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Haplotypes versus genotypes on pedigrees
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Abstract

Background: Genome sequencing will soon produce haplotype data for individuals. For pedigrees of related
individuals, sequencing appears to be an attractive alternative to genotyping. However, methods for pedigree
analysis with haplotype data have not yet been developed, and the computational complexity of such problems
has been an open question. Furthermore, it is not clear in which scenarios haplotype data would provide better
estimates than genotype data for quantities such as recombination rates.

Results: To answer these questions, a reduction is given from genotype problem instances to haplotype problem
instances, and it is shown that solving the haplotype problem yields the solution to the genotype problem, up to
constant factors or coefficients. The pedigree analysis problems we will consider are the likelihood, maximum
probability haplotype, and minimum recombination haplotype problems.

Conclusions: Two algorithms are introduced: an exponential-time hidden Markov model (HMM) for haplotype data
where some individuals are untyped, and a linear-time algorithm for pedigrees having haplotype data for all
individuals. Recombination estimates from the general haplotype HMM algorithm are compared to recombination
estimates produced by a genotype HMM. Having haplotype data on all individuals produces better estimates.
However, having several untyped individuals can drastically reduce the utility of haplotype data.

Pedigree analysis, both linkage and association studies,
has a long history of important contributions to genet-
ics, including disease-gene finding and some of the first
genetic maps for humans. Recent contributions include
fine-scale recombination maps in humans [1], regions
linked to Schizophrenia that might be missed by gen-
ome-wide association studies [2], and insights into the
relationship between cystic fibrosis and fertility [3].
Algorithms for pedigree problems are of great interest
to the computer science community, in part because of
connections to machine learning algorithms, optimiza-
tion methods, and combinatorics [4-8].
Single-molecule sequencing is an attractive alternative

to genotyping and would yield haplotypes for individuals
in a pedigree [9]. Such technologies are being developed
and may become commercial within five to ten years.
Sequencing methods would apparently yield more infor-
mation from the same set of sampled individuals, which
is critical due to the limited availability of individuals for
sampling in multi-generational pedigrees (i.e. individuals

usually must be living at the time of sampling). There is
substantial evidence that haplotypes can be more useful
than genotypes for both population and family based
studies when using methods such as association studies
[10,11] and pedigree analysis [12,13]. While it is intuitive
that haplotypes provide more information than geno-
types, there are instances with family data in which
there are few enough typed individuals that there is little
practical difference between haplotype and genotype
data. Additionally, in order to exploit the information
contained in haplotype data, we need to understand the
instances where diploid inheritance is computationally
tractable given haplotype data.
Pedigree analysis with genotype data is well studied in

terms of complexity [6,7] and algorithms [14-16]. Less is
known about haplotype data on pedigrees. This paper
shows that, given haplotype data on a pedigree, finding
both minimum recombination and maximum probability
haplotypes is as tractable as computing the same quanti-
ties for pedigrees with genotype data (i.e., these pro-
blems are NP- and #P-hard, respectively). To obtain a
reduction that applies equally well to several types of
pedigree calculations, we will consider a modular poly-
nomial-time mapping from the genotype problem to the
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haplotype problem. The reduction preserves the solu-
tions to the analyses, meaning that the solution to the
haplotype problem is the solution to the genotype pro-
blem after adjusting by constant factors or coefficients.
Since the reduction uses a biologically unlikely recom-

bination scenario, we will investigate the accuracy and
information of realistic examples with haplotypes and
genotype data on the same pedigree. Pedigree data was
simulated having a known number of recombinations.
The recombination distributions were computed at a
particular locus of interest and compared to the ground-
truth. Since both the haplotypes and genotypes of a spe-
cific person contain the same alleles, the differences
between the haplotype and genotype recombination dis-
tributions were determined by the extra information in
the haplotype data. As expected, the haplotype data reli-
ably yields greater accuracy when all the pedigree indivi-
duals are typed. However, as fewer pedigree individuals
are typed, there is less practical difference between the
utility of haplotype versus genotype data. The number
of untyped generations that separate typed individuals
influences whether haplotype data are actually more
accurate than genotype data. For instance with two half-
siblings, having two untyped parents results in estimates
from genotype data that are nearly as accurate as the
estimates computed from haplotype data.
Finally, there is an important instance where haplo-

type data is more computationally tractable than geno-
type data. When all individuals in the pedigree are
typed, although unlikely from a practical perspective of
obtaining genetic samples, the computational problem
decomposes into conditionally independent sub-pro-
blems, and has a linear-time algorithm. This can be con-
trasted with the known hardness of the genotype
problem even when all individuals are genotyped. The
existence of this linear-time algorithm for haplotype
data could facilitate useful approaches that combine
population genetic and pedigree methods. For instance,
if the haplotypes of the founders are drawn from a coa-
lescent and the pedigree individuals are all haplotyped,
the probability of a combined model could easily be
computed for certain coalescent models.

Introduction to Pedigree Analysis
A pedigree is a directed acyclic graph where the set of
nodes, I, are individuals, and directed edges indicate
genetic inheritance between parent and child. A diploid
pedigree (i.e. for humans) necessarily has either zero or
two incoming edges for each person. The set, F , of
individuals without incoming edges are referred to as
pedigree founders. An individual, i, with two parents is a
non-founder, and we will refer to their two parents as m
(i) and p(i).

As is commonly done to accommodate inheritance of
genetic information, we will extend this model to
include a representation of the alleles of each individual
and of the inheritance origin of each allele. More for-
mally, we represent a single chromosome as an ordered
sequence of variables, xj, where each variable takes on
an allele value in {1, ..., kj}. Each variable represents a
polymorphic site, j, in the genome, where there are kj
possible sequence variants. Since diploid individuals
have two copies of each chromosome, one copy inher-
ited from each parent, we will use a superscript m and p
to indicate the maternal and paternal chromosomes
respectively. For a particular individual i, the informa-
tion on both copies of a particular chromosome at site j

is represented as xmi,j and xpi,j.

Furthermore, we assume that inheritance in the pedi-
gree proceeds with recombination and without mutation
(i.e. Mendelian inheritance at each site). This imposes
consistency rules on parents and children: the allele xmi,j
must appear in the mother m(i)’s genome as either the

grand-maternal or grand-paternal allele, xmm(i),j or xpm(i),j,

and similarly for the paternal allele and the father p(i)’s
genome.
Let x be a vector containing all the haplotypes xmi , x

p
i

for all individuals i Î I, then we are interested in the
probability

P [x] =
∏
f∈F

P
[
xpf

]
P

[
xmf

]
.

∏
i∈I\F

P
[
xpi |xpp(i), xmp(i)

]
P

[
xmi |xpm(i), x

m
m(i)

]
,

where the superscript m and p indicate maternal and
paternal alleles, while the functions m(i) and p(i) indi-
cate parents of i. The first product is over the indepen-
dent founder individuals whose haplotypes are drawn
from a uniform prior distribution, while the second pro-
duct, over the non-founders, contains the probabilities
for the children to inherit their haplotypes from their
parents. The unobserved vector x is not immediately
derived from observed haplotype data, since vector x
contains haplotype alleles labeled with their parental ori-
gins for all the individuals. To compute this quantity, we
need notation to represent the parental origins of each
allele where differing origins for neighboring haplotype
alleles will indicate recombination events.
For each non-founder, let us indicate the source of

each maternal allele using the binary variable
smi,j ∈ {

m, p
}
, where the value m indicates that xmi,j allele

has grand-maternal origin and p indicates grand-pater-

nal origin. Similarly, we define spi,j for the origin of i’s

paternal allele. For a particular site, these indicators for
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all the individuals, sj, is commonly referred to as the
identity-by-descent (IBD) inheritance path. A recombi-
nation is observed at consecutive sites as a change in
the binary value of a source vector, for instance, smi,j = p

and smi,j+1 = m. To compute the inheritance portion of
the equation for P [x], we will sum over the inheritance
options ℙ[x] = ∑s ℙ[x|s] ℙs where ℙ [s] = 1/22|I\F| We
can observe two kinds of data for pedigree individuals
whose genetic material is available. The first, and most

common, is genotype data, a tuple of alleles
(
g0i,j, g

1
i,j

)
that must appear in the variables xmi,j and xpi,j for each site

j. Since these alleles are unlabeled for origin, we do not
know which allele was inherited from which parent. The
second type of data is haplotypes, where we observe two
sequences of alleles h0i and h1i and each sequence repre-
sents alleles that were inherited together from the same
parent. However, we do not know which sequence is
maternal and which is paternal. For either type of data
define a function Ci, j for locus j which indicates com-
patibility of the assigned haplotype alleles with the data
and requires inheritance consistency between genera-
tions. Specifically, for genotype data Ci, j = 1 if

xpi,j = x
spi,j
f (i),j

, xpi,j = x
spi,j
f (i),j

, and
{
xmi,j, x

p
i,j

}
=

{
g0i,j, g

1
i,j

}
. Under

haplotype data, the Ci, j = 1 when the first two equal-

ities, above, hold and
{
xmi,j, x

p
i,j

}
=

{
h0i,j, h

1
i,j

}
, which are the

haplotype alleles at locus j.
Now, we write the equation for P [x] as a function of

the per-site recombination probability θ ≤ 0.5. For parti-

cular values of all the haplotype alleles xmi,j and xpi,j, the

haplotype probability conditional on the inheritance
options and the observed data through Ci, j is

P [x |s] = ∏
f∈F

l∏
j=1

Cf ,jP
[
xpf ,j

]
P

[
xmf ,j

] ∏
i∈I\F

Ci,1.

l∏
j=2

Ci,j · θ

(
Rm
i,j+R

p
i,j

)
· (1 − θ)

(
2−Rm

i,j−Rp
i,j

)

where Rm
i,j = I

[
smi,j−1

�= smi,j
]
and Rp

i,j = I
[
spi,j−1 �= spi,j

]
.

Pedigree Problem Formulations
Given a pedigree and some observed genotype or haplo-
type data, there are three problem formulations that we
might be interested in. The first is to compute the prob-
ability of some observed data, while the last two pro-
blems find values for the unobserved haplotypes of
individuals in the pedigree.
Likelihood
Find the probability of the observed data by summing
over all the possible unobserved haplotypes, i.e. ∑s ∑s ℙ
[x|s] ℙ [s].

Maximum Probability

Find the values of xmi,j and xpi,j that maximize the prob-

ability of the data, i.e. maxx ∑s ℙ [x|s] ℙ [s].
Minimum Recombination

Find the values of xmi,j and xpi,j that minimize the

number of required recombinations, i.e.

min x,s

∑
i

∑
j>2I

[
spi,j−1 �= spi,j

]
+ I

[
smi,j−1 �= smi,j

]
.

The likelihood is commonly used for estimating site-
specific recombination rates, relationship testing, com-
puting p-values for association tests, and performing
linkage analysis. Haplotype and/or IBD inferences,
obtained by maximizing the probability or minimizing
the recombinations, are useful for non-parametric asso-
ciation tests, tests on haplotypes, and tests where there
is disease information for unobserved genomes.

Hardness Results
With genotype data, the likelihood and minimum
recombination problems are NP-hard, while the maxi-
mum probability problem is #P-hard. Piccolboni and
Gusfield [6] proved the hardness of the likelihood and
maximum probability computations by relying on a sin-
gle locus sub-pedigree with half-siblings. Although their
paper discussed a more elaborate setting involving a
phenotype, their proof, however, applies to this setting.
Li and Jiang proved the minimum recombination pro-
blem to be hard by using a two-locus sub-pedigree with
half-siblings [7]. In all these proofs, half-siblings were
pivotal to establishing reductions from well known NP
and #P problems.
In this paper, we introduce a simple and powerful

reduction that converts any genotype problem on a ped-
igree of n individuals into a haplotype problem on a
pedigree of at most 6n individuals. This reduction is
simple, because it merely introduces four full-siblings
and an extra parent for each genotyped individual. We
do not need complicated structures involving inbreeding
or half-siblings. The reduction works equally well for all
three problem formulations.

Mapping
Given a pedigree with genotype data, for any of the
three pedigree problems, we define a polynomial map-
ping to a corresponding haplotype problem with exactly
5|G| individuals haplotyped. First we create the pedigree
graph for the new haplotype instance, and later we con-
struct the required haplotype observations from the gen-
otype data.
Let G ⊂ I represent the set of genotyped individuals in

a pedigree having individuals I and edges E. We will cre-
ate a haplotype instance of the problem, with individuals
H ∪ I and edges R ∪ E. To obtain the set H, we add five

Kirkpatrick Algorithms for Molecular Biology 2011, 6:10
http://www.almob.org/content/6/1/10

Page 3 of 10



individuals, i0, i1, i2, i3, i4, to H for every individual i Î
G. The set of new relationship edges, R, will connect
individuals in sets H and G. Specifically, the edges stipu-
late that i and i0 are the parents of full-siblings i1, i2, i3,
and i4 by including the edges: i0 ® i1, i0 ® i2, i0 ® i3,
i0 ® i4, i ® i1, i ® i2, i ® i3, and i ® i4. We will refer
to these five individuals, i0, i1, i2, i3, and i4, and their
relationships with i as the proxy family for individual i.
For example, the 6-individual genotype pedigree in Fig-
ure 1 becomes a 21-individual genotype pedigree in Fig-
ure 2. This produces a pedigree graph with exactly 5|G|
+ |I | individuals and 8|G| + |E| edges.
To obtain the new haplotype data from the genotype

data, we type only individuals in H such that the corre-
sponding genotyped individual in G is required, by the
rules of inheritance, to have the observed genotypes.
Without loss of generality, assume that the genotype
alleles are sorted such that g0i,j < g1i,j. Now we can easily
constrain the parental genotype for individual i Î G by
giving the spouse, i0, homozygous haplotypes of all ones

while giving child i1 the haplotypes
{�1, g0i

}
, child i2 hap-

lotypes
{�1, g1i

}
. This guarantees the correct genotype,

but does not ensure that the haplotypes of that genotype
have the same probability or number of recombinations.
Since there is an arbitrary assorting of genotype alleles

at neighboring loci into the parent haplotypes xpi and xmi ,
we will use the remaining two children to represent pos-
sible re-assortments of the genotyped parent’s Ti hetero-
zygous loci, indexed by tj where 1 ≤ j ≤ Ti. In addition
to the haplotype �1, child i3, will have haplotype consist-

ing of hi3,tj := g1−j mod 2
i,tj . while child i4 has the geno-

typed parent’s complementary alleles hi4,tj := gj mod 2
i,tj .

This results in child i3 and i4 alternating in having the
smaller allele at every other heterozygous locus.
This reduction preserves the solutions to the three

problems up to constant factors or constant coefficients.
Specifically, the solution to the haplotype version of the
problem is the solution to the genotype version with the
values of the functions being related by constant factors
or coefficients, depending on whether the function is a
recombination count or a probability.
Lemma 1. Let rg be the minimum number of recombi-

nations in the genotype problem instance. The mapping
yields a haplotype problem instance having

rh = rg +
∑
i∈G

2 (Ti − 1) (1)

for the minimum number of recombinations, where Ti

is the number of heterozygous sites in genotype i.
To prove this result, we exploit the alternating pattern

of alleles assigned to the four children. This pattern
forces there to be two recombinations, among the four
children, between consecutive heterozygous loci.
Proof. Consider the haplotype instance of the problem.

Recall that set G is defined as the individuals who are
genotyped in the genotype problem instance, and, by
construction, they are not haplotyped in the haplotype
problem instance. For each i Î G the rules of inheri-
tance applied to i’s proxy family dictate that the set of
alleles at each position are given by g0i,j and g1i,j. There-
fore, the proxy family dictates the genotype of i.

Figure 1 Genotype and Haplotype Pedigrees. Genotyped
individuals are shaded, and all the individuals are labeled.
Individuals 1, 2, and 5 are the founders, and individual 6 is the
grandchild of 1 and 2.

Figure 2 Haplotype Pedigrees. Haplotyped individuals are shaded,
and individuals have the same labels. For each of the genotyped
individuals, i, from the previous figure, the mapping adds a nuclear
family containing five new individuals labeled i0, i1, i2, i3, i4.
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Since the haplotypes for all the typed individuals are
completely given, we only need to consider the assort-
ment of the alleles from g0i and g1i into the maternal and
paternal alleles of individual i. Clearly this assortment
determines the number of recombinations that the
proxy family contributes to Eqn. (1). However, we will
use induction along the genome to show that every pos-
sible phasing of the parental genotype induces the same
minimum number of recombinations among the four
children, namely 2(Ti - 1).
Now we define an arbitrary assortment of the geno-

type alleles into two haplotypes for person i. We can
think of this parental genotype for l loci as a string s Î
{H, T }l, where H represents a homozygous site and T a
heterozygous site. Recall that Ti is the number of het-
erozygous sites in the genotype string, and those sites
appear at indices tj where 1 ≤ j ≤ Ti. For this genotype
there are 2Ti−1 pairs of haplotypes that phase the given
genotype. Represent each pair by setting Ti - 1 binary
variables

Ptj =

{
0, if x

p

i,tj < xmi,tj ,

1, otherwise.

Note, that we are only interested in the origin of the
children’s haplotypes, rather than in the origin of i’s
haplotypes, so the p and m can arbitrarily label either
haplotype.
Since {i1, i2} between them have the parent genotype

at every locus, one of them has origin p while the other
has origin m, and similarly for {i3, i4}. For each locus,
indicate the paternal origin of the allele for individuals
i1 and i3, respectively with Qj and Sj . Formally, Qj = 1 if

both hi1,j = xpi,j and hi2,j = xmi,j while Qj = 0 otherwise.

Similarly, Sj = 1 if both hi3,j = xpi,j and hi4,j = xmi,j while Qj

= 0 otherwise. Define Rj as the minimum recombination
count before locus j. Notice that Pt1 sets the origin of all
the child haplotypes, therefore Rt1 = 0, since all preced-
ing homozygous loci can have the same origin as locus
t1.
From tj to tj+1 we have two cases:

1. If Ptj = Ptj+1, then Qtj = Qtj+1 and Stj �= Stj+1, by the
alternating construction of children i3 and i4 as com-
pared with i1 and i2.
2. Similarly, if Ptj �= Ptj+1, then Qtj �= Qtj+1 and Stj = Stj+1.

Furthermore, regardless of the number of homozygous
loci separating tj and tj+1, the number of recombinations
can only be increased. Therefore, we have the recursion

Rtj+1 = 2 + Rtj ,

proving the lemma. □
After applying the mapping, the haplotype probability

turns out to have a coefficient that is independent of
the haplotype assignment to the non-founding parent of
the proxy family. This coefficient can be computed in
linear time from the genotype data using a Markov
chain. The Markov chain has 16 states and has a transi-
tion step between each pair of neighboring loci. This
small Markov model can be thought of in the sum-pro-
duct algorithm as an elimination of the typed individuals
in the proxy family; alternatively, it is also equivalent to
peeling-off the typed proxy individuals in the Elston-
Stewart algorithm [14]. Once we have this coefficient,
independent of the haplotype assignment, it is clear that
the likelihood and maximum probability haplotype pro-
blems also have haplotype solutions related proportion-
ally to the genotype solution.
Lemma 2. The mapping yields a haplotype problem

instance having haplotype probabilities proportional to
the haplotype probabilities of the genotype instance. Spe-
cifically, for all x,

Ph [x] =
(
Pg [{xi|i ∈ I}]) ·∏

i∈G
pt (i)

∏
j
P

[
xpi0,j = 1

]
P

[
xmi0,j = 1

]

where the proxy family transmission probability is a
function of genotype gi, the recombination rate θ ≤ 0.5,
and of the transition matrices P , Q0110, and Q1001,

pt (i) =
(

1
16

)
�1 · Ph0 ·

Ti∏
j=0

(
OjQ0110 +

(
1 − Oj

)
Q1001

) · Phj · �1T

and Oj indicates whether index j is odd, h0 is the num-
ber of homozygous loci that begin proxy parent’s geno-
type, and hj is the number of consecutive homozygous
loci after the j’th heterozygous locus where there are Ti

heterozygous loci for proxy parent i. The transition prob-
abilities are given by Pij = θH(i, j)(1 - θ)4-H(i, j) where H(i,
j) is the Hamming distance between inheritance states i
and j. Let Q0110 be a transition matrix having non-zero
recombination probabilities only in column 0110 (i.e.
Q0110, i, j = Pij when j = 0110). Similarly, let Q1001 be a
transition matrix with non-zero recombination probabil-
ities only in column 1001.
Proof. Without loss of generality, assume that indivi-

duals i Î G are all fathers in their proxy family. This is
simply for convenience of notation.
Let x be any fixed assignment of haplotypes to all the

individuals in the pedigree. When conditioning on the
assigned haplotypes for individual i, the probability of
the proxy family of i is independent of the probability
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for the rest of the pedigree. Since we can say this for all
the proxy families, the terms in the probability for the
pedigree individuals in set I (i.e. those also in the geno-
type pedigree) are equal to the probability on the geno-
type data in the genotype pedigree. Therefore, we write
that

Ph[x] =
∑
s
Pg[{xi|i ∈ I}|{si|i ∈ I}]P[{si ∈ I}]·

∏
i∈G

(∏
j
P[xpi0,j = 1]P[xmi0,j = 1]

)
·∏

k
P[xpik |x

p
f (ik)

, xmf (ik), s
p
ik
]·

P[xmik |x
p
m(ik)

, xmm(ik)
, smik ]P[s

p
ik
]P[smik ].

The sum over vector s can be split into sums over the
component pieces. The sums involving the sik can be
distributed into the product over k, since that is the

only place they are used. Let sik =
(
spik , s

m
ik

)
. We easily see

that P
[
xmik |xpm(ik)

, xmm(ik)
, smik

]
P

[
smik

]
= 1, since there are

two ways to inherit the 1-allele from the mother, and all
of them are compatible.

Ph[x] =
∑

{si|i∈1}
Pg[{xi|i ∈ I}|{si|i ∈ I}]P[{si ∈ I}].

∏
i∈G

(∏
j
P[xpi0,j = 1]P[xmi0 ,j = 1]

)
.(∏

k

∑
sik

P[xpik |x
p
f (ik)

, xmf (ik), s
p
ik
]P[spik ]

)
.

Let pt(i) be the transmission probability for the proxy
family, defined as

pt(i) =
∏
k

∑
sik

P[xpik |x
p
f (ik)

, xmf (ik), s
p
ik
]P[spik ].

View this probability as a Markov chain along the
genome with a state space of size 24 where each state
indicates the inheritance of (si1 , si2 , si3 , si4). The transi-
tion probabilities are given by Pij = θH(i, j)(1 - θ)4-H(i, j)

where H(i, j) is the Hamming distance between inheri-
tance states i and j. By design, the transitions allowed
by the data have an unusual structure dictated by the
heterozygous loci of the proxy parent. Specifically, at a
heterozygous locus, there is exactly one inheritance
state that satisfies the children’s haplotypes. At homo-
zygous loci, all the inheritance states are allowed. So,
we compute this probability using the l-state transition
probabilities to determine the contribution of a parti-
cular stretch of l homozygous loci that are followed by
a heterozygous locus. Notice that the heterozygous
locus has, as inheritance indicators, either (0, 1, 1, 0)
or (1, 0, 0, 1), and these alternate between consecutive
heterozygous loci.

Let Q0110 be a transition matrix having non-zero
recombination probabilities only in column 0110 (i.e.
Q0110,i, j = Pij when j = 0110). Similarly, let Q1001 be a
transition matrix with non-zero recombination probabil-
ities only in column 1001. Let h0 be the number of
homozygous loci that begin proxy parent’s genotype and
let hj be the number of consecutive homozygous loci
after the j’th heterozygous locus where 1 ≤ j ≤ Ti and Ti

is the number of heterozygous loci for proxy parent i.
Now, we can write the transmission probability in terms
of matrix operations

pt(i) =
(

1
16

) →
1 ·Ph0 .

Ti∏
j=0

(ZjQ0110 + (1 − Zj)Q1001)Phj · →
1
T

where Zj indicates whether the j’th heterozygous locus
has inheritance indicators (0, 1, 1, 0). The column vector
of ones at the end simply sums all final state probabil-
ities to obtain the total probability.
Finally, notice that the two heterozygous inheritance

states (0, 1, 1, 0) and (1, 0, 0, 1) are arbitrarily labeled.
The main feature is that these states alternate at hetero-
zygous loci, and it does not matter which one occurs
first. So, we can write pt(i) as in the statement of the
lemma in terms of Oj which indicates the event that j is
odd. Now we have a quantity that is a function of the
genotype data and not dependent on the haplotypes
under consideration. □
Corollary 3. The mapping yields a haplotype problem

instance having a likelihood and maximum probability
proportional, respectively, to the likelihood and maxi-
mum probability of the genotype instance. Specifically,

∑
x
Ph[x] =

( ∑
{xi|i∈I}

Pg[{xi|i ∈ I}]
)

· ∏
i∈G

pt(i)
∏
j
P[xpi0,j = 1]P[xmi0,j = 1]

and

max
x

∑
x
Ph[x] =

(
max
{xi|i∈I}

Pg[{xi|i ∈ I}]
)

·∏
i∈G

pt(i).∏
j
P[xpi0,j = 1]P[xmi0 ,j = 1]

where pt(i) is proxy family i’s transmission probability
as defined in Lemma 2.
Proof. Lemma 2 shows that X is independent of the

coefficient of proportionality between the haplotype
probability and the genotype probability. Therefore, this
coefficient factors out of both the likelihood and the
maximum probability equations. □
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Although this reduction establishes the hardness of
these haplotype pedigree problems, it does so by con-
structing children whose haplotypes require many
recombinations and would be extremely unlikely to
occur naturally. Accordingly, we suspect that realistic
instances of these haplotyping problems may provide
more information about the locations of recombinations
than genotype instances.

Algorithms and Accuracy of Estimates
One indication that the haplotype problem might be
practically more tractable is the amount of information
in the haplotype data relative to the genotype data. To
understand this, we can consider a pedigree with a fixed
set of sampled individuals. Assume that there are two
input data sets available, either the haplotype or the gen-
otype data, for all the sampled individuals. Note that the
alleles observed will be identical in both the haplotype
and genotype data, so we are interested in the distribu-
tion that these data impose on the inheritance probabil-
ities. By comparing the accuracy of the recombination
estimates under these two data sets, we can get an idea
for how useful the respective probability distributions are.
Let Rj be a random variable representing the number

of recombinations in the whole pedigree that occur
between loci j - 1 and j. Similar to our notation before,

Rj =
∑

i∈IR
p
i,j + Rm

i,j. We want to compute the distribution

of Rj under both the genotype and haplotype inheritance
probability distributions. These two inheritance distribu-
tions are different precisely because there are haplotypes
and inheritance paths that are consistent with the geno-
type constraints but disallowed by the haplotype
constraints.
These distributions are obtained by constructing a

hidden Markov model for the linkage dependencies
along the genome. At each locus, the HMM considers
the constraints given by either the haplotype or geno-
type data (i.e. the haplotype data HMM is a variation on
the Lander-Green algorithm [15]). We first use the for-
ward-backward algorithm to compute the marginal
inheritance probabilities for each locus using a hidden
Markov model. Once we have the marginal probabilities,
we can easily obtain the distribution for Rj .

General Haplotype and Genotype HMMs
The likelihood can be modeled using a hidden Markov
model along the genome with inheritance paths as hid-
den states. An inheritance path is a graph with nodes
being the alleles of individuals and directed edges
between alleles that are inherited from parent to child.
The transition probabilities are functions of θ and the
number of recombinations between a given pair of
inheritance graphs.

Given the data, we compute the marginal inheritance
path probabilities at each site by using the forward-
backward algorithm for HMMs. Sobel and Lange
described a method for enumerating the inheritance
paths compatible with the allele data observed at each
locus [16]. There are at most k = 22|I\F| inheritance
paths when I\F is the set of non-founder individuals,
and both the forward and backward recursions do an O
(k2) calculation at each site.
To compute the analogous probability for haplotype

data, we use a similar HMM. For haplotypes, the hidden
states must consider the haplotype orientations, which
specify the parental origins of all the observed haplo-
types. Notice that these orientations are not equivalent
to inheritance paths, since they only specify inheritance
edges between haplotyped individuals and their parents.
For each of the 22|H| haplotype orientations, where H is
the set of haplotyped individuals, we enumerate the
inheritance paths compatible with the haplotype alleles,
their orientations, and the pedigree relationships. Alter-
natively, each of the inheritance paths enumerated for
the genotype algorithm induces a particular orientation
on the haplotypes heterozygous for that locus (i.e. par-
ental origin of the entire haplotype). Thus, the hidden
states for the haplotype HMM are the cross-product of
the orientations and the inheritance paths.
The haplotype HMM has transition probabilities that

are nearly identical to the genotype HMM with the
exception that transitions between inheritance paths
with different haplotype orientations have probability
zero. Recombinations are only allowed when they do
not occur between typed haplotypes.
The forward-backward algorithm is also used on the

haplotype HMM. However, there are 22(|I|+|H|-|F|) hidden
states, yielding a slightly slower calculation. Fortunately,
the haplotype recursions can be run simultaneous with
the genotype recursions, meaning that the inheritance
paths need only be enumerated once.

Haplotype Likelihoods in Linear Time
There is one obvious instance of the haplotyping pro-
blems where there are polynomial-time algorithms. Even
though it is impractical to assume that we can sample
genetic material from deceased individuals in a multi-
generational pedigree, for a moment, let us consider the
case where all the individuals in the pedigree are
haplotyped.
The Elston-Stewart algorithm [14] for genotype data

has a direct analogue for haplotype data. This algo-
rithm calculates the likelihood via the belief propaga-
tion algorithm by eliminating individuals recursively
from the bottom up. Each individual is “peeled off”,
after their descendants have been peeled off, by using
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a forward-backward algorithm on the HMM for the
mother-father-child trio.
The haplotype version of this algorithm is linear when

all the individuals are haplotyped, since each elimination
step is conditionally independent of all the others. Given
the parents’ haplotypes, regardless of which was inher-
ited from which grand-parent, the probability of the
child’s haplotype is independent of all other trios.
Therefore, we can take a product over the likelihoods
for all the trios, and compute each trio likelihood using
a 4-state HMM. Then for k non-founding individuals,
and l loci, this algorithm has O(kl) running time.
This same intuition carries through to the minimum

recombination problem, and each trio can be considered
independent of the others. This contrasts with the geno-
type minimum recombination problem which is known to
be hard, even when all the individuals are genotyped [7].

Results
To simulate realistic pedigree data, SNPs were selected
from HapMap that span 100 mb on both sides of a
loosely-linked pair of sites. There are 40 SNPs total,
with 20 tightly linked SNPs on each side of a strong
recombination breakpoint having θ = 0.25. The haplo-
types for these SNPs were selected randomly from Hap-
Map. Pedigree haplotype and genotype data were
simulated for each child by uniformly selecting one of
the parental alleles for the first locus, and subsequent
loci were selected on the same parental haplotype with
probability θj for each locus j. Inheritance was simulated
for 500 simulation replicates.
The simulation yielded completely typed pedigrees.

For each pedigree, we removed the genotype and haplo-
type information for increasing numbers of untyped
individuals. For each instance of a specific number of
untyped individuals, two values were computed on the
estimated number of recombinations between the cen-
tral pair of loci: the haplotype and genotype accuracies.
Accuracy was computed as a function of the l1 distance
between the deterministic number of recombinations
and the calculated distribution. Specifically, accuracy
was 2 - Σi≥0 |xi - ai|, where xi was the estimated prob-
ability for i recombinations and ai was the deterministic
indicator of whether there were i recombinations in the
data simulated on the pedigree.
In all the instances we observed a trend where the

best accuracy was obtained with haplotype data where
everyone in the pedigree was haplotyped. For example, a
five-individual pedigree with two half-siblings is shown
in Figure 3. With the three founders untyped, the haplo-
type data yielded similar accuracy as the genotype data.
Consider a three-generation pedigree having two par-
ents, their two children, an in-law, and a grandchild for
a total of six individuals, three of them founders. This

pedigree has a similar trend in accuracy as the number
of untyped founders increases, Figure 4. As the number
of untyped individuals increases, the accuracies of geno-
type and haplotype estimates appear to converge.

Discussion
Sequencing technologies would seem to solve the phas-
ing problem by yielding haplotype data. However, if we
wish to consider diploid inheritance with recombination,
the phasing problem remains, even when we are given
chromosome-length haplotype data. This is demon-
strated by reduction of the phasing problem for geno-
types to the phased version of the same problem for
three common pedigree problems. This theoretical
result is due largely to the unavailability of genetic
material for deceased individuals.
Three pedigree calculations were discussed: likelihood,

maximum probability, and minimum recombination.
Each of these calculations on haplotype data have the
same computational complexity as the same computa-
tion on genotype data. In the worst case, it takes only a
single generation to remove the correlation between
sites in the haplotype. This worst case provided the
reduction that proves the the complexity results for the
haplotype computations, and it worked equally well for
all three pedigree computations. The worst-case is not
biologically realistic, since it requires roughly 2(m - 1)

Figure 3 Predicting Recombinations for Half-Siblings. This is the
average accuracy for predictions from a pedigree with two half-
siblings and three parents. Five hundred simulation replicates were
performed, and the average accuracy of estimates from the
haplotype data is superior to those from genotype data. However,
as the number of untyped founders increases, in both cases, the
accuracy of estimates from haplotype data drop relative to the
accuracy from genotype data. The accuracies of genotype and
haplotype estimates appear to converge.
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recombinations for m sites in 4 meioses. This is very
unlikely to occur under typical models for inheritance.
To investigate more likely scenarios, sequences were
simulated in a region of the genome surrounding a
recombination breakpoint. From haplotype and geno-
type data, we estimated the distribution of the number
of recombinations at the breakpoint and compared the
estimates to the ground-truth for accuracy.
When typing everyone in the pedigree, the estimates

from haplotype data were very accurate, because the
haplotype data provides enough constraints to deter-
mine where the recombinations must have occurred.
With decreasing numbers of typed individuals, the accu-
racy of haplotype-based estimates dropped until it
seemed to converge to the genotype accuracy due to a
lack of constraints. From the structure of the calcula-
tions, we observed that with fewer typed individuals
there were more haplotype orientations to consider, and
the haplotype calculation more closely resembled the
genotype calculation. However, the haplotype calculation
had more constraints and lost accuracy at a slower rate.
Several interesting open problems remain. First,

approximation algorithms might be a useful approach
for haplotypes on pedigrees. The existence of a linear-
time algorithm when all individuals are haplotyped may
suggest that the general haplotype problem instance
could be amenable to approximation algorithms.

Second, these proofs apply when there is no missing
data in a genotyped individual (i.e. a proxy parent).
The proof requires knowing whether the proxy parent

is heterozygous or homozygous at each locus, and this
is unknown when there is missing data. Third, there is
an interesting case of mixed haplotypes and genotypes.
For this case to be interesting, the ends of haplotypes
must occur at different locations in different individuals
in the pedigree. Otherwise, the haplotypes that start and
end at the same positions in all individuals can easily be
converted into multi-allelic genotypes, with an allele for
each haplotype. The mixed haplotype-genotype problem
is not amenable to the proof techniques used here.
However, the haplotype HMM in Section can easily be
revised to handle the mixed case. This is important
because the data produced by single polymer sequencing
is more likely to resemble the mixed case than either
the haplotype or the genotype cases.

Acknowledgements
I want to thank Richard M. Karp for reviewing a draft of the manuscript and
the National Science Foundation for support through the Graduate Research
Fellowship.

Author details
1Electrical Engineering and Computer Sciences, University of California
Berkeley, Berkeley, CA 94720-1776, USA. 2International Computer Science
Institute, 1947 Center St. Suite 600, Berkeley, CA 94704, USA.

Authors’ contributions
BK concieved of the problem, proved the results, and implemented the
algorithms.

Competing interests
The authors declare that they have no competing interests.

Received: 10 August 2010 Accepted: 19 April 2011
Published: 19 April 2011

References
1. Coop G, Wen X, Ober C, Pritchard J, Przeworski M: High-Resolution

Mapping of Crossovers Reveals Extensive Variation in Fine-Scale
Recombination Patterns Among Humans. Science 2008,
319(5868):1395-1398.

2. MY N, DF L, et al: Meta-analysis of 32 genome-wide linkage studies of
schizophrenia. Mol Psychiatry 2009, 14:774-85.

3. Romero I, Ober C: CFTR mutations and reproductive outcomes in a
population isolate. Human Genet 2008, 122:583-588.

4. Geiger D, Meek C, Wexler Y: Speeding up HMM algorithms for genetic
linkage analysis via chain reductions of the state space. Bioinformatics
2009, 25(12):i196.

5. Xiao J, Liu L, Xia L, Jiang T: Efficient Algorithms for Reconstructing Zero-
Recombinant Haplotypes on a Pedigree Based on Fast Elimination of
Redundant Linear Equations. SIAM Journal on Computing 2009, 38:2198.

6. Piccolboni A, Gusfield D: On the Complexity of Fundamental
Computational Problems in Pedigree Analysis. Journal of Computational
Biology 2003, 10(5):763-773.

7. Li J, Jiang T: An Exact Solution for Finding Minimum Recombinant
Haplotype Configurations on Pedigrees with Missing Data by Integer
Linear Programming. Proceedings of the 7th Annual International Conference
on Research in Computational Molecular Biology 2003, 101-110.

8. Thatte BD: Combinatorics of Pedigrees I: Counterexamples to a
Reconstruction Question. SIAM Journal on Discrete Mathematics 2008,
22(3):961-970.

Figure 4 Predicting Recombinations for Three Generations. This
figure shows accuracy results from a six-individual, three-generation
pedigree. Again, five hundred simulation replicates were performed,
and the average accuracy of estimates from the haplotype data is
superior to those from genotype data. Once again, as the number
of untyped founders increases, the accuracy of estimates from
haplotype data drop relative to the accuracy from genotype data.
The accuracies of genotype and haplotype estimates appear to
converge.

Kirkpatrick Algorithms for Molecular Biology 2011, 6:10
http://www.almob.org/content/6/1/10

Page 9 of 10

http://www.ncbi.nlm.nih.gov/pubmed/18239090?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18239090?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18239090?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19349958?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19349958?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19477987?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19477987?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14633398?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14633398?dopt=Abstract


9. Eid J, et al: Real-Time DNA Sequencing from Single Polymerase
Molecules. Science 2009, 323(5910):133-138.

10. Barrett J, Hansoul S, Nicolae D, Cho J, Duerr R, Rioux J, Brant S,
Silverberg M, Taylor K, Barmada M, et al: Genome-wide association defines
more than 30 distinct susceptibility loci for Crohn’s disease. Nature
Genetics 2008, 40:955-962.

11. Chen WM, Abecasis G: Family-Based Association Tests for Genomewide
Association Scans. American Journal of Human Genetics 2007, 81:913-926.

12. Burdick J, Chen W, Abecasis G, Cheung V: In silico method for inferring
genotyeps in pedigrees. Nature Genetics 2006, 38:1002-1004.

13. Kirkpatrick B, Halperin E, Karp R: Haplotype Inference in Complex
Pedigrees. Journal of Computational Biology 2010, 17(3):269-280.

14. Elston R, Stewart J: A general model for the analysis of pedigree data.
Human Heredity 1971, 21:523-542.

15. Lander E, Green P: Construction of Multilocus Genetic Linkage Maps in
Humans. Proceedings of the National Academy of Science 1987,
84(5):2363-2367.

16. Sobel E, Lange K: Descent Graphs in Pedigree Analysis: Applications to
Haplotyping, Location Scores, and Marker-Sharing Statistics. American
Journal of Human Genetics 1996, 58(6):1323-1337.

doi:10.1186/1748-7188-6-10
Cite this article as: Kirkpatrick: Haplotypes versus genotypes on
pedigrees. Algorithms for Molecular Biology 2011 6:10.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Kirkpatrick Algorithms for Molecular Biology 2011, 6:10
http://www.almob.org/content/6/1/10

Page 10 of 10

http://www.ncbi.nlm.nih.gov/pubmed/19023044?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19023044?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18587394?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18587394?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17924335?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17924335?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16921375?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16921375?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20377445?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20377445?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/5149961?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8651310?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8651310?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Introduction to Pedigree Analysis
	Pedigree Problem Formulations
	Likelihood
	Maximum Probability
	Minimum Recombination


	Hardness Results
	Mapping

	Algorithms and Accuracy of Estimates
	General Haplotype and Genotype HMMs
	Haplotype Likelihoods in Linear Time

	Results
	Discussion
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

