
BioMed CentralAlgorithms for Molecular Biology

ss
Open AcceResearch
A polynomial time biclustering algorithm for finding approximate
expression patterns in gene expression time series
Sara C Madeira*1,2,3 and Arlindo L Oliveira1,2

Address: 1Knowledge Discovery and Bioinformatics (KDBIO) group, INESC-ID, Lisbon, Portugal, 2Instituto Superior Técnico, Technical University
of Lisbon, Lisbon, Portugal and 3University of Beira Interior, Covilhã, Portugal

Email: Sara C Madeira* - smadeira@kdbio.inesc-id.pt; Arlindo L Oliveira - aml@inesc-id.pt

* Corresponding author

Abstract
Background: The ability to monitor the change in expression patterns over time, and to observe the emergence
of coherent temporal responses using gene expression time series, obtained from microarray experiments, is
critical to advance our understanding of complex biological processes. In this context, biclustering algorithms have
been recognized as an important tool for the discovery of local expression patterns, which are crucial to unravel
potential regulatory mechanisms. Although most formulations of the biclustering problem are NP-hard, when
working with time series expression data the interesting biclusters can be restricted to those with contiguous
columns. This restriction leads to a tractable problem and enables the design of efficient biclustering algorithms
able to identify all maximal contiguous column coherent biclusters.

Methods: In this work, we propose e-CCC-Biclustering, a biclustering algorithm that finds and reports all
maximal contiguous column coherent biclusters with approximate expression patterns in time polynomial in the
size of the time series gene expression matrix. This polynomial time complexity is achieved by manipulating a
discretized version of the original matrix using efficient string processing techniques. We also propose extensions
to deal with missing values, discover anticorrelated and scaled expression patterns, and different ways to compute
the errors allowed in the expression patterns. We propose a scoring criterion combining the statistical
significance of expression patterns with a similarity measure between overlapping biclusters.

Results: We present results in real data showing the effectiveness of e-CCC-Biclustering and its relevance in the
discovery of regulatory modules describing the transcriptomic expression patterns occurring in Saccharomyces
cerevisiae in response to heat stress. In particular, the results show the advantage of considering approximate
patterns when compared to state of the art methods that require exact matching of gene expression time series.

Discussion: The identification of co-regulated genes, involved in specific biological processes, remains one of the
main avenues open to researchers studying gene regulatory networks. The ability of the proposed methodology
to efficiently identify sets of genes with similar expression patterns is shown to be instrumental in the discovery
of relevant biological phenomena, leading to more convincing evidence of specific regulatory mechanisms.

Availability: A prototype implementation of the algorithm coded in Java together with the dataset and examples
used in the paper is available in http://kdbio.inesc-id.pt/software/e-ccc-biclustering.

Published: 4 June 2009

Algorithms for Molecular Biology 2009, 4:8 doi:10.1186/1748-7188-4-8

Received: 14 July 2008
Accepted: 4 June 2009

This article is available from: http://www.almob.org/content/4/1/8

© 2009 Madeira and Oliveira; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 39
(page number not for citation purposes)

http://www.almob.org/content/4/1/8
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19497096
http://kdbio.inesc-id.pt/software/e-ccc-biclustering
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

Algorithms for Molecular Biology 2009, 4:8 http://www.almob.org/content/4/1/8
Background
Time series gene expression data, obtained from microar-
ray experiments performed in successive instants of time,
can be used to study a wide range of biological problems
[1], and to unravel the mechanistic drivers characterizing
cellular responses [2]. Being able to monitor the change in
expression patterns over time, and to observe the emer-
gence of coherent temporal responses of many interacting
components, should provide the basis for understanding
evolving but complex biological processes, such as disease
progression, growth, development, and drug responses
[2]. In this context, several machine learning methods
have been used in the analysis of gene expression data [3].
Recently, biclustering [4-6], a non-supervised approach
that performs simultaneous clustering on the gene and
condition dimensions of the gene expression matrix, has
been shown to be remarkably effective in a variety of
applications. The advantages of biclustering in the discov-
ery of local expression patterns, described by a coherent
behavior of a subset of genes in a subset of the conditions
under study, have been extensively studied and docu-
mented [4-8]. Recently, Androulakis et al. [2] have
emphasized the fact that biclustering methods hold a tre-
mendous promise as more systemic perturbations are
becoming available and the need to develop consistent
representations across multiple conditions is required.
Madeira et al. [9] have also described the use of bicluster-
ing as critical to identify the dynamics of biological sys-
tems as well as the different groups of genes involved in
each biological process. However, most formulations of
the biclustering problem are NP-hard [10], and almost all
the approaches presented to date are heuristic, and for this
reason, not guaranteed to find optimal solutions [6]. In a
few cases, exhaustive search methods have been used
[7,11], but limits are imposed on the size of the biclusters
that can be found [7] or on the size of the dataset to be
analyzed [11], in order to obtain reasonable runtimes.
Furthermore, the inherent difficulty of this problem when
dealing with the original real-valued expression matrix
and the great interest in finding coherent behaviors
regardless of the exact numeric values in the matrix, has
led many authors to a formulation based on a discretized
version of the expression matrix [7-9,12-23]. Unfortu-
nately, the discretized versions of the biclustering prob-
lem remain, in general, NP-hard. Nevertheless, in the case
of time series expression data the interesting biclusters can
be restricted to those with contiguous columns leading to
a tractable problem. The key observation is the fact that
biological processes are active in a contiguous period of
time, leading to increased (or decreased) activity of sets of
genes that can be identified as biclusters with contiguous
columns. This fact led several authors to point out the rel-
evance of biclusters with contiguous columns and their
importance in the identification of regulatory mecha-
nisms [9,20,22,24].

In this work, we propose e-CCC-Biclustering, a bicluster-
ing algorithm specifically developed for time series
expression data analysis, that finds and reports all maxi-
mal contiguous column coherent biclusters with approxi-
mate expression patterns in time polynomial in the size of
the expression matrix. The polynomial time complexity is
obtained by manipulating a discretized version of the
original expression matrix and by using efficient string
processing techniques based on suffix trees. These approx-
imate patterns allow a given number of errors, per gene,
relatively to an expression profile representing the expres-
sion pattern in the bicluster. We also propose several
extensions to the core e-CCC-Biclustering algorithm.
These extensions improve the ability of the algorithm to
discover other relevant expression patterns by being able
to deal with missing values directly in the algorithm and
by taking into consideration the possible existence of anti-
correlated and scaled expression patterns. Different ways
to compute the errors allowed in the approximate patterns
(restricted errors, alphabet range weighted errors and pat-
tern length adaptive errors) can also be used. Finally, we
propose a statistical test that can be used to score the
biclusters discovered (by extending the concept of statisti-
cal significance of an expression pattern [9] to cope with
approximate expression patterns) and a method to filter
highly overlapping, and, therefore, redundant, biclusters.
We report results in real data showing the effectiveness of
the approach and its relevance in the process of identify-
ing regulatory modules describing the transcriptomic
expression patterns occurring in Saccharomyces cerevisiae in
response to heat stress. We also show the superiority of e-
CCC-Biclustering when compared with state of the art
biclustering algorithms, specially developed for time
series gene expression data analysis such as CCC-Biclus-
tering [9,22].

Related Work: Biclustering algorithms for time series gene
expression data
Although many algorithms have been proposed to
address the general problem of biclustering [5,6], and
despite the known importance of discovering local tem-
poral patterns of expression, to our knowledge, only a few
recent proposals have addressed this problem in the spe-
cific case of time series expression data [9,20,22,24].
These approaches fall into one of the following two
classes of algorithms:

1. Exhaustive enumeration: CCC-Biclustering [9,22]
and q-clustering [20].

2. Greedy iterative search: CC-TSB algorithm [24].

These three biclustering approaches work with a single
time series expression matrix and aim at finding biclusters
defined as subsets of genes and subsets of contiguous
Page 2 of 39
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:8 http://www.almob.org/content/4/1/8
time points with coherent expression patterns. CCC-
Biclustering and q-clustering work with a discretized ver-
sion of the expression matrix while the CC-TSB-algorithm
works with the original real-valued expression matrix. In
additional file 1: related_work we describe in detail these
algorithms and identify their strengths and weaknesses.
Based on their characteristics, we decided to compare the
performance of e-CCC-Biclustering with that of CCC-
Biclustering, but not with that of the q-clustering and CC-
TSB algorithms. The decision to exclude the last two algo-
rithms from the comparisons is mainly based on existing
analysis of these algorithms [9], and is basically related
with complexity issues, in the case of q-clustering, and on
poor results on real data obtained by the heuristic
approach used by the CC-TSB algorithm.

Biclusters in discretized gene expression data

Let A' be an |R| row by |C| column gene expression matrix
defined by its set of rows (genes), R, and its set of columns

(conditions), C. In this context, represents the expres-

sion level of gene i under condition j. In this work, we
address the case where the gene expression levels in matrix

A' can be discretized to a set of symbols of interest, Σ, that
represent distinctive activation levels. After the discretiza-
tion process, matrix A' is transformed into matrix A, where

Aij ∈ Σ represents the discretized value of the expression

level of gene i under condition j (see Figure 1 for an illus-
trative example).

Given matrix A we define the concept of bicluster and the
goal of biclustering as follows:

Definition 1 (Bicluster) A bicluster is a sub-matrix AIJ
defined by I ⊆ R, a subset of rows, and J ⊆ C, a subset of col-

umns. A bicluster with only one row or one column is called
trivial.

The goal of biclustering algorithms is to identify a set of
biclusters Bk = (Ik, Jk) such that each bicluster satisfies spe-
cific characteristics of homogeneity. These characteristics
vary in different applications [6]. In this work we will deal
with biclusters that exhibit coherent evolutions:

Definition 2 (CC-Bicluster) A column coherent bicluster AIJ
is a bicluster such that Aij = Alj for all rows i, l ∈ I and columns
j ∈ J.

Finding all maximal biclusters satisfying this coherence
property is known to be an NP-hard problem [10].

CC-Biclusters in discretized gene expression time series
Since we are interested in the analysis of time series
expression data, we can restrict the attention to potentially
overlapping biclusters with arbitrary rows and contiguous
columns [9,20,22,24]. This fact leads to an important
complexity reduction and transforms this particular ver-
sion of the biclustering problem into a tractable problem.
Previous work in this area [9,22] has defined the concept
of CC-Biclusters in time series expression data and the
important notion of maximality:

Definition 3 (CCC-Bicluster) A contiguous column coher-
ent bicluster AIJ is a subset of rows I = {i1, ..., ik} and a subset
of contiguous columns J = {r, r + 1, ..., s - 1, s} such that Aij =
Alj, for all rows i, l ∈ I and columns j ∈ J. Each CCC-Bicluster
defines a string S that is common to every row in I for the col-
umns in J.

′Aij

Illustrative example of the discretization processFigure 1
Illustrative example of the discretization process. This figure shows: (Left) Original expression matrix A'; and (Right)
Discretized matrix A obtained by considering a simple discretization technique, which uses a three symbol alphabet Σ = {D, N,
U}. The symbols mean down-regulation (D), up-regulation (U) or no-change (N). In this case, the values ∈]-0.3, 0.3[were

discretized to N, and the values ≤ -0.3 and ≥ 0.3 were discretized to D and U, respectively.

C1 C2 C3 C4 C5

G1 0.07 0.73 -0.54 0.45 0.25

G2 -0.34 0.46 -0.38 0.76 -0.44

G3 0.22 0.17 -0.11 0.44 -0.11

G4 0.70 0.71 -0.41 0.33 0.35

G5 0.70 0.17 0.70 - 0.33 0.75

C1 C2 C3 C4 C5

G1 N U D U N

G2 D U D U D

G3 N N N U N

G4 U U D U U

G5 U D U D U

′Aij

′Aij ′Aij
Page 3 of 39
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:8 http://www.almob.org/content/4/1/8
Definition 4 (row-maximal CCC-Bicluster) A CCC-
Bicluster AIJ is row-maximal if we cannot add more rows to I
and maintain the coherence property referred in Definition 3.

Definition 5 (left-maximal and right-maximal CCC-
Bicluster) A CCC-Bicluster AIJ is left-maximal/right-maximal
if we cannot extend its expression pattern S to the left/right by
adding a symbol (contiguous column) at its beginning/end
without changing its set of rows I.

Definition 6 (maximal CCC-Bicluster) A CCC-Bicluster
AIJ is maximal if no other CCC-Bicluster exists that properly
contains AIJ, that is, if for all other CCC-Biclusters ALM, I ⊆ L
∧ J ⊆ M ⇒ I = L ∧ J = M.

Lemma 1 Every maximal CCC-Bicluster is right, left and row-
maximal.

Figure 2 shows the maximal CCC-Biclusters with at least
two rows (genes) present in the discretized matrix in Fig-
ure 1. CCC-Biclusters with only one row, even when max-
imal, are trivial and uninteresting from a biological point
of view and are thus discarded.

Maximal CCC-Biclusters and generalized suffix trees
Consider the discretized matrix A obtained from matrix A'
using the alphabet Σ. Consider also the matrix obtained
by preprocessing A using a simple alphabet transforma-
tion, that appends the column number to each symbol in
the matrix (see Figure 3), and considers a new alphabet Σ'
= Σ × {1, ..., |C|}, where each element Σ' is obtained by
concatenating one symbol in Σ and one number in the
range {1, ..., |C|}. We present below the two Lemmas and
the Theorem describing the relation between maximal
CCC-Biclusters with at least two rows and nodes in the
generalized suffix tree built from the set of strings

Maximal CCC-Biclusters in a discretized matrixFigure 2
Maximal CCC-Biclusters in a discretized matrix. This figure shows all maximal CCC-Biclusters with at least two rows
that can be identified in the discretized matrix in Figure 1. The strings SB1 = [U], SB2 = [U], SB3 = [UN], SB4 = [UDU], SB5 = [U] and
SB6 = [N] correspond to the expression patterns of the maximal CCC-Biclusters identified as B1, B2, B3, B4, B5 and B6, respec-
tively.
Page 4 of 39
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:8 http://www.almob.org/content/4/1/8
obtained after alphabet transformation [9,22]. Figure 4
illustrates this relation using the generalized suffix tree
obtained from the rows in the discretized matrix after
alphabet transformation in Figure 3 together with the
maximal CCC-Biclusters with at least two rows (B1 to B6)
already showed in Figure 2.

Lemma 2 Every right-maximal, row-maximal CCC-Bicluster
with at least two rows corresponds to one internal node in T and
every internal node in T corresponds to one right-maximal, row-
maximal CCC-Bicluster with at least two rows.

Lemma 3 An internal node in T corresponds to a left-maximal
CCC-Bicluster iff it is a MaxNode.

Definition 7 (MaxNode) An internal node v in T is called a
MaxNode iff it satisfies one of the following conditions:

a) It does not have incoming suffix links.

b) It has incoming suffix links only from nodes ui such that,
for every node ui, the number of leaves in the subtree rooted
at ui is inferior to the number of leaves in the subtree rooted
at v.

Theorem 1 Every maximal CCC-Bicluster with at least two
rows corresponds to a MaxNode in the generalized suffix tree T,
and each MaxNode defines a maximal CCC-Bicluster with at
least two rows.

Note that this theorem is the base of CCC-Biclustering
[9,22], which finds and reports all maximal CCC-Biclus-
ters using three main steps:

1. All internal nodes in the generalized suffix tree are
marked as "Valid", meaning each of them identifies a

row-maximal, right-maximal CCC-Bicluster with at
least two nodes according to Lemma 2.

2. All internal nodes identifying non left-maximal
CCC-Biclusters are marked as "Invalid" using Theorem
1, discarding all row-maximal, right-maximal CCC-
Biclusters which are not left-maximal.

3. All maximal CCC-Biclusters, identified by each
node marked as "Valid", are reported.

Methods
In this section we propose e-CCC-Biclustering, an algo-
rithm designed to find and report all maximal CCC-
Biclusters with approximate expression patterns (e-CCC-
Biclusters) using a discretized matrix A and efficient string
processing techniques. We first define the concepts of e-
CCC-Bicluster and maximal e-CCC-Bicluster. We then for-
mulate two problems: (1) finding all maximal e-CCC-
Biclusters and (2) finding all maximal e-CCC-Biclusters
satisfying row and column quorum constraints. We dis-
cuss the relation between maximal e-CCC-Biclusters and
generalized suffix trees highlighting the differences
between this relation and that of maximal CCC-Biclusters
and generalized suffix tree, discussed in the previous sec-
tion. We then discuss and explore the relation between the
two problems above and the Common Motifs Problem
[25,26]. We describe e-CCC-Biclustering, a polynomial
time algorithm designed to solve both problems and
sketch the analysis of its computational complexity. We
present extensions to handle missing values, discover
anticorrelated and scaled expression patterns, and con-
sider alternative ways to compute approximate expression
patterns. Finally, we propose a scoring criterion for e-
CCC-Biclusters combining the statistical significance of
their expression patterns with a similarity measure
between overlapping biclusters.

Illustrative example of the alphabet transformation performed after the discretization processFigure 3
Illustrative example of the alphabet transformation performed after the discretization process. This figure
shows: (Left) Discretized matrix A in Figure 1; (Right) Discretized matrix A after alphabet transformation.

C1 C2 C3 C4 C5

G1 N U D U N

G2 D U D U D

G3 N N N U N

G4 U U D U U

G5 U D U D U

C1 C2 C3 C4 C5

G1 N1 U2 D3 U4 N5

G2 D1 U2 D3 U4 D5

G3 N1 N2 N3 U4 N5

G4 U1 U2 D3 U4 U5

G5 U1 D2 U3 D4 U5
Page 5 of 39
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:8 http://www.almob.org/content/4/1/8
Figure 4 (see legend on next page)
Page 6 of 39
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:8 http://www.almob.org/content/4/1/8
CCC-Biclusters with approximate expression patterns
The CCC-Biclusters defined in the previous section are per-
fect, in the sense that they do not allow errors in the
expression pattern S that defines the CCC-Bicluster. This
means that all genes in I share exactly the same expression
pattern in the time points in J. Being able to find all max-
imal CCC-Biclusters using efficient algorithms is useful to
identify potentially interesting expression patterns and
can be used to discover regulatory modules [9]. However,
some genes might not be included in a CCC-Bicluster of
interest due to errors. These errors may be measurement
errors, inherent to microarray experiments, or discretiza-
tion errors, introduced by poor choice of discretization
thresholds or inadequate number of discretization sym-
bols. In this context, we are interested in CCC-Biclusters
with approximate expression patterns, that is, biclusters
where a certain number of errors is allowed in the expres-
sion pattern S that defines the CCC-Bicluster. We intro-
duce here the definitions of e-CCC-Bicluster and maximal
e-CCC-Bicluster preceded by the notion of e-neighbor-
hood:

Definition 8 (e-Neighborhood) The e-Neighborhood of a
string S of length |S|, defined over the alphabet Σ with |Σ| sym-
bols, N(e, S), is the set of strings Si, such that: |S| = |Si| and
Hamming(S, Si) ≤ e, where e is an integer such that e ≥ 0. This
means that the Hamming distance between S and Si is no more
than e, that is, we need at most e symbol substitutions to obtain
Si from S.

Lemma 4 The e-Neighborhood of a string S, N(e, S), contains

elements.

Definition 9 (e-CCC-Bicluster) A contiguous column coher-
ent bicluster with e errors per gene, e-CCC-Bicluster, is a CCC-
Bicluster AIJ where all the strings Si that define the expression
pattern of each of the genes in I are in the e-Neighborhood of
an expression pattern S that defines the e-CCC-Bicluster: Si ∈
N (e, S), ∀i ∈ I. The definition of 0-CCC-Bicluster is equiva-
lent to that of a CCC-Bicluster.

Definition 10 (maximal e-CCC-Bicluster) An e-CCC-
Bicluster AIJ is maximal if it is row-maximal, left-maximal and
right-maximal. This means that no more rows or contiguous
columns can be added to I or J, respectively, maintaining the
coherence property in Definition 9.

Given these definitions we can now formulate the prob-
lem we solve in this work:

Problem 1 Given a discretized expression matrix A and

the integer e ≥ 0 identify and report all maximal e-CCC-

Biclusters .

Similarly to what happened with CCC-Biclusters, e-CCC-
Biclusters with only one row should be overlooked. A sim-
ilar problem is that of finding and reporting only the max-
imal e-CCC-Biclusters satisfying predefined row and
column quorum constraints:

Problem 2 Given a discretized expression matrix A and

three integers e ≥ 0, qr ≥ 2 and qc ≥ 1, where qr is the row

quorum (minimum number of rows in Ik) and qc is the

column quorum (minimum number of columns in Jk),

identify and report all maximal e-CCC-Biclusters

 such that, Ik and Jk have at least qr rows and qc

columns, respectively.

Figure 5 shows all maximal e-CCC-Biclusters with at least
rows (genes), which are present in the discretized matrix
in Figure 1, when one error per gene is allowed (e = 1). Fig-
ure 6 shows all maximal e-CCC-Biclusters identified using
row and column constraints. In this case, the maximal 1-
CCC-Biclusters having at least three rows and three col-
umns (qr = qc = 3) are shown. Also clear in these figures is
the fact that, when errors are allowed (e > 0), different
expression patterns S can define the same e-CCC-Biclus-
ter. Furthermore, when e > 0, an e-CCC-Bicluster can be
defined by an expression pattern S, which does not occur

C Sj
S j e e

j

e | |(| |) | | | |Σ Σ− ≤=∑ 1
0

B Ak I Jk k
=

B Ak I Jk k
=

Maximal CCC-Biclusters and generalized suffix treesFigure 4 (see previous page)
Maximal CCC-Biclusters and generalized suffix trees. This figure shows: (Top) Generalized suffix tree constructed for
the transformed matrix in Figure 3. For clarity, this figure does not contain the leaves that represent string terminators that are
direct daughters of the root. Each internal node, other than the root, is labeled with the number of leaves in its subtree. We
show the suffix links between nodes although (for clarity) we omit the suffix links pointing to the root. All maximal CCC-
Biclusters are identified using a circle. The labels B1 to B6 identify the nodes corresponding to all maximal CCC-Biclusters with
at least two rows/genes. Note that the rows in each CCC-Bicluster identified by a given node v are obtained from the string
terminators in its subtree. The value of the string-depth of v and the first symbol in the string-label of v provide the information
needed to identify the set of contiguous columns. (Bottom) Maximal CCC-Biclusters B1 to B6 showed in the discretized
matrix as subsets of rows and columns. The strings SB1 = [U], SB2 = [U], SB3 = [U N], SB4 = [U D U], SB5 = [U] and SB6 = [N] cor-
respond to the expression patterns of the maximal CCC-Biclusters identified as B1 to B6, respectively.
Page 7 of 39
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:8 http://www.almob.org/content/4/1/8

Page 8 of 39
(page number not for citation purposes)

Maximal e-CCC-Biclusters in a discretized matrixFigure 5
Maximal e-CCC-Biclusters in a discretized matrix. This figure shows all maximal 1-CCC-Biclusters with at least two
rows that can be identified in the discretized matrix in Figure 1. Note that several of these 1-CCC-Biclusters can be defined by
more than one expression pattern. For example, B1 can be defined by SB1 = [D], as shown in the figure, but can also be defined
by SB1 = [N] or SB1 = [U]. Other 1-CCC-Biclusters are defined by expression patterns not occurring in the discretized matrix
in the contiguous columns identifying the biclusters. This is the case of 1-CCC-Bicluster B2, for example, defined by the pattern
SB2 = [D D], which does not occur in the columns C1–C2.

Algorithms for Molecular Biology 2009, 4:8 http://www.almob.org/content/4/1/8
in the discretized matrix in the set of contiguous columns
in the e-CCC-Bicluster.

Maximal e-CCC-Biclusters and generalized suffix trees
In the previous section we showed that each internal node
in the generalized suffix tree, constructed for the set of
strings corresponding to the rows in the discretized matrix
after alphabet transformation, identifies exactly one CCC-
Bicluster with at least two rows (maximal or not) (see
Lemma 2). We also showed that each internal node corre-
sponding to a MaxNode (see Definition 7) in the general-
ized suffix tree identifies exactly one maximal CCC-

Bicluster and that each maximal CCC-Bicluster is identi-
fied by exactly one MaxNode (see Lemma 3 and Theorem
1). This also implies that a maximal CCC-Bicluster is iden-
tified by one expression pattern, which is common to all
genes in the CCC-Bicluster within the contiguous col-
umns in the bicluster. Moreover, all expression patterns
identifying maximal CCC-Biclusters always occur in the
discretized matrix and thus correspond to a node in the
generalized suffix tree (see Figure 4).

When errors are allowed, one e-CCC-Bicluster (e > 0) can
be identified (and usually is) by several nodes in the gen-

Maximal e-CCC-Biclusters with row and column quorum constraints in a discretized matrixFigure 6
Maximal e-CCC-Biclusters with row and column quorum constraints in a discretized matrix. This figure shows
the five maximal 1-CCC-Biclusters with at least 3 rows/columns (qr = qc = 3) that can be identified in the discretized matrix in
Figure 1. These 1-CCC-Biclusters are defined, respectively, by the following patterns: SB1 = [D U D U], SB2 = [D D U], SB3 = [D
U N], SB4 = [N D U] and SB5 = [U D U D]. Also clear from this figure is the fact that the same e-CCC-Bicluster can be defined
by several patterns. For example, 1-CCC-Bicluster B1 can also be identified by the patterns [N U D U] and [U U D U]. An
interesting example is the case of 1-CCC-Bicluster B2, which can also be defined by the patterns [N D U], [U N U], [U U U],
[U D D] and [U D N]. Note however, that B2 cannot be identified by the pattern [U D U]. If this was the case, B2 would not
be right maximal, since the pattern [U D N] can be extended to the right by allowing one error at column 5. In fact, this leads
to the discovery of the maximal 1-CCC-Bicluster B5. Moreover, e-CCC-Biclusters can be defined by expression patterns not
occurring in the discretized matrix. This is the case of 1-CCC-Biclusters B2 and B4, defined respectively by the patterns SB2 =
[D D U] and SB4 = [N D U], which do not occur in the matrix in the contiguous columns defining B2 and B4 (C2–C3 and C2–
C4, respectively).
Page 9 of 39
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:8 http://www.almob.org/content/4/1/8
eralized suffix tree, constructed for the set of strings corre-
sponding to the rows in the discretized matrix after
alphabet transformation, and one node in the generalized
suffix tree may be related with multiple e-CCC-Biclusters
(maximal or not) (see Figure 7). Moreover, a maximal e-
CCC-Bicluster can be defined by several expression pat-
terns (see Figure 5 and Figure 6). Upon all this, a maximal
e-CCC-Bicluster can be defined by an expression pattern
not occurring in the expression matrix and thus not appear-
ing in the generalized suffix tree (see Figure 6 and Figure
7).

Furthermore we cannot obtain all maximal e-CCC-Biclus-
ters using the set of maximal CCC-Biclusters by: 1) extend-
ing them with genes by looking for their approximate
patterns in the generalized suffix tree, or 2) extending
them with e contiguous columns (see Figure 5 and Figure
8). It is also clear from Figure 8 that extending maximal
CCC-Biclusters can in fact lead to the discovery of non
maximal e-CCC-Biclusters. For the reasons stated above
we cannot use the same searching strategy used to find
maximal CCC-Biclusters when looking for maximal e-
CCC-Biclusters (e > 0). We therefore need to explore the
relation between finding e-CCC-Biclusters and the Com-
mon Motifs Problem, as explained below.

Finding e-CCC-Biclusters and the common motifs problem
There is an interesting relation between the problem of
finding all maximal e-CCC-Biclusters, discussed in this
work, and the well known problem of finding common
motifs (patterns) in a set of sequences (strings). For the
first problem, and to our knowledge, no efficient algo-
rithm has been proposed to date. For the latter problem
(Common Motifs Problem), several efficient algorithms
based on string processing techniques have been pro-
posed to date [25,26]. The Common Motifs Problem is as
follows [26]:

Common Motifs Problem Given a set of N sequences Si
(1 ≤ i ≤ N) and two integers e ≥ 0 and 2 ≤ q ≤ N, where e is
the number of errors allowed and q is the required quo-
rum, find all models m that appear in at least q distinct
sequences of Si.

During the design of e-CCC-Biclustering, we used the
ideas proposed in SPELLER [26], an algorithm to find
common motifs in a set of N sequences using a generalized
suffix tree T. The motifs searched by SPELLER correspond
to words, over an alphabet Σ, which must occur with at
most e mismatches in 2 ≤ q ≤ N distinct sequences. Since
these words representing the motifs may not be present
exactly in the sequences (see SPELLER for details), a motif
is seen as an "external" object and called model. In order to
be considered a valid model, a given model m of length |m|

has to verify the quorum constraint: m must belong to the e-
neighborhood of a word w in at least q distinct sequences.

In order to solve the Common Motifs Problem, SPELLER
builds a generalized suffix tree T for the set of sequences Si
and then, after some further preprocessing, uses this tree
to "spell" the valid models. Valid models verify two prop-
erties [26]:

1. All the prefixes of a valid model are also valid mod-
els.

2. When e = 0, spelling a model leads to one node v in
T such that L(v) ≥ q, where L(v) denotes the number of
leaves in the subtree rooted at v.

When e > 0, spelling a model leads to a set of nodes v1,

..., vk in T for which , where L(vj)

denotes the number of leaves in the subtree rooted at
vj.

In these settings, and since the occurrences of a model are
in fact nodes of the generalized suffix tree T, these occur-
rences are called node-occurrences [26]. The goal of
SPELLER is thus to identify all valid models by extending
them in the generalized suffix tree and to report them
together with their set of node-occurrences. We present
here an adaptation of the definition of node-occurrence
used in SPELLER. In SPELLER, a node-occurrence is
defined by a pair (v, verr) and not by a triple (v, verr, p), as
in this work. For clarity, SPELLER was originally exempli-
fied [26] in an uncompacted version of the generalized
suffix tree, that is, a trie (although it was proposed to work
with a generalized suffix tree). However, and as pointed
out by the authors, when using a generalized suffix tree, as
in our case, we need to know at any given step in the algo-
rithm whether we are at a node or in an edge between
nodes v and v'. We use p to provide this information, and
redefine node-occurrence as follows:

Definition 11 (node-occurrence) A node-occurrence of a
model m is a triple (v, verr, p), where v is a node in the gener-
alized suffix tree T and verr is the number of mismatches
between m and the string-label of v computed using Ham-
ming(m, string-label(v)). The integer p ≥ 0 identifies a posi-
tion/point in T such that:

1. If p = 0: we are exactly at node v.

2. If p > 0: we are in E(v), the edge between fatherv and v,
in a point p between two symbols in label(E(v)) such that 1
≤ p < |label(E(v))|.

L v qjj

k
() ≥=∑ 1
Page 10 of 39
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:8 http://www.almob.org/content/4/1/8
Figure 7 (see legend on next page)
Page 11 of 39
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:8 http://www.almob.org/content/4/1/8
Consider a model m, a symbol α in the alphabet Σ, a node
v in T, its father fatherv, the edge between fatherv and v,
E(v), the edge-label of E(v), label(E(v)) and its edge-
length, |label(E(v))|. The modified version of SPELLER
described below is based on the following Lemmas
(adapted from SPELLER):

Lemma 5 (v, verr, 0) is a node-occurrence of a model m' = mα,
if, and only if:

1. Match:

(fatherv, verr, 0) is a node-occurrence of m and
label(E(v)) = α.

The edge-label of E(v) has only one symbol and this
symbol is α.

or

(v, verr, |label(E(v))| -1) is a node-occurrence of m and
label(E(v)) [|label(E(v))|] = α.

The last symbol in label(E(v)) is α.

2. Substitution:

(fatherv, verr -1, 0) is a node-occurrence of m and
label(E(v)) = β ≠ α.

The edge-label of E(v) has only one symbol and this
symbol is not α.

or

(v, verr - 1, |label(E(v))| - 1) is a node-occurrence of m
and label(E(v)) [|label(E(v))|] = β ≠ α.

The last symbol in label(E(v)) is not α.

Lemma 6 (v, verr, 1) is a node-occurrence of a model m' = mα,
if, and only if:

1. Match:

(fatherv, verr, 0) is a node-occurrence of m and
label(E(v))[1] = α.

2. Substitution:

(fatherv, verr - 1, 0) is a node-occurrence of m and
label(E(v))[1] = β ≠ α.

Lemma 7 (v, verr, p), 2 ≤ p < |label(E(v)| is a node-occurrence
of a model m' = mα, if, and only if:

1. Match:

(v, verr, p - 1) is a node-occurrence of m and label(E(v)
[p] = α.

2. Substitution:

(v, verr - 1, p - 1) is a node-occurrence of m and
label(E(v)) [p] = β ≠ α.

Consider now the discretized matrix A obtained from
matrix A' using the alphabet Σ. We preprocess A using the
same alphabet transformation used in CCC-Biclustering.
Remember that we append the column number to each
symbol in the matrix and consider a new alphabet Σ' = Σ
× {1, ..., |C|} (see Figure 3). We will now show that
SPELLER can be adapted to extract all right-maximal e-
CCC-Biclusters from this transformed matrix A by build-
ing a generalized suffix tree for the set of |R| strings Si
obtained from each row in A and use it to "spell" the valid
models using the symbols in the new alphabet Σ'.

Given the set of |R| strings Si, the number of allowed
errors e ≥ 0 and the quorum constraint 2 ≤ q ≤ |R|, the goal
is now to find the set of all right-maximal valid models m,
identifying expression patterns that are present in at least
q distinct rows starting and ending at the same columns. Note
that the valid models identified by the original SPELLER
algorithm are already row-maximal. However they may be

e-CCC-Biclusters (e > 0) and generalized suffix treesFigure 7 (see previous page)
e-CCC-Biclusters (e > 0) and generalized suffix trees. This figure shows: (Top) Generalized suffix tree constructed for
the transformed matrix in Figure 3 (the information stored in the nodes correspond to the number of leaves and row identifi-
ers in their subtree and is used by e-CCC-Biclustering). The circles labeled with B1, B2, B3, B4 and B5 identify the nodes
related with the five maximal 1-CCC-Biclusters discovered when e = 1 and qe = qc = 3, shown in Figure 6; (Bottom) Maximal
1-CCC-Biclusters B1 to B5 showed in the matrix as subsets of rows and columns. The strings SB1 = [D U D U], SB2 = [D D U],
SB3 = [D U N], SB4 = [N D U] and SB5 = [U D U D] correspond to the expression patterns defining the maximal 1-CCC-Biclus-
ters identified as B1 to B5, respectively. Note that e-CCC-Biclusters can now be identified (and generally are) by more than
one node in the generalized suffix tree. This is the case of 1-CCC-Biclusters B1, B3, B4 and B5. In fact only B2 is identified by a
single node in this example. Moreover, a node in the generalized suffix tree might be related with more than one maximal e-
CCC-Bicluster. Look for example at the node identifying approximate patterns occurring in both 1-CCC-Biclusters B2 and B4.
Page 12 of 39
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:8 http://www.almob.org/content/4/1/8
Figure 8 (see legend on next page)
Page 13 of 39
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:8 http://www.almob.org/content/4/1/8
non right-maximal, non left-maximal, and start at differ-
ent positions in the sequences. Under these settings, the
set of node-occurrences of each valid model m and the
model itself in our modified version of SPELLER identifies
one row-maximal, right-maximal e-CCC-Bicluster with q
rows and a maximum of |C| contiguous columns. Further-
more, it is possible to find all right-maximal e-CCC-
Biclusters by fixing the quorum constraint, used to specify
the number of rows/genes necessary to identify a model as
valid, to the value q = 2. In this context, and in order to be
able to solve not only Problem 1 but also Problem 2, we
adapted SPELLER to consider not only a row constraint, 2 ≤
qr ≤ |R|, but also an additional column constraint, 1 ≤ qc ≤
|C|.

Figure 7 shows the generalized suffix tree used by our
modified version of SPELLER when it is applied to the dis-
cretized matrix after alphabet transformation in Figure 3.
We can also see in this figure the five maximal 1-CCC-
Biclusters B1, B2, B3, B4 and B5, already shown in Figure
6, identified by five valid models, when e = 1 and the val-
ues qr and qc, specifying the row and column constraints,
respectively, are set to 3. The maximal 1-CCC-Biclusters
B1 to B5 are defined, respectively, by the following valid
models: m = [D1 U2 D3 U4 N5] (three node-occurrences
labeled with B1); m = [D2 D3 U4] (three node-occur-
rences labeled with B2), m = [D3 U4 N5] (four node-
occurrences labeled with B3), m = [N2 D3 U4] (four node-
occurrences labeled with B4) and m = [U2 D3 U4 D5]
(four node-occurrences labeled with B5). It is also possi-
ble to observe in this figure that, when e > 0, a model can
be valid without being right/left-maximal and that several
valid models may identify the same e-CCC-Bicluster. For
example, m = [D1 U2 D3] is valid but it is not right-maxi-
mal, m = [D3 U4 D5] is also valid but it is not left-maxi-
mal, and finally the models m = [D1 U2 D3 U4 N5] and
m = [N1 U2 D3 U4 D5] are both valid but identify the

same 1-CCC-Bicluster B1. Figure 4 shows the generalized
suffix tree used when e = 0, qr = 2 and qc = 1. Since no errors
are allowed the generalized suffix tree is the same as the
one used by CCC-Biclustering and the maximal 0-CCC-
Biclusters identified correspond in fact to the maximal
CCC-Biclusters in Figure 2.

In the next section we describe the details of the modified
version of SPELLER that we used to identify all right-max-
imal e-CCC-Biclusters. However, and for clarity, we sum-
marize here the main differences between the original
version of SPELLER and the modified version (procedure
computeRightMaximalBiclusters in the next sec-
tion), which we use as the first step of the e-CCC-Biclus-
tering algorithm. While reading the differences listed
below have in mind that in order to be maximal, an e-
CCC-Bicluster must be row-maximal, right-maximal and
left-maximal. Moreover, all the approximate patterns
identifying genes in an e-CCC-Bicluster must start and end
at the same columns.

1. In SPELLER a node-occurrence is defined by a pair
(v, verr) since (for clarity) the algorithm was exempli-
fied using a trie and not a generalized suffix tree, as
explained above. As such we redefined the original
concept of node-occurrence to use the triple (v, verr, p)
(see Definition 11), adapted the three original Lem-
mas in SPELLER to use the new definition of node-
occurrence (see Lemma 5, Lemma 6 and Lemma 7),
and rewrote SPELLER to use a generalized suffix tree.

2. In SPELLER a model can be valid without being
right/left-maximal. As such all models satisfying the
quorum constraint are stored for further reporting.
This means that the valid models reported by SPELLER
are only row-maximal. We only store valid models
that cannot be extended to the right without loosing

Maximal CCC-Biclusters and maximal e-CCC-BiclustersFigure 8 (see previous page)
Maximal CCC-Biclusters and maximal e-CCC-Biclusters. This figure shows: (Top) 1-CCC-Biclusters obtained from
the maximal CCC-Biclusters in Figure 2 by extending them with genes by looking for their approximate patterns in the gener-
alized suffix tree (1-CCC-Biclusters B1_1, B2_1, B3_1, B5_1 and B6_1) or extending them with e = 1 contiguous columns at
right (1-CCC-Biclusters B1_2, B1_3, B2_2, B4_2, B6_2 and B6_3) or at left (1-CCC-Biclusters B2_3, B3_2, B4_1, B5_2 and
B5_3). Note that several of these 1-Biclusters can be defined by more than one expression pattern. This is the case of 1-CCC-
Biclusters B2_1, B2_3, B3_2, B4_1 and B4_2, which in fact correspond to maximal 1-CCC-Biclusters (see Figure 5). Other 1-
CCC-Biclusters are identified by a single expression pattern. This is the case of 1-CCC-Biclusters B1_1, B1_2, B2_1, B3_1,
B5_1, B5_2, B6_1 and B6 2, and also correspond to maximal 1-CCC-Biclusters (see Figure 5). However, the 1-CCC-Biclusters
B1_3, B5_3 and B6_3 do not correspond to maximal 1-CCC-Biclusters since they are not row-maximal. (Bottom) Maximal
1-CCC-Biclusters B1_3, B5_3 and B6_3 obtained not only by extending maximal CCC-Biclusters B1, B5 and B6 with one con-
tiguous column to the right, left and right, respectively, but also by looking for the patterns in the 1-neighborhood of the pat-
terns SB1_3 = [U U] (columns C1–C2), SB5_3 = [U U] (columns C4–C5) and SB6_3 = [N U] (columns C1–C2). Note however, that
even if we replaced the non maximal 1-CCC-Biclusters B1_3, B5_3 and B6_3 (in the top) by the truly maximal 1-CCC-Biclus-
ters (in the bottom) we could only find 16 of the 36 maximal 1-CCC-Biclusters with at least two rows shown in Figure 5 that
can be found in the discretized matrix in Figure 1.
Page 14 of 39
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:8 http://www.almob.org/content/4/1/8
genes, that is valid models which are both row-maxi-
mal are right-maximal. This implied modifying the
original procedure storeModel in SPELLER in order
to include the procedure checkRightMaximality
(see procedure spellModels in the next section, for
details).

3. In SPELLER the node-occurrences of a valid model
can start in any position in the sequences. In our mod-
ified version of this algorithm all node-occurrences of
a valid model must start in the same position (same
column in the discretized matrix) in order to guaran-
tee that they belong to an e-CCC-Bicluster. As such we
modified the construction of the generalized suffix
tree used in SPELLER in order to be constructed using
the set of strings corresponding to the set of rows in
the discretized matrix after alphabet transformation.
We also modified all the procedures used in SPELLER
for model extension. Note that it is not possible to
modify SPELLER in order to check if a valid model that
is right-maximal is also left-maximal. This is so since
we can only guarantee that a model is/is not left-max-
imal once we have computed all valid models corre-
sponding to right-maximal e-CCC-Biclusters. This
justifies why we need to discard valid models which
are not left-maximal in the next step of the algorithm
and did not integrate this step in our modified version
of SPELLER.

In this context, we also show in the next section that the
proposed e-CCC-Biclustering algorithm will need three
steps to identify all maximal e-CCC-Biclusters without rep-
etitions: a first step to identify all right-maximal e-CCC-
Biclusters (for this we use the modified version of
SPELLER), a second step to discard all right-maximal e-
CCC-Biclusters which are not left-maximal, and finally a
third step to discard repetitions, that is maximal valid
models identifying the same maximal e-CCC-Bicluster.

Note that the original SPELLER algorithm does not elimi-
nate repetitions (different valid models with the same set
of node-occurrences). Furthermore, we also cannot inte-
grate the elimination of valid models corresponding to
the same right-maximal e-CCC-Biclusters in our modified
version of SPELLER since we need the set of all valid mod-
els corresponding to right-maximal e-CCC-Biclusters in
order to discard valid models which are not left-maximal
in the second step of e-CCC-Biclustering.

e-CCC-Biclustering: Finding and reporting all maximal e-
CCC-Biclusters in polynomial time

This section presents e-CCC-Biclustering, a polynomial
time biclustering algorithm for finding and reporting all
maximal CCC-Biclusters with approximate patterns (e-
CCC-Biclusters), and describes its main steps. Algorithm 1

is designed to solve Problem 2: identify and report all

maximal e-CCC-Biclusters such that Ik and Jk

have at least qr rows and qc columns, respectively. The pro-

posed algorithm is easily adapted to solve problem 1
(identify and report all maximal e-CCC-Biclusters

 without quorum constraints) by fixing the val-

ues of qr and qc to the values two and one, respectively. The

proposed algorithm is based on the following steps
(described in detail below):

[Step 1] Computes all valid models corresponding to
right-maximal e-CCC-Biclusters. Uses the discretized
matrix A after alphabet transformation, the quorum
constraints qr and qc, a generalized suffix tree and a
modified version of SPELLER.

[Step 2] Deletes all valid models not corresponding to
left-maximal e-CCC-Biclusters. Uses all valid models
computed in Step 1 and a trie.

[Step 3] Deletes all valid models representing the
same e-CCC-Biclusters. Uses all valid models corre-
sponding to maximal e-CCC-Biclusters (both left and
right) computed in Step 2 and a hash table. Note that
this step is only needed when e > 0.

[Step 4] Reports all maximal e-CCC-Biclusters.

Algorithm 1: e-CCC-Biclustering

Input : A, Σ, e, qr, qc

Output: Maximal e-CCC-Biclusters.

1 {S1, ..., S|R|} ← alphabetTransformation(A, Σ)

2 modelsOcc ← {}

3 computeRightMaximalBiclusters(Σ, e, qr, qc, {S1,
..., S|R|}, modelsOcc)

4 deleteNonLeftMaximalBiclusters(modelsOcc)

5 if e > 0 then

6 deleteRepeatedBiclusters(modelsOcc)

7 reportMaximalBiclusters(modelsOcc)

Detailed discussions can be found in additional file 2:
algorithmic_complexity_details.

B Ak I Jk k
=

B Ak I Jk k
=

Page 15 of 39
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:8 http://www.almob.org/content/4/1/8
Computing valid models corresponding to right-maximal e-CCC-
Biclusters
In step 1 of e-CCC-Biclustering we compute all valid mod-
els m together with their node-occurrences Occm corre-
sponding to right-maximal e-CCC-Biclusters. The details
are shown in the procedure computeRightMaximal
Biclusters below, which corresponds to a modified
version of SPELLER.

Procedure computeRightMaximalBiclusters

Input: Σ, e, qr, qc, {S1, ..., S|R|}, modelsOcc

/* The value of modelsOcc is updated. */

1 Tright ← constructGeneralizedSuffixTree({S1,
..., S|R|})

2 addNumberOfLeaves(Tright) /* Adds L(v) to each
node v in Tright. */

3 if e ≠ 0 then

4 addColorArray(Tright)

/* Adds colorsv to every node v in Tright: colorsv [i]
= 1, if there is a leaf in the subtree rooted
at v that is a suffix ofS i; colorsv [i] = 0,
otherwise. */

5 m ← "" /* model m is a string [m [1] ... m [lengthm-
1]] */

6 lengthm← 0

7 fatherm← "" /* fatherm is a string [m[1] ... m
[lengthm-1]] */

8 ← 0

9 Occm ← {} /* List of node-occurrences (v, verr,
p) */

10 addNodeOccurrence(Occm, (root(Tright), 0, 0))

11 Extm ← {} /* Extm is the set of possible sym
bols α to extend the model m. */

12 if e = 0 then

13 forall edges E(vi) leaving from node root(Tright) to a node
vi do

14 if label(E(vi))[1]is not a string terminator then

15 addSymbol(Extm, label(E(vi))[1])

16 else

17 forall symbols in Σ' do

/* Σ' must be in lexicographic
order. */

18 addSymbol(Extm, Σ' [i])

19 lengthm ← 0

20 spellModels(Σ, e, qr, qc, modelsOcc, Tright, m, lengthm,

Occm, Extm, fatherm,)

In this procedure we use the transformed matrix A as
input and store the results in the list modelsOcc, which
stores triples with the following information (m,
genesOccm, numberOfGenesOccm), where m is the model,
genesOccm is a bit vector containing the distinct genes in
the node-occurrences of m, Occm, and numberOfGenesOccm
is the number of bits set to 1 in genesOccm and, therefore,
the number of genes where the model occurs. This infor-
mation is computed using the procedure spellModels
described below, which corresponds to a modified ver-
sion of the procedure with the same name used in
SPELLER).

Procedure spellModels

/* Called recursively. Stores right-max
imal e-CCC-Biclusters in modelsOcc. */

Input : Σ, e, qr, qc, modelsOcc, Tright, m, lengthm, Occm,

Extm, fatherm,

/* The value of modelsOcc is updated. */

1 keepModel(qr, qc, modelsOcc, Tright, m, lengthm, Occm,

fatherm,

2 if lengthm ≤ |C| then

/* |C| is the length of the longest
model */

3 forall symbols α in Extm do

4 if α is not a string terminator then

numberOfGenesOcc fatherm

numberOfGenesOcc fatherm

numberOfGenesOcc fatherm

numberOfGenesOcc fatherm
Page 16 of 39
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:8 http://www.almob.org/content/4/1/8
5 maxGenes ← 0/* Sum of L(v) for all node-
occurrences (v, verr, p) in Occmα */

6 minGenes← ∞/* Minimum L(v) in all node-
occurrences (v, verr, p) in Occmα */

7 Colorsmα ← {}

8 if e > 0 then

9 Colorsmα [i] ← 0, 1 ≤ i ≤ |R|

/* colorsmα [i] = 1, if there is a node-
occurrence of m in Si; */

/* colorsmα [i] = 0, otherwise */

10 Extmα ← {}

11 Occmα ← {}

12 forall node-occurrences (v, verr, p) in Occm do

/* If p = 0 we are at node v. Otherwise,
we are at edge E(v) between nodes father(v) andv
at point p > 0. */

13 if p = 0 then

14 extendFromNodeWithoutErrors(Σ, e,
Tright, (v, verr, p), m, α, Occmα, Colorsmα , Extmα, maxGenes,
minGenes)

15 if (verr <e) then

16 extendFromNodeWithErrors(Σ, e, Tright,
(v, verr, p), m, α, Occmα , Colorsmα , Extmα, maxGenes, min-
Genes)

17 else

18 extendFromEdgeWithoutErrors(Tright,
Σ, e, (v, verr, p), m, α, m, Occmα, Colorsmα , Extmα , maxGenes,
minGenes)

19 if xerr <e then

20 extendFromEdgeWithErrors(Σ, e, Tright,
(v, verr, p), m, α, Occmα , Colorsmα , Extmα, maxGenes, min-
Genes)

21 if modelHasQuorum(maxGenes, minGenes, Color-
smα, qr) then

22 spellModels(Σ, e, qr, qc, modelsOcc, Tright, mα,
lengthm + 1, Occmα , Extmα , fathermα, numberOfGenesOccm)

The recursive procedure spellModels (modified to
extract valid models corresponding to right-maximal e-
CCC-Biclusters) is now able to:

1. Use a generalized suffix tree Tright and define node-
occurrences as triples (v, verr, p), where p is used
throughout the algorithm to find out whether we are
at node v (p = 0) or in an edge E(v) between nodes v
and fatherv (p > 0).

2. Check if a valid model m corresponds to a right-
maximal e-CCC-Bicluster. This is performed using the
procedure checkRightMaximality inside the pro-
cedure keepModel. This procedure deletes from the
list of stored models, modelsOcc, a valid model m when
the result of its extension with a symbol α, mα, is also
a valid model and the set of node-occurrences of mα,
Occmα, has as many genes as the set of node-occur-
rences of its father m, Occm. When this is the case, m no
longer corresponds to a right-maximal e-CCC-Biclus-
ter since its expression pattern can be extended to the
right with the symbol α without losing genes.

3. Restrict the extensions of a given model m, Extm, to

the level of the model in the generalized suffix tree
(column of the last symbol in m). When we are

extending a model m with a symbol α (eventually

extracting a valid model mα), the column number of
the last symbol in m, m [lengthm], is C(m [lengthm]),

where C(m [lengthm]) ∈ {1, ..., |C|}, and errors are still

allowed, α can only be one of the symbols in the set

, where corresponds to

the subset of elements in Σ' whose column is equal to

C(m [lengthm])) + 1. For example, if Σ = {D, N, U} and

the model m = [D1] is being extended, the possible

symbols α with which m can be extended to mα must

be in = {D2. N 2, U 2}. In the same way, if m = [D2

U3], the possible symbols α with which m can be

extended to mα are in = {D4, N 4, U 4}.

The algorithmic details of the procedures and functions
called in the recursive procedure spellModels are
described in additional file 2:
algorithmic_complexity_details.

′ +ΣC m lengthm([]) 1 ′ +ΣC m lengthm([]) 1

′Σ2

′Σ4
Page 17 of 39
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:8 http://www.almob.org/content/4/1/8
Deleting valid models not corresponding to left-maximal e-CCC-
Biclusters
In step 2 of e-CCC-Biclustering (details in procedure
deleteNonLeftMaximalBiclusters below), we
remove from the valid models stored in modelsOcc (iden-
tifying right-maximal e-CCC-Biclusters) those not corre-
sponding to left-maximal e-CCC-Biclusters. These models
are removed from modelsOcc by first building a trie with
the reverse patterns of all (right-maximal) models m and
storing the number of genes in numberOfGenesOccm in its
corresponding node in the trie. After this, it is sufficient to
mark as "non left-maximal" any node in the trie that has
at least one child with as many genes as itself. This is easily
achieved by performing a depth-first search (dfs) of the
trie and computing, for each node, the maximum value
amongst the values of numberOfGenesOccm stored in its
children. The models whose corresponding node in the
trie is marked as "non left-maximal" are then removed
from modelsOcc.

Procedure deleteNonLeftMaximalBiclusters

Input: modelsOcc

/* The value of modelsOcc is updated. */

1 Tleft← createTrie ()

/* Array which will store references to
nodes in Tleft */

2 Rnodes← {}

3 foreach model and occurrences (m, genesOccm, numberOf-
GenesOccm) in modelsOcc do

4 mr← ReverseModel(m)

5 nodeRepresentingModel ← addReverseModelToT
rie(Tleft, mr)

/* Each node in Tleft stores two integers1)

the number of genes in the model it rep
resents, genesv (0 if it does not represent

the end of a model); and 2) the maximum
number of genes in the subtree rooted atv,

(computed later). Both these

values are initialized with 0. */

6 addNumberOfGenes(nodeRepresentingModel,number
OfGenesOccm)

7 addReferenceToNode(Rnodes, nodeRepresenting-
Model)

8 forall nodes v in Tleft do

/* Performed using a depth-first search
(dfs) */

9 if genesv > 0 then

/* Node v represents a model and is
potentially left-maximal. */

10 Mark v as "left-maximal"

11 else

12 Mark v as "non left-maximal"

13 Compute the maximum number of genes in the sub-
tree rooted at v

14 foreach node v in Tleft do

/* Performed using a depth-first search
(dfs) */

15 if genesv > 0 and genesv = then

16 Mark v as "non left-maximal"

17 pmodelsOcc ← 0

18 foreach model and occurrences (m, genesOccm, numberOf-
GenesOccm) in modelsOcc do

19 if Rnodes [pmodelsOcc] is marked as "non-left maximal" then

20 deleteModelAndOccurrences(modelsOcc, m)

21 pmodelsOcc ← pmodelsOcc + 1

Deleting valid models representing the same e-CCC-Biclusters
When errors are allowed, different valid models may iden-
tify the same e-CCC-Bicluster. Step 3 of e-CCC-Bicluster-
ing, described in detail in procedure
deleteRepeatedBiclusters below, uses a hash
table to remove from modelsOcc all the valid models that,
although maximal (left and right), identify repeated e-
CCC-Biclusters. This is needed because all valid models m
with the same first and last columns and the same set of
genes represent the same maximal e-CCC-Bicluster.

Procedure deleteRepeatedBiclusters

Input: modelsOcc

/* The value of modelsOcc is updated. */

maxGenes subtreev

maxGenes subtreev
Page 18 of 39
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:8 http://www.almob.org/content/4/1/8
1 H ← createHashTable()

2 foreach model and occurrences (m, genesOccm, numberOf-
GenesOccm) in modelsOcc do

3 firstColumnm = C(m [1])

4 lastColumnm = C(m [lengthm])

5 key ← createKey(firstColumn, lastColumn, genesOccm)

6 value ← (firstColumn, lastColumn, genesOccm)

7 if containsKey(H, key) then

8 valuekey ← getValue(H, key)

9 if value = valuekey then

/* H already has a value representing
the same e-CCC-Bicluster */

10 deleteModelAndOccurrences(modelsOcc,
m)

11 else

12 insertKeyValue(key, value)

13 else

14 insertKeyValue(key, value)

Reporting all maximal e-CCC-Biclusters
After the three main steps of e-CCC-Biclustering the list
modelsOcc stores all valid models corresponding to maxi-
mal e-CCC-Biclusters satisfying the quorum constraints qr
and qc. In this context, the reporting procedure report
MaximalBiclusters, described below, lists these e-
CCC-Biclusters using the information stored in the model
m (needed to identify the expression pattern and the col-
umns in each e-CCC-Bicluster) and the bit vector genesOcc
(needed to identify the genes in the e-CCC-Bicluster).

Procedure reportMaximalBiclusters

Input: modelsOcc

1 foreach model and occurrences (m, genesOccm, numberOf-
GenesOccm) in modelsOcc do

2 firstColumnm = C(m [1])

3 lastColumnm = C(m [lengthm])

4 print(m, firstColumnm, lastColumnm, genesOccm)

e-CCC-Biclustering: Complexity analysis
In this section we sketch an analysis of the complexity of
e-CCC-Biclustering. For a detailed complexity analysis see
additional file 2: algorithmic_complexity_details.

Given a discretized matrix A with |R| rows and |C| col-
umns, the alphabet transformation performed using the
procedure alphabetTransformation takes O(|R||C|)
time.

The complexity of computing all valid models corre-
sponding to right-maximal e-CCC-Biclusters using proce-
dure computeRightMaximalBiclusters takes
O(|R|2|C|1 + e|Σ|e) operations. The construction of Tright
and the computation of L(v) for all its nodes takes
O(|R||C|) time each, using Ukkonen's algorithm with
appropriate data structures, and a dfs, respectively. The
increase in the alphabet size from |Σ| to |C||Σ| due to the
alphabet transformation does not affect the O(|R||C|)
construction and manipulation of the generalized suffix
tree [9]. When e > 0, adding the color array to all nodes in
Tright takes O(|R|2|C|) time. Initializing Extm takes
O(|C||Σ|) and spellModels is O(|R|2|C|1 + e|Σ|e). The
complexity of this step of the algorithm is bounded by the
complexity of spellModels and is thus
O(|R|2|C|1+e|Σ|e). The complexity of deleting from model-
sOcc all valid models that are not left-maximal using pro-
cedure deleteNonLeftMaximalBiclusters is
O(|R||C|2+e|Σ|e). Since the number of models in model-
sOcc is O(|R||C|1+e|Σ|e) and the size of the models is
O(|C|), the trie Tleft can be constructed and manipulated in
O(|R||C|2 + e|Σ|e).

The complexity of deleting from modelsOcc all models rep-
resenting the same e-CCC-Biclusters with procedure del
eteRepeatedBiclusters takes O(|R|2|C|1 + e|Σ|e).
Since computing the hash key for each of the O(|R||C|1 +

e|Σ|e) models in modelsOcc takes O(|R|) time, the overall
complexity of this step is O(|R|2|C|1 + e|Σ|e).

Since the number of genes in genesOccm is O(|R|) and
computing the first and last column of the valid model m
takes constant time, reporting all maximal e-CCC-Biclus-
ters using procedure reportMaximalBiclusters is
O(|R|2|C|1+e|Σ|e).

Therefore, the asymptotic complexity of the proposed e-
CCC-Biclustering algorithm is O(max (|R|2|C|1+e|Σ|e,
|R||C|2 + e|Σ|e)). However, in most cases of interest |R|
>>|C| and the complexity becomes O(|R|2|C|1+e|Σ|e).
Moreover, when e = 0, CCC-Biclustering [9,22] can be
used to obtain O(|R||C|).
Page 19 of 39
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:8 http://www.almob.org/content/4/1/8
Extensions to handle missing values, anticorrelated and
scaled expression patterns
In this section we present extensions to e-CCC-Bicluster-
ing able to handle missing values and discover anticorre-
lated (opposite patterns) and scaled (patterns with
different expression rates) expression patterns. In the sub-
sections below we consider the illustrative example in Fig-
ure 9, corresponding to a modified version of the example
in Figure 1. We now assume that some expression values
are missing.

Handling missing values
Since e-CCC-Biclustering cannot deal with missing values
directly, genes with missing values have to be removed, or
missing values have to be filled, as a preprocessing step. In
this section we present extensions that enable direct
processing of the expression matrix with missing values.
Our goal is to consider all available time points and thus
always include the expression pattern of a gene as input to
the extended version of the algorithm. Nevertheless genes
with more than a predefined percentage of missing values
can still be discarded in a preprocessing step.

Dealing with missing values in e-CCC-Biclustering is
straightforward and can be performed in two ways:

1. Considering missing values as valid errors.

2. "Jumping over" missing values.

In order to consider missing values as valid errors we
modify e-CCC-Biclustering as follows:

• The initialization of Extm in procedure compu
teRightMaximalBiclusters must include the
symbol used for missing value, when e > 0, and ignore
all edges descending from the root starting with this
symbol, when e = 0.

• The extension of a model m with a symbol α in
spellModels must take into account the following:
α can either be, or not be, the symbol used for missing

value, depending on whether we are performing an
extension without errors or performing an extension with
errors, respectively.

For details, see procedures extendFromNodeWith
outErrors and extendFromEdgeWithoutEr
rors, in case of extensions without errors, or proce-
dures extendFromNodeWithErrors and extend
FromEdgeWithErrors, in case of extensions with
errors. These procedures are called in spellModels
and described in additional file 2:
algorithmic_complexity_details.

Consider the illustrative example in Figure 9, where some
gene expression values are missing.

Figure 10 shows the generalized suffix tree Tright and the
two maximal 1-CCC-Biclusters (B1 and B2) identified by
two valid models when e = 1, qr = qc = 3 and missing values
are considered as valid errors.

In order to "jump over" missing values we modify e-CCC-
Biclustering as follows:

• After alphabet transformation, we construct the gen-
eralized suffix tree Tright, used in procedure compu

teRightMaximalBiclusters, using the set of
strings without missing values

, where ri is

the number of contiguous sets of symbols without
missing values in row i. The set of substrings of each

string Si (gene i), , is inserted in T using the

same terminator $i.

Consider, for example, the string corresponding to the
expression pattern of gene G2 in the illustrative exam-
ple in Figure 9. In this case, and in order to "jump
over" the missing value in the time points C3 and C5,
we insert in Tright two strings corresponding to each of

{ ,..., , ..., , ..., , ..., , ..., }| | | |
| |

S S S S S S
r ri r R

i i R R1 11 1 1 1

{ ,..., }S Si iri1

Illustrative example with missing valuesFigure 9
Illustrative example with missing values. This figure shows: (Left) Original expression matrix, (Middle) Discretized
matrix and (Right) Discretized matrix after alphabet transformation.

C1 C2 C3 C4 C5

G1 0.73 -0.54 0.45 0.25

G2 -0.34 0.46 0.76

G3 0.44 -0.11

G4 0.70 -0.41 0.33 0.35

G5 0.70 0.70 -0.33 0.75

C1 C2 C3 C4 C5

G1 U D U N

G2 D U U

G3 U N

G4 U D U U

G5 U U D U

C1 C2 C3 C4 C5

G1 1 U2 D3 U4 N5

G2 D1 U2 3 U4 5

G3 1 2 3 U4 N5

G4 U1 2 D3 U4 U5

G5 U1 2 U3 D4 U5
Page 20 of 39
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:8 http://www.almob.org/content/4/1/8
the two contiguous sets of symbols without missing

values in the expression pattern of G2: = [D1 U2

$2] and = [U4 $2]. Note that the same terminator

$2 is used for all the substrings of row i: and .

Figure 11 shows the generalized suffix tree Tright con-
structed for the matrix after alphabet transformation in
Figure 9 together with the four maximal 1-CCC-Biclusters
(B1, B2, B3 and B4), identified by four valid models,
when e = 1, qr = 3, qc = 2 and the algorithm "jumps over"
missing values.

The asymptotic complexity of both versions of this
extended version of e-CCC-Biclustering remains O(max

(|R|2|C|1+e|Σ|e, |R||C|2+e|Σ|e)). When e = 0, a modified ver-
sion of CCC-Biclustering [27] can be used to achieve the
linear time complexity O(|R||C|), if repeated CCC-Biclus-
ters are not filtered. In order to eliminate repetitions, the
asymptotic complexity is now O(|R|2|C|).

Handling anticorrelated expression patterns
Given the importance of anticorrelation relationships in
the study of transcription regulation using time series
expression data we present here the extension of e-CCC-
Biclustering to extract maximal e-CCC-Biclusters with
sign-changes, that is maximal e-CCC-Biclusters allowing
genes with opposite expression patterns. We first define
formally the concepts of opposite expression pattern, e-

S21

S22

S21
S22

e-CCC-Biclusters extended to consider missing values as valid errorsFigure 10
e-CCC-Biclusters extended to consider missing values as valid errors. This figure shows: (Top) Generalized suffix
tree used by e-CCC-Biclustering extended to consider missing values as valid errors when applied to the transformed matrix in
Figure 9. The circles labeled with B1 and B2 identify the node-occurrences of the two maximal 1-CCC-Biclusters discovered
when e = 1 and qe = qc = 3; (Bottom) Maximal 1-CCC-Biclusters corresponding, respectively, to the valid models m = [D3 U4
N5] (three node-occurrences labeled with B1) and m = [U2 D3 U4] (three node-occurrences labeled with B2).
Page 21 of 39
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:8 http://www.almob.org/content/4/1/8

Page 22 of 39
(page number not for citation purposes)

e-CCC-Biclusters extended to "jump over" missing valuesFigure 11
e-CCC-Biclusters extended to "jump over" missing values. This figure shows: (Top) Generalized suffix tree used by e-
CCC-Biclustering extended to "jump over" missing values when applied to the transformed matrix in Figure 9. The circles
labeled with B1, B2, B3 and B4 identify the node-occurrences of the four maximal 1-CCC-Biclusters discovered when e = 1, qe
= 3 and qc = 2; (Bottom) Maximal 1-CCC-Biclusters corresponding, respectively, to the valid models m = [D2 D3] (three
node-occurrences labeled with B1), m = [D4 N5] (three node-occurrences labeled with B2), m = [U4 D5] (three node-occur-
rences labeled with B3) and m = [U4 U5] (three node-occurrences labeled with B4).

Algorithms for Molecular Biology 2009, 4:8 http://www.almob.org/content/4/1/8
CCC-Bicluster with sign-changes, and maximal e-CCC-
Bicluster with sign-changes:

Definition 12 (e-CCC-Bicluster with Sign-Changes) An
e-CCC-Bicluster with sign-changes AIJ is an e-CCC-Bicluster
where all the strings Si that define the expression pattern of each
of the genes in I are either in the e-Neighborhood of the expres-
sion pattern S that defines the e-CCC-Bicluster, or in the e-
neighborhood of its opposite expression pattern S-1: Si ∈ N (e;
S) or Si ∈ N (e, S-1), ∀i ∈ I.

Definition 13 (Maximal e-CCC-Bicluster with Sign-
Changes) An e-CCC-Bicluster with sign-changes AIJ is maxi-
mal if it is row-maximal, left-maximal and right-maximal.
This means that no more rows or contiguous columns can be
added to I or J, respectively, maintaining the coherence property
in Definition 12.

In order to discover maximal e-CCC-Biclusters with sign-
changes we modify e-CCC-Biclustering as follows:

• We construct the generalized suffix tree Tright, used in

procedure computeRight MaximalBiclusters,

for the set of strings Si ∈ {S1, ..., S|R|} obtained after

alphabet transformation and insert in Tright the set of

opposite patterns of these strings .

Since we use string terminators {$1, ..., $|R|} for the
expression patterns Si and {$(|R| + 1,..., $(2|R|)} for

their opposite patterns it is easy to compute the

color arrays in Tright in O(|R|) time and space. Notet

hat we still use a color array with a maximum of |R|
bits and not 2|R| bits.

• When the extension to "jump over" missing values is
considered, we construct Tright for the set of strings

 and their

opposite patterns

.

Figure 12 shows the generalized suffix tree Tright and the
three maximal 1-CCC-Biclusters (B1, B2 and B3), identi-
fied by three valid models, when e = 1, qr = 3 and qc = 2. In
this example, the extension "jump over" missing values
was used to handle missing values.

The asymptotic complexity of this extended version of e-
CCC-Biclustering remains O(max (|R|2|C|1+e|Σ|e,
|R||C|2+e|Σ|e)). Note however that, although the asymp-
totic complexity does not change the constant of propor-
tionality is higher. When e = 0, a modified version of CCC-

Biclustering [27] can again be used to achieve the linear
time complexity O(|R||C|), if repeated CCC-Biclusters are
not filtered. However, removing repeated CCC-Biclusters
takes O(|R|2|C|).

Handling scaled expression patterns
Since different genes can have different expression rates,
we propose e-CCC-Biclustering with scaled expression
patterns. These extensions allow the shifting of gene
expression patterns up to K symbols up and down, in
order to potentially find maximal e-CCC-Biclusters that
would not be found due to different gene expression rates.
The value of K is an integer between 1 and (|Σ| - 1), where
Σ is the set of symbols used to discretize the original
expression matrix, in lexicographic order.

In the general case, and in order to shift the expression
pattern of the genes K symbols up and down we consider

a pair of K symbol alphabets: Σ↑ and Σ↓. These alphabets

make it possible to shift all the symbols in |Σ| the desired

K symbols up and down. Assuming the three alphabets Σ,

Σ↑ and Σ↓ are in lexicographic order and thus their sym-

bols respect the ordering Σ↓ [1] < ... < Σ↓ [K] < Σ [1] < ... <

Σ [|Σ|] <Σ↑[1] < ... < Σ↑ [K], the alphabet

 = Σ↓ ∪ Σ ∪ Σ↑ is also in lexico-
graphic order.

For illustration purposes, consider Σ = {D, N, U}, K = (|Σ|
- 1) = 2, and the illustrative example in Figure 9. In this
case, and in order to shift the expression pattern of the
genes K = 2 symbols up and down, we need to consider,

for example, the K = 2 symbol alphabets Σ↑ = {V, W} and

Σ↓ = {B, C}. The three symbols in Σ are then shifted K = 2
symbols up and down using the following three pairs of

alphabets: = {N, U} and = {B, C}; = {U,

V} and = {C, D}; and = {V, W} and = {D,

N}. Thus, = {B, C, D, N, U, V, W}, in this specific
case.

We define e-CCC-Bicluster with scaled patterns and the
notion of maximality as follows:

Definition 14 (e-CCC-Bicluster with Scaled Patterns) An
e-CCC-Bicluster with scaled patterns

AIJ is an e-CCC-Bicluster where all the strings Si that define the

expression pattern of each of the genes in I are either in the e-
Neighborhood of the expression pattern S, that defines the e-
CCC-Bicluster, or in the e-neighborhood of the patterns result-
ing from shifting its expression pattern S K symbols up,

S S Si R
− − −∈1

1
1 1{ ,..., }| |

Si
−1

{ ,..., , ..., , ..., , ..., , ..., }| | | |
| |

S S S S S S
r ri r R

i i R R1 11 1 1 1

{ ,..., , ..., , ..., , ..., , ...,| | |S S S S S S
r ri

i i R R1
1

1
2 1 1 1

1 1 1 1

− − − − −
||

| |
}

r R

−1

Σ Σ Σ ΣK shifts = ∪ ∪↓ ↑

ΣD↑
ΣD↓

Σ N ↑

Σ N ↓
ΣU ↑

ΣU ↓

Σ2 shifts
Page 23 of 39
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:8 http://www.almob.org/content/4/1/8
, or K symbols down, ,

where K is an integer and K ∈ [1, ..., |Σ| - 1]. This means Si ∈

<N (e, S) ∨ Si ∈ N (e, S↑) ∨ Si ∈ N (e, S↓), ∀i ∈ I.

Definition 15 (Maximal e-CCC-Bicluster with Scaled
Patterns) An e-CCC-Bicluster with scaled patterns AIJ is max-
imal if it is row-maximal, left-maximal and right-maximal.
This means that no more rows can be added to the set of rows I
and no contiguous columns can be added to the set of columns
J while maintaining the coherence property in Definition 14.

In order to discover e-CCC-Biclusters with scaled patterns
we modify e-CCC-Biclustering as follows:

• We construct the generalized suffix tree Tright, used in
procedure computeRight MaximalBiclusters,
for the set of strings Si = {S1, ..., S|R|} and insert in Tright
the patterns resulting from shifting the expression pat-
tern Si K symbols up and down.

Since we use string terminators $1, ..., $|R| for the
expression patterns Si and $(|R| + 1), ..., $(|R| + 2 × K

S S S K↑ ↑ ↑= { ,..., }1 S S S K↑ ↓ ↓= { ,..., }1

e-CCC-Biclusters extended to "jump over" missing values and allow anticorrelationFigure 12
e-CCC-Biclusters extended to "jump over" missing values and allow anticorrelation. This figure shows: (Top)
Generalized suffix tree used by e-CCC-Biclustering extended to "jump over" missing values and extract e-CCC-Biclusters with
sign-changes when applied to the transformed matrix in Figure 9. The circles labeled with B1, B2 and B3 identify the node-
occurrences of the three maximal 1-CCC-Biclusters discovered when e = 1, qe = 3 and qc = 2; (Bottom) Maximal 1-CCC-
Biclusters corresponding, respectively, to the valid models m = [D3 D4] (B1), m = [D3 U4 D5] and m-1 = [U3 D4 U5] (B2), and
m = [U4 U5] and m-1 = [D4 D5] (B3).
Page 24 of 39
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:8 http://www.almob.org/content/4/1/8
× |R|) for shifted patterns it is easy to compute the
colors arrays in Tright in O(|R|) time and space.

• When the extension to "jump over" missing values is
considered, we construct Tright for the set of strings

 together with their

corresponding set of shifted patterns K symbols up
and down.

The asymptotic complexity of e-CCC-Biclustering with
scaled patterns is O(K|R|2|C|1+e|Σ|e). When e = 0, a modi-
fied version of CCC-Biclustering [27] can be used to
obtain O(K|R||C|), or O(K|R|2|C|) if repetitions are dis-
carded.

Alternative ways to compute approximate expression
patterns
In this section we describe alternative ways to compute
the errors allowed in the approximate patterns, which can
reveal to be more suitable depending on the specific prob-
lem under study. The proposed e-CCC-Biclustering algo-
rithm can be modified in order to cope with the three
different kinds of errors described below: restricted errors,
alphabet range weighted errors, and pattern length adaptive
errors.

Restricted errors

The e-CCC-Biclustering algorithm allows general errors,
that is, substitutions of the symbols Aij in the e-CCC-

Bicluster AIJ by any symbol in the alphabet but Aij.

Considering approximate expression patterns having this
kind of errors is specially relevant to minimize the nega-
tive effect of measurement errors, generally occurring dur-
ing the microarray experiments, in the ability of the
algorithm to identify relevant expression patterns. How-
ever, if we are specially interested in minimizing the also
problematic effects of potential discretization errors, intro-
duced due to poor choice of discretization thresholds or
number of symbols, we can consider restricted errors, that
is, substitutions of the symbols Aij by the lexicographically

closer symbols (neighbors) in .

In general, when restricted errors are considered, the
allowed substitutions for any symbol Aij are in the set

, where

 is the position of Aij in and z is a value

in that specifies the number of neighbors

both to the left and to the right of that are con-

sidered valid errors. Note that this set with the allowed
symbols to substitute the symbol in Aij has a maximum of

(2z) elements. Furthermore, the exact number of elements
depends both on the number of considered neighbors, z,

and on the position of Aij in the alphabet , p. If

 then the errors are not restricted. For example,

when general errors are allowed, Σ = {D, N, U}, and m =
[U2 D3 U4 D5], D5 can be substituted by N5 and U5 in

 = {D5, N5, U5} leading to the 1-CCC-Bicluster B5 =

({G1, G2, G4},{C2–C5}) in Figure 7. However, if only
restricted errors with z = 1 are allowed, D5 can only be
substituted by {N5} leading to 1-CCC-Bicluster B = ({G1,
G2},{C2–C5}).

Alphabet range weighted errors

When the alphabet Σ used to discretize the data has many
symbols, we can either restrict the errors allowed in the
approximate patterns to a neighborhood around the sym-
bol, or to consider alphabet range weighted errors. In the
last case, we weight the errors according to the percentage
of the total alphabet range they correspond to. For exam-

ple, if Σ has 10 symbols, an error consisting of a substitu-

tion between symbols Σ[1] and Σ[3] should get a weight
of 2/9 ~ 0.22 and not a weight of 1 (as happens to all
errors in the definition of e-CCC-Bicluster). This means

that in general an error from symbol Σ[i] to symbol Σ [j],

considering that Σ is in lexicographic order and i <j, is

weighted as , where

. Since |Σ| - 1 is the maximum ampli-

tude error, , when i = 1 and j = |Σ|. Further-

more, , each time i = j and no error

occurred. In these settings, a node-occurrence can be
extended with errors if the weighted sum of the errors
already found is less than e.

Pattern length adaptive errors

The definition of an e-CCC-Bicluster AIJ states that the

expression pattern Si of each gene in I must be in the e-

Neighborhood of an expression pattern S that defines the
e-CCC-Bicluster. This implies that the maximum number
of errors e is fixed, and, as such, it does not take into

account the length of the expression pattern of each

individual e-CCC-Bicluster Bk. Since allowing e errors in

an expression pattern of a few columns is not the same as
allowing e errors in longer expression patterns, we pro-

S S S S Si R Rr r R
= { ,..., , ..., , ..., }| | | |

| |
1 11 1 1

′Σ j

′ = ′ ′ ′Σ Σ Σ Σj j j j{ [],..., [| |]}1

{ [],..., [], [],..., []}′ − ′ − ′ + ′ +Σ Σ Σ Σj j j jp z p p p z1 1

p j∈ ′{ ,...,| |}1 Σ ′Σ j

{ ,...,| | }1 1′ −Σ j

′ =Σ j ijp A[]

′Σ j

z j= ′ −| |Σ 1

′Σ5

W j ie i j([] [])
() /(| |)

Σ Σ
Σ

−
= − −1

We i j([] [])
[, ...,]

Σ Σ−
∈ 0 1

We i j([] [])Σ Σ−
= 1

We i j([] [])Σ Σ−
= 0

SBk
Page 25 of 39
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:8 http://www.almob.org/content/4/1/8
pose the use of pattern length adaptive errors (the longer the
pattern the more errors can be considered during the
model extension process). In this context, we believe that
a valuable extension to e-CCC-Biclustering is to allow not

a fixed number of errors e per gene in , but an adaptive

number of errors, per gene and per e-CCC-Bicluster Bk,

which is computed using a percentage of the number of

columns in . As such the goal is to modify the algo-

rithm in order to find and report all maximal δ-CCC-
Biclusters (defined below) instead of all maximal e-CCC-
Biclusters using Lemma 8 and Lemma 9 (described
below).

Definition 16 (δ-CCC-Bicluster) A contiguous column
coherent bicluster AIJ with pattern length adaptive errors, δ-
CCC-Bicluster, is a CCC-Bicluster where all the strings Si that
define the expression pattern of each of the genes in I are in the
δ -Neighborhood of an expression pattern S that defines the δ-
CCC-Bicluster: Si ∈ N (δ, S), ∀i ∈ I. The value of δ is com-
puted using a percentage of the number of columns in J: δ =
α|J|, where α ∈ [0, ..., 1].

Lemma 8 A δ-CCC-Bicluster AIJ is an e-CCC-Bicluster with e
= δ = α|J| errors per gene in I.

Lemma 9 The δ-Neighborhood of a string S, N(δ, S), where δ
= α|J|, α ∈ [0, ..., 1] and |J| ∈ [1, ..., |C|], contains

elements, where =

α|C|.

Scoring e-CCC-Biclusters using statistical significance and
similarity measures
Since applying biclustering to real gene expression matri-
ces can produce hundreds or even thousands of biclusters,
an objective evaluation of the quality of the biclusters dis-
covered is crucial. In fact, the inspection of biclustering
results can be prohibitive without an efficient scoring
approach which enables sorting and filtering the results
according to a statistical scoring criterion. The statistical
significance of the results can then be combined with
measures of biological significance in order to produce a
set of interesting and potentially useful biclusters, both
from the statistical and biological point of view. For e-
CCC-Biclusters, we propose the use of a scoring criterion,
which combines two criteria:

1. Statistical significance of expression patterns.

2. Similarity measure between overlapping e-CCC-
Biclusters.

In this work, we extend the concept of statistical signifi-
cance of perfect expression patterns, proposed for CCC-
Biclusters [9], in order to compute the statistical signifi-
cance of approximate expression patterns. Based on this
scoring criterion, the p-value of each e-CCC-Bicluster is
computed and those not passing a Bonferroni corrected
statistical significance test at a predefined level are dis-
carded. Biclusters are then sorted by increasing order of
their p-value and, when several of them overlap more than
a predefined threshold, only the most significant are kept.

Note that although we use the stringent Bonferroni correc-
tion for multiple testing at the 1% level to guarantee that
only the highly significant e-CCC-Biclusters are consid-
ered for further analysis, other less conservative statistical
corrections can be used, thus considering more e-CCC-
Biclusters as highly significant. Other significance levels
can also be used. Moreover, even though we also use a
stringent threshold in the overlapping filter (only e-CCC-
Biclusters overlapping less than 25% are further ana-
lyzed), other overlapping thresholds can be used, thus
allowing the analysis of a larger number of e-CCC-Biclus-
ters, although potentially increasing the number of redun-
dant biclusters.

In what follows we describe how to compute the statistical
significance of an e-CCC-Bicluster using its expression pat-
tern and describe the similarity score used to compare e-
CCC-Biclusters.

Statistical significance
We proposed to measure the statistical significance of an
e-CCC-Bicluster B of size |I| × |J|, where I is the set of genes
and J is the set of contiguous time-points, and expression
pattern pB, against the null hypothesis, H0, that assumes
that the expression values of genes evolve independently.

Under the null hypothesis, it is possible to compute, using
reasonable simplifying assumptions, the probability of an
e-CCC-Bicluster of the considered size and expression pat-
tern occurring by chance in an expression matrix with |R|
genes and |C| time points. The value of this probability is
obtained by computing the tail of the binomial distribution,
which gives the probability of an event with probability p
occurring k or more times in n independent trials:

.

The statistical significance of an e-CCC-Bicluster B is thus
the value of p-value(B), which is computed by obtaining
the probability of a random occurrence under H0 of the
expression patterns in the e-Neighborhood of the expres-
sion pattern pB defining the e-CCC-Bicluster, N (e, pB), k =
|I| - 1 times in n = |R| - 1 independent trials, where I is the

IBk

J Bk

C S Sj
S j

j
| |(| |) | | | | | | | |Σ Σ Σ− ≤ ≤=∑ 1

0

δ δ δ † †

C p pj
n j n j

j k

n
()1 − −

=∑
Page 26 of 39
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:8 http://www.almob.org/content/4/1/8
number of genes in B and |R| is the total number of genes
in the gene expression matrix. This is performed using the
simplifying assumption that the probability of occurrence
of a specific expression pattern in the e-Neighborhood of
the pattern pB, N (e, pB), is adequately modeled by a first
order Markov Chain, with state transition probabilities
obtained from the values in the corresponding columns in
the matrix. In the general case,

where |N(e, pB)| and N (e, pB) [i] are, respectively, the
number of patterns and the ith pattern in the e-Neighbor-
hood of the pattern pB. As an example, consider the com-
putation of P (N (e, pB)) when B is the e-CCC-Bicluster B1
= ({G1, G2, G4}, {C1 - C4}) in Figure 7 with pB = [D1 U2
D3 U4]. Since, in this case, e-CCC-Biclustering was
applied using e = 1, we have to compute P(N(1, [D1 U2
D3 U4])), which has, in this case, the following set of ele-
ments: {[D1 U2 D3 U4], [N1 U2 D3 U4], [U1 U2 D3 U4],
[D1 D2 D3 U4], [D1 N2 D3 U4], [D1 U2 N3 U4], [D1 U2
U3 U4], [D1 U2 D3 D4], [D1 U2 D3 N4]}.

In this context, the value of P(N(1, [D1 U2 D3 U4])) is
computed as follows: P(N(1, [D1 U2 D3 U4])) = P([D1
U2 D3 U4]) + P([N1 U2 D3 U4]) + P([U1 U2 D3 U4]) +
P([D1 D2 D3 U4]) + P([D1 N2 D3 U4]) + P([D1 U2 N3
U4]) + P([D1 U2 U3 U4]) + P([D1 U2 D3 D4]) + P([D1
U2 D3 N4]).

By using a first order Markov Chain, P([D1 U2 D3 U4]),
for example, is computed as follows:

where , ,

 and

. The values |D1|, |D1U2|,

|U2|, |U2D3|, |D3|, |D3U4| correspond, respectively, to
the number of occurrences of symbol D1, the number of
transitions from D1 to U2, the number of occurrences of
symbol U2, the number of transitions from D1 to U2, the
number of occurrences of symbol D3 and the number of
transitions from D3 to U4. The remainder conditional
probabilities needed to compute P(N(1, pB)) are com-

puted in a similar way.

When missing values are considered as valid errors, N(e, pB) is
computed using the alphabet Σ '∪ mv', where mv is the
symbol used for missing value and each element mv' is

obtained by concatenating m and one number in the
range {1, ..., |C|}, that is, mv' = {mv} × {1, ..., |C|}.

When only restricted errors are allowed, N(e, pB) is not
computed using all the symbols in Σ'. The allowed substi-
tutions for each symbol in pB are the z neighbors, both to
the left and to the right of Σ'[p] that are considered as valid
errors, where p is the position of the symbol pB[k] in Σ'.

In the case of e-CCC-Biclusters with sign-changes we com-
pute the statistical significance of B, using the p-value(B),
by obtaining the probability of a random occurrence
under H0 of the expression patterns in the e-Neighbor-

hoods of the patterns in the pB and , K = |I|-1 times in

n = |R| -1 independent trials. We compute P(N(e, pB) ∪

N(e,)) as follows:

where

 and |N(e, pB)|, |N(e,)|, N(e, pB)[i] and N (e,) [i]

are, respectively, the number of patterns and the ith pat-

tern in the e-Neighborhood of the pattern pB and ,

respectively.

In the case of e-CCC-Biclusters with scaled patterns we com-
pute the statistical significance of B, using the p-value(B),
computed by obtaining the probability of a random
occurrence under H0 of the patterns in the e-Neighbor-
hood of the pattern pB, and its scaled patterns, (pB)↑ and
(pB)↓, k = |I| - 1 times in n = |R| - 1 independent trials,
where I is the number of genes in B and |R| is the total
number of genes in the matrix.

We compute P(N(e, pB) ∪ N(e, (pB)↑)) ∪ N(e, (pB)↓)) as
follows:

where shift ∈ {1, ..., K}, and K is the value used in e-CCC-
Biclustering with scaled patterns to shift the expression
patterns K symbols up and down.

Similarity measure
In order to compute the similarity measure between two
e-CCC-Biclusters, B1 = (I1, J1) and B2 = (I2, J2), we use the
Jaccard Index. In this work, this score is used to measure

P N e p P N e p iB B
i

N e pB
((,)) ((,)[])

| (,)|
=

=∑ 1

P P D P U D P D U P U D([]) () (|) (|) (|)D U D U1 2 3 4 1 2 1 3 2 4 3=

P D D
G() | |

| |1 1= P U D P D U
P D

D U
D(|) ()

()
| |

| |2 1 1 2
1

1 2
1= =

P D U P U D
P U

U D
U(|) ()

()
| |

| |3 2 2 3
2

2 3
2= =

P U D P D U
P D

D U
D(|) ()

()
| |

| |4 3 3 4
3

3 4
3= =

pB
−1

pB
−1

P N e p N e p P N e p P N e pB B B B((,) (,)) ((,)) ((,)),∪ − −= +1 1

P N e p P N e p P N e p i P N e pB B Bi

N e pB((,)) ((,)) ((,)[]) ((,
| (,)|+ = +−
=∑1
1 BBi

N e p
iB −

=

−

∑ 1
1

1

)[])
| (,)|

pB
−1 pB

−1

pB
−1

P N e p N e p N e p

P N e p P N e p

B B B

B B
shi

((,) (,())) (,()))

((,)) ((,)

∪ ∪↑ ↓

↑

=

+ fft shift

shift
B

shift
P N e p)) ((,))),∑ ∑+ ↓
Page 27 of 39
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:8 http://www.almob.org/content/4/1/8
the overlap between two e-CCC-Biclusters both in terms
of genes and conditions and is defined as follows:

where B11 = {(i, j): (i, j) ∈ B1 ∧ (i, j) ∈ B2}, B10 = {(i, j): (i,
j) ∈ B1 ∧ (i, j) ∉ B2}, and B01 = {(i, j): (i, j) ∉ B1 ∧ (i, j) ∈
B2}, for the genes i ∈ I1 ∪ I2 and the conditions j ∈ J1 ∪ J2.

Similarly, the gene similarity and condition similarity can
be computed, respectively, as follows:

Note that, in practice, and since |B1| = |I1| × |J1| and |B2| =
|I2| × |J2|, the similarity score as defined above can be
computed easily using the fact that |B1 ∩ B2| = |I1 ∩ I2| ×
|J1 ∩ J2| and |B1 ∪ B2| = |B1| + |B2| - |B1 ∩ B2|.

Results and discussion
In this section we present and discuss the results obtained
when applying the proposed e-CCC-Biclustering algo-
rithm to real time series gene expression data. We also
compare the performance of the proposed algorithm to
that of CCC-Biclustering [9]. We first describe the dataset
used to test the ability of the algorithm to find biologically
relevant expression patterns in real data and to perform
the comparison with CCC-Biclustering. This dataset
describes the transcriptional responses of Saccharomyces
cerevisiae to heat stress. We then show an application of e-
CCC-Biclustering to the discovery of transcriptional regu-
latory modules. Finally, we present the comparison with
CCC-Biclustering. All the results presented are based on
the analysis of Gene Ontology annotations obtained
using the GOToolbox database [28], together with infor-
mation about transcriptional regulations available in the
YEASTRACT database [29].

Dataset
We used a dataset from Gasch et al. [30], concerning the
Saccharomyces cerevisiae response to heat shock. This data-
set comprises seven different time points along the first
hour of exposure to 37°C (0, 0, 0, 5, 15, 30 and 60 min-
utes) and corresponds to the experiment identified as
"heat shock 2" in the original group of datasets described
by the authors. Since the first three time points are repli-
cates of the steady state, we computed an average of three
replicates of time zero and used a dataset with five time
points. From the original 6152 ORFS we removed those
with missing values and the ones that no longer existed in
SGD (Saccharomyces Genome Database). For the remain-
ing 6142 genes we obtained the correspondence between
ORFS and gene names using the YEASTRACT database

[29]. Since both e-CCC-Biclustering and CCC-Biclustering
work with a discretized matrix we have then discretized
this dataset using the discretization technique proposed
by Ji and Tan [20,31]. The discretized matrix A is obtained
in two steps. In the first step, A' is transformed into an A"
= |R| × (|C| - 1) matrix of variations (see Equation 1).
Once matrix A" is generated, the final discretized matrix A,
also with |R| rows and |C|- 1 columns, is obtained in a sec-
ond step by binning the values of the transformed matrix
considering a threshold t > 0.

The expression matrix A' was standardized to zero mean
and unit standard deviation, gene by gene, before the dis-
cretization process, and the discretization threshold t was
set to the value of the standard deviation (t = 1). We refer
to this preprocessed and discretized dataset as Discre-
tizedHeatShock.

Application of e-CCC-Biclustering to the identification of
transcriptional regulatory modules
To assess the biological relevance of e-CCC-Biclusters in
real data we applied e-CCC-Biclustering to the Discre-
tizedHeatShock dataset. We allowed only one error (e =
1) and considered only errors in the 1-neighborhood of
the symbols in the alphabet Σ = {D, N, U}. Note that this
corresponds to applying one of the e-CCC-Biclustering
extensions we propose in this work (e-CCC-Biclustering
with restricted errors). By restricting the errors to the 1-
neighborhood of the symbols in the alphabet Σ = {D, N,
U}, our goal is to avoid the impact of a poor choice of the
discretization thresholds in the ability of the algorithm to
find all genes with coherent expression patterns. As such,
the errors D < - > N and N < - > U are allowed but the error
D < - > U is not permitted.

With this settings, 1-CCC-Biclustering found 170 maxi-
mal non-trivial 1-CCC-Biclusters. For these 170 1-CCC-
Biclusters we computed the p-value using the method
described in the previous section. Only 47 1-CCC-Biclus-
ters were considered as statistically significant, at the 1%
level, after applying the Bonferroni correction for multiple
testing. All the 1-CCC-Biclusters not passing this statistical
test were discarded. The remainder 47 were then sorted in
ascending order of the statistical p-value previously com-
puted. See additional file 3: 1_ccc_biclusters for a sum-
mary of these 47 e-CCC-Biclusters.

J B B J I J I J
B B
B B

B
B B

(,) ((,),(,))
| |
| |

| |
| | |1 2 1 1 2 2

1 2
1 2

11
01 10

= = =
+

∩
∪ || | |

,
− B11

J I I
I I
I I

J J J
J J
J J

(,)
| |
| |

(,)
| |
| |

.1 2 1 2
1 2
1 2

1 2
1 2

= =∩
∪

∩
∪

and ′′ =

′ + − ′
′

′ ≠

− ′ = ′ +A

Ai j Aij
Aij

A

A Aij

ij

ij i j

()
| |

()

1
0

1 0 1

if

if and <<
′ = ′ >
′ = ′ =

⎧

⎨

⎪
⎪
⎪

+

+

0

1 0 0

0 0 0
1

1

if and

if and

A A

A A

ij i j

ij i j

()

()⎩⎩

⎪
⎪
⎪

=
′′ ≤ −
′′ ≥

⎧
⎨
⎪

⎩
⎪

A

D A t

U A t

N
ij

ij

ij

if

if

otherwise

(1)
Page 28 of 39
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:8 http://www.almob.org/content/4/1/8
In order to avoid the analysis of highly overlapping 1-
CCC-Biclusters, we computed the similarities between the
sorted 1-CCC-Biclusters using the Jaccard similarity score
and filtered the 1-CCC-Biclusters with similarity above
25%. The filtering process removed 35 of the 47 1-CCC-
Biclusters originally selected. Figure 13 shows the expres-
sion patterns of the 12 1-CCC-Biclusters that remain.

These 12 highly significant and non-redundant 1-CCC-
Biclusters were then analyzed using the Gene Ontology
annotations using the GOToolbox database [28], together
with information about transcriptional regulations avail-
able in the YEASTRACT database [29].

Figure 14 shows a summary of these top 12 1-CCC-Biclus-
ters (expression patterns, number of genes and contiguous
time points) together with information about functional
enrichment relatively to terms in the Gene Ontology. To
perform the analysis for functional enrichment, we con-
sidered only the "Biological Process" ontology and terms
above level 2. We used the p-values obtained using the
hypergeometric distribution to assess the over-representa-
tion of a specific GO term. In order to consider an e-CCC-
Bicluster to be highly significant, we require its genes to
show highly significant enrichment in one or more of the
"Biological Process" ontology terms by having a Bonfer-
roni corrected p-value below 0.01. An e-CCC-Bicluster is
considered as significant if at least one of the GO terms
analyzed is significantly enriched by having a (Bonferroni
corrected) p-value in the interval [0.01, 0.05[. Note that,
although we only consider as functionally enriched the
terms with Bonferroni corrected p-values below 0.01 (for
high statistical significance), or below 0.05 (for statistical
significance), the p-values presented in the text are with-
out correction, as it is common practice in the literature.

It is worth noting that all the 1-CCC-Biclusters analyzed
have in general a large number of GO terms enriched
(after Bonferroni correction), and all of them have at least
one term whose p-value is highly significant (see Figure
14, for details). This means all the 1-CCC-Biclusters iden-
tified are biologically relevant as reported by functional
enrichment analysis performed using the Gene Ontology.

Figure 15 and Figure 16 show a detailed analysis of the
Gene Ontology annotations together with information
about transcriptional regulations available in the YEAS-
TRACT database, for the 1-CCC-Biclusters with transcrip-
tional up-regulation patterns and 1-CCC-Biclusters with
transcriptional down-regulation patterns, respectively.
When the 1-CCC-Bicluster has more than 10 terms
enriched or its genes are co-regulated by more than 10
transcription factors (TFs), only the 10 terms with lower p-
value or the 10 transcription factors regulating the higher
percentage of the genes in the 1-CCC-Bicluster are listed.

The GO terms marked with * only passed the statistical
test at the 5% level.

Comparison with CCC-Biclustering: perfect versus
approximate expression patterns
To assess the biological relevance of e-CCC-Biclusters in
real data, and test our thesis regarding the potential supe-
riority of this approach relatively to finding CCC-Biclus-
ters with perfect expression patterns, we compared the
results of e-CCC-Biclustering to those of CCC-Biclustering
in the DiscretizedHeatShock dataset, as recently pub-
lished by Madeira et al. [9].

In order to perform this comparison we reproduced the
results in [9] using a prototype implementation of CCC-
Biclustering coded in Java and made available by the
authors in http://www.inesc-id.pt/kdbio/software/ccc-
biclustering. We have also reproduced the biological anal-
ysis of CCC-Biclustering results since the data in the two
databases (GoToolbox and YEASTRACT) used by the
authors for this purpose was updated since the results in
[9] were published.

Our intuition, when performing this comparison, is that
allowing a small number of errors, per gene, in the perfect
expression patterns identifying the CCC-Biclusters (0-
CCC-Biclusters) discovered by CCC-Biclustering should
improve the biological significance of the biclusters by
considering genes with approximate expression patterns
and thus minimizing the effect of possible discretization
errors.

Note that, in the specific case of allowing 1 error in the
pattern of a CCC-Bicluster one of the following three situ-
ations can happen: (1) the 1-CCC-Bicluster is equal to the
CCC-Bicluster; (2) one or more genes, excluded from the
CCC-Bicluster due to a single error are added to the 1-
CCC-Bicluster; (3) the pattern of the 0-CCC-Bicluster is
extended (by adding one contiguous column at its begin-
ning/end) leading to a 1-CCC-Bicluster with at least as
many genes as the CCC-Bicluster and one additional con-
tiguous column.

In this context, we believe the improvement in the biolog-
ical significance of the results obtained by e-CCC-Biclus-
tering should be two-fold:

1. The functional enrichment of the e-CCC-Biclusters
should improve not only regarding the p-values of the
GO terms enriched but also in terms of the number of
GO terms enriched.

2. The number of genes regulated by relevant tran-
scription factors in 1-CCC-Biclusters (TFs) should be
Page 29 of 39
(page number not for citation purposes)

http://www.inesc-id.pt/kdbio/software/ccc-biclustering
http://www.inesc-id.pt/kdbio/software/ccc-biclustering

Algorithms for Molecular Biology 2009, 4:8 http://www.almob.org/content/4/1/8

Page 30 of 39
(page number not for citation purposes)

Expression patterns of the 1-CCC-Biclusters surviving the overlapping filterFigure 13
Expression patterns of the 1-CCC-Biclusters surviving the overlapping filter. This figure shows two types of expres-
sion patterns: transcriptional up-regulation (1-CCC-Biclusters 79, 132, 145, 97, 120 and 39) and transcriptional down-regula-
tion patterns (1-CCC-Biclusters 10, 27, 14, 68, 63 and 122).

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

1 2 3 4 5

N
or

m
al

iz
ed

 E
xp

re
ss

io
n

V
al

ue

Bicluster Time Points

(a) 1-CCC-Biclusters 10

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

1 2 3 4 5

N
or

m
al

iz
ed

 E
xp

re
ss

io
n

V
al

ue

Bicluster Time Points

(b) 1-CCC-Biclusters 27

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

1 2 3 4 5

N
or

m
al

iz
ed

 E
xp

re
ss

io
n

V
al

ue

Bicluster Time Points

(c) 1-CCC-Biclusters 79

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

1 2 3 4 5

N
or

m
al

iz
ed

 E
xp

re
ss

io
n

V
al

ue

Bicluster Time Points

(d) 1-CCC-Biclusters 132

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

1 2 3 4 5

N
or

m
al

iz
ed

 E
xp

re
ss

io
n

V
al

ue

Bicluster Time Points

(e) 1-CCC-Biclusters 145

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

1 2 3 4 5

N
or

m
al

iz
ed

 E
xp

re
ss

io
n

V
al

ue

Bicluster Time Points

(f) 1-CCC-Biclusters 14

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

1 2 3 4 5

N
or

m
al

iz
ed

 E
xp

re
ss

io
n

V
al

ue

Bicluster Time Points

(g) 1-CCC-Biclusters 68

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

1 2 3 4 5

N
or

m
al

iz
ed

 E
xp

re
ss

io
n

V
al

ue

Bicluster Time Points

(h) 1-CCC-Biclusters 97

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

1 2 3 4 5

N
or

m
al

iz
ed

 E
xp

re
ss

io
n

V
al

ue

Bicluster Time Points

(i) 1-CCC-Biclusters 120

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

1 2 3 4 5

N
or

m
al

iz
ed

 E
xp

re
ss

io
n

V
al

ue

Bicluster Time Points

(j) 1-CCC-Biclusters 63

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

1 2 3 4 5

N
or

m
al

iz
ed

 E
xp

re
ss

io
n

V
al

ue

Bicluster Time Points

(k) 1-CCC-Biclusters 39

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

1 2 3 4

N
or

m
al

iz
ed

 E
xp

re
ss

io
n

V
al

ue

Bicluster Time Points

(l) 1-CCC-Biclusters 122

Algorithms for Molecular Biology 2009, 4:8 http://www.almob.org/content/4/1/8
higher than the number of genes regulated by the
same TFs in the corresponding CCC-Biclusters.

The validation of the two points above will, in our opin-
ion, demonstrate that e-CCC-Biclustering is not only able
to recover genes with approximate expression patterns,
that are potentially lost when only perfect expression pat-
terns are considered, but also that the recovered genes are,
in fact, biologically relevant to the problem under study.

CCC-Biclustering discovered 167 maximal non-trivial
CCC-Biclusters, which were then sorted in ascending
order according to a statistical p-value similar to that we
proposed here for e-CCC-Biclusters. From these only 25
CCC-Biclusters were considered as highly significant at
the 1% level after applying the Bonferroni correction for
multiple testing. In order to avoid the analysis of highly
overlapping CCC-Biclusters, we have also computed the
similarities between the sorted CCC-Biclusters using the
Jaccard similarity score and filtered the CCC-Biclusters
with similarity greater than 25%. The filtering process
removed 9 of the 25 CCC-Biclusters originally selected.
See additional file 4: ccc_biclusters for a summary of
these 25 CCC-Biclusters. See also additional file 5:
1_ccc_biclusters_vs_ccc_biclusters for a detailed com-

parison between the 47 highly significant 1-CCC-Biclus-
ters discovered by 1-CCC-Biclustering restricted to errors
in the 1-neighborhood of the symbols in the alphabet Σ =
{D, N, U} and the 16 highly significant CCC-Biclusters
found by CCC-Biclustering and analyzed by Madeira et al.
[9]. It is clear from this table that most of the 47 1-CCC-
Biclusters discovered by the 1-CCC-Biclustering algorithm
are highly overlapping with one or more of the top 16
CCC-Biclusters identified by the CCC-Biclustering algo-
rithm. Figure 17 shows a summary of the remaining 16
CCC-Biclusters analyzed according to the Gene Ontology
(GO) annotations obtained using the GoToolBox [28],
together with information about transcriptional regula-
tions available in the YEASTRACT database [29], as per-
formed above for 1-CCC-Biclustering results. See
additional file 6: ccc_biclusters_biological_validation
for a detailed analysis of the GO terms enriched and tran-
scriptional regulations of these top 16 CCC-Biclusters.

Note that, unlike what happened with the top 12 1-CCC-
Biclusters discovered by 1-CCC-Biclustering (Figure 14),
the top 16 CCC-Biclusters discovered by CCC-Biclustering
(Figure 17) have in general a small number of GO terms
enriched (after Bonferroni correction), and several of
them are not functionally enriched (after Bonferroni cor-

Summary of the 1-CCC-Biclusters surviving the overlapping filterFigure 14
Summary of the 1-CCC-Biclusters surviving the overlapping filter. This table shows summary information about the
12 1-CCC-Biclusters surviving the overlapping filter. We show the statistical p-value of their expression patterns, the patterns
themselves, the number of contiguous time points and the number of genes in each 1-CCC-Bicluster. Together with this infor-
mation we present a summary of the results obtained when analyzing these 12 1-CCC-Biclusters using the Gene Ontology
annotations restricted to those in the "Biological Process" ontology and above Level 2. We show the number of GO terms
with highly significant and significant p-values, respectively, after Bonferroni correction for multiple testing. All 1-CCC-Biclus-
ters are functionally enriched, having at least one term (several in general) whose p-value is highly statistical significant, after
Bonferroni correction.

ID Sorting Variation #Time Points #Genes # (corrected) GO # (corrected) GO
p-value Pattern (first-last) p-values < 0.01 p-values 0.01 ≤< 0.05

1 10 0.00E-00 DDNU 5 (1-5) 1079 58 16

2 27 0.00E-00 DNUU 5 (1-5) 597 22 13

7 79 0.00E-00 NNND 5 (1-5) 849 40 16

9 132 0.00E-00 UNDD 5 (1-5) 539 10 7

13 145 2.81E-41 UUDD 5 (1-5) 511 8 5

16 14 1.36E-37 DDUU 5 (1-5) 521 19 12

19 68 1.65E-33 NDNU 5 (1-5) 800 40 6

28 97 4.15E-15 NUUN 5 (1-5) 385 5 0

34 120 5.12E-10 UDDN 5 (1-5) 307 6 5

35 63 1.99E-09 NDDN 5 (1-5) 292 13 1

36 39 2.88E-09 DUUN 5 (1-5) 430 1 5

43 122 9.16E-07 UDN 4 (1-4) 1462 33 15
Page 31 of 39
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:8 http://www.almob.org/content/4/1/8

Page 32 of 39
(page number not for citation purposes)

GO terms and transcriptional regulations of the 1-CCC-Biclusters describing transcriptional up-regulation patternsFigure 15
GO terms and transcriptional regulations of the 1-CCC-Biclusters describing transcriptional up-regulation
patterns. This table shows a detailed analysis of the GO terms and transcriptional regulations of the 1-CCC-Biclusters
describing transcriptional up-regulation patterns discovered by 1-CCC-Biclustering. When the set of genes in the 1-CCC-
Bicluster has more than 10 transcription factors or more than 10 GO terms enriched, only the top 10 of each are shown. We
only show the GO terms passing the Bonferroni correction for multiple testing at either the 1% level (highly significant) or the
5% level (significant). The p-values marked with * only passed the test at the 5% level. The p-values presented in the table are
without correction as it is common practice in the literature.

ID #Genes TFs % GO Terms Enriched DF p-value (level)
(Top 10) (Top 10)

79 849 Yap1p 28.8 carbohydrate metabolic process 9.60 6.86E-13 (4)

Met4p 24.3 generation of precursor metabolites and energy 8.11 2.59E-12 (3)

Sok2p 22.3 response to stress 15.23 5.22E-12 (3)

Msn2p 17.3 cellular carbohydrate metabolic process 8.61 2.42E-11 (5)

Atf1p 17.1 catabolic process 13.58 1.20E-10 (3)

Hsf1p 16.7 cellular catabolic process 13.08 3.82E-10 (4)

Rpn4p 14.8 energy derivation by oxidation of organic compounds 6.46 3.94E-10 (4)

Msn4p 14.5 phosphorylation 6.13 3.45E-08 (6)

Arr1p 13.5 actin filament-based process 4.97 4.51E-08 (6)

Ste12p 10.6 actin cytoskeleton organization and biogenesis 4.80 5.71E-08 (7)

132 539 Sok2p 23.3 regulation of biological process 21.18 1.32E-07 (3)

Yap1p 20.9 regulation of cellular process 20.59 1.84E-07 (4,3)

Met4p 17.4 regulation of transcription from RNA polymerase II promoter 8.82 8.38E-07 (9,8)

Aft1p 16.0 cell communication 9.12 1.59E-06 (3)

Hsf1p 13.8 transcription from RNA polymerase II promoter 11.47 1.83E-06 (8,7)

Arr1p 13.4 transcription 0.1618 2.19E-06 (5)

Ste12p 11.9 reg. of nucleobase, nucleoside, nucleotide and nucleic acid met. proc. 13.53 2.20E-06 (6,5)

Msn2p 11.6 regulation of metabolic process 15.29 4.61E-06 (4,3)

Rpn4p 10.8 cell cycle process 13.24 4.70E-06 (4,3)

Tec1p 10.4 regulation of transcription 12.06 5.35E-06 (7,6)

145 511 Yap1p 24.2 regulation of metabolic process 16.67 2.77E-07 (4,3)

Sok2p 24.0 cell communication 9.75 3.86E-07 (3)

Met4p 21.9 regulation of biological process 20.75 8.92E-07 (3)

Aft1p 20.5 response to stress 15.09 1.09E-06 (3)

Hsf1p 17.7 carbohydrate metabolic process 9.12 1.93E-06 (4)

Msn2p 15.0 response to chemical stimulus 12.58 1.97E-06 (3)

Rpn4p 14.2 post-translational protein modification 12.58 2.87E-06 (7)

Arr1p 14.0 regulation of cellular metabolic process 14.78 6.83E-06 (5,4)

Msn4p 12.6 regulation of cellular process 19.18 1.06E-05 (4,3)*

Ste12p 11.8 cell cycle arrest in response to pheromone 1.57 1.34E-05 (6-9)*

97 385 Yap1p 30.9 organic acid metabolic process 13.01 4.16E-08 (4)

Met4p 22.1 carboxylic acid metabolic process 13.01 4.16E-08 (5)

Sok2p 20.0 nitrogen compound metabolic process 11.15 8.81E-08 (3)

Rpn4p 17.1 cellular biosynthetic process 13.75 2.03E-07 (4)

Arr1p 15.3 amine metabolic process 9.67 1.56E-06 (4)

Aft1p 14.5

Hsf1p 14.0

Ste12p 11.9

Gcn4p 10.9

Leu3p 10.6

120 307 Yap1p 25.7 nucleobase, nucleoside, nucleotide and nucleic acid metabolic process 38.78 6.29E-07 (4)

Sok2p 16.3 regulation of cellular process 22.96 1.40E-06 (4,3)

Met4p 16.0 cell cycle process 16.33 1.54E-06 (4,3)

Aft1p 15.3 regulation of biological process 22.96 3.15E-06 (3)

Arr1p 12.4 cell cycle phase 13.27 1.28E-05 (5,4)

Ste12p 12.1 transcription 17.86 1.81E-05 (5)*

Phd1p 10.1 RNA metabolic process 27.55 2.05E-05 (5)*

Hsf1p 9.8 RNA biosynthetic process 16.33 5.09E-05 (6)*

Ino4p 9.8 histone deacetylation 3.06 5.61E-05 (11,9)*

Swi4p 9.4 M phase 10.20 6.35E-05 (6,5)*

39 292 Yap1p 24.9 biosynthetic process 29.15 3.90E-06 (3)

Met4p 20.5 mitochondrial transport 4.08 1.04E-05 (5-7)*

Sok2p 15.6 cellular metabolic process 63.64 1.07E-05 (3)*

Rpn4p 11.9 lipid biosynthetic process 5.96 1.12E-05 (4-6)*

Ste12p 11.0 lipid metabolic process 8.46 3.16E-05 (4-6)*

Arr1p 10.7 cellular lipid metabolic process 8.15 3.28E-05 (4,5)*

Swi4p 10.5

Abf1p 10.3

Aft1p 10.3

Mbp1p 9.8

Algorithms for Molecular Biology 2009, 4:8 http://www.almob.org/content/4/1/8

Page 33 of 39
(page number not for citation purposes)

GO terms and transcriptional regulations of the 1-CCC-Biclusters describing transcriptional down-regulation patternsFigure 16
GO terms and transcriptional regulations of the 1-CCC-Biclusters describing transcriptional down-regulation
patterns. This table shows a detailed analysis of the GO terms and transcriptional regulations of the 1-CCC-Biclusters
describing transcriptional down-regulation patterns discovered by 1-CCC-Biclustering. When the set of genes in the 1-CCC-
Bicluster has more than 10 transcription factors or more than 10 GO terms enriched, only the top 10 of each are shown. We
only show the GO terms passing the Bonferroni correction for multiple testing at either the 1% level (highly significant) or the
5% level (significant). The p-values marked with * only passed the test at the 5% level. The p-values presented in the table are
without correction as it is common practice in the literature.

ID #Genes TFs % GO Terms Enriched DF p-value (level)
(Top 10) (Top 10)

10 1079 Yap1p 30.7 ribonucleoprotein complex biogenesis and assembly 26.91 2.56E-77 (4)

Sfp1p 26.7 ribosome biogenesis and assembly 23.90 4.42E-72 (5)

Met4p 23.1 nucleobase, nucleoside, nucleotide and nucleic acid metabolic process 44.68 3.82E-45 (4)

Rap1p 16.2 RNA processing 21.40 3.00E-42 (6)

Rpn4p 15.4 organelle organization and biogenesis 41.05 8.48E-42 (4)

Arr1p 12.8 cellular component organization and biogenesis 56.70 2.22E-41 (3)

Sok2p 10.6 RNA metabolic process 34.04 2.40E-40 (5)

Ifh1p 10.6 rRNA metabolic process 13.52 7.60E-35 (6)

Hhl1p 10.0 rRNA processing 13.02 4.33E-33 (6,7)

Gcn4p 9.6 primary metabolic process 67.83 1.67E-27 (3)

27 597 Yap1p 18.3 glycoprotein biosynthetic process 5.34 6.28E-11 (7,5)

Met4p 14.8 glycoprotein metabolic process 5.34 8.56E-11 (6)

Sok2p 13.3 biopolymer glycosylation 4.91 5.38E-10 (6)

Swi4p 12.6 protein amino acid glycosylation 4.91 5.38E-10 (6-8)

Ste12p 12.1 cellular component organization and biogenesis 47.65 1.34E-09 (3)

Rap1p 9.7 protein modification process 15.60 6.15E-09 (6)

Rpn4p 9.7 protein amino acid N-linked glycosylation 3.63 1.36E-08 (7-9)

Mbp1p 9.4 cellular metabolic process 64.53 1.54E-08 (3)

Phd1p 8.7 biopolymer modification 17.95 5.18E-08 (5)

Arr1p 8.7 cell cycle 13.25 3.32E-07 (3)

14 521 Yap1p 22.1 cellular component organization and biogenesis 50.24 1.51E-11 (3)

Met4p 13.8 nucleobase metabolic process 3.14 1.62E-08 (5)

Sfp1p 13.1 ribonucleoprotein complex biogenesis and assembly 14.98 2.73E-08 (4)

Rpn4p 11.9 nucleobase, nucleoside, nucleotide and nucleic acid metabolic process 34.54 6.68E-08 (4)

Sok2p 11.7 cellular biosynthetic process 12.08 9.61E-08 (4)

Ste12p 11.3 glycoprotein biosynthetic process 4.59 2.18E-07 (7,5)

Rap1p 11.3 ribosome biogenesis and assembly 12.80 2.34E-07 (5)

Swi4p 10.4 glycoprotein metabolic process 4.59 2.70E-07 (6)

Arr1p 10.2 biopolymer glycosylation 4.35 3.73E-07 (6)

Leu3p 10.2 protein amino acid glycosylation 4.35 3.73E-07 (9,7,6)

68 800 Yap1p 34.3 ribonucleoprotein complex biogenesis and assembly 32.16 1.04E-68 (4)

Sfp1p 32.6 ribosome biogenesis and assembly 28.82 1.68E-64 (5)

Met4p 27.1 organelle organization and biogenesis 45.29 1.26E-36 (4)

Rap1p 22.1 rRNA metabolic process 16.86 3.72E-34 (6)

Rpn4p 19.4 RNA metabolic process 37.06 9.56E-33 (5)

Fhl1p 16.1 RNA processing 23.33 5.74E-32 (6)

Arr1p 15.8 cellular component organization and biogenesis 59.22 1.41E-31 (3)

Ifh1p 15.2 rRNA processing 15.88 5.11E-31 (6,7)

Sok2p 11.2 nucleobase, nucleoside, nucleotide and nucleic acid metabolic process 45.29 1.99E-29 (4)

Ino4p 8.9 ribosomal large subunit biogenesis and assembly 6.08 3.56E-18 (6,5)

63 292 Yap1p 33.0 nucleobase, nucleoside, nucleotide and nucleic acid metabolic process 44.09 2.51E-10 (4)

Rap1p 23.7 DNA metabolic process 20.43 3.85E-08 (5)

Met4p 22.7 RNA metabolic process 31.72 6.39E-08 (5)

Sfp1p 21.3 primary metabolic process 68.82 7.24E-08 (3)

Ifh1p 18.6 cellular metabolic process 70.97 8.86E-08 (3)

Rpn4p 17.5 cellular component organization and biogenesis 52.69 2.06E-07 (3)

Fhl1p 16.2 establishment and/or maintenance of chromatin architecture 12.37 5.60E-07 (7)

Arr1p 15.1 DNA packaging 12.37 5.60E-07 (6)

Sok2p 13.4 chromosome organization and biogenesis (sensu Eukaryota) 19.89 8.44E-07 (6)

Ino4p 11.3 chromatin modification 11.29 1.01E-06 (8)

122 1462 Yap1p 27.4 ribonucleoprotein complex biogenesis and assembly 19.68 6.32E-39 (4)

Met4p 21.9 ribosome biogenesis and assembly 17.42 9.41E-37 (5)

Sfp1p 19.1 nucleobase, nucleoside, nucleotide and nucleic acid metabolic process 39.03 1.07E-28 (4)

Rap1p 16.4 RNA metabolic process 29.75 1.11E-27 (5)

Sok2p 15.1 cellular component organization and biogenesis 50.68 1.88E-25 (3)

Rpn4p 15.1 organelle organization and biogenesis 35.29 3.77E-25 (4)

Arr1p 14.3 RNA processing 16.29 1.33E-21 (6)

Fhl1p 10.5 rRNA metabolic process 10.18 3.13E-19 (6)

Ste12p 10.2 rRNA processing 9.73 7.31E-18 (6,7)

Ino4p 9.6 cellular metabolic process 63.57 3.07E-13 (3)

Algorithms for Molecular Biology 2009, 4:8 http://www.almob.org/content/4/1/8
rection). This means some of the CCC-Biclusters identi-
fied by the CCC-Biclustering algorithm may not be
biologically relevant according with the GO analysis.

Figure 18 shows the relationship between the top 12 1-
CCC-Biclusters discovered by 1-CCC-Biclustering in Fig-
ure 14 (CCC-Biclusters with approximate patterns allow-
ing one error per gene relatively to the expression pattern
identifying the 1-CCC-Bicluster) and the top 16 CCC-
Biclusters discovered by CCC-Biclustering in Figure 17
(CCC-Biclusters with perfect expression patterns). It is
clear from this figure that, apart from two 1-CCC-Biclus-
ters (IDs 68 and 122), all other 1-CCC-Biclusters corre-
spond to the extension of one or several of the 16 CCC-
Biclusters by adding genes with approximate expression
patterns. The CCC-Bicluster with ID 124 was extended not
only with genes with approximate patterns but also with
a contiguous column at the left of its expression pattern.

It is worth noting that all the resulting 1-CCC-Biclusters
have a larger number of GO terms functionally enriched.
Moreover, even when the CCC-Biclusters are not func-
tionally enriched, the 1-CCC-Biclusters obtained by con-
sidering approximate expression patterns instead of
perfect patterns are always functionally enriched.

In order to show that the number of genes regulated by
relevant TFs has increased in the 1-CCC-Biclusters when
compared with the same number in the corresponding
CCC-Biclusters, we used a set of relevant CCC-Biclusters
chosen by Madeira et al. among the top 16 CCC-Biclusters
in Figure 17. From these top 16 CCC-Biclusters the
authors selected 6 CCC-Biclusters, which were then ana-
lyzed in more detail using the Gene Ontology annotations
together with information about transcriptional regula-
tion available in the YEASTRACT database. These selected
CCC-Biclusters describe either transcriptional up-regula-
tion (CCC-Biclusters with IDs 39, 27 and 14) or down-
regulation patterns (CCC-Biclusters with IDs 147, 151
and 124). For these 6 CCC-Biclusters the authors identi-
fied relevant transcription factors (TFs) according to their
expression pattern and relevant GO terms. For example,
the heat-shock factor Hsf1p, together with the transcrip-
tion factors Msn2p and Msn4p, known regulators of the
general stress response in yeast, and the transcription fac-
tor Rpn4p, known stimulator of the proteosome genes,
involved in the degradation of denatured or unnecessary
proteins in stressed yeast cell [9], were identified by the
authors as relevant TFs in CCC-Biclusters 39, 27 and 14.
Note that apart from CCC-Bicluster 14, whose corre-
sponding 1-CCC-Biclusters were removed during the

CCC-Biclusters surviving the overlapping filterFigure 17
CCC-Biclusters surviving the overlapping filter. This table shows a summary of the CCC-Biclusters discovered by the
CCC-Biclustering algorithm surviving the overlapping filter. It also shows the statistical p-value of their expression patterns, the
patterns themselves, the number of contiguous time points and the number of genes in each CCC-Bicluster. Together with this
information we present a summary of the results obtained when analyzing the 16 CCC-Biclusters using the Gene Ontology
annotations restricted to those in the "Biological Process" ontology and terms above Level 2. We show the number of GO
terms with highly significant and significant p-values, respectively, after Bonferroni correction for multiple testing. Several CCC-
Biclusters are not functionally enriched after Bonferroni correction.

ID Sorting Variation #Time Points #Genes # (corrected) GO # (corrected) GO
p-value Pattern (first-last) p-values < 0.01 p-values 0.01 ≤< 0.05

1 124 2.56E-84 DNU 4(2-5) 904 40 8

3 14 1.64E-58 UND 4(2-5) 1091 62 12

4 27 3.69E-44 UUND 5(1-5) 290 7 6

5 39 8.65E-42 UNND 5(1-5) 258 0 0

8 151 3.99E-31 DNNU 5(1-5) 232 12 2

9 48 1.35E-26 UDUD 5(1-5) 182 0 1

10 142 2.84E-24 DUDU 5(1-5) 248 8 19

11 43 6.56E-24 UNDD 5(1-5) 109 0 0

12 147 6.03E-21 DNUU 5(1-5) 144 0 3

15 83 1.90E-16 NUNN 5(1-5) 224 2 4

17 42 3.30E-11 UNDN 5(1-5) 131 2 1

18 148 6.00E-11 DNUN 5(1-5) 192 4 0

21 159 1.37E-07 DDUU 5(1-5) 56 0 0

22 79 4.41E-07 NUUN 5(1-5) 97 2 3

24 92 3.88E-05 NNUN 5(1-5) 52 2 0

25 99 4.79E-05 NNDN 5(1-5) 39 1 0
Page 34 of 39
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:8 http://www.almob.org/content/4/1/8

Page 35 of 39
(page number not for citation purposes)

Best CCC-Biclusters versus best 1-CCC-BiclustersFigure 18
Best CCC-Biclusters versus best 1-CCC-Biclusters. This table shows the relationship between the top 12 1-CCC-
Biclusters and the top 16 CCC-Biclusters. It is clear that, apart from two 1-CCC-Biclusters (IDs 68 and 122), all other 1-CCC-
Biclusters correspond to the extension of one or several of the 16 CCC-Biclusters by adding genes with approximate expres-
sion patterns or extending the expression pattern of the CCC-Bicluster with a contiguous columns. All the resulting 1-CCC-
Biclusters have a larger number of GO terms functionally enriched and are thus more relevant according to the functional
enrichment analysis performed using the Gene Ontology.

ID Variation #Genes # (corrected) GO # (corrected) GO Corresponding

Pattern p-values < 0.01 p-values 0.01 ≤< 0.05 CCC-Bicluster

1 10 DDNU 1079 58 16

904 40 8 #1 (ID 124)

232 12 2 #8 (ID 151)

56 0 0 #21 (ID 159)

2 27 DNUU 597 22 13

144 0 3 #12 (ID 147)

232 12 2 #8 (ID 151)

192 4 4 #18 (ID 148)

56 0 0 #21 (ID 159)

7 79 NNND 849 40 16

258 0 0 #5 (ID 39)

9 132 UNDD 539 10 7

109 0 0 #11 (ID 43)

258 0 0 #5 (ID 39)

131 2 1 #17 (ID 42)

13 145 UUDD 511 8 5

290 7 6 #4 (ID 27)

109 0 0 #11 (ID 43)

16 14 DDUU 521 19 12

56 0 0 #21 (ID 159)

144 0 3 #12 (ID 147)

19 68 NDNU 800 41 6

28 97 NUUN 385 5 0

97 2 3 #22 (ID 79)

224 2 4 #15 (ID 83)

52 2 0 #24 (ID 92)

34 120 UDDN 307 6 5

131 2 1 #17 (ID 42)

35 63 NDDN 292 13 1

52 2 0 #25 (ID 99)

36 39 DUUN 430 1 5

192 0 4 #18 (ID 148)

97 2 3 #22 (ID 79)

43 122 UDN 1462 33 15

Algorithms for Molecular Biology 2009, 4:8 http://www.almob.org/content/4/1/8
application of the overlapping filter (see additional file 5:
1_ccc_biclusters_vs_ccc biclusters), all these selected
CCC-Biclusters have at least one corresponding 1-CCC-
Bicluster in the top 12 (as it is also shown in Figure 18).

In this context, we decided to compare the number of
genes regulated by each relevant TF identified in each of
the selected CCC-Biclusters and the number of genes reg-
ulated by the same TFs in the corresponding 1-CCC-
Biclusters. Remember that, if relevant genes (not included
in these CCC-Biclusters due to a single error) were recov-
ered and included in the corresponding 1-CCC-Biclusters,
the number of genes regulated by relevant TFs should
increase in the 1-CCC-Bicluster.

Figure 19 shows, for each of the 5 selected CCC-Biclusters
considered (CCC-Biclusters with IDs 39, 27, 147, 151 and
124), the set of relevant transcription factors together with
the number of regulated genes and compares these num-
bers with those obtained for the same TFs in the corre-
sponding 1-CCC-Bicluster(s). It is clear from this figure
that the number of genes regulated by relevant TFs always
increases in the corresponding 1-CCC-Biclusters. These
results support our idea that e-CCC-Biclustering is able to
recover genes with relevant expression patterns, that were
missed due to small errors, and are in fact, biologically rel-
evant to the problem under study. For example, in CCC-
Bicluster 39, the relevant transcription factors Sok2p,
Arr1p, Hsf1p, Rpn4p and Msn2p, regulated, respectively,
70, 37, 36, 32 and 32 of the 258 genes in the CCC-Biclus-
ter. In the corresponding 1-CCC-Bicluster (ID 79) with
849 genes, these key transcription factors regulate, respec-
tively, 189, 115, 142, 123 and 147 genes.

These results demonstrate that allowing the discovery of
CCC-Biclusters with approximate patterns (e-CCC-Biclus-
ters), rather than restricting the analysis to CCC-Biclusters
with perfect expression patterns, can in fact improve the
biological significance of the obtained results. These
results also show, the superiority of the proposed e-CCC-
Biclustering, algorithm, when compared with the CCC-
Biclustering approach, in the identification of biologically
relevant temporal patterns of expression.

Conclusion and future work
In this work we proposed e-CCC-Biclustering, a new
biclustering algorithm specifically developed for time
series gene expression data analysis, that finds and reports
all maximal contiguous column coherent biclusters with
approximate expression patterns in time polynomial in
the size of the expression matrix. These approximate pat-
terns allow a given number of errors, per gene, relatively
to an expression profile representing the expression pat-
tern in the e-CCC-Bicluster. We described the algorithmic
details of e-CCC-Biclustering, analyzed its computational

complexity, and proposed extensions to improve the abil-
ity of the algorithm to discover other relevant expression
patterns by being able to deal with missing values and
allowing anticorrelated and scaled expression patterns.
We also discussed different ways to compute the errors
allowed in the approximate expression patterns. Finally,
we described a scoring criterion based on a statistical test,
used to sort e-CCC-Biclusters by increasing value of the
probability that they have appeared by a random coinci-
dence of events. Coupled with a similarity measure, used
to filter highly overlapping e-CCC-Biclusters, this scoring
criterion effectively identifies not only statistically but also
biologically relevant e-CCC-Biclusters, which can then be
useful to identify regulatory modules.

The results show the effectiveness of the approach and its
relevance in the discovery of regulatory modules describ-
ing the transcriptomic expression patterns occurring in
Saccharomyces cerevisiae in response to heat stress. Moreo-
ver, the comparison performed with a state of the art
biclustering algorithm specifically developed for time
series gene expression data analysis demonstrated the
superiority of e-CCC-Biclustering in discovering statisti-
cally and biologically relevant temporal patterns of
expression.

As short term future work, we plan to extend the algo-
rithm to detected time-lagged regulations between genes
and temporal patterns of expression in multiple time
series gene expression matrices. The proposed algorithm
can be easily extended to discover e-CCC-Biclusters with
time-lags, enabling the discovery of important time-
lagged regulations between genes, such as activation and
inhibition, as well as temporal programs of expression, in
which genes are activated one by one in a predefined
order. Moreover, extending the algorithm to identify local
temporal patterns of expression using multiple datasets
should enable the discovery of conserved expression pat-
terns and potentially help in the identification of com-
mon regulatory modules within and across-species. Our
medium and long term research will be related with the
use of the information about coherent expression patterns
and co-regulation in the identification of regulatory mod-
ules, potentially helpful in the challenging area of infer-
ring regulatory networks. This will require the
development of efficient inference methods able to inte-
grate heterogeneous data such as gene expression data,
sequence data, and textual information scattered in scien-
tific literature.

Competing interests
The authors declare that they have no competing interests.
Page 36 of 39
(page number not for citation purposes)

Algorithms for Molecular Biology 2009, 4:8 http://www.almob.org/content/4/1/8

Page 37 of 39
(page number not for citation purposes)

Number of genes regulated by relevant TFs in selected CCC-Biclusters versus corresponding 1-CCC-BiclustersFigure 19
Number of genes regulated by relevant TFs in selected CCC-Biclusters versus corresponding 1-CCC-Biclus-
ters. This table compares the number of genes regulated by the relevant TFs of the 5 selected CCC-Biclusters (CCC-Biclus-
ters with IDs 39, 27, 147, 151 and 124) with the number of genes regulated by the same TFs in the corresponding 1-CCC-
Biclusters. Note that these TFs might not appear in the top 10 in Figure 15 and Figure 16. It is clear from this table that the
number of regulated genes by relevant TFs always increases in the corresponding 1-CCC-Biclusters.

Selected CCC-Biclusters Corresponding 1-CCC-Biclusters

ID #Genes Relevant TFs % #Regulated Genes ID #Genes TFs % #Regulated Genes

39 258 Sok2p 27.3 70 79 849 Sok2p 22.3 189

Arr1p 14.5 37 Arr1p 13.5 115

Hsf1p 14.1 36 Hsf1p 16.7 142

Rpn4p 12.5 32 Rpn4p 14.5 123

Msn2p 12.5 32 Msn2p 17.3 147

Msn4p 9.8 25 Msn4p 14.5 123

27 290 Sok2p 26.0 75 145 511 Sok2p 24.0 123

Hsf1p 22.1 64 Hsf1p 17.7 90

Msn2p 19.4 56 Msn2p 15.0 77

Rpn4p 17.3 50 Rpn4p 14.2 73

Msn4p 16.6 48 Msn4p 12.6 64

147 144 Ste12p 16.0 23 27 597 Ste12p 12.1 72

Rap1p 13.2 19 Rap1p 9.7 58

Swi4p 12.5 18 Swi4p 12.6 75

Rpn4p 11.1 16 Rpn4p 9.7 58

Ino4p 9.7 14 Ino4p 8.1 48

14 1091 Ste12p 11.3 123

Rap1p 11.3 123

Swi4p 10.4 113

Rpn4p 11.9 130

Ino4p 10.0 109

151 232 Swi4p 13.8 32 10 1079 Swi4p 9.4 101

Mbp1p 10.3 24 Mbp1p 8.8 95

Arr1p 9.5 22 Arr1p 12.8 138

Rpn4p 8.2 19 Rpn4p 15.4 166

Ino4p 7.3 17 Ino4p 9.4 101

27 597 Swi4p 12.6 75

Mbp1p 9.4 56

Arr1p 8.7 52

Rpn4p 9.7 58

Ino4p 8.1 48

124 904 Sfp1p 29.6 268 10 1079 Sfp1p 26.7 288

Rap1p 18.7 169 Rap1p 16.2 175

Rpn4p 16.9 153 Rpn4p 15.4 166

Arr1p 14.5 131 Arr1p 12.8 138

Fhl1p 11.6 105 Fhl1p 10.0 108

Algorithms for Molecular Biology 2009, 4:8 http://www.almob.org/content/4/1/8
Authors' contributions
SCM and ALO designed the e-CCC-Biclustering algorithm
together with the proposed extensions and defined the
scoring criterion for e-CCC-Biclusters based on the statis-
tical significance of their expression patterns and similar-
ity with other overlapping biclusters. SCM coded the
prototype implementation of the algorithm in Java and
wrote the first draft of the manuscript. SCM and ALO
worked together towards the final version of the manu-
script. All authors read and approved the final manu-
script.

Additional material

Acknowledgements
Parts of this work have appeared previously in [32]. However, this manu-
script describes algorithmic and complexity details not included in the con-
ference version of the paper. We also present a detailed comparison with
other algorithms with similar goals highlighting their strengths and weak-
nesses. The extensions to allow missing values, anticorrelation, scaling,
alphabet range weighted errors and pattern length adaptive errors are orig-
inal. The proposed approach to score e-CCC-Biclusters using a statistical
significance criterion and a similarity measure, only superficially mentioned
in the conference paper, was improved and used in the experimental
results. All the experimental results are new. The algorithm was applied to
a new dataset to identify transcriptional regulatory modules. Moreover, the
superiority of CCC-Biclusters with approximate expression patterns (e-
CCC-biclusters) relatively to CCC-Biclusters (perfect expression patterns)
was demonstrated using two biological criteria: stronger evidence of func-
tional enrichment (regarding the p-values of the GO terms enriched and
the number of GO terms enriched) and increased number of genes regu-
lated by relevant transcription factors.

This work was partially supported by projects ARN – Algorithms for the
Identification of Genetic Regulatory Networks, PTDC/EIA/67722/2006,
and Dyablo – Models for the Dynamic Behavior of Biological Networks,
PTDC/EIA/71587/2006, funded by FCT, Fundafição para a Ciência e Tecn-
ologia.

References
1. Bar-Joseph Z: Analyzing time series gene expression data. Bio-

informatics 2004, 20(16):2493-2503.
2. Androulakis IP, Yang E, Almon RR: Analysis of Time-Series Gene

Expression Data: Methods, Challenges and Opportunities.
Annual Review of Biomedical Engineering 2007, 9:205-228.

3. McLachlan GJ, Do K, Ambroise C: Analysing microarray gene expression
data Wiley Series in Probability and Statistics; 2004.

Additional file 1
e-CCC-Biclustering: Related work on biclustering algorithms for time
series gene expression data. Supplementary material describing related
work on biclustering algorithms for time series gene expression data anal-
ysis. We describe in detail three state of the art biclustering approaches
specifically designed to identify biclusters in gene expression time series
and identify their strengths and weaknesses. We also explain and justify
why we decided to compare the performance of e-CCC-Biclustering with
that of CCC-Biclustering, but not with that of the q-clustering and CC-
TSB algorithms.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1748-
7188-4-8-S1.pdf]

Additional file 2
e-CCC-Biclustering: Algorithmic and complexity details. Supplemen-
tary material describing algorithmic and complexity details of e-CCC-
Biclustering.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1748-
7188-4-8-S2.pdf]

Additional file 3
Highly significant 1-CCC-Biclusters. Table showing a summary of the
47 1-CCC-Biclusters passing the Bonferroni correction for multiple testing
at the 1% level when 1-CCC-Biclustering restricted to errors in the 1-
neighborhood of the symbols in the alphabet Σ = {D, N, U} was applied
to the DiscretizedHeatShock dataset.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1748-
7188-4-8-S3.pdf]

Additional file 4
Highly significant CCC-Biclusters. Table showing a summary of the 25
CCC-Biclusters passing the Bonferroni correction for multiple testing at
the 1% level when CCC-Biclustering was applied to the DiscretizedHeat-
Shock dataset.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1748-
7188-4-8-S4.pdf]

Additional file 5
Highly significant 1-CCC-Biclusters versus highly significant CCC-
Biclusters. Table showing a comparison between the 47 highly significant
1-CCC-Biclusters discovered by 1-CCC-Biclustering restricted to errors in
the 1-neighborhood of the symbols in the alphabet Σ = {D, N, U} and the
16 highly significant CCC-Biclusters found by CCC-Biclustering (after
the applying the overlapping filter) and analyzed by Madeira et al. [9].
Both sets of biclusters were identified when the algorithm was applied to
the DiscretizedHeatShock dataset.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1748-
7188-4-8-S5.pdf]

Additional file 6
GO terms enriched and transcriptional regulations of the top 16 CCC-
Biclusters. Table showing a detailed analysis of the GO terms enriched
and transcriptional regulations of the top 16 CCC-Biclusters discovered
with CCC-Biclustering. When the set of genes in the CCC-Bicluster have
more than 10 transcription factors or more than 10 GO terms enriched,
only the top 10 of each are shown. We only show the GO terms passing
the Bonferroni correction for multiple testing at either the 1% level (highly
significant) or the 5% level (significant). The p-values marked with *
only passed the test at the 5% level. The p-values presented in the table
are without correction as it is common practice in the literature.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1748-
7188-4-8-S6.pdf]
Page 38 of 39
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1748-7188-4-8-S1.pdf
http://www.biomedcentral.com/content/supplementary/1748-7188-4-8-S2.pdf
http://www.biomedcentral.com/content/supplementary/1748-7188-4-8-S3.pdf
http://www.biomedcentral.com/content/supplementary/1748-7188-4-8-S4.pdf
http://www.biomedcentral.com/content/supplementary/1748-7188-4-8-S5.pdf
http://www.biomedcentral.com/content/supplementary/1748-7188-4-8-S6.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15130923
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17341157
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17341157

Algorithms for Molecular Biology 2009, 4:8 http://www.almob.org/content/4/1/8
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

4. Cheng Y, Church GM: Biclustering of Expression Data. In Proc
of the 8th International Conference on Intelligent Systems for Molecular
Biology 2000:93-103.

5. Mechelen IV, Bock HH, Boeck PD: Two-mode clustering meth-
ods: a structured overview. Stat Methods Med Res. 2004,
13(5):363-394.

6. Madeira SC, Oliveira AL: Biclustering algorithms for biological
data analysis: a survey. IEEE/ACM Trans Comput Biol Bioinform
2004, 1(1):24-45.

7. Tanay A, Sharan R, Shamir R: Discovering statistically significant
biclusters in gene expression data. Bioinformatics. 2002,
18(Suppl 1):S136-S144.

8. Ben-Dor A, Chor B, Karp R, Yakhini Z: Discovering Local Struc-
ture in Gene Expression Data: The Order-Preserving Sub-
matrix Problem. J Comput Biol 2002, 10(3-4):373-384.

9. Madeira SC, Teixeira MC, Sá-Correia I, Oliveira AL: Identification
of Regulatory Modules in Time Series Gene Expression Data
using a Linear Time Biclustering Algorithm. In IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 21 Mar. 2008
IEEE Computer Society Digital Library. IEEE Computer Society.

10. Peeters R: The maximum edge biclique problem is NP-com-
plete. Discrete Applied Mathematics 2003, 131(3):651-654.

11. Yang E, Foteinou PT, King K, Yarmush ML, Androulakis I: A novel
non-overlapping bi-clustering algorithm for network genera-
tion using living cell array data. Bioinformatics 2007,
23(17):2306-2313.

12. Murali TM, Kasif S: Extracting conserved gene expression
motifs from gene expression data. Pac Symp Biocomput
2003:77-88.

13. Koyuturk M, Szpankowski W, Grama A: Biclustering Gene-Fea-
ture Matrices for Statistically Significant Dense Patterns. In
Proc of the 8th International Conference on Research in Computational
Molecular Biology 2004:480-484.

14. Liu J, Wang W, Yang J: Biclustering in gene expression data by
tendency. In Proc of the 3rd International IEEE Computer Society Com-
putational Systems Bioinformatics Conference 2004:182-193.

15. Liu J, Wang W, Yang J: A framework for ontology-driven sub-
space clustering. In Proc of the 10th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining 2004:623-628.

16. Liu J, Wang W, Yang J: Gene ontology friendly biclustering of
expression profiles. In Proc of the 3rd IEEE Computational Systems
Bioinformatics Conference 2004:436-447.

17. Liu J, Wang W, Yang J: Mining Sequential Patterns from Large
Data Sets. Kluwer 2005, 18:.

18. Lonardi S, Szpankowski W, Yang Q: Finding Biclusters by Ran-
dom Projections. In Proc of the 15th Annual Symposium on Combina-
torial Pattern Matching 2004:102-116.

19. Sheng Q, Moreau Y, Moor BD: Biclustering microarray data by
Gibbs sampling. Bioinformatics 2003, 19 Suppl 2:ii196-ii205.

20. Ji L, Tan K: Identifying time-lagged gene clusters using gene
expression data. Bioinformatics 2005, 21(4):509-516.

21. Wu C, Fu Y, Murali TM, Kasif S: Gene expression module discov-
ery using Gibbs sampling. Genome Informatics 2004, 15:239-248.

22. Madeira SC, Oliveira AL: A Linear Time Biclustering Algorithm
for Time Series Gene Expression Data. In Proc of the 5th Work-
shop on Algorithms in Bioinformatics Springer Verlag, LNCS/LNBI 3692;
2005:39-52.

23. Prelic A, Bleuler S, Zimmermann P, Wille A, Buhlmann P, Gruissem
W, Hennig L, Thiele L, Zitzler E: A systematic comparison and
evaluation of biclustering methods for gene expression data.
Bioinformatics 2006, 22(10):1282-1283.

24. Zhang Y, Zha H, Chu CH: A Time-Series Biclustering Algo-
rithm for Revealing Co-Regulated Genes. In Proc of the 5th IEEE
International Conference on Information Technology: Coding and Comput-
ing 2005:32-37.

25. Gusfield D: Algorithms on strings, trees, and sequences Computer Sci-
ence and Computational Biology Series, Cambridge University Press;
1997.

26. Sagot MF: Spelling approximate repeated or common motifs
using a suffix tree. In Proc of Latin'98 Springer Verlag, LNCS 1380;
1998:111-127.

27. Madeira SC: Efficient Biclustering Algorithms for Time Series
Gene Expression Data Analysis. In PhD thesis Instituto Superior
Técnico, Technical University of Lisbon; 2008.

28. Martin D, Brun C, Remy E, Mouren P, Thieffry D, Jacq B: GOTool-
Box: functional investigation of gene datasets based on Gene

Ontology. Genome Biology 2004, 5(12R101 [http://bur
gundy.cmmt.ubc.ca/GOToolBox/].

29. Teixeira MC, Monteiro P, Jain P, Tenreiro S, Fernandes AR, Mira NP,
Alenquer M, Freitas AT, Oliveira AL, Sa-Correia I: The YEAS-
TRACT database: a tool for the analysis of transcription reg-
ulatory associations in Saccharomyces cerevisiae. Nucleic
Acids Research 2006, 34:D446-D451 [http://www.yeastract.com/].

30. Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz
G, Botstein D, Brown PO: Genomic Expression Programs in the
Response of Yeast Cells to Environmental Changes. Molecular
Biology of the Cell 2000, 11:4241-4257.

31. Ji L, Tan K: Mining gene expression data for positive and neg-
ative co-regulated gene clusters. Bioinformatics 2004,
20(16):2711-2718.

32. Madeira SC, Oliveira AL: An Efficient Biclustering Algorithm for
finding Genes with Similar Patterns in Time-Series Expres-
sion Data. In Proc of the 5th Asia Pacific Bioinformatics Conference,
Series in Advances in Bioinformatics and Computational Biology Volume 5.
Imperial College Press; 2007:67-80.
Page 39 of 39
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15516031
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15516031
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17048406
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17048406
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12169541
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12169541
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17827207
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17827207
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17827207
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12603019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12603019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14534190
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14534190
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15374868
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15374868
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15712126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15712126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16551664
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16551664
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15575967
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15575967
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15575967
http://burgundy.cmmt.ubc.ca/GOToolBox/
http://burgundy.cmmt.ubc.ca/GOToolBox/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381908
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381908
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381908
http://www.yeastract.com/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11102521
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11102521
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15145808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15145808
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Results
	Discussion
	Availability

	Background
	Related Work: Biclustering algorithms for time series gene expression data
	Biclusters in discretized gene expression data
	CC-Biclusters in discretized gene expression time series
	Maximal CCC-Biclusters and generalized suffix trees

	Methods
	CCC-Biclusters with approximate expression patterns
	Maximal e-CCC-Biclusters and generalized suffix trees
	Finding e-CCC-Biclusters and the common motifs problem
	e-CCC-Biclustering: Finding and reporting all maximal e- CCC-Biclusters in polynomial time
	Computing valid models corresponding to right-maximal e-CCC- Biclusters
	Deleting valid models not corresponding to left-maximal e-CCC- Biclusters
	Deleting valid models representing the same e-CCC-Biclusters
	Reporting all maximal e-CCC-Biclusters

	e-CCC-Biclustering: Complexity analysis
	Extensions to handle missing values, anticorrelated and scaled expression patterns
	Handling missing values
	Handling anticorrelated expression patterns
	Handling scaled expression patterns

	Alternative ways to compute approximate expression patterns
	Restricted errors
	Alphabet range weighted errors
	Pattern length adaptive errors

	Scoring e-CCC-Biclusters using statistical significance and similarity measures
	Statistical significance
	Similarity measure

	Results and discussion
	Dataset
	Application of e-CCC-Biclustering to the identification of transcriptional regulatory modules
	Comparison with CCC-Biclustering: perfect versus approximate expression patterns

	Conclusion and future work
	Competing interests
	Authors' contributions
	Additional material
	Acknowledgements
	References

