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Abstract

Background: The problem of computationally predicting the secondary structure (or folding) of RNA molecules
was first introduced more than thirty years ago and yet continues to be an area of active research and
development. The basic RNA-folding problem of finding a maximum cardinality, non-crossing, matching of
complimentary nucleotides in an RNA sequence of length n, has an O(n3)-time dynamic programming solution
that is widely applied. It is known that an o(n3) worst-case time solution is possible, but the published and
suggested methods are complex and have not been established to be practical. Significant practical improvements
to the original dynamic programming method have been introduced, but they retain the O(n3) worst-case time
bound when n is the only problem-parameter used in the bound. Surprisingly, the most widely-used, general
technique to achieve a worst-case (and often practical) speed up of dynamic programming, the Four-Russians
technique, has not been previously applied to the RNA-folding problem. This is perhaps due to technical issues in
adapting the technique to RNA-folding.

Results: In this paper, we give a simple, complete, and practical Four-Russians algorithm for the basic RNA-folding
problem, achieving a worst-case time-bound of O(n3/log(n)).

Conclusions: We show that this time-bound can also be obtained for richer nucleotide matching scoring-schemes,
and that the method achieves consistent speed-ups in practice. The contribution is both theoretical and practical,
since the basic RNA-folding problem is often solved multiple times in the inner-loop of more complex algorithms,
and for long RNA molecules in the study of RNA virus genomes.

Background
The problem of computationally predicting the second-
ary structure (or folding) of RNA molecules was first
introduced more than thirty years ago [1-4], and yet
continues to be an area of active research and develop-
ment, particularly due to the recent discovery of a wide
variety of new types of RNA molecules and their biolo-
gical importance. Additional interest in the problem
comes from synthetic biology where modified RNA
molecules are designed, and from the study of the com-
plete genomes of RNA viruses (which can be up to 11,
000 basepairs in length).
The basic RNA-folding problem of finding a maximum

cardinality, non-crossing, matching of complementary

nucleotides in an RNA sequence of length n, is at the
heart of almost all methods to computationally predict
RNA secondary structure, including more complex
methods that incorporate more realistic folding models,
such as allowing some crossovers (pseudoknots). Corre-
spondingly, the basic O(n3)-time dynamic-programming
solution to the RNA-folding problem remains a central
tool in methods to predict RNA structure, and has been
widely exposed in books and surveys on RNA folding,
computational biology, and computer algorithms. Since
the time of the introduction of the O(n3) dynamic-pro-
gramming solution to the basic RNA-folding problem,
there have been several practical heuristic speedups
[5,6]; and a complex, worst-case speedup of O(n3

(loglogn)/(logn)1/2) time [7] whose practicality is unlikely
and unestablished. In [5], Backofen et al. present a com-
pelling, practical reduction in space and time using the* Correspondence: yafrid@ucdavis.edu
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observations of [6] that yields a worst-case improvement
when additional problem parameters are included in the
time-bound i.e. O(nZ) where n ≤ Z ≤ n2. The method
however retains an O(n3) time-bound when only the
length parameter n is used. Backofen et al. [5] also com-
ment that the general approach in [7] can be sped up by
combining a newer paper on the all-pairs shortest path
problem [8]. That approach, if correct, would achieve a

worst-case bound of (O (
log ( ( ))

)
n log n

log n

3 3

2
 ) which is

below the O(n3/log n) bound established here. But that
combined approach is highly complex, uses word tricks,
is not fully exposed, and has practicality that is
unestablished.
Surprisingly, the most widely-used and known, general

technique to achieve a worst-case (and often practical)
speed up of dynamic programming, the Four-Russians
technique, has not been previously applied to the RNA-
folding problem, although the general Four-Russians
technique has been cited in some RNA folding papers.
There are two possible reasons for this. The first reason
is that a widely exposed version of the original dynamic-
programming algorithm does not lend itself to applica-
tion of the Four-Russians technique. The second reason
is that unlike other applications of the Four-Russians
technique, in RNA folding, it does not seem possible to
separate the preprocessing and the computation phases
of the Four-Russians method; rather, those two phases
are interleaved in our solution.
In this paper, we give a simple, complete and practical

Four-Russians algorithm for the basic RNA-folding pro-
blem, achieving a worst-case time reduction from O(n3)
to O(n3/log(n)). We show that this time-bound can also
be obtained for richer nucleotide matching scoring-
schemes, and that the method achieves significant
speed-ups in practice. The contribution is both theoreti-
cal and practical, since the basic RNA-folding problem
is often solved multiple times in the inner-loop of more
complex algorithms and for long RNA molecules in the
study of RNA virus genomes.
Some of technical insights we use to make the Four-

Russians technique work in the RNA-folding dynamic
program come from the paper of Graham et. al. [9]
which gives a Four-Russians solution to the problem of
Context-Free Language recognition. We note that
although it is well-known how to reduce the problem of
RNA folding to the problem of stochastic context-free
parsing [10], there is no known reduction to non-sto-
chastic context-free parsing, and so it is not possible to
achieve the O(n3/log n) result by simply reducing RNA
folding to context-free parsing and then applying the
Four-Russians method from [9].

A Formal Definition of the basic RNA-folding problem
The input to the basic RNA-folding problem consists of
a string K of length n over the four-letter alphabet {A,
U, C, G}, and an optional integer d. Each letter in the
alphabet represents an RNA nucleotide.
Nucleotides A and U are called complimentary as are

the nucleotides C and G. A matching consists of a set
M of disjoint pairs of sites in K. If pair (i, j) is in M,
then the nucleotide at site i is said to match the nucleo-
tide at site j. It is also common to require a fixed mini-
mum distance, d, between the two sites in any match. A
match is a permitted match if the nucleotides at sites i
and j are complimentary, and |i - j| >d. We let d = 1 for
the remainder of the paper for simplicity of exposition,
but in general, d can be any value from 1 to n. A
matching M is non-crossing or nested if and only if it
does not contain any four sites i <i’ <j <j’ where (i, j)
and (i’, j’) are matches in M. Graphically, if we place the
sites in K in order on a circle, and draw a straight line
between the sites in each pair in M, then M is non-
crossing if and only if no two such straight lines cross.
Finally, a permitted matching M is a matching that is
non-crossing, where each match in M is a permitted
match. The basic RNA-folding problem is to find a per-
mitted matching of maximum cardinality. In a richer
variant of the problem, a integer scoring matrix B is
given in the input to the problem; a match between
nucleotides in sites i and j in K is given score B(i, j).
The problem then is to find a matching with the largest
total score. Often this scoring scheme is simplified to
give a constant score for each permitted A, U match,
and a different constant score for each permitted C, G
match.
The original O(n3) time dynamic programming solution
Let S(i, j) represent the score for the optimal solution
that is possible for the subproblem consisting of the
sites in K between i and j inclusive (where j >i).
Then the following recurrences hold:
S(i, j) = max{
S(i + 1, j - 1) + B(i, j) rule a,
S(i, j - 1) rule b,
S(i + 1, j) rule c,
Maxi<k<jS(i, k) + S(k + 1, j) rule d
}
Rule a covers all matchings that contain a possible (i,

j) match; Rule b covers all matchings when site j is not
in any match; Rule c covers all matchings when site i is
not in any match; Rule d covers all matchings that can
be decomposed into two non-crossing matchings in the
interval i..k, and the interval k + 1.. j. In the case of Rule
d, the matching is called a bipartition, and the interval
i..k is called the head of bipartition, and the interval k +
1.. j is the called the tail of the bipartition.
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These recurrences can be evaluated in nine different
ordering of the variables i, j, k [11]. A common sugges-
tion [10-13] is to evaluate the recurrences in order of
increasing distance between i and j. That is, the solution
to the RNA folding problem is found for all substrings
of K of length two, followed by all substrings of length
three, etc. up to length n. This dynamic programming
solution is widely published in textbooks, and it is easy
to establish that it is correct and that it runs in O(n3)
worst-case time. However, we have not found it possible
to apply the Four-Russians technique using that algo-
rithmic evaluation order, but will instead use a different
evaluation order.
An alternative O(n3)-time dynamic programming solution
for j = 2 to n do
[Independent] Calculations below don’t depend on the

current column j
for i = 1 to j - 1 do {rules a and b}

S(i, j) = max( S(i+1, j-1)+B(i, j), S(i, j-1))
[Dependent] Calculations below depend on the cur-

rent column j
for i = j - 1 to 1 do

S(i, j) = max(S(i+1, j) , S(i, j) ) (Rule c)
for k = j - 1 to i+1 do {The loop is called the Rule d

loop}
S(i, j) = max(S(i, j), S(i, k-1)+S(k, j) ) (Rule d)

The recurrences used in this algorithm are the same
as before, but the order of evaluation of S(i, j) is differ-
ent. It is again easy to see that this Dynamic Program-
ming Algorithm is correct and runs in O(n3) worst-case
time. We will see that this Dynamic Programming algo-
rithm can be used in a Four-Russians speed up.

Methods
In the Second Dynamic Programming algorithm, each
execution of the loop labeled “independent” takes O(n)
time, and is inside a loop that executes only O(n) times,
so the independent loop takes O(n2) time in total, and
does not need any improvement. The cubic-time beha-
vior of the algorithm comes from the fact that there are
three nested loops, for j, i and k respectively, each incre-
menting O(n) times when entered. The speed-up we will
obtain will be due to reducing the work in the Rule d
loop. Instead of incrementing k through each value from
j - 1 down to i + 1, we will combine indices into groups
of size q (to be determined later) so that only constant
time per group will be needed. With that speed up, each
execution of that Rule d loop will increment only O(n/
q) times when entered. However, we will also need to
do some preprocessing, which takes time that increases
with q. We will see that setting q = log3(n) will yield an
O(n3/log n) overall worst-case time bound.

Speeding up the computation of S
We now begin to explain the speed-up idea. For now,
assume that B(i, j) = 1 if (i, j) is a permitted match, and
is 0 otherwise. First, conceptually, divide each column in
the S matrix into groups of q rows, where q will be
determined later. For this part of the exposition, sup-
pose j - 1 is a multiple of q, and let rows 1... q be in a
group called Rgroup 0, rows q + 1..2q be in Rgroup 1
etc, so that rows j - q...j - 1 are Rgroup Îj - 1c/q. We
use g as the index for the groups, so g ranges from 0 to
(Îj - 1c/q). See Figure 1. We will modify the Second
Dynamic Program so that for each fixed i, j pair, we do
not compute Rule d for each k = j - 1 down to i + 1.
Rather, we will only do constant-time work for each
Rgroup g that falls completely into the interval of rows
from j - 1 down to i + 1. For the (at most) one Rgroup
that falls partially in that interval, we execute the Rule d
loop as before. Over the entire algorithm, the time for
those partial intervals is O(n2q), and so this detail will
be ignored until the discussion of the time analysis.
Introducing vector Vg and modified Rule d loop
We first modify the Second Dynamic Program to accu-
mulate auxiliary vectors Vg inside the Rule d loop. For a
fixed j, consider an Rgroup g consisting of rows z, z - 1,
z - q + 1, for some z <j, and consider the associated
consecutive values S(z, j), S(z - 1, j)... S(z - q + 1, j). Let
Vg be the vector of those values in that order.
The work to accumulate Vg may seem wasted, but we

will see shortly how Vg is used.
Introducing vg
It is clear that for the simple scoring scheme of B(i, j) =
1 when (i, j) is a permitted match, and B(i, j) = 0 when
(i, j) is not permitted, S(z - 1, j) is either equal to S(z, j)
or is one more then S(z, j). This observation holds for
each consecutive pair of values in Vg. So for a single
Rgroup g in column j, the change in consecutive values
of Vg can be encoded by a vector of length q - 1, whose
values are either 0 or 1. We call that vector vg. We
therefore define the function encode :Vg Æ vgsuch that
vg[i] = Vg[i-1]-Vg[i]. Moreover, for any fixed j, immedi-
ately after all the S values have been computed for the
cells in an Rgroup g, function encode(Vg) can be com-
puted and stored in O(q) time, and vg will then be avail-
able in the Rule d loop for all i smaller than the
smallest row in g. Note that for any fixed j, the time
needed to compute all the encode functions is just O(n).
Introducing Table R and the use of vg
We examine the action of the Second Dynamic-Pro-
gramming algorithm in the Rule d loop, for fixed j and
fixed i <j - q. For an Rgroup g in column j, let k*(i, g, j)
be the index k in Rgroup g such that S(i, k - 1) + S(k, j)
is maximized, and let S*(i, g, j) denote the actual value S
(i, k*(i, g, j) - 1) + S(k*(i, g, j), j).
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Note that the Second Dynamic-Program can find k*(i, g,
j) and S*(i, g, j) during the execution of the Rule d loop,
but would take O(q) time to do so. However, by previously
doing some preprocessing (to be described below) before
column j is reached, we will reduce the work in each
Rgroup g to O(1) time. To explain the idea, suppose that
before column j is reached, we have precomputed a table R
which is indexed by i, g, vg. Table R will have the property
that, for fixed j and i <j - q, a single lookup of R(i, g, vg))
will effectively return k*(i, g, j) for any g. Since k - 1 <j and
k >i, both values S(i, k*(i, g, j) - 1) and S(k*(i, g, j), j) are
known when we are trying to evaluate S(i, j), so we can
find S(i, k*(i, g, j) - 1) + S(k*(i, g, j), j) in O(1) operations
once k*(i, g, vg) is known.
Since there are O(j/q) Rgroups, it follows that for fixed

j and i, by calling table R once for each Rgroup, only O
(j/q) work is needed in the Rule d loop. Hence, for any
fixed j, letting i vary over its complete range, the work
will be O(j2/q), and so the total work (over the entire
algorithm) in the Rule d loop will be O(n3/q). Note that
as long as q <n, some work has been saved, and the
amount of saved work increases with increasing q. This
use of the R table in the Rule d loop is summarized as
follows:
Dependent section using table R
for g = Î(j - 1)/qc to Î(i + 1)/qc do

retrieve vg given g
retrieve k*(i, g, j) from R(i, g, vg)

S(i, j) = max( S(i, j),
S(i, k*(i, g, j) - 1) + S(k*(i, g, j), j) );

Of course, we still need to explain how R is
precomputed.
Obtaining table R
Before explaining exactly where and how table R is com-
puted, consider the action of the Second Dynamic-Pro-
gramming algorithm in the Rule d loop, for a fixed j.
Let g be an Rgroup consisting of rows z - q + 1, z - q,...,
z, for some z <j. A key observation is that if one knows
the single value S(z, j) and the entire vector vg, then one
can determine all the values S(z - q + 1, j)... S(z, j) or Vg.
Each such value is exactly S(z, j) plus a partial sum of
the values in vg. In more detail, for any k ∈ g,
S k j S z j v pgp

p z k
( , ) ( , ) [ ]  

   0

1
. Let decode (vg) be a

function that returns the vector V’ where
  

  V v pgp

p z k
[ ] [ ]k

0

1
.

Next, observe that if one does not know any of the Vg

in the rows of g (e.g., the values S(z - q + 1, j), S(z - 1,
j)... S(z, j)), but does know all of vg, then, for any fixed i
below the lowest row in Rgroup g (i.e., row z-q+1), one
can find the value of index k in Rgroup g to maximize S
(i, k - 1) + S(k, j). That value of k is what we previously
defined as k*(i, g, j). To verify that k*(i, g, j) can be
determined from vg, but without knowing any S values
in column j, recall that since k - 1 <j, S(i, k - 1) is
already known. We call this Fact 1.

Figure 1 Rgroup. Rgroup example with q = 3.
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Precomputing the R table
We now describe the preprocessing that is needed to
compute table R.
Conceptually divide matrix for S into groups of col-

umns of size q, i.e., the same size groups that divide
each column. Columns 1 through q - 1 are in a group
we call Cgroup 0, q through 2q - 1 are in Cgroup 1 etc,
and we again use g to index these groups. Figure 2 illus-
trates the division of columns into groups of size q.
Assume we run the Second Dynamic Program until j
reaches q - 1. That means that all the S(i, j) values have
been completely and correctly computed for all columns
in Cgroup 0. At that point, we compute the following:

for each binary vector v of length q - 1 do
V’ = decode(v)
for each i such that i <q - 1 do

R(i, 0, v) is set to the index k in Rgroup 0 such
that S(i, k-1) + V’[k] is maximized. {we let k* denote
that optimal k }
The above details the preprocessing done after all the

S values in Cgroup 0 have been computed. In general,
for Cgroup g > 0, we could do a similar preprocessing
after all the entries in columns of Cgroup g have been

computed. That is, k*(i, g, v) could be found and stored
in R(i, g, v) for all i <g * q.
This describes the preprocessing that is done after the

computation of the S values in each Rgroup g. With
that preprocessing, the table R is available for use when
computing S values in any column j >g × q. Note that
the preprocessing computations of table R are inter-
leaved with the use of table R. This is different than
other applications of the Four-Russians technique that
we know of. Note also that the amount of preprocessing
work increases with increasing q. Several additional opti-
mizations are possible, of which one, parallel computa-
tion, is described in Results and Discussion section.
With this, the description of the Four-Russians speed up

is complete. However, as in most applications of the Four-
Russians idea, q must be chosen carefully. If not chosen
correctly, it would seem that the time needed for prepro-
cessing would be greater than any saving obtained later in
the use of R. We will see in the next section that by choos-
ing q = log3(n) the overall time bound is O(n3/log(n)).
Pseudo-code for RNA folding algorithm with Four
Russians SpeedUp
for j = 2 to n do

Figure 2 Cgroup. Cgroup example.
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[Independent] Calculations below don’t depend on the
current column j
for i = 1 to j - 1 do
S(i, j) = max( S(i+1, j-1)+B(i, j) , S(i, j-1)) (Rules a, b )
[Dependent] Calculations below depend on the cur-

rent column j
for i = j - 1 to 1 do
for g = Î(j - 1)/qc to Î(i + 1)/qc do
if (i >k), k ∈ Rgroup g. then {this statement runs at

most once, for the smallest g}
find k*(i, g, j) by directly computing and comparing S

(i, k-1)+S(k, j) where k ∈ L = {g * q to i}
|L| <q
else
retrieve vg given g
retrieve k*(i, g, j) from R(i, g, vg)
S(i, j) = max( S(i, j), S(i, k*(i, g, j) - 1) + S(k*(i, g, j), j) );
if ((i - 1) mod q == 0), Compute vg for group g and

store it
[Table] once Cgroup g = Îj/qc is complete
for each binary vector v of length q - 1 do
V’ = decode(v)
for each i 1 to i <j - 1 do
R(i, g, v) is set to the index k in Rgroup g such that
S(i, k-1) + V’[k] is maximized.

Results and Discussion
Correctness and Time analysis
From Fact 1, it follows that when the algorithm is in the
Rule d loop, for some fixed j, and needs to use R to
look up k*(i, g, j) for some g, k*(i, g, j) = R(i, g, vg). It fol-
lows immediately that the algorithm does correctly com-
pute all of the S values, and fills in the complete S table.
A standard traceback can be done to extract the optimal
matching, in O(n) time if pointers were kept when the S
table built.
Time Analysis
The time analysis for any column j can be broken down
into the sum of the time analyzes for the [indepen-
dent], [dependent], [table] sections.
For any column j the [Independent] section of the

speedup algorithm remains unchanged from the original
algorithm and is O(n) time.
For each row i, the [Dependent] section of the

speedup algorithm is now broken down into n/q calls to
the table R. As discussed above, the total time to com-
pute all the encode functions is O(n) per column, and
this is true for all decode functions as well. Therefore in
any column j, the dependent section takes O n

q

2



time. Also, there is an additional overhead of processing

of the one (possible) partial group in any column j only
takes O(nq) time. Reversing the order of evaluation in
the algorithm for i and k would eliminate this overhead.

However, for simplicity of exposition we leave those
details out.
The [Table] section sets R(i, g, v) by computing every

binary vector v and then computing and storing the
value k*(i, g, v). The variable i ranges from 1 to n and
there are 2q-1 binary vectors. Hence the table section for
any complete group g takes O(q * n * 2q-1) time. There
are n/q total groups possible.
In summary, the total time for the algorithm is

O(n2 * q) + O n
q

3




+ O(n2* 2q) time.

Theorem 1. If 2 <b <n, then the algorithm runs in O
(n3/logb(n)) time.
Proof Clearly, O n

q

3




= O(n3/logb(n)) and O(n2 logb

(n) = O(n3/logb(n)), so we concentrate on the third term
in the time bound. To show that n2 × 2log ( )b n = O(n3/
logb(n)) for 2 <b <n, we need to show that

2log ( ) ( / log ( )).b n
bO n n

The relation holds if

n O n n

n n O n

b
b

b
z

log ( ) ( / log ( ))

( ) ( )

2 

 

 if

log

for z = logb(2). 0 <z < 1 since b > 2.

The above relation holds if

lim
( log ( ))

n

nz b n
n

  0

We simplify the above equation to

lim log ( ) / ( )
n b

zn n


1

We find the limit by taking the derivative of top and
bottom (L’ Hopital’s Rule)

lim
log ( )

( )
lim

(
ln( )

)

( )
lim

ln( )n n n

b n

n z
n b

z n z n b   
  

1

1

1

1

(( )

lim
( ) ln( )

.

1

1

1 1
0 1

  

   


z n z

z b n z
z

n
 since 

Parallel Computing
By exploiting the parallel nature of the computation for
a specific column j, one can achieve an overall time
bound of O(q * n2) with vector computing.
The [Independent] section computes max(S(i+1, j-1)

+B(i, j), S(i, j-1)), and all three of the values are available
for all i simultaneously. As a result, it is possible to
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compute the maximum in parallel, for each i, with an
asymptotic run time of O(1).
Let’s examine the [Dependent] section at a particular i

and g.
It is important to note that when Rgroup g is not

complete, in other words i is greater than k (where k ∈
Rgroup g), the maximum fold cannot be found in paral-
lel. The asymptotic time for the if branch remains the
same as in the non-parallel algorithm: O(n*q) compari-
sons for a particular column. As stated before, reversing
the order of evaluation in the algorithm for i and k
would eliminate this overhead. During the execution of
the else branch (starting with instruction retrieve k*(i, g,
j) from R(i, g, vg) ) there are three observations that lead
to a parallel algorithm.
First, observe that i is smaller than all the values in

Rgroup g. This observation holds true because the else
branch is only taken in that case. Second, because i is
smaller than any k ∈ Rgroup g, then vg can be computed
from the values Rgroup g of column j. Third, observe
that R(i’, g, vg) is set to k*(i’, gv, j) for all i’ <i for the par-
ticular vg.
We can simultaneously for all i’ <i run:
retrieve k*(i’, g, j) from R(i’, g, vg)
S(i’, j) = max(S(i’, j), S(i’, k*(i’, g, j) - 1) + S(k*(i’, g, j),
j) );

Therefore instead of sequentially examining group g
for each i ’ (such that i’ <i), the parallel algorithm
examines group g simultaneously. When executed in
parallel, the else branch computes in O(1) time all k*
belonging to g for all i’. For each i’ there is at most n/
q entries in the R table - one for every group. As a
result the total time spent in column j for the else
branch is O(n/q) for all i rows. In addition, each col-
umn gets encoded into vectors vg of size q in O(n)
time. In total, computing in parallel the maximum
folding scores for subsequences starting at every possi-
ble position i and ending at position j takes O(q * n +
n/q) = O(q * n) time.
The [Table] section can also be done in parallel to

find k* for all possible v vectors in O(1) time, entering
all 2q-1 values into table R simultaneously. The entire
algorithm then takes O(q * n2) time in parallel. As stated
previously, reordering i and k would remove the over-
head lowering the asymptotic time to O(n2).
Generalized scoring schemes for B(i, j)
The Four Russians Speed-Up could be extended to any
B(i, j) for which all possible differences between S(i, j)
and S(i+1, j) do not depend on n. Let C denote the size
of the set of all possible differences. The condition that
C doesn’t depend on n allows one to incorporate not
just pairing energy information but also energy informa-
tion that is dependent on the distance between match-
ing pairs and types of loops. In fact the tabling idea

currently can be applied to any scoring scheme as long
as the marginal score (S(i - 1, j) - S(i, j)) is not Ω(n). In

this case, the algorithm takes O(n * (n * Cq-1 + n
q

2
+

n)) = O(n2Cq-1 + n
q

3
+ n2) time. If we let q = logb(n)

with b >C, the asymptotic time is again O(n3/log(n)).
Based on the proof of Theorem 1, the base of the log
must be greater then C in order to achieve the speed
up. The scoring schemes in [14,15] have marginal scores
that are not dependent on n, so the speedup method
can be applied in those cases.
Empirical Results
We compare our Four-Russians algorithm to the origi-
nal O(n3)-time algorithm. The empirical results shown
in Table 1 give the average time for 50 tests of ran-
domly generated RNA sequences and 25 downloaded
sequences from GenBank, for each size between 1, 000
bp and 6, 000 bp. GenBank sequences varied in actual
length and were not exactly the length of the simulated
data. However they differed by no more than 30 bp.
The algorithm performs identically for randomly gener-
ated and GenBank sequences of equal length. This is to
be expected because the algorithm’s run time is
sequence character independent. For all tests where
sequences are of the same length, run-times have a stan-
dard deviation of at most .01 seconds.
The purpose of these empirical results is to show that

despite the additional overhead required for the Four-
Russians approach, it does provide a consistent practical
speed-up over the O(n3)-time method, and does not just
yield a theoretical result. In order to make this point, we
keep all conditions for the comparisons the same, we
emphasize the ratio of the running times rather than the
absolute times, and we do not incorporate any addi-
tional heuristic ideas or optimizations that might be
appropriate for one method but not the other. However,
we are aware that there are speedup ideas for RNA fold-
ing, which do not reduce the O(n3) bound, but provide
significant practical speedups. Our empirical results are
not intended to compete with those results, or to pro-
vide a finished competitive program, but to illustrate the
practicality of the Four-Russians method, in addition to

Table 1 Computation time (seconds)

Size O(n3) Algorithm O(n3/log(n)) Algorithm ratio

1000 3.20 1.43 2.23

2000 27.10 7.62 3.55

3000 95.49 26.90 3.55

4000 241.45 55.11 4.38

5000 470.16 97.55 4.82

6000 822.79 157.16 5.24
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its theoretical consequences. In future work, we will
incorporate all known heuristic speedups, along with the
Four-Russians approach, in order to obtain an RNA
folding program which can be directly compared to all
existing methods.

Conclusions
Extending the Four-Russians speedup by interleaving
preprocessing with computation can lead to a practical
and simple O(n3/logn) time RNA folding algorithm.
Through further analysis this basic algorithm could be
applied to a variety of scoring schemes, and energy
functions. In parallel the speedup can improve the algo-
rithm to run in O(n2) time.
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