
BioMed Central

ss

Algorithms for Molecular Biology
Open AcceResearch
Breaking the hierarchy - a new cluster selection mechanism
for hierarchical clustering methods
László A Zahoránszky1, Gyula Y Katona1, Péter Hári2, András Málnási-
Csizmadia3, Katharina A Zweig4 and Gergely Zahoránszky-Köhalmi*2,3

Address: 1Department of Computer Science and Information Theory, Budapest University of Technology and Economics, Budapest, Hungary,
2DELTA Informatika Zrt, Budapest, Hungary, 3Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary and 4Department of
Biological Physics, Eötvös Loránd University, Budapest, Hungary

Email: László A Zahoránszky - laszlo.zahoranszky@gmail.com; Gyula Y Katona - kiskat@cs.bme.hu; Péter Hári - peter.hari@delta.hu;
András Málnási-Csizmadia - malna@elte.hu; Katharina A Zweig - nina@ninasnet.de; Gergely Zahoránszky-
Köhalmi* - gzahoranszky@gmail.com

* Corresponding author

Abstract
Background: Hierarchical clustering methods like Ward's method have been used since decades
to understand biological and chemical data sets. In order to get a partition of the data set, it is
necessary to choose an optimal level of the hierarchy by a so-called level selection algorithm. In
2005, a new kind of hierarchical clustering method was introduced by Palla et al. that differs in two
ways from Ward's method: it can be used on data on which no full similarity matrix is defined and
it can produce overlapping clusters, i.e., allow for multiple membership of items in clusters. These
features are optimal for biological and chemical data sets but until now no level selection algorithm
has been published for this method.

Results: In this article we provide a general selection scheme, the level independent clustering
selection method, called LInCS. With it, clusters can be selected from any level in quadratic time with
respect to the number of clusters. Since hierarchically clustered data is not necessarily associated
with a similarity measure, the selection is based on a graph theoretic notion of cohesive clusters. We
present results of our method on two data sets, a set of drug like molecules and set of protein-
protein interaction (PPI) data. In both cases the method provides a clustering with very good
sensitivity and specificity values according to a given reference clustering. Moreover, we can show
for the PPI data set that our graph theoretic cohesiveness measure indeed chooses biologically
homogeneous clusters and disregards inhomogeneous ones in most cases. We finally discuss how
the method can be generalized to other hierarchical clustering methods to allow for a level
independent cluster selection.

Conclusion: Using our new cluster selection method together with the method by Palla et al.
provides a new interesting clustering mechanism that allows to compute overlapping clusters,
which is especially valuable for biological and chemical data sets.

Published: 19 October 2009

Algorithms for Molecular Biology 2009, 4:12 doi:10.1186/1748-7188-4-12

Received: 1 April 2009
Accepted: 19 October 2009

This article is available from: http://www.almob.org/content/4/1/12

© 2009 Zahoránszky et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 22
(page number not for citation purposes)

http://www.almob.org/content/4/1/12
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19840391
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

Algorithms for Molecular Biology 2009, 4:12 http://www.almob.org/content/4/1/12
Background
Clustering techniques have been used for decades to find
entities that share common properties. Regarding the
huge data sets available today, which contain thousands
of chemical and biochemical molecules, clustering meth-
ods can help to categorize and classify these tremendous
amounts of data [1-3]. In the special case of drug design
their importance is reflected in their wide-range applica-
tion from drug discovery to lead molecule optimization
[4]. Since structural information of molecules is easier to
obtain than their biological activity, the main idea behind
using clustering algorithms is to find groups of structur-
ally similar molecules in the hope that they also exhibit
the same biological activity. Therefore, clustering of drug-
like molecules is a great help to reduce the search space of
unknown biologically active compounds.

Several methods that intend to locate clusters have been
developed so far. The methods that are used most in
chemistry and biochemistry related research are Ward's
hierarchical clustering [5], single linkage, complete link-
age and group average methods [6]. All of them build
hierarchies of clusters, i.e., on the first level of the hierar-
chy all molecules are seen as similar to each other, but fur-
ther down the hierarchy, the clusters get more and more
specific. To find one single partition of the data set into
clusters, it is necessary to determine a level that then deter-
mines the number and size of the resultant clusters, e.g.,
by using the Kelley-index [7]. Note that a too high level
will most often lead to a small number of large, unspecific
clusters, and that a too low level will on the other hand
lead to more specific but maybe very small and too many
clusters. A cluster that contains pairwise very similar enti-
ties can be said to be cohesive. Thus, a level selection algo-
rithm tries to find a level with not too many clusters that
are already sufficiently specific or cohesive.

Other commonly used clustering methods in chemistry
and biology are not based on hierarchies, like the K-
means [8] and the Jarvis-Patrick method [9]. Note how-
ever, that all of the methods mentioned so far rely on a
total similarity matrix, i.e., on total information about the
data set which might not always be obtainable.

A group of clustering techniques which is not yet so much
applied in the field of bio- and chemoinformatics is based
on graph theory. Here, molecules are represented by
nodes and any kind of similarity relation is represented by
an edge between two nodes. The big advantage of graph
based clustering lies in those cases where no quantifiable
similarity relation is given between the elements of the
data set but only a binary relation. This is the case, e.g., for
protein-protein-interaction data where the interaction
itself is easy to detect but its strength is difficult to quan-
tify; another example are metabolic networks that display

whether or not a substrate is transformed into another
one by means of an enzyme. The most well-known exam-
ples of graph based clustering methods were proposed by
Girvan and Newman [10] and Palla et al [11].

The latter method, the so-called k-clique community cluster-
ing (CCC), which was also independently described in
[12,13], is especially interesting since it cannot only work
with incomplete data on biological networks but is also
able to produce overlapping clusters. This means that any
of the entities in the network can be a member of more
than one cluster in the end. This is often a natural assump-
tion in biological and chemical data sets:

1. proteins often have many domains, i.e., many dif-
ferent functions. If a set of proteins is clustered by their
function, it is natural to require that some of them
should be members of more than one group;

2. similarly, drugs may have more than one target in
the body. Clustering in this dimension should thus
also allow for multiple membership;

3. molecules can carry more than one active group,
i.e., pharmacophore, or one characteristic structural
feature like heteroaromatic ring systems. Clustering
them by their functional substructures should again
allow for overlapping clusters.

This newly proposed method by Palla et al. has already
been proven useful in the clustering of Saccharomyces cere-
visiae [11,14] and human protein-protein-interactions
networks [15]. To get a valid clustering of the nodes, it is
again necessary to select some level k, as for other hierar-
chical clustering methods. For the CCC the problem of
selecting the best level is even worse than in the classic
hierarchical clustering methods cited above: while Ward's
and other hierarchical clustering methods will only join
two clusters per level and thus monotonically decrease the
number of clusters from level to level, the number of clus-
ters in the CCC may vary wildly over the levels without
any monotonicity as we will show in 'Palla et al.'s clustering
method'.

This work proposes a new way to cut a hierarchy to find
the best suitable cluster for each element of the data set.
Moreover, our method, the level-independent cluster selec-
tion or LInCS for short does not choose a certain level
which is optimal but picks the best clusters from all levels,
thus allowing for more choices. To introduce LInCS and
prove its performance, section 'Methods: the LInCS algo-
rithm' provides the necessary definitions and a description
of the new algorithmic approach. Section 'Data sets and
experimental results' describes the data and section 'Results
and discussion' the experimental results that reveal the
Page 2 of 22
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:12 http://www.almob.org/content/4/1/12
potential of the new method. Finally, we generalize the
approach in section 'Generalization of the approach' and
conclude with a summary and some future research prob-
lems in section 'Conclusions'.

Methods: the LInCS algorithm
In this section we first present a set of necessary defini-
tions from graph theory in 'Graph theoretical definitions'
and give a general definition of hierarchical clustering
with special emphasis on the CCC method by Palla et al.
in 'Hierarchical clustering and the level selection problem'.
Then we introduce the new hierarchy cutting algorithm
called LInCS in 'Finding cohesive k-clique communities:
LInCS'.

Graph theoretical definitions
Before we start with sketching the underlying CCC algo-
rithm by Palla et al. and our improvement, the LInCS
method, we describe the necessary graph-based defini-
tions.

An undirected graph G = (V, E) consists of a set V of nodes,
and a set of edges E ⊆ V × V that describes a relation
between the nodes. If {vi, vj} ∈ E then vi and vj are said to
be connected with each other. Note that (vi, vj) will be used
to denote an undirected edge between v and w. The degree
deg(v) of a node v is given by the number of edges it is con-
tained in. A path P(v, w) is an ordered set of nodes v = v0,
v1,..., vk = w such that for any two subsequent nodes in that
order (vi, vi+1) is an edge in E. The length of a path in an
unweighted graph is given by the number of edges in it.
The distance d(v, w) between two nodes v, w is defined as
the minimal length of any path between them. If there is
no such path, it is defined to be ∞. A graph is said to be
connected if all pairs of nodes have a finite distance to
each other, i.e., if there exists a path between any two
nodes.

A graph G' = (V', E') is a subgraph of G = (V, E) if V' ⊆ V, E'
⊆ E and E' ⊆ V' × V'. In this case we write G' ≤ G. If more-
over V' ≠ V then G' is a proper subgraph, denoted by G' <G.
Any subgraph of G that is connected and is not a proper
subgraph of a larger, connected subgraph, is called a con-
nected component of G.

A k-clique is any (sub-)graph consisting of k nodes where
each node is connected to every other node. A k-clique is
denoted by Kk. If a subgraph G' constitutes a k-clique and
G' is no proper subgraph of a larger clique, it is called a
maximal clique. Fig. 1 shows examples of a K3, a K4, and a
K5.

We need the following two definitions given by Palla et al.
[11]. See Fig. 2 for examples:

Definition 1 A k-clique A is k-adjacent with k-clique B if they
have at least k - 1 nodes in common.

Definition 2 Two k-cliques C1 and Cs are k-clique-connected
to each other if there is a sequence of k-cliques C1, C2,..., Cs-1,
Cs such that Ci and Ci+1 are k-adjacent for each i = 1,..., s - 1.

This relation is reflexive, i.e., clique A is always k-clique-
connected to itself by definition. It is also symmetric, i.e., if
clique B is k-clique-connected to clique A then A is also k-
clique-connected to B. In addition, the relation is transitive
since if clique A is k-clique-connected to clique B and
clique B is k-clique-connected to C then A is k-clique-con-
nected to C. Because the relation is reflexive, symmetric
and transitive it belongs to the class of equivalence relations.
Thus this relation defines equivalence classes on the set of
k-cliques, i.e., there are unique maximal subsets of k-
cliques that are all k-clique-connected to each other. A k-
clique community is defined as the set of all k-cliques in an
equivalence class [11]. Fig. 2(a), (b) and 2(c) give exam-
ples of k-clique communities. A k-node cluster is defined as
the union of all nodes in the cliques of a k-clique commu-
nity. Note that a node can be member of more than one
k-clique and thus it can be a member of more than k-node
cluster, as shown in Fig. 3. This explains how the method
produces overlapping clusters.

Shown are a K3, a K4 and a K5Figure 1
Shown are a K3, a K4 and a K5. Note that the K4 contains 4
K3, and that the K5 contains 5 K4 and 10 K3 cliques.

(a) The K3s marked by 1 and 2 share two nodes, as do the K3s marked by 2 and 3, 4 and 5, and 5 and 6Figure 2
(a) The K3s marked by 1 and 2 share two nodes, as do
the K3s marked by 2 and 3, 4 and 5, and 5 and 6. Each
of these pairs is thus 3-adjacent by definition 1. Since 1 and 2
and 2 and 3 are 3-adjacent, 1 and 3 are 3-clique-connected by
definition 2. But since 3 and 4 share only one vertex, they are
not 3-adjacent. (b) Each of the grey nodes constitutes a K4
together with the three black nodes. Thus, all three K4s are
4-adjacent. (c) An example of three K4s that are 4-clique-con-
nected.
Page 3 of 22
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:12 http://www.almob.org/content/4/1/12
We will make use of the following observations that were
already established by Palla et al. [11]:

Observation 1 Let A and B be two cliques of at least size k that
share at least k - 1 nodes. It is clear that A contains

cliques of size k and B contains cliques of size

k. Note that all of these cliques in A and B are k-clique-con-
nected. Thus, we can generalize the notion of k-adjacency and
k-clique-connectedness to cliques of size at least k and not only
to those of strictly size k.

We want to illustrate this observation by an example. Let
C1 be a clique of size 6 and C2 a clique of size 8. C1 and C2
share 4 nodes, denoted by v1, v2, v3, v4. Note that within
C1 all possible subsets of 5 nodes build a 5-clique. It is
easy to see that all of them are 5-clique-connected by def-
inition 1 and 2. The same is true for all possible 5-cliques
in C2. Furthermore, there is at least one 5-clique in C1 and
one in C2 that share the nodes v1, v2, v3, v4. Thus, by the
transitivity of the relation as given in definition 2, all 5-
cliques in C1 are k-clique-connected to all 5-cliques in C2.

Observation 2 Let C C' be a k-clique that is a subset of
another clique then C is obviously k-clique-connected to C'. Let
C' be k-clique-connected to some clique then due to the transi-
tivity of the relation, C is also k-clique-connected to B. Thus, it
suffices to restrict the set of cliques of at least size k to all max-
imal cliques of at least size k.

As an illustrative example, let C1 denote a 4-clique within
a 6-clique C2. C1 is 4-clique-connected to C2 because they
share any possible subset of 3 nodes out of C1. If now C2
shares another 3 nodes with a different clique C3, by the
transitivity of the k-clique-connectedness relation, C1 and
C3 are also 3-clique-connected. With these graph theoretic
notions we will now describe the idea of hierarchical clus-
tering.

Hierarchical clustering and the level selection problem
A hierarchical clustering method is a special case of a clus-
tering method. A general clustering method produces
non-overlapping clusters that build a partition of the given
set of entities, i.e., a set of subsets such that each entity is
contained in exactly one subset. An ideal clustering parti-
tions the set of entities into a small number of subsets such
that each subset contains only very similar entities. Measur-
ing the quality of a clustering is done by a large set of clus-
tering measures, for an overview see, e.g., [16]. If a good
clustering can be found, each of the subsets can be mean-
ingfully represented by some member of the set leading to
a considerable data reduction or new insights into the
structure of the data. With this sketch of general clustering
methods, we will now introduce the notion of a hierarchi-
cal clustering.

Hierarchical clusterings

The elements of a partition P = {S1, S2,..., Sk} are called

clusters (s. Fig. 4(a)). A hierarchical clustering method pro-
duces a set of partitions on different levels 1,..., k with the
following properties: Let the partition of level 1 be just the
given set of entities. A refinement of a partition P = {S1,

S2,..., Sj} is a partition such that each

element of P' is contained in exactly one of the elements
of P. This containment relation can be depicted as a tree
or dendogramm (s. Fig. 4(b)).

| |A

k

⎛

⎝
⎜

⎞

⎠
⎟

| |B

k

⎛

⎝
⎜

⎞

⎠
⎟

′ = ′ ′ ′P S S Sk{ , , , }1 2 …

For k = 2, the whole graph builds one 2-clique community, because each edge is a 2-clique, and the graph is connectedFigure 3
For k = 2, the whole graph builds one 2-clique com-
munity, because each edge is a 2-clique, and the
graph is connected. For k = 3, there are two 3-clique com-
munities, one consisting of the left hand K4 and K3, the other
consisting of the right hand K3 and K4. The node in the middle
of the graph is contained in both 3-node communities. For k
= 4, each of the K4s builds one 4-clique community.

(a) A simple clustering provides exactly one partition of the given set of entitiesFigure 4
(a) A simple clustering provides exactly one partition
of the given set of entities. b) A hierarchical clustering
method provides many partitions, each associated with a
level. The lowest level number is normally associated with
the whole data set, and each higher level provides a refine-
ment of the lower level. Often, the highest level contains the
partition consisting of all singletons, i.e., the single elements of
the data set.
Page 4 of 22
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:12 http://www.almob.org/content/4/1/12
The most common hierarchical clustering methods start at
the bottom of the hierarchy with each entity in its own
cluster, building the so-called singletons. These methods
require the provision of a pairwise distance measure,
often called similarity measure, of all entities. From this a
distance between any two clusters is computed, e.g., the
minimum or maximum distance between any two mem-
bers of the clusters, resulting in single-linkage and com-
plete-linkage clustering [6]. In every step, the two clusters
Si, Sj with minimal distance are merged into a new cluster.
Thus, the partition of the next higher level consists of
nearly the same clusters minus Si, Sj and plus the newly
merged cluster Si ∪ Sj.

Since a hierarchical clustering computes a set of partitions
but a clustering consists of only one partition, it is neces-
sary to determine a level that defines the final partition.
This is sometimes called the k-level selection problem. Of
course, the optimization goals for the optimal clustering
are somewhat contradicting: on the one hand, a small
number of clusters is wanted. This favors a clustering with
only a few large clusters within which not all entities
might be very similar to each other. But if, on the other
hand, only subsets of entities with high pairwise similarity
are allowed, this might result in too many different maxi-
mal clusters which does not allow for a high data reduc-
tion. Several level selection methods have been proposed
to solve this problem so far; the best method for most pur-
poses seems to be the Kelley-index [7], as evaluated by [3].
To find clusters with high inward similarity Kelley et al.
measure the average pairwise distance of all entities in one
set. Then they create a penalty score out of this value and
the number of clusters on every level. They suggest to
select the level at which this penalty score is lowest.

We will now shortly sketch Palla et al.'s clustering
method, show why it can be considered a hierarchic clus-
tering method although it produces overlapping clusters
and work out why Kelley's index cannot be used here to
decide the level selection problem.

Palla et al.'s clustering method
Recently, Palla et al. proposed a graph based clustering
method that is capable of computing overlapping clusters
[11,17,18]. This method has already been proven to be
useful, especially in biological networks like protein-pro-
tein-interaction networks [14,15]. It needs an input
parameter k between 1 and the number of nodes n with
which the algorithm computes the clustering as follows:
for any k between 1 and n compute all maximal cliques of
size at least k. From this a meta-graph can be built: Repre-
sent the maximal cliques as nodes and connect any two of
them if they share at least k -1 nodes (s. Fig. 5). These
cliques are obviously k-clique-connected by observations
1 and 2. Any path in the meta-graph connects by defini-
tion cliques that are k-clique-connected. Thus, a simple

connected component analysis in the meta-graph is
enough to find all k-clique communities. From this, the
clusters on the level of the original entities can be easily
constructed by merging the entities of all cliques within a
k-clique community. Note that on the level of the maxi-
mal cliques the algorithm constructs a partition, i.e., each
maximal clique can only be in one k-clique community.
Since a node can be in different maximal cliques (as illus-
trated in Fig. 5 for nodes 4 and 5) it can end up in as many
different clusters on the k-node cluster level.

Note that for k = 2 the 2-clique communities are just the
connected components of the graph without isolated
nodes. Note also that the k-clique communities for some
level k do not necessarily cover all nodes but only those
that take part in at least one k-clique. To guarantee that all
nodes are in at least one cluster, those that are not con-
tained in at least one k-node cluster are added as single-
tons.

We will now show that the k-clique communities on dif-
ferent k-levels can be considered to build a hierarchy with
respect to the containment relation. We will first show a
more general theorem and then relate it to the build-up of
a hierarchy.

Theorem 3 If k >k' ≥ 3 and two nodes v, u are in the same k-
node cluster, then there is a k'-node cluster containing both u
and v.

This theorem states that if two nodes u, v are contained in
cliques that belong to some k-clique community, then, for
every smaller k' until 3, there will also be a k'-clique com-
munity that contains cliques containing u and v. As an
example: if C1 and C2 are 6-clique-connected, then they
are also 5-, 4-, and 3-clique-connected.

Proof: By definition 2 u and v are in the same k-clique
community if there is a sequence of k-cliques C1, C2,..., Cs-

(a) In the entity-relationship graph the differently colored shapes indicate the different maximal cliques of size 4Figure 5
(a) In the entity-relationship graph the differently
colored shapes indicate the different maximal cliques
of size 4. (b) In the clique metagraph every clique is pre-
sented by one node and two nodes are connected if the cor-
responding cliques share at least 3 nodes. Note that nodes 4
and 5 end up in two different node clusters.
Page 5 of 22
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:12 http://www.almob.org/content/4/1/12
1, Cs such that Ci and Ci+1 are k-adjacent for each i = 1,..., s
-1, and such that u ∈ C1, v ∈ Cs. In other words, there is a
sequence of nodes u = v1, v2,..., vs+k-1 = v, such that vi, vi+1,...,
vi+k-1 is a k-clique for each 1 ≤ i ≤ s.

It is easy to see that in this case the subset of nodes vi,
vi+1,..., vi+k'-1 constitutes a k'-clique for each 1 ≤ i ≤ s + k - k'.
Thus by definition there is a k'-clique community that
contains both u and v. ■

The proof is illustrated in Fig. 6. Moreover the theorem
shows that if two cliques are k-clique connected, they are
also k'-clique connected for each k >k' ≥ 3. This general
theorem is of course also true for the special case of k' = k
- 1, i.e., if two cliques are in a k-clique community, they
are also in at least one k - 1-clique community. We will
now show that they are only contained in at most one k -
1-clique community:

Theorem 4 Let the different k-clique communities be repre-
sented by nodes and connect node A and node B by a directed
edge from A to B if the corresponding k-clique community CA
of A is on level k and B's corresponding community CB is on
level k - 1 and CA is a subset of or equal to CB. The resulting
graph will consist of one or more trees, i.e., the k-clique com-
munities are hierarchic with respect to the containment rela-
tion.

Proof: By Theorem 3 each k-clique community with k > 3
is contained in at least one k -1-clique community. Due to
the transitivity of the k-connectedness relation, there can
be only one k - 1-clique community that contains any
given k-clique community. Thus, every k-clique commu-
nity is contained in exactly one k - 1-clique community.

There are two important observations to make: ■

Observation 3 Given the set of all k-node clusters (instead of
the k-clique communities) for all k, these could also be con-
nected by the containment relationship. Note however that this
will not necessarily lead to a hierarchy, i.e., one k-node cluster
can be contained in more than one k - 1-node cluster (s. Fig. 7).

Observation 4 Note also that the number of k-node clusters
might neither be monotonically increasing nor decreasing with
k (s. Fig. 7).

It is thus established that on the level of k-clique commu-
nities, the CCC builds a hierarchical clustering. Of course,
since maximal cliques have to be found in order to build
the k-clique communities, this method can be computa-
tionally problematic [19], although in practice it performs
very well. In general, CCC is advantageous in the follow-
ing cases:

1. if the given data set does not allow for a meaningful,
real-valued similarity or dissimilarity relationship,
defined for all pairs of entities;

2. if it is more natural to assume that clusters of enti-
ties might overlap.

It is clear that this clustering method bears the same k-
level selection problem as other hierarchical clustering
methods. Moreover, the number and size of clusters can
change strongly from level to level. Obviously, since
quantifiable similarity measures might not be given, Kel-
ley's index cannot be used easily. Moreover, it might be
more beneficial to select not a whole level, but rather to
find for each maximal clique the one k-clique community
that is at the same time cohesive and maximal. The next sec-
tion introduces a new approach to finding such a k-clique
community for each maximal clique, the level independent
cluster selection mechanism (LInCS).

Finding cohesive k-clique communities: LInCS
Typically, at lower values of k, e.g., k = 3, 4, large clusters
are discovered, which tend to contain the majority of enti-
ties. This suggests a low level of similarity between some
of them. Conversely, small clusters at larger k-values are
more likely to show higher level of similarity between all
pairs of entities. A cluster in which all pairs of entities are
similar to one another will be called a cohesive cluster. Note
that a high value of k might also leave many entities as sin-
gletons since they do not take part in any clique of size k.

Since the CCC is often used on data sets where no mean-
ingful pairwise distance function can be given, the ques-
tion remains of cohesion within a cluster can be
meaningfully defined. It does not seem to be possible on

u = 0 and v = 6 are in cliques that are 4-clique-connected because clique (0, 1, 2, 3) is 4-clique adjacent to clique (1, 2, 3, 4), which is in turn 4-clique-adjacent to clique (2, 3, 4, 5), which is 4-clique-adjacent to clique (3, 4, 5, 6)Figure 6
u = 0 and v = 6 are in cliques that are 4-clique-con-
nected because clique (0, 1, 2, 3) is 4-clique adjacent
to clique (1, 2, 3, 4), which is in turn 4-clique-adjacent
to clique (2, 3, 4, 5), which is 4-clique-adjacent to
clique (3, 4, 5, 6). It is also easy to see that every three
consecutive nodes build a 3-clique and that two subsequent
3-cliques are 3-clique-adjacent, as stated in Theorem 3. Thus,
u and v are contained in cliques that are 3-clique-connected.
Page 6 of 22
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:12 http://www.almob.org/content/4/1/12
the level of the k-node clusters. Instead, we use the level of
the k-clique communities and define a given k-clique
community to be cohesive if all of its constituting k-cliques
share at least one node (s. Fig. 8):

Definition 5 A k-clique community satisfies the strict clique
overlap criterion if any two k-cliques in the k-clique commu-
nity overlap (i.e., they have a common node). The k-clique
community itself is said to be cohesive.

A k-clique community is defined to be maximally cohesive
if the following definition applies:

Definition 6 A k-clique community is maximally cohesive if
it is cohesive and there is no other cohesive k-clique community
of which it is a proper subset.

The CCC was implemented by Palla et al., resulting in a
software called the CFinder [20]. The output of CFinder
contains the set of all maximal cliques, the overlap-matrix
of cliques, i.e., the number of shared nodes for all pairs of
maximal cliques, and the k-clique-communities. Given
this output of CFinder, we will now show how to compute
all maximally cohesive k-clique communities.

Theorem 7 A k-clique community is cohesive if and only if it
fulfills one of the following properties:

1. A k-clique community is cohesive if and only if either it
contains only one clique and this contains less than 2k
nodes, or

2. if the union of any two cliques Kx and Ky in the commu-
nity has less than 2k nodes. Note that this implies that the
number of shared nodes z has to be larger than x + y - 2k.

This theorem states that we can also check the cohesive-
ness of a k-clique community if we do not know all con-
stituting k-cliques but only the constituting maximal
cliques. I.e., the latter can contain more than k nodes.
Since our definition of cohesiveness is given on the level
of k-cliques, this new theorem helps to understand its sig-
nificance on the level of maximal cliques. The proof is
illustrated in Fig. 9.

Proof: (1): If the k-clique community consists of one
clique of size ≥ 2k then one can find two disjoint cliques
of size k, contradicting the strict clique overlap criterion. If
the clique consists of less than 2k nodes it is not possible
to find two disjoint cliques of size k.

(2) Note first that since the k-clique community is the
union of cliques with at least size k, it follows that x, y ≥ k.
Assume that there are two cliques Kx and Ky and let Kx∩y :=
Kx ∩ Ky denote the set of shared nodes. Let furthermore

(a) The example shows one maximal clique A of size 4 with A = (1, 6, 11, 16) (dashed, grey lines), and 11 maximal cliques of size 3, namely B = (1, 11, 17) and Ci = (i, i +1, i +2) for all 1 ≤ i ≤ 14Figure 7
(a) The example shows one maximal clique A of size 4 with A = (1, 6, 11, 16) (dashed, grey lines), and 11 maxi-
mal cliques of size 3, namely B = (1, 11, 17) and Ci = (i, i +1, i +2) for all 1 ≤ i ≤ 14. Note that A and B share two nodes
with each other but at most one node with every of the Ci cliques. (b) Clique A constitutes the only 4-clique community on
level 4. On level 3 we see one 3-clique community consisting of all Ci cliques and one consisting of A and B. Note that, as stated
in Theorem 4, clique A is contained in only one 3-clique community. However, the set of nodes (1, 6, 11, 16) is contained in
both of the corresponding 3-node clusters. The containment relation is indicated by the red, dashed arrow. Thus this graph
provides an example where the containment relationship on the level of k-node clusters does not have to be hierarchic. This
graph is additionally an example for a case in which the number of k-clique communities is neither monotonically increasing nor
decreasing with increasing k.
Page 7 of 22
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:12 http://www.almob.org/content/4/1/12
|Kx∩y| = z, Kx y := Kx ∪ Ky and let their union have at least 2k
nodes: |Kx∪y| = x + y - z ≥ 2k. It follows that z >x + y - 2k. If
now x - z ≥ k choose any k nodes from Kx\Ky and any k
nodes from Ky. These two sets constitute k-cliques that are
naturally disjoint. If x -z <k add any k -(x -z) nodes from
Kx∩y, building k-clique C1. Naturally, Ky\C1 will contain at

least y - (k - x + z)) = y - k + x - z >k nodes. Pick any k nodes
from this to build the second k-clique C2. C1 and C2 are
again disjoint. It thus follows that if the union of two
cliques contains at least 2k nodes, one can find two dis-
joint cliques of size k in them. If the union of the two
cliques contains less than 2k distinct nodes it is not possi-
ble to find two sets of size k that do not share a common
node which completes the proof. ■

With this, a simple algorithm to find all cohesive k-clique
communities is given by checking for each k-clique com-
munity on each level k first whether it is cohesive:

1. Check whether any of its constituting maximal
cliques has a size larger than 2k - then it is not cohe-
sive. This can be done in O(1) in an appropriate data
structure of the k-clique communities, e.g., if stored as
a list of cliques. Let denote the number of maximal
cliques in the graph. Since every maximal clique is
contained in at most one k-clique community on each
level, this amounts to O(kmaxγ).

2. Check for every pair of cliques Kx, Ky in it whether
their overlap is larger than x + y - 2k - then it is not
cohesive. Again, since every clique can be contained in
at most one k-clique community on each level, this
amounts to O(kmaxγ2).

The more challenging task is to prove maximality. In a
naive approach, every of the k-clique communities has to
be checked against all other k-clique communities
whether it is a subset of any of these. Since there are at
most kmaxγ many k-clique communities with each at most

γ many cliques contained in them, this approach results

in a runtime of . Luckily this can be improved to

the following runtime:

Theorem 8 To find all maximally cohesive k-clique communi-
ties given the clique-clique overlap matrix M takes O(kmax ·
γ2).

The proof can be found in the Appendix.

Of course, γ can in the worst case be an exponential
number [19]. However, CFinder has proven itself to be
very useful in the analysis of very large data sets with up to
10, 000 nodes [21]. Real-world networks neither tend to
have a large kmax nor a large number of different maximal
cliques. Thus, although the runtime seems to be quite pro-
hibitive it turns out that for the data sets that show up in
biological and chemical fields the algorithm behaves
nicely. Of course, there are several other algorithms for
computing the set of all maximal cliques, especially on
special graph classes, like sparse graphs or graphs with a

kmax
2 3g

(a) This graph consists of three maximal cliques: (1, 2, 3, 4), (4, 5, 6), and (4, 5, 6, 7)Figure 8
(a) This graph consists of three maximal cliques: (1,
2, 3, 4), (4, 5, 6), and (4, 5, 6, 7). The 3-clique community
on level 3 is not cohesive because there are two 3-cliques,
namely (1, 2, 3) and (5, 6, 7), indicated by red, bold edges,
that do not share a node. An equivalent argumentation is that
the union of (1, 2, 3, 4) and (4, 5, 6, 7) contains 7 distinct
nodes, i.e., more than 2k = 6 nodes. Both 4-clique communi-
ties are cohesive because they consist of a single clique with
size less than 2k = 8. (b) This graph consists of a two maximal
cliques: (1, 2, 3, 4, 5) and (3, 4, 5, 6, 7). On both levels, 3 and
4, the k-clique community consists of both cliques, but on
level 3 the 3-clique community is not cohesive because (1, 2,
3) and (5, 6, 7) still share no single node. But on level 4 the 4-
clique community is cohesive because the union of the two
maximal cliques contains 7, i.e., less than 2k = 8 nodes.

(a) The K6 is not cohesive as a 3-clique community because it contains two 3-cliques (indicated by grey and white nodes) that do not share a nodeFigure 9
(a) The K6 is not cohesive as a 3-clique community
because it contains two 3-cliques (indicated by grey
and white nodes) that do not share a node. However,
it is a cohesive 4-, 5-, or 6-clique community. (b) The graph
constitutes a 3- and a 4-clique community because the K6
(grey and white nodes) and the K5 (white and black nodes)
share 3-nodes. However, the union of the two cliques con-
tains 8 nodes, and thus it is not cohesive on both levels. For k
= 3, the grey nodes build a K3, which does not share a node
with the K3 built by the white nodes; for k = 4, the grey
nodes and any of the white nodes build a K4, which does not
share any node with the K4 built by the other 4 nodes.
Page 8 of 22
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:12 http://www.almob.org/content/4/1/12
limited number of cliques. A good survey on these algo-
rithm can be found in [22]. The algorithm in [23] runs in
O(nmγ), with n the number of nodes and m the number
of edges in the original graph. Determining the clique-
clique overlap matrix takes O(nγ2) time, and with this we
come to an overall runtime of O(n(mγ + γ2)). Computing
the k-clique communities for a given k, starting from 3 and
increasing it, can be done by first setting all entries smaller
than k - 1 to 0. Under the reasonable assumption that the
number of different maximal cliques in real-world net-
works can be bound by a polynomial the whole runtime
is polynomial.

Algorithm LInCS

Input: Clique-Clique-Overlap Matrix M

for k = 3 to kmax do

Build graph G(k) in which two cliques Ci, Cj are con-
nected by an

edge if M [i] [j] ≥ k - 1

(k) ← compute components in G(k)

for all components C in (k) do

if isCohesive(C, M) then

Insert C into the list of recognized maximally cohe-
sive k-clique communities

Remove all maximal cliques in C from M

end if

end for

end for

Bool function isCohesive

for i = 1 to number of cliques in k-clique-community C do

if clique1 has more than 2k nodes then

return FALSE

end if

end for

for all pairs of cliques Ci and Cj do

if Ci is a Kx clique and Cj is a Ky clique and M [i] [j] <x +
y - 2k then

return FALSE

end if

end for

return TRUE

In the following section we will describe some results on
the performance of the LInCS-algorithm on different data
sets.

Data sets and experimental results
In subsection 'Data sets' we introduce the data sets that
were used to evaluate the quality of the new clustering
algorithm. Subsection 'Performance measurement of cluster-
ing molecules' describes how to quantify the quality of a
clustering of some algorithm with a given reference clus-
tering.

Data sets
We have applied LInCS to two different data sets: the first
data set consists of drug-like molecules and provides a
natural clustering into six distinct clusters. Thus, the result
of the clustering can be compared with the natural cluster-
ing in the data set. Furthermore, since this data set allows
for a pairwise similarity measure, it can be compared with
the result of a classic Ward clustering with level selection
by Kelley. This data set is introduced in 'Drug-like mole-
cules'. The next data set on protein-protein interactions
shows why it is necessary to allow for graph based cluster-
ing methods that can moreover compute overlapping
clusters.

Drug-like molecules
157 drug-like molecules were chosen as a reference data
set to evaluate the performance of LInCS with respect to
the most used combination of Ward's clustering plus level
selection by Kelley et al.'s method. The molecules were
downloaded from the ZINC database which contains
commercially available drug-like molecules [24]. The cho-
sen molecules belong to six groups that all have the same
scaffold, i.e., the same basic ring systems, enhanced by dif-
ferent combinations of side chains. The data was provided
by the former ComGenex Inc., now Albany Molecular
Research Inc. [25]. Thus, within each group, the molecules
have a basic structural similarity; the six groups are set as
reference clustering. Fig. 10 shows the general structural
scheme of each of the six subsets and gives the number of
compounds in each library. Table 1, 2 gives the IDs of all
157 molecules with which they can be downloaded from
ZINC.

C

C

Page 9 of 22
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:12 http://www.almob.org/content/4/1/12
As already indicated, this data does not come in the form
of a graph or network. But it is easy to define a similarity
function for every pair of molecules, as sketched in the fol-
lowing.

Similarity metric of molecules
The easiest way to determine the similarity of two mole-
cules is to use a so-called 2D-fingerprint that encodes the
two-dimensional structure of each molecule. 2D molecu-
lar fingerprints are broadly used to encode 2D structural
properties of molecules [26]. Despite their relatively sim-

ple, graph-theory based information content, they are also
known to be useful for clustering molecules [4].

Although different fingerprinting methods exist, hashed
binary fingerprint methods attracted our attention due to
their simplicity, computational cost-efficiency and good

The first data set consists of drug-like molecules from six dif-ferent combinatorial librariesFigure 10
The first data set consists of drug-like molecules
from six different combinatorial libraries. The figure
presents the general structural scheme of molecules in each
combinatorial library and the number of compounds in it.

Table 1: The table gives the ZINC database IDs for the 157 drug-
like molecules that are manually clustered in 6 groups,
depending on their basic ring systems (clusters 1 to 3).

Cluster 1 Cluster 2 Cluster 3

06873823 06873893 06873927
06873855 06873894 06873929
06873857 06873895 06874039
06873861 06874719 06874040
06874015 06874720 06874109
06874088 06874722 06874174
06874162 06874724 06874175
06874204 06874725 06874176
06874206 06874726 06874178
06874209 06874727 06874243
06874212 06874728 06874244
06874300 06874729 06874256
06874301 06874732 06874257
06874342 06874733 06874258
06874351 06874734 06874259
06874352 06874750 06874260
06874356 06874764 06874262
06874360 06874767 06874921
06874361 06874768 06874923
06874364 06874769 06874924
06874479 06874771 06874925
06874527 06874772 06874928
06874531 06874789 06875012
06874540 06874790 06875013
06874573 06874792 06875014
06874578 06874793 06875015
06874579 06874794 06875016
06874583 06874795 06875017
06874586 06874802 06875018
06874588 06874912
06874597 06875068
06874599
06874634
06874635
06874639
06874696
06874833
06874836
06874975
06875048
06875051
06875052
06875055
06875058
06875060
06875064

To each ID the prefix ZINC has to be added, i.e., first molecule's ID is:
ZINC06873823.
Page 10 of 22
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:12 http://www.almob.org/content/4/1/12
performance in the case of combinatorial libraries [2,3].
One of the most commonly used hashed fingerprint algo-
rithms is the Daylight-algorithm [27]. A similar algorithm
was implemented by the ChemAxon Inc. [28] to produce
ChemAxon hashed binary fingerprints.

The binary hashed fingerprint generating procedure first
explores all the substructures in the molecule up to a pre-
defined number of bonds (typically 6 bonds). The follow-
ing step converts each discovered fragment into an integer
based on a scoring table. The typical length, i.e., the
number of bits of a hashed fingerprint are 1024, 2048, or
higher, and initially the value of bits are set to 0. The pres-
ence of a discovered fragment in the fingerprint is repre-
sented by turning the value of the bit from 0 to 1 at the bit
position computed by the score of the fragment. In sum-
mary, the fingerprints try to map substructures in a mole-
cule into numbers with the idea that molecules with
similar overall structure will have many substructures in
common and thus also their fingerprints will be alike.

In this study we used the freely available ChemAxon fin-
gerprint method [28]. Fingerprints for molecules were
produced with a length of 4096 bits by exploring up to 6
bonds.

In order to quantify the level of similarity between the fin-
gerprints of two molecules we applied the well-known
Tanimoto-similarity coefficient [29]. The Tanimoto-simi-
larity coefficient of molecules A and B (TAB) is computed
according to Eq. 1. In the formula, c denotes the number
of common bits in the fingerprint of molecule A and B,
and a and b stand for the number of bits contained by
molecule A and B, respectively. The value of the Tanim-
oto-similarity coefficient ranges from 0 (least similar) to 1
(most similar).

The Tanimoto-similarity coefficient of each pair of mole-
cules can be computed and then stored in a matrix,
denoted as the similarity matrix. As stated above, the CCC
method and LInCS expect as input a graph or network that
is not fully connected, otherwise the outcome is just the
whole set of entities. In the following we will describe
how a reasonable similarity-threshold t can be found to
turn the similarity matrix into a meaningful adjacency
matrix. With this, we will then define a graph by repre-
senting all molecules by nodes and connect two nodes if
their similarity is higher than that threshold.

Generating a similarity network of molecules
It is clear that the choice of a threshold value t might
strongly influence the resulting clustering; thus, a reason-
able selection of t is very important. To our knowledge, no
general solution exists for selecting the optimal t. It is clear
that if t is too high, the resulting graph will have only a few
number of edges and will consist of several components.
But it can be expected that these components will show a
high density of edges and will be almost clique-like. This
can actually be measured by the so-called clustering coeffi-
cient that was introduced by Watts and Strogatz [30]. The
clustering coefficient of a single node v computes the ratio
between the number e(v) of its neighbors that are directly
connected to each other and the possible number of
neighbors that could be connected to each other, given by
deg(v)·(deg(v) - 1)/2:

The clustering coefficient of a graph is defined as the aver-
age clustering coefficient of its nodes. Starting at t = 1, the
resulting graph is empty. By decreasing t, more and more
edges will be introduced, connecting the isolated compo-
nents with each other and thus increasing the average
clustering coefficient.

Below a certain t, it is likely that the new edge will be con-
necting more or less random pairs of nodes and thus

T
c

a b cAB =
+ −

(1)

cc v
e v

deg v deg v
()

()
() (())

.= ⋅
⋅ −
2

1
(2)

Table 2: The table gives the ZINC database IDs for the 157 drug-
like molecules that are manually clustered in 6 groups,
depending on their basic ring systems (clusters 4 to 6). To each
ID the prefix ZINC has to be added.

Cluster 4 Cluster 5 Cluster 6

06874736 06873829 06873904
06874744 06873897 06874113
06874755 06873901 06874115
06874798 06873930 06874117
06874808 06873933 06874119
06874864 06873939
06874868 06873956
06874869 06874021
06874875 06874026
06874877 06874030
06874881 06874032
06874882 06874035
06874885 06874172
06874886 06874192
06874889 06874194
06874897 06874197
06875071 06874201
06875075 06874554
06875077 06874560
06875082 06875035
06875084 06875039
06875086 06875044
06875091
06875097
Page 11 of 22
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:12 http://www.almob.org/content/4/1/12
decrease the clustering coefficient of the newly connected
nodes. Of course, if the threshold value is set to 0, the
resulting graph would be one big clique and the clustering
coefficient would again rise to 1. Based on this general
behavior, the question is whether there is a natural choice
for t where the clustering coefficient is still high and t is
not yet too low. To understand the dependency between
the average clustering coefficient and t, we computed all
graphs with thresholds t ranging from 0.34−which is the
average similarity between all molecules in the set−to 1.
Surprisingly, there is a local maximum at t = 0.46 with an
average clustering coefficient of 0.9834 (s. Fig. 11). This
value was then chosen as the optimal threshold value.

On this data set we have applied Ward's hierarchical clus-
tering with a level selection according to Kelley's index
and compared it with the reference clustering and the one
computed by our LInCS algorithm. The results are dis-
cussed in 'Performance of LInCS on the drug-like molecule
data set'. We will now introduce the second data set that
does not allow for a simple pairwise similarity measure
but is rather described naturally by a graph.

Protein-protein interaction network of yeast core
Protein-protein interaction data present a very good
example of biological data that does not come with a
quantifiable pairwise similarity but with a binary relation-
ship: either two proteins are either observed to interact or
not. Thus, classic hierarchical clustering methods cannot
be applied here. Furthermore, it is assumed that many
proteins may have more than one function in the cell; e.g.,
in the yeast protein database one or more of 42 cellular
roles can be assigned to a given protein. According to [31],
39% of the proteins were assigned multiple cellular roles.

Here, a clustering method is clearly advantageous if it can
produce overlapping clusters.

The data was used as provided by Palla et al. in their
CFinder-software package which is available on the Inter-
net [20] under the name ScereCR20050417. In the whole
it contains 2, 640 proteins. The data is based on experi-
mental data which are curated manually as well as auto-
matically. Some of the most used protein-protein
interaction detection methods, as the yeast two-hybrid
system are well-known for the poor quality of their results;
some estimate that the number of false-positive results is
up to 50% [32]. In this case a clustering method can help
to find out those edges that are more likely to be correct.
To create a graph, each protein is presented by a node and
two nodes are connected by an edge if the corresponding
proteins are reported to interact. The resulting graph is
unweighted and undirected.

Performance measurement of clustering molecules
After having introduced the data sets, we will now show
how a given clustering's quality can be quantified if some
reference clustering is given.

Sensitivity and specificity
We will first discuss the case of a non-overlapping refer-
ence clustering and then that of an overlapping reference
clustering.

Given any non-overlapping reference clustering, as the set
of 157 molecules that naturally come in six clusters, the
clustering of some algorithm X has to be compared with it
in a reasonable way. The correctness of the clustering
process can be quantified by the so-called sensitivity and
specificity measures [33]. Both rely on the following idea,
exemplified on the molecule data set: Let ACL denote a
matrix of size 157 × 157 where there is a 1 in ACL[i][j] if
any combinatorial library contained both molecule mi
and mj (and a -1 otherwise). Let similarly AX denote the
corresponding matrix that results from the clustering by
algorithm X, i.e., AX[i][j] contains a 1 if algorithm X
detects a cluster in which mi and mj are both contained and
a -1, otherwise. Since ACL is the standard, an algorithm
performs well if it makes the same decisions of whether a
pair of molecules is in the same cluster or not. We distin-
guish the following four cases:

1. ACL[i][j] = 1 &AX [i][j] = 1: true positive;

2. ACL[i][j] = -1 &AX [i][j] = -1: true negative;

3. ACL[i][j] = -1 &AX [i][j] = 1: false positive;

4. ACL[i][j] = 1 &AX [i][j] = -1: false negative;

Average clustering coefficient vs. similarity thresholdFigure 11
Average clustering coefficient vs. similarity thresh-
old. The diagram shows a clear local maximum at t = 0.46
where the average clustering coefficient is 0.9834.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 c
lu

st
er

in
g

co
ef

fic
ie

nt

t (Tanimoto-similarity)

Determining the optimal similarity threshold
Page 12 of 22
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:12 http://www.almob.org/content/4/1/12
With this, the sensitivity is defined as the number of pairs
of molecules that are correctly clustered together by algo-
rithm X divided by all the pairs that were clustered
together in the reference clustering. This latter number can
be expressed by the sum of all true positive and false neg-
ative pairs as can be easily seen from the enumeration
above:

If the sensitivity is 1, this means that algorithm X has clus-
tered together exactly the same pairs of molecules as the
reference clustering. However, this would also happen,
e.g., if X simply produces one big cluster. To rule this out,
the specificity is defined as the ratio of the number of pairs
correctly separated into different clusters, divided by the
number of pairs that are in different clusters in the refer-
ence clustering. This latter number can be analogously
represented by the sum of the number of true negatives
plus the number of false positives:

Thus, the clustering computed by some algorithm X has a
specificity of 1 if and only if it puts all pairs of molecules
into different clusters that are in different clusters in the
reference clustering. If the clustering computed by some
algorithm X shows a sensitivity and specificity of 1 it has
found exactly the same clusters as the reference clustering.
Note that for a hierarchical clustering the sensitivity of a
clustering in level k is at least as large as the sensitivity of
clusterings in higher levels while the specificity is at most
as large as that of clusterings in higher levels.

The case is a bit more difficult for overlapping reference
clusterings as in the case of the protein-protein-interac-
tion network where no simple reference clustering exists.
However, for many proteins annotation data is available
that assigns different kind of properties to them, e.g.:

1. the biological processes in which the protein is
involved;

2. the cellular component in which the protein is
located;

3. the molecular function of the protein.

Using the BINGO 2.0 plugin [34] of Cytoscape [35] it is
possible to obtain for a given clustering of proteins all of

the annotated functions from the three categories as
described above. Actually, these are downloaded from dif-
ferent databases, as described by [34]. One of the possible
applications of a clustering algorithm on this kind of data
is that proteins that are not yet assigned to, e.g., a biolog-
ical process might be assigned to a cluster in which almost
all proteins are annotated to the same biological process.
Since a cluster represents a set of strongly interacting pro-
teins it is then very likely that also the not yet annotated
protein takes part in this biological process. This can then
be checked directly in the laboratory, possibly saving
money and time for other tests. To understand whether
the clusterings obtained by the CCC and LInCS method
are pure enough for most annotation categories, we ana-
lyzed them with respect to all annotation categories. Each
category is thought of as a cluster in the reference cluster-
ing. Since more than one category can be assigned to each
protein, this can be thought of as an overlapping reference
clustering. To make the quality measurements meaningful
in this case we will have to alter them slightly as described
in the following.

Let denote the set of all proteins and let P(bp) denote
the set of all proteins that are assigned to at least one bio-
logical process. This amounts to 2, 198 proteins. Simi-
larly, P(cc) denotes the subset of all proteins that are
assigned to at least one cellular component with |P(cc)| =
2, 184, and P(mf) the subset of all proteins of which at
least one molecular function is known with |P(mf)| = 1,
822.

Each single biological process, cellular component, or
molecular function will in the following be called a cate-

gory. CX, X ∈ {bp, mf, cc}, denotes the type of the category:

Cbp denotes a specific biological process and analogously

Cmf and Ccc a cellular component. Let now (C) denote

the subset of proteins that is assigned to category C. Of
course, a clustering is sensitive if all proteins in (C) are
in one cluster.Regarding a single category CX, e.g., a bio-

logical process, we will call a clustering specific if no pro-
tein from (CX) is in a cluster with any protein that is at

least assigned to one biological process but not to CX, i.e.,

any protein in P (X) - P(CX). However, we do not care

whether any pair of two proteins from (P(X) - P(CX)) ×

(P(X) - P(CX)) are together in a cluster or not. This is justi-

fied because these proteins in P(X) - P(CX) could be

assigned to other categories of the same type that require
them to be in the same cluster. This implies that we
should not require them to be in separate clusters. We
thus restrict the measurement of the sensitivity to all pairs

Sensitivity
True Positives

True Positives False Negat
:

#
#

=
+ iives

(3)

Specificity
True Negatives

True Negatives False Positi
=

+
#

vves

(4)

P

P

P

P

Page 13 of 22
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:12 http://www.almob.org/content/4/1/12
in (CX) × (CX) and the specificity to all pairs in

(CX) × (P(X) - P(CX)).

After describing the data sets and the methods to quantify
the result of a given clustering, we will now describe the
results.

Results and discussion
Performance of LInCS on the drug-like molecule data set
The molecule data set described in 'Drug-like molecules' is
the data set to which all methods can be applied: Ward's
hierarchical clustering together with the level-selection
mechanism defined by Kelley-index and the two overlap-
ping clustering algorithms CCC and LInCS. We first dis-
cuss the clusters resulting from Ward's hierarchical
clustering together with the Kelley-index, then discuss the
clusters on different k-levels as computed by the CCC and
finally show the results for LInCS.

Clustering the 157 molecules by Ward's method and
using the Kelley-index for selecting the best level resulted
in nine clusters, i.e., k = 9, instead of the expected six. This
clustering results in a specificity value of 1.0 and a sensi-
tivity value of 0.6389. Actually, in this case the Kelley
index did not choose the optimal level with respect to the
reference clustering: In order to exclude the potential bias
of the Kelley-index, the sensitivity and specificity values
were computed for all possible levels of the clustering
hierarchy (Fig. 12). Surprisingly, the fifth level with sensi-
tivity 1 and specificity 0.9842 shows the optimal combi-
nation of both values, and not the nineth level as
predicted by the Kelley-indexs. Note that none of the lev-
els shows the correct clustering.

The CCC performs better in that it at least produces some
level in which the six wanted clusters are found: As in
Ward's algorithm, we tested the sensitivity and specificity
of the resulting clusters at each level of k. Here, the situa-

P P

P

Quality of the clusterings obtained by Ward's method for each possible level kFigure 12
Quality of the clusterings obtained by Ward's method for each possible level k. According to the Kelley-index, the
best level is 9. The Kelley-index does not find the best level in the hierarchy since both, specificity and sensitivity, are even
higher on level 5.
Page 14 of 22
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:12 http://www.almob.org/content/4/1/12
tion is a bit better since for k = 5 the computed clustering
is the same as the reference clustering (Fig. 13). However,
without the reference clustering set it would of course not
be possible to find the best k.

Only LInCS manages to choose from all of the 138 k-
clique-communities provided by the CCC those six clus-
ters that are the same as the reference clusters in one step
by determining the set of maximally cohesive k-clique
communities (s. 'Finding cohesive k-clique communities:
LInCS').

Note that these clusters came from different k levels
although they could also have come from the same level.
In any case, this confirms the ability of our LInCS algo-
rithm to resolve the k-level selection problem by choosing
the maximally cohesive clusters from different levels. It

should be noted that the similarity network itself consists
of four components, i.e., the six clusters are not directly
mapped to six different connected components which
would then be easy to find. This argues for the fact that the
six resultant clusters were not produced by applying the
similarity threshold to the full graph but were produced
by LInCS. Both, sensitivity and specificity reach their maxi-
mal value of 1.0 (Fig. 14) at the previously determined
optimal similarity threshold at t = 0.46. Note also that the
clusters are non-overlapping for the chosen similarity
threshold of t = 0.46. However, generating the similarity
network by applying lower threshold values t, for instance
t = 0.40, some of the resultant LInCS clusters are overlap-
ping. This is reasonable considering that the criterion of
two molecules to be similar is weakened by decreasing the
threshold value. Another consequence is that the sensitiv-
ity and specificity values are slightly weaker but still close

Quality of the clustering results of CCC at different levels k for the similarity threshold t = 0.46Figure 13
Quality of the clustering results of CCC at different levels k for the similarity threshold t = 0.46. Only for k = 5
the same clustering as the reference clustering is computed. It implies that using the CCC algorithm it would be possible to
obtain the same clustering as the reference clustering. However, that would require the selection of one specific, i.e., the opti-
mal level of k. But without prior knowledge of the reference clustering it is not possible to determine this optimal level.
Page 15 of 22
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:12 http://www.almob.org/content/4/1/12
to their maximal value of 1 as shown in Fig. 14. Note that
the correct clustering can be found for t in the interval of
0.45-0.48.

LInCS was valuable in finding all six groups of molecules
that had the highest similarity as defined by the six com-
binatorial libraries. We will now show its performance on
a data set where no such reference clustering exists but
where the homogeneity of the clusters can still be deter-
mined.

Analysis of yeast core protein-protein interaction network
While designing the LInCS algorithm the most important
objective was to provide a general method for finding
cohesive groups in networks. In order to demonstrate the
specific feature of LInCS we applied it to the protein-pro-
tein interaction network of Saccharomyces cerevisiae. CCC
and the consecutive LInCS algorithm can be applied to
this network without any transformation and the use of
any parameters. The performance of the clustering was

measured by computing the sensitivity and specificity val-
ues for the biological properties assigned to the proteins
as described in 'Performance measurement of clustering mol-
ecules'.

Note that most of the proteins in the data set will not be
contained in any of the k-clique communities on each
possible level k (s. Table 3). Thus, all proteins not con-
tained in any community have to be added as singletons
to guarantee that each protein is contained in the cluster-
ing. We call the percentage of proteins contained in at
least one community the coverage of a clustering.

It is clear that from the coverage, the k = 3 level would be
most reasonable because here 1, 284 out of the 2, 640 pro-
teins are contained in at least one k-clique community.
On the other hand, the clusters are not all very specific: the
minimal specificity of all clusters regarding categories
from biological processes, molecular functions or the cel-
lular component is 0.8 in all three cases. Vice versa, the

Clustering results of LInCSFigure 14
Clustering results of LInCS. The figure shows the clustering results of the generated similarity networks at certain similar-
ity threshold values t.
Page 16 of 22
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:12 http://www.almob.org/content/4/1/12
clusterings on higher levels are much more specific but
they cover only a few proteins out of all: the minimal spe-
cificity of any cluster regarding categories from biological
processes is 0.98, for molecular function categories it is
0.99, and for cellular component categories it is 0.99. In
essence, the only reasonable levels seem to be located at k
= 3 or 4. In their paper, Palla et al. picked the k = 4 level as
the most biologically reasonable by manually looking at
the resultant clusterings [11]. According to the following
measures the clustering computed by LInCS lies between
the two levels: it covers 880 proteins instead of only 609
in level 4 but it is already almost perfectly specific: for all
clusters the minimal specificity concerning biological
process categories is 0.99, for all molecular function cate-
gories it is 1.0 and for all cellular component categories it
is 0.99.

But is the LInCS clustering really preferable over the CCC
clustering at level 3 if it covers less proteins? As stated
above, the main motivation for the cluster selection algo-
rithm was to find at least one cluster for each protein that
is cohesive. Of course, the idea is that a cohesive cluster at
the graph theoretic level also represents a set of data that
is similar to each other. If no such cluster can be found for
a given protein it might be better not to include it in an
incohesive cluster but rather add it as a singleton. To test
whether our notion of cohesiveness really manages to
identify the clusters that contain biologically similar pro-
teins we measured the homogeneity of categories in the
following way: We define the homogeneity H(C, k, i) of
cluster i and category C at level k as the percentage of pro-
teins assigned to category C. For all categories to which at
least one protein of the cluster is assigned we computed its
homogeneity. Fig. 15, 16 and 17 shows histograms that
represent for each (non-singleton) cluster how many cat-
egories had a homogeneity of at most 20%, between 20 -
40%, 40 - 60%, 60 - 80% and 80 - 100%. It can be clearly
seen that LInCS almost exclusively only picks those clus-
ters in which the homogeneity of the categories is at least
between 20% and 40%. Furthermore, those that were not

included contain many proteins assigned to categories
with a very low homegeneity value. This implies that
those clusters that were included to the LInCS clustering
by the graph theoretic notion of cohesiveness are much
more homogeneous on the biological level than those
that were not included. This result strengthens our choice
of a cohesiveness measure, but of course, for other data
sets other measures of cohesiveness might be appropriate
as we will discuss in section 'Generalization of the approach'.

In summary it turns out that LInCS, by picking clusters
from different levels, interpolates between the advantages
and disadvantages of level 3 and 4. A closer look at those
clusters that were not included in LInCS' clustering
revealed that they are biologically not very meaningful
because the contained proteins do not agree in their bio-
logical role. This indicates that the graph theoretic based
notion of cohesiveness captures a notion that is also bio-
logically meaningful. Note that LInCS, like the Kelley
index for data sets with a similarity measure, does not
need any further parameters: Following the paper by Palla
et al., different protein-protein interaction networks have
been analyzed based on the CCC [11,14,15]. Interest-
ingly, none of the latter publications offered a systematic
and general method for extracting one single (overlap-
ping) clustering from the different levels. As shown above,
selecting the k-clusters by LInCS did not require any
parameter or prior knowledge from the user. The experi-
ments confirm that our approach is not only able to pro-
duce a cohesive clustering but that the resulting clustering
is reasonable for the two data sets we analyzed.

As already seen above, LInCS can produce clusterings that
put many nodes in singletons. In extreme cases it is possi-
ble that CCC produces only non-cohesive k-clique com-
munities such that LInCS will produce a clustering in
which all nodes are contained as singletons (s. Fig. 18). It
is certainly necessary to analyze a data set more closely, as
we have done it for the PPI data set above, to see whether
this is really a feature of the data set or an artifact of the

Table 3: Shown is the number of clusters on each level as computed by the CCC, the coverage of each level, and the total number of
clusters, i.e., the sum of the first column and the number of singletons.

Level Number of clusters of size 2 Coverage Total number of clusters

3 167 48.6 1523
4 82 23.1 2113
5 48 12.2 2365
6 18 6.0 2502
7 8 3.0 2570
8 4 1.5 2605
9 2 0.07 2623

LInCS 219 33.3 1979

The last line shows the according values for the clustering found by LInCS.
Page 17 of 22
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:12 http://www.almob.org/content/4/1/12

Page 18 of 22
(page number not for citation purposes)

Shown are for all clusters at level 3 of the CCC the homogeneity value distribution of those biological process categories that are assigned to at least one protein in the clusterFigure 15
Shown are for all clusters at level 3 of the CCC the homogeneity value distribution of those biological process
categories that are assigned to at least one protein in the cluster. The upper diagram shows the distributions of those
clusters that are included in the LInCS clustering and the lower one those of the clusters that were not included.

Algorithms for Molecular Biology 2009, 4:12 http://www.almob.org/content/4/1/12

Page 19 of 22
(page number not for citation purposes)

Shown are for all clusters at level 3 of the CCC the homogeneity value distribution of those cellular component categories that are assigned to at least one protein in the clusterFigure 16
Shown are for all clusters at level 3 of the CCC the homogeneity value distribution of those cellular compo-
nent categories that are assigned to at least one protein in the cluster. The upper diagram shows the distributions of
those clusters that are included in the LInCS clustering and the lower one those of the clusters that were not included.

Algorithms for Molecular Biology 2009, 4:12 http://www.almob.org/content/4/1/12

Page 20 of 22
(page number not for citation purposes)

Shown are for all clusters at level 3 of the CCC the homogeneity value distribution of those molecular function categories that are assigned to at least one protein in the clusterFigure 17
Shown are for all clusters at level 3 of the CCC the homogeneity value distribution of those molecular function
categories that are assigned to at least one protein in the cluster. The upper diagram shows the distributions of those
clusters that are included in the LInCS clustering and the lower one those of the clusters that were not included.

Algorithms for Molecular Biology 2009, 4:12 http://www.almob.org/content/4/1/12
cohesiveness measure. We will thus now discuss how the
idea of finding cohesive clusters can be generalized.

Generalization of the approach
The idea of choosing maximally cohesive clusters can
actually be extended to all hierarchical clusterings to avoid
choosing one optimal level instead of choosing from all
the clusters on all levels at the same time. Of course, for
other algorithms and data sets the notion of cohesiveness
has to be replaced reasonably. To generalize our idea, the
chosen cohesiveness measure should have the following
property: If a cluster on level k is cohesive this implies that
all of its subsets are cohesive. Thus, coming from the levels
with the lowest k the maximally cohesive clusters are found
first, i.e., in a so-called divisive clustering algorithm that
starts with the full set and refines this iteratively the algo-
rithm would stop the refinement at a given cluster the
moment it is cohesive.

Conclusion
In this article we present a new kind of cluster selection
method for hierarchical clusterings, introduced on the
example of the CCC method by Palla et al. [11]. This
method is especially suitable for biological and chemical
data sets where no full similarity measure can be defined
and in which multiple membership of items to clusters is
expected. For these data sets, which can be represented by
a graph, we propose to use the CCC method and our level-
independent cluster selection mechanism LInCS. We
showed on two examples that this method yields biologi-
cally or chemically meaningful clusterings. The method is
deterministic, the runtime is quadratic in the number of
maximal cliques in the data set and linear in the size of the
maximum clique. Under the reasonable assumption that
both parameters are small in real-world data sets the runt-
ime is feasible in practice. LInCS uses a graph-theory
based and deterministic procedure to find so-called cohe-
sive clusters which does not require prior knowledge and
expectation on the number and size of the clusters.
Although the proposed cohesiveness measure was very
successful for the analyzed data sets, other data sets might
require other kinds of measures. We thus sketched the

generally necessary properties of any kind of cohesiveness
measure to adapt our method to other kind of hierarchical
clustering methods and data sets. Further research on this
topic will have to show whether the level independent
method of cluster selection is in general more successful
than the classic level selection methods.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
LAZ, GYK and GZK designed the algorithm, proved its cor-
rectness, and LAZ implemented it. KAZ and GZK designed
the experiments, GZK performed them, KAZ generalized
the idea and wrote most of the text. All authors contrib-
uted to the text, read and approved the final manuscript.

Appendix
Proof of Theorem 8

PROOF: Let C be any cohesive k-clique community with k
≥ 3. As stated by Theorem 4, it might be the superset of
one or more k + 1-clique communities. It is easy to see that
the k + 1-clique communities contained in it will also be
cohesive since any subset of a cohesive set of cliques is
also cohesive. Thus, a cohesive superset ensures that all its
contained j-clique communities with j >k are also cohe-
sive. Since it is as least as large as those, we do not have to
check these j-clique communities since they cannot be
maximally cohesive. On the other hand, the k-clique com-
munity C is itself a subset of exactly one k - 1-clique com-
munity on level k - 1. Thus, if this community is cohesive,
C is not maximally cohesive. It is now easy to see that by
trying for smallest k first, and checking all k-clique com-
munities on that level for cohesiveness, any cohesive k-
clique community is at the same time maximally cohesive.
Thus, all its maximal cliques can be removed from the
clique-clique-overlap matrix, thereby reducing the
amount of search time on higher levels.

To achieve the runtime, the clique-clique overlap matrix is
viewed as an adjacency matrix that builds a graph with at
most γ nodes and at most γ2 edges. Set k to 3 and let every
entry greater than or equal to k - 1 = 2 in the matrix con-
stitute one edge. Computing this graph G(k) = G(3) costs
O(γ2). A simple component analysis, e.g., by a breadth
first search analysis, yields all 3-clique communities.
These can then be checked for cohesiveness and due to the
arguments above, any cohesive 3-clique community will
at the same time be maximally cohesive. We can now
equate a cohesive k-clique community with the compo-
nent in the graph and define a component to be cohesive
if the corresponding k-clique community is cohesive. All
cohesive components can now be deleted from the graph
because of the above given argument that they are maxi-

This exemplary graph will yield a LInCS clustering consisting of only singletons since the one and only 3-clique community consisting of the whole graph is not cohesiveFigure 18
This exemplary graph will yield a LInCS clustering
consisting of only singletons since the one and only 3-
clique community consisting of the whole graph is
not cohesive.
Page 21 of 22
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:12 http://www.almob.org/content/4/1/12
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

mally cohesive. After all components have been checked
and while the graph is still non-empty, k is increased by
one. Then a new graph G(k) is built where again an edge
is drawn between two cliques if their overlap is at least k -
1. Then, the components in G(k) are computed and
checked for cohesiveness. This cycle of increasing k, build-
ing G(k), the component and cohesiveness analysis and
deleting the cohesive components from the graph is then
repeated until the graph G(k) is empty. Note that the
graph must eventually be empty since the highest entry in
the clique-clique overlap matrix is ≤ kmax.

Since a component analysis can be done in linear time in
the number of edges in a graph, i.e., in O(γ2), and there are
at most kmax rounds, this amounts to O(kmaxγ

2). Checking
for cohesiveness costs the same as argued above, and thus
the total runtime is in O(kmaxγ

2). See Algorithm for a
pseudo-code description of LInCS. ■

Acknowledgements
The project supported by the Hungarian National Research Fund and by
the National Office for Research and Technology (Grant Number OTKA
67651), by European Community's Seventh Framework Programme (FP7/
2007-2013)/ERC grant agreement no. 208319 and National Technology
Programme, grant agreement no. TECH_08_A1/2-2008-106, by the
DELTA Informatika Inc., by a grant from the National Research and Tech-
nological Office (NKTH Textrend). KAZ was supported by a grant by the
Deutsche Akademie der Naturforscher Leopoldina (BMBF LPD 9901/8-
182). The authors thank Imre Derényi and Gergely Palla for fruitful discus-
sions.

References
1. Downs GM, Willett P: Similarity searching and clustering of

chemical-structure databases using molecular property
data. J Chem Inf Comput Sci 1994, 34:1094-1102.

2. Willett P: Chemical similarity searching. J Chem Inf Comput Sci
1998, 38:983-996.

3. Wild DJ, Blankley CJ: Comparison of 2D fingerprint types and
hierarchy level selection methods fo structural grouping
using Ward's clustering. J Chem Inf Comput Sci 2000, 40:155-162.

4. Brown RD, Martin YC: Use of structure-activity data to com-
pare structure-based clustering methods and descriptors for
use in compound selection. J Chem Inf Comput Sci 1996,
36:572-584.

5. Ward JH: Hierarchical grouping to optimize an objective
function. J Amer Statist Assoc 1963, 58:236-244.

6. Leach AR: Molecular modeling, principles and applications Addison-Wes-
ley Publishing Company; 1997.

7. Kelley LA, Gardner SP, Sutcliffe MG: An automated approach for
clustering an ensemble for NMR-derived protein structures
into conformationally related subfamilies. Protein Eng 1996,
9:1063-1065.

8. Hartigan JA, Wong MA: A K-means clustering algorithm. Applied
Statistics 1979, 28:100-108.

9. Jarvis RA, Patrick EA: Clustering using a similarity measure
based on shared near neighbors. IEEE Trans Comput 1973,
C22:1025-1034.

10. Girvan M, Newman MEJ: Community structure in social and
biological networks. Proceedings of the National Academy of Sciences
2002, 99:7821-7826.

11. Palla G, Derényi I, Farkas I, Vicsek T: Uncovering the overlapping
community structure of complex networks in nature and
society. Nature 2005, 435:814-818.

12. Jardine N, Sibson R: The construction of hierarchic and non-
hierarchic classifications. Comp J 1968, 11:177.

13. Cole AJ, Wishar D: An improved algorithm for the Jardine-Sib-
son method of generating overlapping clusters. Comp J 1970,
13:156-163.

14. Zhang S, Ning X, Zhang XS: Identification of functional modules
in a PPI network by clique percolation clustering. Computa-
tional Biology and Chemistry 2006, 30(6):445-451.

15. Futschik ME, Chaurasia G, Tschaut A, Russ J, Babu MM, Herzel H:
Functional and transcriptional coherency of modules in the
human protein interaction network. Journal of Integrative Bioin-
formatics 2007, 4(3):. doi:10.2390/biecoll-jib-2007-76

16. Gaertler M: Network analysis: Methodological foundations Springer-Ver-
lag 2005 chap. Clustering:178-215.

17. Adamcsek B, Palla G, Farkas IJ, Derényi I, Vicsek T: CFinder: Locat-
ing cliques and overlapping modules in biological networks.
Bioinformatics 2006, 22:1021-1023.

18. Derényi I, Palla G, Vicsek T: Clique percolation in random net-
works. Phys Rev Lett 2005, 94:160202.

19. Garey MR, Johnson DS: Computers and intractability - a guide to the the-
ory of NP-completeness W. H. Freeman and Company, New York;
1979.

20. CFinder [http://cfinder.org]
21. Personal communication with Gergely Palla. .
22. Bonze I, Budinich M, Pardalos P, Pelillo M: Handbook of combinatorial

optimization Volume 4. Kulwer Academic Publishers, chap The maxi-
mum clique problem; 1999:19-21.

23. Tsukiyama S, Ide H, Ariyoshi H, Shirakawa I: A new algorithm for
generating all the maximal independent sets. SIAM J Comput
1977, 6(3):505-517.

24. Irwin JJ, Shoiche BK: ZINC - a free database of commercially
available compounds for virtual screening. J Chem Inf Model
2005, 45:177-182.

25. Albany Molecular Research Inc [http://www.amriglobal.com/]
26. Maldonado AG, Doucet JP, Petitjean M, Fan BT: Molecular similar-

ity and diversity in chemoinformatics: from theory to appli-
cations. Molecular Diversity 2006, 10(1):39-79.

27. Daylight Chemical Information Systems Inc [http://www.day
light.com/dayhtml/doc/theory/theory.finger.html]

28. ChemAxon Ltd., Chemical hashed fingerprints [http://
www.chemaxon.com/jchem/doc/user/fingerprint.html]

29. Tanimoto TT: Tech. rep., IBM Internal Report. 1957.
30. Watts DJ, Strogatz SH: Collective dynamics of 'small-world'

networks. Nature 1998, 393:440-442.
31. Schwikowski B, Uetz P, Fields S: A network of protein-protein

interactions in yeast. Nature Biotechnology 2000, 18:1257-1261.
32. Deane C, Salwiñski L, Xenarios I, Eisenberg D: Protein interac-

tions: two methods for assessment of the reliability of high
throughput observations. Mol Cell Proteomics 2002, 1(5):349-356.

33. Altman DG, Bland JM: Diagnostic tests 1: Sensitivity and specif-
icity. BMJ 1994, 308:1552.

34. Maere S, Heymans K, Kuiper M: BiNGO: a Cytoscape plugin to
assess overrepresentation of Gene Ontology categories in
Biological Networks. Bioinformatics 2005, 21(16):3448-3449.

35. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin
N, Schwikowski B, Ideker T: Cytoscape: a software environment
for integrated models of biomolecular interaction networks.
Genome Res 2003, 13(11):2498-2504.
Page 22 of 22
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10661562
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10661562
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10661562
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8961360
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8961360
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8961360
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15944704
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15944704
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15944704
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17098476
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17098476
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16473872
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16473872
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15904198
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15904198
http://cfinder.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15667143
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15667143
http://www.amriglobal.com/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16404528
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16404528
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16404528
http://www.daylight.com/dayhtml/doc/theory/theory.finger.html
http://www.daylight.com/dayhtml/doc/theory/theory.finger.html
http://www.chemaxon.com/jchem/doc/user/fingerprint.html
http://www.chemaxon.com/jchem/doc/user/fingerprint.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9623998
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9623998
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11101803
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11101803
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12118076
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12118076
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12118076
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8019315
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8019315
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15972284
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15972284
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15972284
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14597658
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14597658
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods: the LInCS algorithm
	Graph theoretical definitions
	Hierarchical clustering and the level selection problem
	Hierarchical clusterings
	Palla et al.'s clustering method

	Finding cohesive k-clique communities: LInCS

	Data sets and experimental results
	Data sets
	Drug-like molecules

	Similarity metric of molecules
	Generating a similarity network of molecules
	Protein-protein interaction network of yeast core

	Performance measurement of clustering molecules
	Sensitivity and specificity

	Results and discussion
	Performance of LInCS on the drug-like molecule data set
	Analysis of yeast core protein-protein interaction network

	Generalization of the approach
	Conclusion
	Competing interests
	Authors' contributions
	Appendix
	Acknowledgements
	References

