of Eq. (3) can be derived directly
from the score matrix σ (a, b) and frequencies fa [9,10].

As pointed out by Altschul and Gish [16], in finite systems
there occur edge effects: An alignment may extend to the
end of either sequence and the score will be distorted
towards lower values and high scores become less proba-
ble. Since this effect vanishes in the limit of infinite
sequences, the tail of Eq. (3) can be understood as an
upper bound for finite sequences.

Arratia and Waterman [24] predicted a phase transition
between a linear phase and a logarithmic phase, i.e. a lin-
ear growth of the excepted score as a function of the
sequence length, changing to a logarithmic growth with
increasing gap costs. In the linear phase an optimum
alignment may spread over a large range of the sequences
and the statistical theory breaks down. However, only the
logarithmic phase is of interest in biological questions
because the alignment algorithm becomes more sensitive
in this phase, especially near the threshold [25].

Often the sensitivity of an alignment algorithm can be
increased by not only considering the best optimal align-
ment score, but also the k-best scores of non overlapping

alignments. An (LM) algorithm for this task, based on
Sellers concept of local optimality, was developed [26,27].
According to Karlin and Altschul [28] also the sum statis-
tics of the k-best alignment scores for random sequences
can be derived analytically for asymptotically long
sequences. The probability f for the sum of the k-best nor-
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malized scores  (λ and K are the

corresponding Gumbel-parameters for the optimal align-
ment)is given by the integral

In the tail, i.e. for large t, f (t) is well approximated by

In the asymptotic theory the score can be seen as a contin-
uous variable and the probabilities Eq. (4) and Eq. (5)
become probability densities. Then the probability of
finding a normalized score b or larger is given by the inte-

gral . However in computer simula-

tions the score is a discrete variable and therefore the
normalization constants in Eq. (5) differ from continious
scoring. Below we will compare the results of our numer-
ical studies to this distribution in the tail of the data for
values k = 2, ..., 5.

Sampling of rare-events
Metropolis Hastings Algorithm
As already pointed out, the main purpose of this paper is
to calculate the tail of the distribution of optimum scores
of gapped local alignments over pairs of randomly and
independently drawn sequences of finite lengths. The
basic idea of our approach is to generate the sequences
from different distributions, which are biased towards
higher scores.

In order to be more precise let us denote the state space of

all possible pairs of sequences (x, y) as  and an element
in this space as a configuration. We write X = (x, y).

The probability mass function (pmf) of finding X under
the null model is given by

 and the alignment

score as defined in Eq. (2) is a random variable. A direct
way to obtain the probability of the occurrence of a cer-
tain score s, is to generate n uncorrelated representatives Xi

∈  according to the null model and then compute the
expectation values of the family of indicator functions hs:

 → � with hs (X) = 1, if S (X) = s and hs (X) = 0 otherwise,

in other words

Since the region of biological interest is located in the
rare-event tail a huge amount of samples would be needed
to achieve an acceptable accuracy. In practice the rare-
event tail becomes inaccessible.

Our method is based on importance sampling of a mix-
ture of chains based on the Metropolis-Hastings algo-
rithm. Before describing the coupling of multiple chains,
we introduce the general idea of importance sampling
first: The approach is based on sampling from a different
distribution, such that the region of interest is sampled
with high probability. Since this happens in a controlled
manner the true distribution can be obtained afterward,
as frequently used in variance reduction techniques. The
modified distribution yields a different random variable
with a different pmf q. We may write

At least approximately, the distribution of local alignment
follows a Gumbel distribution, which exhibits an expo-
nential behavior in the tail. Therefore an obvious choice
for the biased distribution is

where  the unnormalized weight of a configuration, ZT

is a (usually unknown) normalization constant and T an
adjustable parameter, which we will call "temperature"
(In the framework of statistical mechanics, which is
closely related to our method, the parameter T describes
the temperature of a physical system. The pair of
sequences can be seen as a configuration of a physical sys-
tem and the negative score as the energy function. Then
exp [S (X)/T] refers to the so called Gibbs-Boltzmann distri-
bution.) The close-to Gumbel form of the distribution is
also directly related to the so called "large deviation rate
function", which basically describes the decay rate of the
tail of the distribution. Note that, if the score distribution
is an exact Gumbel distribution Eq. (3), i.e. the rate func-

tion a known constant λ, then setting T = 1/λ in Eq. (7)
yields a "flat score histogram" for sufficient large s. Hence,
in this case, a simulation at a single carfully chosen value
T would be sufficient to obtain the full result. Since P (s)
does not follow the Gumbel form exactly, importance
sampling has to be applied. Each value of T selects one
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region of the distribution around which a high accurracy
is obtained.

This importance sampling approach is conceptual related
to the method of "measure change" in large deviation the-
ory. For example Siegmund and Yakir [14] approximated
the p-value for local sequence alignment by considering
the log-likelihood ratio between an alternative measure
and the measure of the null model. Under the new meas-
ure a rare event occurs more likely than under the original
null measure and approximations become possible.
Another example can be found in Ref. [29], where tech-
niques from large deviation theory were applied to proof
"asymptotic efficiency" of rare-event simulations.

However, since there is no direct method to sample
directly according to the modified distribution Eq. (7) we
implemented the Metropolis-Hastings algorithm [30], which
is explained now in detail. It is based on ergodic Markov
chain Monte Carlo (MCMC) in state space. Ergodic here

means, that for a given state in the configuration space 
any other can be achieved by stepwise "local" modifica-
tions of configurations in finite time. Note that we work

in discrete time steps here. Let X ∈  a configuration at
time t (e.g. at the start of the simulation). To determine
the configuration at time t + 1, first a trial configuration X*
is selected randomly among its "neighbors". The neigh-
borhood of a configuration depends on the choice of trial
steps, which are specified below. For practical reasons we
require, that the score within a neighborhood of a given
configuration will not change too much. The transition
matrix for this trial selection process is denoted by P (X,
X*). Now, the trial configuration becomes the configura-
tion at time t + 1, i.e. is accepted, with probability

with ∆S = S (X*) - S (X) If the trial configuration is not
accepted, the previous configuration X is kept for the next
time step t + 1. In this way, the Markov chain fulfills the

detailed balance condition P (X*, X) (X* → X)·qT (X*)

= P (X, X*) (X → X*)·qT(X). In this case it has been

proven that an ergodic Markov chain converges to the sta-
tionary distribution qT. Ergodicity means, that there is a

non-zero probability for a path between any pair(X1, X2)

of configurations.

We used a simple way to define the neighborhood of a
configuration and constructed the trial configuration as
follows: First a letter a is drawn from the alphabet Σ
according to the letter weights fa and next one of the
sequences (x or y) and a position i is chosen randomly.
Finally, the letter at position i is replaced by a.

Given a Monte Carlo chain (X1, ..., Xn) estimated for a
fixed temperature T in principle one may estimate expec-
tation values with respect to any member of the family of
distributions qT by importance reweighting

Since the normalization of qT is not trivial, we used a dif-
ferent normalization

and estimate Z from the sample

. A detailed discussion about

this issue can be found in Ref. [31,32]. In practice this may
work badly as soon as the parameter ranges of the given
distribution and the target distribution do not overlap suf-
ficiently. In this case qT'(Xi) is very small, but the configu-

rations where qT' (X)/qT (X) is sufficiently large are not

generated because qT (X) is relatively small for those.

Therefore we sampled a mixture of many coupled Monte
Carlo chains and reweighted the mixture, which is
explained in detail in the next section. This allows for
large overlap between neighboring distributions and to
determine the normalization constants, up to an irrele-
vant global constant.

Metropolis Coupled MCMC
Metropolis Coupled Markov Chain Monte Carlo (MCMCMC)
was first invented by Charles Geyer [33] and then rein-
vented by Hukushima and Nemoto [34] under the term
exchange Monte Carlo. In physical literature MCMCMC is
often denoted as parallel tempering. The method has
become a standard tool in disordered systems with a
rough (free) energy landscape [35]. These rough energy
landscapes are characterized by high energy barriers and
can be found for problems like protein folding [36-40],
nucleation [41], spin-glasses [42,43] and other models
characterized by rare events [19,44]. In the last decade it
turned out that MCMCMC accelerates equilibration and
mixing remarkably.
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In the framework of MCMCMC m copies X(1), ..., X(m) of
the system held at different temperatures T1 <T2 < ... <Tm

are simulated in parallel. This means one samples from

the product of the state space m weighted with the joint

distribution with weights . Since the different

copies are allowed to exchange temperatures during the
simulation, let us define the space of all possible map-
pings from the m configurations to the m temperatures as
temperature space.

During the simulation, mainly each of the replicated con-
figurations will evolve independently according the
underlying MCMC scheme charaterized by the weight Eq.
(7) at its current temperature, i.e. according to Eq. (8). In
addition to this evolution, every texchangeth step (for each
replicated configuration) a flip between two neighboring
replicas k and k + 1 is attempted, i.e. for all k ∈ {1, ..., m -
1}. If an attempt is successful, the configurations X(k) and
X(k+1) are exchanged (denoted by X(k) ↔ X(k+1)), i.e. the
configurations which has previously evolved at tempera-
ture Tk will now evolve at temperature Tk + 1 and vice versa.
This exchange is accepted with the probability

where, , ∆S = S (X(k + 1)) - S (Xk) and all

weights are calculated with the configurations before the
flip. This leads to a "random walk in temperature space"
of the configurations.

Note that another possible approach based on Markov
chains to compute p-values of a random model with a
random variable X,  [X > b] was introduced by Wilbur [45].

The first step is to sample from an unbiased Markov chain
based on the model of interest and compute the median
of the (high probability) distribution. In the second itera-
tion the random walk is truncated such that only values
larger than the median of the first iteration occur. This cor-
responds to choosing a lower temperaure T in Eq. (7). The
third iteration uses the median of the second iteration and
so forth. This is repeated until a fraction of 1/4 of all
events lay beyond a certain threshold value leading to a
non decreasing sequence of splitting intervals defined by
the medians of each iteration. This sequence is used in the
second stage of the algorithm, where p-values are com-
puted explicitly by multiplying the p-values of the trun-
cated distribution in each iteration.

Although this method is easy to implement and errors can
be estimated relatively simply, the MCMCMC approach
has the advantage that the different configurations are not
subjected to a sequence of decreasing temperatures, but
perform a random walk in temperature space, i.e. visit all
temperatures several times. Thus, mixing is accelerated
and hence fewer Monte Carlo steps are required.

Reweighting the mixture

The production run of MCMCMC yield a set of m different
chains of lengths nj. We denote the ith configuration in the

chain of jth temperature as . Of course this leads to a

larger parameter range than simple importance reweight-
ing of a single chain, hence Eq. (9) cannot be applied
directly to the mixture. Geyer [46] developed a generaliza-
tion of the importance reweighting formula to mixtures.
His idea is based on Eq. (9), where qT is replaced by a

"mixture weight" qmix, i.e. (using qj ≡ , i.e. qj represents

the unormalized weights)

The (global) normalization constant is given by

. The mixture weight

function is known up to normalization constants

:

with n = ∑jnj. The unknown constants c ≡ (c1, ..., cm) may
be estimated by reverse logistic regression introduced by
Geyer [46]. Here we used an alternative approach to
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obtain the constants c developed by Meng and Wong [47],
which is explained now.

Since the global normalization constant Z in Eq. (11) is
trivial, the problem is reduced to the estimation of (m - 1)
ratios of normalization constants to some reference value.
One possible choice is to fix the normalization constant of
q1 and estimate the ratios ri = c1/ci (i = 2, ..., m).

Since the support of the mixture distribution is broader
than each of the particular distributions, not all pairs of
distributions qi and qj overlap in general. The overlaps of
the empirical data can be measured by the matrix

and the set of distributions can be represented by a graph
(V, E) with vertices being the weight functions V = {q1, ...,
qm} and the set of all overlaps being the weighted edges E
= {wij} with wij > 0(see Fig. 1. We require, that the so con-
structed graph is connected. In practice one must find
paths between each pair of distributions with not too
small weights. In this case each distribution has a finite
overlap with qmix and reweighting become possible on the
full support.

Consider arbitrary weight functions αij assigned to each
edge of the graph and define the following expectation
values with respect to qj

This means, for any given vector c, all values {bji} can be
calculated using this expression. We require the αij to be
symmetric, i.e. αij = αji, and a finite overlap with each of
the distributions. With r1 = 1 and ribji = rjbij it is straight for-
ward to construct a linear system for the remaining (m - 1)
ratios, for i > 1:

with aii = ∑j ≠ i bij and aij = -bij for i ≠ j. This equations cannot

be solved directly, because the coefficients aij do depend

on the unknown ratios. However it is possible to solve Eq.

(13) self-consistently. Using  = (b11, b21,..., bm1) and

including explicitely the dependence on r = (r1, r2,..., rm)

we obtain

A (r(t))·r(t + 1) = b(r(t)). (14)

This equation can be solved by starting with r(1) = (1, 1, ...,
1) and iteratively solving for r(t + 1) till convergence. Fol-
lowing the paper of Meng and Wong [47] Eq. (14) with

the choice  converges to same esti-

mator as proposed by Geyer [46], which is based on max-
imization of a quasi-loglikelihood. The desired
probability P (s) can be achieved by setting qT' to the unbi-

ased weight q∞ = 1 and estimate the expectation values of

the indicator functions hS in Eq. (11).

Illustration and convergence diagnostics
In order to guarantee start configurations taken from the
stationary distribution the first few iterations of the chains
have to be discarded. The number of iterations to be dis-
carded is denoted as burning or equilibration period. Usu-
ally one starts from a random (i.e. disordered)
configuration and equilibrates the system. At the begin-
ning of the simulation the system has a low score and
hence it can reach in principle most regions of the score
landscape. If the temperature is low, one sees when look-
ing at Eq. (7) that configurations with large score domi-
nate. Hence, typically the score increases or stays the same
during the simulation with only few score-decreasing fluc-
tuations.

Note that if "ground states" are also known, i.e. the
maxima of the score landscape, the reverse process is pos-
sible, i.e. starting from a high maximum and sampling its
local environment. One can use this fact to verify, whether
a system has equilibrated on a larger scale, i.e. whether it
is able to overcome the typical barriers in the score land-
scape. This is the case when the average behavior for two
runs, one starting with a disordered configuration and
one starting with an "ground-state" configuration, is the
same (within fluctuation). If the temperature is too small,
this is usually not possible.

It is helpful to consider a simple toy system to illustrate
and benchmark the method, in detail consider a 4-letter
alphabet of equal weights and sequence lengths L = M =
10, 20. The scoring system is defined by the score matrix

and affine gap costs with α = 4 and β = 2.
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An illustration of the equilibration criterion is given in
Fig. 2. By "visual inspection" we obtain equilibration
times 100 (T = ∞),1000 (T = 1), 10000 (T = 0.7), 15000
(T = 0.6) and 20000 (T = 0.5), respectively.

A more quantitative method was introduced by Raftery
and Lewis [48,49], that estimates equilibration and sam-
ple times for a set of quantils. Raftery and Lewis's pro-
gram, which is available from StatLib [50] or in the CODA
package [51], estimates a thining interval nthin as well. That
means only every nthinth step is used for inference in order
to avoid correlations between the scores at time t and t +
∆t, that occur in MCMC in constrast to direct generating
random sequences. The program requires three parame-
ters: the desired accuracy r, the required probability s of
attaining the specified accuracy and a less relevant toler-
ance parameter ε.

We compared the result of the estimate of the equilibra-
tion time with the simple visual approach: For the exam-
ple given in Fig. 2 we maximized numerical estimate of
equilibration time over a set of quantils between 0.1 and
0.95 for r = 0.0125, s = 0.95, ε = 0.001): The results for the
equilibration time obtained by this approach are always
much smaller than those obtained by the visual inspec-
tion. For example for L = 20, the Rafter-Lewis approach
gives an equilibration time of 800 steps for the lowest
temperature, whereas Fig. 2 suggests 20000 steps. There-
fore equilibrium might not be guaranteed with the Rafter-
Lewis approach and the visual inspection seems to be
more conservative.

To estimate the times scales over which the simulation
decorrelates, we considered the autocorrelation function

 denoting the average over different times and inde-

pendent runs. The typical time scale, over which correla-

tion vanish is the correlation time τ defined via ξ (τ)= 1/
e. The normalized auto-correlation function for the sys-
tem of L = 20 is shown in Fig. 3. A comparison with Raft-
ery and Lewis diagnostics of nthin, indicated by dots, gives

evidence that the two estimates coincide with each other
at least in the order of magnitude. The correlation time
increases with decreasing temperature, which corresponds
to a growth of the equilibration time with decreasing tem-
perature in Fig. 2. However by the generation of the histo-
grams the correlations will average out, but estimates of
the errors are more complicated when the data are corre-

lated. However the consideration of τ and nthin has some

practical issues too: For the application it is only necessary
to infere every 100 th step, which saves a lot disk space.

Once the equilibration period is estimated one may check
the convergence of the remaining parts of the chains to the
equilibrium distributions. This was done by computing
the Gelman and Rubin shrink factors R [49,52,53]. This
diagnostic compares the "within-chain" and the "inter-
chain variance" of a set of multiple Monte Carlo chains.
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Equilibration of the 4-letter system (L = M = 20) with tem-peratures T = 0.5, 0.6, 0.7, 1.0, ∞ Equilibrium is reached after 20000, 15000, 10000, 1000, 100 steps (indicated by arrows) respectivelyFigure 2
Equilibration of the 4-letter system (L = M = 20) with tem-
peratures T = 0.5, 0.6, 0.7, 1.0, ∞ Equilibrium is reached after 
20000, 15000, 10000, 1000, 100 steps (indicated by arrows) 
respectively. S (t) is averaged over independent 250 runs.
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When the factor R approaches 1 the within-chain variance
dominates and the sampler has forgotten its starting
point. For the lowest temperature in our toy model L = 20
we found R = 1.03 for the 99.995% quantile, which
appears to be reasonable.

From the equilibrated and converged chains we obtained
histograms for different temperatures, which are shown in
Fig. 4 for the case L = 20.

The empirical overlap matrix of this mixture is estimated
by

which has a finite overlap between all pairs. Note that in
general a weaker condition must be fulfilled, namely that
a connected path from the lowest to the hightest temper-
ature must be possible, as outlined before. In more com-
plex models only this condidition might be fulfilled.

Applying the reweighting technique, which was explained
in the previous section, we obtain the infinite temperature
probability P (s) (see Fig. 5).

Obviously, the toy model has Z = 42 L configurations. The
maximum score over the ensemble of all possible config-
urations is Smax = L. This corresponds to a pair of

sequences with L equal letters xi = yi (i = 1 ... L). The

number of configurations with the highest score is 4L.
Hence, the probability to find a maximum score among all
random sequences is P (Smax) = [S = Smax] = 4L/42 L = 4-L.

Below, to benchmark the Monte Carlo algorithm, we
compare the convergence of the relative error

 for different sequence

lengths, Psample (s) being the corresponding probability

obtained from the MC simulation. From Fig. 6, which

illustrates convergence of the ε (Smax) as a function of total

sample size for all temperatures. In order to get a clear pic-
ture we averaged over several blocks of runs.

For small systems one may enumerate all possible config-
urations and compare the complete distribution with the
Monte Carlo data. The empirical probability distribution
for L = 10 in Fig. 5 coincides with the exact result, such
that a the difference is not visible in the plot. However L =
10 is a very small system in contrast to real biological
sequences, which are considered in section "Results", but
exact enumeration is only possible on a modern computer
cluster. Hence only for L = 10 the relative error
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Score probabilities obtained throw the reweighting mixture technique for a 4-letter system with sequence-length L = 10, 20 and scoring parameters EqFigure 5
Score probabilities obtained throw the reweighting mixture 
technique for a 4-letter system with sequence-length L = 10, 
20 and scoring parameters Eq. (15) using affine gap costs (α = 
4, β = 2). For L = 10 the P (s) had also been been obtained by 
exact enumeration of all 42 × 10 configurations. A difference 
between the empirical curve is not visible in the plot.
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 (see inset of Fig. 6) can be

computed on the full support. In principle one is able to
reduce variance on the low score end of the distribution
by introducing negative temperature values, but this is
beyond of the scope of this article.

Error estimation
As mentioned previously, a direct calculation of the errors
is hardly possible. The first reason is that the Markov
chain data are correlated. Secondly, the iterative estima-
tion of the relative normalization constants is not trivial
and contributes also to the overall error. Nevertheless, one
can evaluate errors using the jackknife method [54]: First,
in order to ensure, that the data are uncorrelated, we took
data points which are seperated by at least the correlation
time, determined via Eq. (16). Next, the dataset is divided
into nb blocks of equal size (hence, the number should be
a multiple of nb). Quantities of interests g are calculated k
times (k = 1 ... nb), each time omitting block Bk. These nb
values are averaged over all possibilities of k, in the nota-
tion of Eq. (11)

The error of g is estimated by

For example the relative errors  of the normaliza-

tion constant ratios increase from 8.6 × 10-4 for r2 to 1.29

× 10-2 for r5. This indicates that the method is able to cap-

ture the error propagation of the relative normalization
constants due to weak overlaps of distant distributions
(see also Eq. (17)). Similar errors for the probabilities P
(s) can be estimated by applying this approach.

Results
Optimal alignment statistics
Next, we show the results from the application of the
method to biologically relevant systems: local sequence
alignment of protein sequences using BLOSUM62 [20] and
PAM250 [21,22] matrices. We apply amino acid back-
ground frequencies by Robinson and Robinson [55]. We
consider different affine gap cost with 10 ≤ α ≤ 16, β = 1 for
the BLOSUM62 matrix and 11 ≤ α ≤ 17, β = 3 when using
the PAM250 matrix, as well as infinite gap costs. We study
ten different sequence lengths between M = L = 40 and M =
L = 400, in detail L = 40, 60, 80, 100, 150, 200, 250, 300,
350, 400.

Since the complexity of this system is much larger than the
simple 4-letter system, the ground states could not be
reached. Only temperatures where equilibration was guar-
anteed within a reasonable computation time were used for
the calculation of P (s). This means that we cannot resolve
the score probability distribution over its full support. But
the range of temperatures is large enough to evaluate the
distributions down to values P (s) ~10-60. The temperature
sets we have used in the MCMCMC technique were varied
between {2.00, 2.25, 2.50, 3.00, 5.00, 7.00, ∞} (L = 40)
and {3.25, 3.50, 4.00, 5.00, 7.00, ∞} (L = 400) for
BLOSUM62 matrices and between {2.75, 3.00, 3.25, 4.00,
5.00, 7.00, ∞} and {4.00, 4.25, 4.50, 5.00, 8.00, ∞} for the
PAM250 matrices. For each run we performed 8 × 105

Monte Carlo steps. The Gelman and Rubin shrink factors
fell below 1.04 in almost all cases. For BLOSUM62 matrices
and L = 350, 400 a slightly longer run (106) had been
required to reduce R. The resulting probabilities were
obtained from averaging over 10 (L = 400) up to 100 (L =
40) runs. The typical overlap matrix for the most complex
system (L = 400, BLOSUM62) was
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Thus the overlap graph is connected sufficientely. For L = 40
we obtained relative errors of the normalization constants
between 10-4(highest temperature) and 0.4 (lowest temper-
ature) and similar values for L = 400.

The main result is that most of the distributions we obtain
deviate strongly from the Gumbel form, which is indicated
in Fig. 7 and Fig. 8 by dotted lines. A typical example for the
relative error of the results, obtained as explained above, is
shown in Fig. 9. Note, that we used normalized scores s* =
s - s0 by subtracting the position of the maximum s0 of the
probability distribution. According to Eq. (3), the form of
the Gumbel distribution is independent of the sequence
length. In the limit L = M → ∞. In practice this is not the
case due to edge effects [17,18] and database applications
use adjusted λ's, but the distribution is still assumed to be
of Gumbel form. The results in this work suggest that this is
only the case for not too small p-values.

One observes that the discrepancy seems to be stronger for
shorter sequences. Also, the case without gaps (Fig. 8)
deviates, at least for L = M = 400, only weakly from the
Gumbel distribution. This might be expected due to the
previous analytical work [9,10]. Qualitatively the behav-
ior of the PAM250-matrices is the same and therefore the
plots are not shown. A quantitative analysis of all results
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will be given below. Empirically we find that the resulting
distribution can be described by a modified Gumbel dis-
tribution with a Gaussian correction:

with s0 = log(KLM)/λ. Note that we would have to use a dif-

ferent normalization constant here, but since the correction
dominates the tail of the distribution, the real normaliza-

tion constant is numerically indistinguishable from λ. We

modeled the data by a minimizing a weighted χ2 using the

program gnuplot [56]. The results including the reduced χ2

- values (  = χ2 /degrees of freedom) are documented in

Tab. 1 and as an additional CSV-file [see additional file 1].

All estimated standard errors in this paper are written
behind the values and separated by "±".

Note that only for not too small sequences  is in the

order of one. This means that Eq. (18) describes the data
better for longer sequences. However biological relevant
sequence lengths (L > 200) sit in the range were the fit
works fine. Moreover the results for shorter sequences are
still several orders of magnitude below the naive Gumbel

result, which yield  a value of about 104 for the L = 40

system.

We also tried smaller gap costs than α < 10 (β = 1,
BLOSUM62) and α < 11 (β = 3, PAM250 matrices), but in
this case the distributions deviate from Gumbel not only in
the tail but even in the high-probability region. The reason
is presumably that the values of the parameters are close to
the critical value of the linear-logarithmic phase transition
[24], i.e. the alignment is not really local any more.

Next, we study the scaling behavior of the correction
parameter λ2. Since the distributions seem to approach the
Gumbel distribution with increasing sequence length, as
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Table 1: Fit parameters of the modified Gumbel distribution Eq. (18) using the BLOSUM62 scoring matrix and affine gap costs with α 

= 10, β = 1 . 104  describes the estimated value of λ2 using the scaling relation Eq. (19). Fit parameters for other scoring systems 

are provided as supplementary material to this artilce [see additional file 1].

L, M λ 104 λ2 K S0 104 

40 0.3272 ± 0.108% 8.6347 ± 0.412% 0.1028 ± 0.65% 15.597 ± 0.0676% 79.05 8.1560 ± 12.485%
60 0.3034 ± 0.086% 6.2007 ± 0.285% 0.0751 ± 0.60% 18.455 ± 0.0645% 49.40 6.1711 ± 12.907%
80 0.2892 ± 0.070% 4.8781 ± 0.222% 0.0612 ± 0.53% 20.644 ± 0.0540% 21.67 5.0458 ± 13.280%
100 0.2747 ± 0.072% 4.3187 ± 0.330% 0.0472 ± 0.58% 22.413 ± 0.0611% 39.42 4.3056 ± 13.627%
150 0.2541 ± 0.083% 3.2974 ± 0.529% 0.0303 ± 0.61% 25.682 ± 0.0422% 39.46 3.2047 ± 14.437%
200 0.2432 ± 0.063% 2.6343 ± 0.344% 0.0241 ± 0.52% 28.257 ± 0.0412% 10.47 2.5806 ± 15.214%
250 0.2359 ± 0.071% 2.1999 ± 0.454% 0.0198 ± 0.60% 30.196 ± 0.0459% 9.40 2.1701 ± 15.984%
300 0.2303 ± 0.061% 1.9101 ± 0.348% 0.0174 ± 0.54% 31.934 ± 0.0408% 2.00 1.8758 ± 16.758%
350 0.2261 ± 0.046% 1.6404 ± 0.239% 0.0153 ± 0.41% 33.334 ± 0.0300% 1.27 1.6525 ± 17.544%
400 0.2224 ± 0.052% 1.4806 ± 0.266% 0.0136 ± 0.49% 34.556 ± 0.0369% 1.36 1.4762 ± 18.347%
600 0.2140 ± 0.062% 1.0206 ± 0.384% 0.0106 ± 0.64% 38.561 ± 0.0472% 2.15 1.0250 ± 21.787%
800 0.2090 ± 0.063% 0.7660 ± 0.419% 0.0088 ± 0.67% 41.320 ± 0.0457% 1.82 0.7691 ± 25.697%

λ2
extra

χ∗
2 λ2

extra

Probability distributions P(s) comparing different gap costsFigure 10
Probability distributions P(s) comparing different gap costs. 
The dotted line denote the distribution without Gaussian 
correction (λ2 = 0). Deviations from the Gumbel distribution 
become stronger for small gap costs. The inset shows the 
same data with linear ordinate.
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can be seen in Fig. 7 and Fig. 8, we expect that λ2 decreases
for L → ∞. Furthermore, when looking at Fig. 10, where P
(s) is shown for one sequence length L = M = 250 but for
different gap-opening costs α, we expect a weak depend-
ence of λ2 on α. In order to provide more quantitative evi-
dence, we fitted all distributions by Eq. (18) and compared
the resulting fit parameters.

In the gapless case no deviations from Gumbel could be
detected for sequence lengths L > 200. For the other cases,
the dependence of the scaling behavior λ2 on the sequence
length is plotted in Fig. 11 and Fig.12. BLOSUM62 and
PAM250 behaves qualitatively the same. λ2 seems to decay
with a power law

for the smallest gap costs and faster than a power law for
larger gap costs.

By fitting the limiting cases (two smallest gap costs) to this
function an upper bound of the decay could be estimated.
The results are summarized in Table 2.

Note that these arguments are purely heuristical attempts
to look at the scaling behaviour and its upper bound. It is
hard to decide, wether the extrapolation is valid for L = M
→ ∞. However an important range of biological interesst-

ing sequence lengths are governed with this scaling analy-
sis.

In order to see the relevance of our result we consider a sim-
ple example, the E-value of a pair of sequences of length L
= 100 using α = 12, β = 1 gap costs, the BLOSUM62-matrix
and the SWISSPROT database [57], which contains cur-
rently Nswissprot = 210, 623 sequences. In BLAST [58], the E-
value, i.e. the expected number of hits exhibiting at certain
"cut-off" score bcut, is currently estimated via the cumulative
Gumbel distribution

λ λ2 2( )L a L b= −− ∗ (19)

E KLN e b= ⋅ −λ cut , (20)

Table 2: Fitting parameters of the scaling relation Eq. (19).

Parameter BLOSUM62 α = 10, β = 1 BLOSUM62 α = 12, β = 1

a 0.00928 ± 0.0001 0.0309 ± 0.01
b 0.643 ± 0.027 0.971 ± 0.08

10-5 
4.9 ± 1.2 3.2 ± 2.0

Parameter PAM250 α = 11, β = 3 PAM250 α = 13, β = 3

a 0.0049 ± 0.0008 0.0053 ± 0.0005
b 0.575 ± 0.046 0.591 ± 0.023

10-5 
3.015 ± 2.0 6.1 ± 1.1

λ2
∗

λ2
∗

Scaling of the correction parameter λ2 (BLOSUM62)Figure 11
Scaling of the correction parameter λ2 (BLOSUM62). The 
decay of λ2 with system size shows approximately a power 
law near the logarithm-linear transition (two smallest gap 
costs). For this cases the fit to Eq. (19) is shown by a line (α 
= 10) and dots (α = 12). The lines of the remaining cases are 
guides to the eye conneting the data points.
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Scaling of the correction parameter λ2 (PAM250)Figure 12
Scaling of the correction parameter λ2 (PAM250). The decay 
of λ2 with system size shows approximately a power law near 
the logarithm-linear transition (two smallest gap costs). For 
this cases the fit to Eq. (19) is shown by a line (α = 11) and 
dots (α = 13). The lines of the remaining cases are guides to 
the eye conneting the data points.
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where L is the query length and N the total number of
amino acids of the entire database, with parameters K =
0.0410 and λ = 0.267. Using the suggested E-value of 10
[58], we find a cut-off of bcut = 64.8 above which a result is
considered to be significant, with  [S > bcut] = 4.75 × 10-5.
Our cumulative distribution achieves this probability at bcut
= 54, i.e. significantly below the BLAST value. Hence, using
the true distributions of the scores, a considerable amount
of queries, those which have a score between 54 and 64, are
significant in contrast to the result of the significance esti-
mation within the Gumbel approximation. Hence, using
the data provided in this work, one is able to estimate the
significance of protein-data-base queries for the most com-
monly used parameter sets with much higher precission
than when applying the approximation of the Gumbel dis-
tribution.

Sum statistics of the k-best alignments
The asymptotic distribution of the ungapped sum statistics
is well known by Eq. (5). Again, we are interested in the dis-
tributions for finite sequence lengths. We use the SIM pro-
cedure [27] to compute the sum of the k-best alignments (k
= 2, ..., 5) within the same type of Markov-chain Monte
Carlo simulation as in the previous sections. In this case, we
consider only the BLOSUM62 matrix together with affine
gap costs α = 12, β = 1, a commonly used scoring system.
We observed large fluctuations for short sequences (L <
100) and equilibration turned out to be harder for this case.
Thus only sequences with L ≥ 60 (k = 2) and L ≥ 80 (k ≥ 3)
have been used for the analysis. The temperature sets varied
between {2.75, 3.0, 3.5, 4.0, 7.0, ∞} for L = 100, k = 2 and
{6.25, 6.5, 7, 9, 11, ∞} for L = 400, k = 5 (details are shown
in Tab. 3).

Note that for k > 3 the systems could not be equilibrated
in the very low temperature regime T < 5. Therefore, for
theses cases, the tail could only be obtained in an interme-
diate range of probabilities (~10-20), which is nevertheless
low enough to obtain significance figures much better
compared to using a simple-sampling approach.

In Fig. 13 we compare different distributions obtained for
varying k and fixed sequence length L = 200. Similar to the
case of optimal alignment quadratic deviations could be
observed which decrease with growing system length for all
values of k (not shown).

In order to quantitatively compare the distribution with
theoretical predictions from Karlin-Altschul statistics [28],
we used the estimated Gumbel parameters λ and s0 from
the optimal score distributions. Corresponding to substi-
tuting the normalized score in Eq. (6) with t = λ (s - ks0)
we fitted the tail (p < 10-10) of the Monte Carlo data to the
modified distribution of the sum statistics, where the
functional form ftail from Eq. (6) is again modified by a
Gaussian factor:

P s Cf s ks S kSk( ) [ ( )] exp ( ) .( )= − ⋅ −



tail λ λ0 2 0

2

(21)

Score probability distributions for sum-statistics of the k-best scores (solid lines) for L = M = 200Figure 13
Score probability distributions for sum-statistics of the k-best 
scores (solid lines) for L = M = 200. The dotted lines denote 
the distribution without Gaussian correction (λ2 = 0). Devia-
tions from Eq. (3) or Eq. (6) become only visible in the rare-
event tail.
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Table 3: Temperature parameters for sum-statistics.

L k = 2 k = 3 k = 4 k = 5

40 2.75, 3, 3.5, 4, 7, ∞
60 2.75, 3, 3.5, 4, 7, ∞
80 2.75, 3, 3.5, 4, 7, ∞ 3.75, 4, 4.5, 5, 8, ∞ 5.25, 5.5, 6, 8, ∞ 6, 6.25, 6.5, 7, 8, 12, ∞
100 2.75, 3, 3.5, 4, 7, ∞ 3.75, 4, 4.5, 5, 8, ∞ 5.25, 5.5, 6, 8, ∞ 6, 6.25, 6.5, 7, 8, 12, ∞
150 2.75, 3, 3.5, 4, 7, ∞ 3.75, 4, 4.5, 5, 8, ∞ 5.25, 5.5, 6, 8, ∞ 6, 6.25, 6.5, 7, 8, 12, ∞
200 3.25.3.5, 4, 7, ∞ 3.75, 4, 4.25, 4.5, 5, 8, ∞ 4.75, 5, 5.25, 5.5, 6, 8, ∞ 5.75, 6, 6.25, 6.5, 7, 8, 12,∞
300 3.25.3.5, 4, 7, ∞ 3.75, 4, 4.25, 4.5, 5, 8, ∞ 4.75, 5, 5.25, 5.5, 6, 8, ∞ 5.75, 6, 6.25, 6.5, 7, 8, 12,∞
400 3.25.3.5, 3.75, 4, 4.25, 5, 

8,∞
3.75, 4, 4.25, 4.5, 5, 8, ∞ 5.25, 5, 5.75, 6, 8, 10, ∞ 6, 6.25, 6.5, 7, 9, 11,∞
Page 14 of 17
(page number not for citation purposes)



Algorithms for Molecular Biology 2007, 2:9 http://www.almob.org/content/2/1/9
This was possible for k = 2 and k = 3. The results are sum-

marized in Tab. 4 and the scaling behaviour of  is

shown in Fig. 14. As in the case of the optimal score (k = 1),
deviations from the theoretical form are significant only in
the regime of small probabilities, which is not accessible
with naive sampling methods. The data for k = 1 to k = 3
(Fig. 14) give evidence that the edge effect is reduced by
increasing k. Note that in Ref. [16], best agreement with
theory was achieved with k = 6.

Discussion and summary
We have studied the distribution of optimum alignment
scores over a wide range using a rare-event sampling
method. First, by comparing the results for a small 4-letter
test system, we illustrated how the method works and pro-
vided some evidence for its convergence. In the main part,
we considered protein alignment for two types of substitu-
tion matrices, i.e. BLOSUM and PAM matrices. We also

studied many different sets of biologically relevant param-
eters by varying gap costs and sequence lengths.

For large enough gap costs it was previously assumed that
the distribution follows the Gumbel extreme-value distri-
bution, even when aligning finite sequences and allowing
for gaps. Hence, the Gumbel distribution is used for calcu-
lating p-values in protein data bases so far. We observe clear
deviations from the Gumbel distribution in the biologi-
cally relevant rare-event-tail, which is out of reach of simple
sampling methods used so far.

An analysis of the scaling behavior of the correction param-
eter λ2 gives evidence that the Gumbel distribution cor-
rectly describes the data only in the limit of infinite
sequence lengths, even for gapped sequence alignments.
For finite protein lengths of biological relevance, we
observed that the distributions can be fitted well by a Gum-
bel distribution with a Gaussian correction. Therefore, for
data bases like BLAST [8,18,58], we recommend to use dis-
tribution functions determined by the empirical fitting
parameters provided in this work because the critical value
Scut, above which a result is considered to be significant,
changes considerably, as we have seen.

We have also studied the sum-statistics of the k-best align-
ments. Again a Gaussian correction to the assumed form of
the distribution was found empirically. Extrapolation to
infinitely long sequences gives good evidence that the
ungapped statistical theory describes the gapped case for L
= M → ∞ as well.

λ2
( )k

Scaling of the correction parameter for BLOSUM62 sum-sta-tistics (k = 1, 2, 3)Figure 14
Scaling of the correction parameter for BLOSUM62 sum-sta-
tistics (k = 1, 2, 3). λ2 is estimated by a fit for Eq. (21) using 
optimal the Gumbel-parameters λ and S0 from optimal score 
statistics (k = 1).

40 60 80 100 200 300 400
L

10-5

10-4

10-3

λ 2

BLOSUM62
α=12 β=1

k=1

k=2

k=3

Table 4: Correction parameter λ2 for the sum statistics k = 2 and k = 3. λ2 is estimated by a fit for Eq. (21) using optimal the Gumbel-
parameters λ and S0 from optimal score statistics (k = 1). BLOSUM62 with affine gap costs (α = 12, β = 1) was used as scoring system.

L
104 104 

60 2.692 ± 0.30%
80 1.631 ± 0.63% 1.074 ± 2.59%
100 1.488 ± 0.23% 0.649 ± 2.06%
150 1.056 ± 0.06% 0.344 ± 1.90%
200 0.749 ± 0.13% 0.280 ± 1.14%
300 0.463 ± 0.15% 0.189 ± 0.70%
400 0.338 ± 0.29% 0.139 ± 0.92%

λ2
2( )k= λ2

3( )k=
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