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Abstract

Background: Clustering is a widely used technique for analysis of gene expression data. Most clustering methods
group genes based on the distances, while few methods group genes according to the similarities of the
distributions of the gene expression levels. Furthermore, as the biological annotation resources accumulated, an
increasing number of genes have been annotated into functional categories. As a result, evaluating the
performance of clustering methods in terms of the functional consistency of the resulting clusters is of great
interest.

Results: In this paper, we proposed the WDCM (Weibull Distribution-based Clustering Method), a robust approach
for clustering gene expression data, in which the gene expressions of individual genes are considered as the
random variables following unique Weibull distributions. Our WDCM is based on the concept that the genes with
similar expression profiles have similar distribution parameters, and thus the genes are clustered via the Weibull
distribution parameters. We used the WDCM to cluster three cancer gene expression data sets from the lung
cancer, B-cell follicular lymphoma and bladder carcinoma and obtained well-clustered results. We compared the
performance of WDCM with k-means and Self Organizing Map (SOM) using functional annotation information
given by the Gene Ontology (GO). The results showed that the functional annotation ratios of WDCM are higher
than those of the other methods. We also utilized the external measure Adjusted Rand Index to validate the
performance of the WDCM. The comparative results demonstrate that the WDCM provides the better clustering
performance compared to k-means and SOM algorithms. The merit of the proposed WDCM is that it can be
applied to cluster incomplete gene expression data without imputing the missing values. Moreover, the robustness
of WDCM is also evaluated on the incomplete data sets.

Conclusions: The results demonstrate that our WDCM produces clusters with more consistent functional
annotations than the other methods. The WDCM is also verified to be robust and is capable of clustering gene
expression data containing a small quantity of missing values.

Background
The changes of the gene expression levels are very com-
mon in the human complex diseases, such as cancers
[1-3]. The advent of microarray technologies have made
it possible to measure simultaneously the expression
levels of many thousands of genes over different time
points and/or under different experimental conditions
[4-6]. Numerous computational techniques have been
developed to analyze these gene expression data. Among

them, clustering is a primary approach to group the
genes with similar expression patterns across different
conditions, which enables the identification of differen-
tially expressed gene sets in cancerous tissues [7-9].
Clustering is an unsupervised learning technique which
assigns a set of objects (genes) into subsets (called clus-
ters) so that the objects in the same clusters are similar
according to some similarity metric [10,11]. A cluster is
therefore a collection of objects which are similar
between them and are dissimilar to the objects belong-
ing to other clusters.
Since clustering is proposed, an increasing number

of clustering approaches have been developed and
improved for the analyses of gene expression data. The
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common clustering methods include k-means [12,13],
hierarchical clustering [8], and Self Organizing Map
(SOM) [14,15], and so on. Each method has its own
strengths and weaknesses. The k-means is an important
clustering algorithm which partitions n objects into k
clusters in which each object belongs to the cluster with
the nearest mean. In k-means clustering, the number of
clusters k is an input parameter, and an inappropriate
choice of k may yield poor clustering results. The main
advantages of this algorithm are its simplicity and com-
putational speed which allows it to run on large data-
sets, however, it does not yield the same result with
each run, since the resulting clusters depend on the
initial random assignments. Besides, it conducts poorly
with overlapping clusters and is sensitive for noisy data.
The hierarchical clustering aims to create a hierarchy of
clusters which may be represented by a tree structure
called a dendrogram. The root of the tree consists of a
single cluster containing all objects, and the leaves cor-
respond to individual objects. The hierarchical technique
requires relatively smooth data and the clusters them-
selves need to be well defined. Like k-means method,
noisy data strongly affect the resulting clusters. SOM is
a type of artificial neural network that is trained using
unsupervised learning to produce a two-dimensional,
discretized representation of the input space of observa-
tions. It requires the geometry of nodes as input, and
the nodes are mapped into two-dimensional space, initi-
ally at random, and then iteratively adjusted. SOM
imposes the structure on data, with neighboring nodes
tending to define related clusters. SOM has good com-
putational properties and is suited to clustering of large
data sets. One major drawback of this algorithm is the
“boundary effect” of nodes on the edges of the network,
which may lead to less effective clustering results.
Besides, these clustering methods mentioned above
require a complete data set as an input, and therefore
those gene rows containing the missing values are either
removed or imputed using an imputation method on
the missing entries prior to clustering analysis. Remov-
ing the missing gene rows may result in omitting some
important genes, such as the genes related to diseases,
whereas the badly estimated missing values even
changes the quality of data, which could influence the
accuracy of clustering results.
In this article, we propose a Weibull distribution-

based clustering method called WDCM. The assumption
of this method is that the gene expression of each gene
can be considered as a random variable following
unique Weibull distribution [16], and that a group of
genes tend to be clustered together if the Weibull distri-
butions of gene expressions of these genes have similar
distribution parameters. Here, we use the gene expres-
sion values of each gene to construct its corresponding

Weibull distribution and then group these genes by
clustering their corresponding distribution parameters.
The following sections of this paper are organized as

‘Results’, ‘Discussion and conclusion’ and ‘Methods’. In
section ‘Results’, we first introduced three cancer gene
expression data sets we used, and then visually demon-
strated the clustering results obtained using the WDCM
for the three data sets. Second, to assess the perfor-
mance of the WDCM, we compared the functional con-
sistency of the gene clusters produced by the WDCM to
those of the k-means and SOM methods for the same
data sets. We also used the external measure Adjusted
Rand Index to establish the performance of the WDCM,
and the comparisons with the other algorithms were
conducted simultaneously. Finally, we tested the robust-
ness of the WDCM on clustering the incomplete data
sets. In section ‘Discussion and conclusion’, we first
summarized the main work of this study, discussed the
strength and limitation of the WDCM. In the end we
briefly mentioned the improvement of the WDCM and
the future study. In section ‘Methods’, we introduced
the WDCM together with the algorithm used for clus-
tering the Weibull distribution parameters, the func-
tional consistency assessment method of the clustering
result, and the external validation index Adjusted Rand
Index of the clustering performance. Moreover, Robust-
ness test of the WDCM on clustering the incomplete
data set was also presented in this section.

Methods
In this section, the WDCM is described as follows:
Given a m × n gene expression matrix, let gij be the jth
expression value of gene i, i = 1, ...,m, and j = 1, ...,n.
We here treat one gene expression as a random variable,
and construct the distribution of the gene expressions of
gene i. We then choose a subset of genes whose distri-
butions of the gene expressions belong to the common
Weibull distribution [16]. Due to the consistent distribu-
tion function types, we consider that those genes with
similar gene expression distribution parameters tend to
share the similar expression patterns, and they are prob-
ably concerned with the same biological processes or
functions together. We further cluster the genes in the
selected subset by clustering their corresponding distri-
bution parameters, as each gene corresponds to its
unique distribution parameters. In the following we
introduce the principle of the distribution function con-
struction procedures.

Weibull distributions of gene expressions construction
First, we construct the empirical distribution of each
gene expression [17], and then ascertain the precise dis-
tribution regarding the constructed empirical distribu-
tion using the Kolmogorov goodness of fit test [18-20].
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The details as follows: assume that xi1, xi2, ..., xin are the
gene expressions of gene gi, i = 1, ...,m, and sort them in
ascending as x′

i1 < x′
i2 < · · · x′

in. For ∀ x Î(-∞,+∞), define
the empirical distribution of gi as

F(i)n (x) =
n∑

k=1

I(x′
ik ≤ x)/n (1)

Where I(∙) is the indicator function.
We utilize the Weibull distribution type to fit F(i)n (x),

and then ascertain the distribution parameters which
uniquely determine the distribution.
The probability density function of a Weibull distribu-

tion is defined as:

f (x; a, b) =

⎧⎪⎨
⎪⎩

b
a
(
x
a
)
b−1

e
−(
x
a
)
b

, x ≥ 0

0 x < 0

(2)

where a >0 is the scale parameter and b >0 is the
shape parameter of the distribution. The scale parameter
a determines the range of the distribution. The shape
parameter b is what gives the Weibull distribution its
flexibility. By changing the value of the shape parameter,
the Weibull distribution can fit a wide variety of data.
Let F(i)(x) is a certain Weibull distribution with known

parameters, and a Kolmogorov-Smirnov test is con-
ducted to determine if the sample xi1,xi2, ..., xin comes
from the Weibull distribution F(i)(x). The null hypoth-
esis is that the random sample of gene expressions of gi
comes from the Weibull distribution F(i)(x). If the null
hypothesis is true, the deviation of F(i)(x) and F(i)(x) is
small. Construct the Kolmogorov-Smironov statistic

T(i)
n = sup

x∈�
|F(i)n (x) − F(i)(x)| (3)

under the null hypothesis,
√
nT(i)

n converges to the
Kolmogorov distribution [18]. The null hypothesis is
rejected at significance level a if

√
nT(i)

n > Kα
, otherwise

it is accepted, where Ka is the critical value of the Kol-
mogorov distribution. Given a = 0.05, we here select
the appropriate parameters for F(i)(x) in order to the
null hypothesis is accepted (p - value > 0.05), that is,
the random sample comes from the certain Weibull dis-
tribution F(i)(x), i = 1,2, ...,m. Following the above proce-
dure, we can obtain the Weibull distributions of m gene
expressions, denoted by F(1)(x),F(2)(x),...,F(m)(x).

Weibull distribution parameters of gene expressions
clustering
Let θi denotes the parameter of the Weibull distribution
F(i)(x), j = 1, ...,m. Here θi consists of double-parameter
pair (ai,bi), we then cluster the m parameters θ1, θ2,...,

θm using a certain clustering algorithm based on the
hub points. This algorithm presented by Robert Clason
designates a single point as a hub for each cluster and
then finds the distance from each remaining point to
each hub, as well as assigns this point to the hub to
which it is closer [21]. The merit of it is to automatically
ascertain the clusters number on the basis of the dis-
tances between data points. A detailed description of
the algorithm is provided in Additional file 1.

Functional consistency of clustering result
In order to evaluate the performance of the proposed
WDCM, we also apply the K-means and Self Organizing
Map (SOM) clustering algorithms to the same gene sub-
sets as the WDCM and obtain the gene clusters, respec-
tively. We compare the functional consistency of the
gene clusters produced by WDCM to those produced
by the other methods. For this purpose, we consider the
biological annotations of the gene clusters in terms of
Gene Ontology (GO). The Gene Ontology (GO) project
provides three structured, controlled vocabularies that
describe the gene products in terms of their associated
biological processes (BP), cellular components (CC) and
molecular functions (MF) [22]. The annotation ratios of
each gene cluster in three GO terms were calculated
using the web-accessible DAVID 2008 tool [23]. For
each of clusters found by one of three clustering meth-
ods, under the BP ontology, we search the just GO term
in which the most genes in this cluster are enriched,
and define the BP annotation ratio for this cluster as the
number of genes in both the assigned GO term and this
cluster divided by the number of genes in this cluster.
After calculating the BP annotation ratios for all clus-
ters, we treat the mean value of all annotation ratios as
the final BP annotation ratio. We also define the CC
and MF annotation ratios by the same manner. A higher
annotation ratio represents that the corresponding clus-
tering result is better than the other ones, that is, gene
are better clustered by function, indicating a more func-
tionally consistent clustering result.

Adjusted Rand Index validation index
The Adjusted Rand Index (ARI) is a measure of agree-
ment between two partitions of the same set of objects
[24,25]. One partition is given by the clustering method
and the other is defined by the external criteria. For a
gene expression data set, suppose X is the partition
based on some external criteria and C is the clustering
result obtained by some clustering method. Let a,b,c,d
respectively denote the number of gene pairs that are in
the same cluster in both X and C, the number of gene
pairs that are in the same cluster in X and in different
clusters in C, the number of gene pairs that are in dif-
ferent clusters in X and in the same cluster in C and the
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number of gene pairs that are in different clusters in
both X and C. The Adjusted Rand Index ARI(X,C) is
defined as follows:

ARI(X,C) =
2(ad − bc)

(a + b)(b + d) + (a + c)(c + d)
(4)

The value of Adjusted Rand Index varies from 0 to 1
and higher value means that C is more similar to X.
Considering that the genes with similar expression

patterns may be functionally related each other [26], we
group the genes in the given data set according to func-
tional similarity and define these gene clusters as X. The
clustering results Cs are then given by the proposed
WDCM, k-means and SOM. We compute and compare
the values of Adjusted Rand Index between X and Cs to
evaluate the performance of WDCM. To this end, we
first use the Gene Functional Classification Tool of
DAVID to group the genes into the highly functionally
related gene clusters and then compute the values of
ARI. The higher value indicates the corresponding clus-
tering method performs better.

Robustness of the WDCM on clustering incomplete data
set
The WDCM can be applied to cluster the incomplete
gene expression data set without imputing the missing
values. To test the robustness of this approach, we com-
pared the overlapped degree between the gene clusters
for incomplete data sets and the ones for complete data
sets. A higher overlapped degree represents a robust
clustering method. To this end, we first randomly
remove 5-25% of the complete data set in order to cre-
ate the incomplete gene expression data sets, and then
we apply the WDCM to cluster these complete and
incomplete data sets and obtain the clustering results,
respectively. Here, a Cluster Overlap Ratio (COR) index
is introduced for assessing the overlapped degrees at
individual missing percentages.

Cluster Overlap Ratio index
Suppose n gene clusters C1,C2,...,Cn for the complete
data set and m gene clusters I1,I2, ... Im for the incom-
plete one. The Cluster Overlap Ratio (COR) index is
then defined as follows:

COR =
m∑
i=1

pixi (5)

where

pi =
|Ii|

m∑
k=1

|Ik|
,

(6)

|∙| denotes the number of genes in the cluster, and
thus pi represents the proportion of genes in the gene
cluster Ii. Here xi denotes the maximum of overlapped
gene numbers between Ii and each individual Ck (k = 1,
..., n) divided by |Ii|.

Results
Identification of six gene clusters for lung cancer data set
We applied the WDCM to cluster the lung cancer data
set. It consists of expression levels of 675 genes across
156 tissues, which include 17 normal and 139 carcino-
mas lung tissues [27]. Using the Kolmogorov-Smirnov
goodness of fit test (see Methods), we tested whether
the expression sample of each gene comes from the
Weibull distribution. The results showed that the distri-
butions of gene expressions of 402 genes belong to the
common Weibull distribution, whereas the others whose
distributions of gene expressions fail to be in the Wei-
bull distribution are removed. The p-values produced by
Kolmogoriv-Smirnov goodness of fit test for the 402
genes were reported in Additional file 2. We then used
the hub node based clustering algorithm (see Methods)
to cluster the 402 Weibull distribution parameters
which consist of the shape parameters and scale para-
meters, and obtained 6 distribution parameter clusters,
that is, 6 gene clusters. The clustered parameters scatter
plots have been shown in Figure 1A.
It is evident from Figure 1A that the distribution para-
meters of the genes of a cluster are close and compact to
each other, which indicates the Weibull distribution para-
meters were clustered well. The expression profiles of the
corresponding clustered genes plots have been shown in
Figure 1B, from which it is also evident that the expres-
sion profiles of the genes within identical clusters are
quite similar, whereas the profiles for the genes belonging
to different clusters differ from each other.

Identification of four gene clusters for follicular
lymphoma data set
We tested the WDCM on another follicular lymphoma
data set consisting of expression levels of 798 genes in
19 B-cell follicular lymphoma specimens [28]. We uti-
lized the Kolmogorov-Smirnov test to decide if the sam-
ple of individual gene on the follicular lymphoma data
set comes from the Weibull distribution, and found 471
genes whose distributions of gene expressions belong to
the common Weibull distribution. The p-values pro-
duced by Kolmogoriv-Smirnov goodness of fit test for
the 471 genes were reported in Additional file 2. We
then clustered the corresponding 471 distribution para-
meter pairs and determined 4 gene clusters. Figure 2
illustrates the clustered parameters scatter plots and the
cluster profile plots of the clustering results.
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From Figure 2A, the four parameters clusters are
clearly distinguished from each other, meanwhile, the
expression profiles of the genes within the same clus-
ters are similar, whereas the ones of the genes across
different clusters are distinct (see Figure 2B). The
results indicate that the significantly distinct gene clus-
ters were found using the WDCM on follicular lym-
phoma data set.

Identification of four gene clusters for bladder carcinoma
data set
The bladder carcinoma data set contains 1203 genes
measured over 40 different experimental conditions
[29]. Using the Kolmogorov-Smirnov test, we found
1040 genes whose distributions of gene expressions
belong to the common Weibull distribution. The
p-values produced by Kolmogoriv-Smirnov goodness of

Figure 1 Lung cancer data set clustered using the WDCM. (A) Distribution parameters scatter plot. The horizontal axis corresponds to shape
parameter a, and the vertical axis corresponds to scale parameter b. The parameter pairs in different clusters were drew with different colors.
(B) Cluster profile plots.

Figure 2 Follicular lymphoma data set clustered using the WDCM. (A) Distribution parameters scatter plot, (B) Cluster profile plots.
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fit test for the 1040 genes were reported in Additional file
2. Again, the hub node based clustering algorithm was
employed to cluster the corresponding 1040 distribution
parameter pairs. The number of clusters determined was
4. Figure 3 shows the clustered parameters scatter plots
and the cluster profile plots of the clustering results.

Comparison of clustering performance
To show the performance of the WDCM, we applied
the K-means and Self Organizing Map (SOM) algo-
rithms to the same gene subsets clustered by the
WDCM and compared the functional consistency of the
gene clusters produced by WDCM to those of the gene
clusters produced by the other methods (see Methods).
Simultaneously, the values of ARI for the WDCM, k-
means and SOM algorithms on these three data sets
were also contrasted (see Methods).
Among these three tested algorithms, the WDCM

show the highest functional annotation ratios on both
lung cancer and follicular lymphoma data sets. The
detailed comparisons for the lung cancer data set are
given in Figure 4A, from which we found that the three
final functional annotation ratios of the WDCM clusters
all exceed the ones of the other methods clusters. Espe-
cially, the BP and MF annotation ratios of the WDCM
clusters (91.57% and 92.16%) are much higher than
those of the SOM clusters (82.76% and 83.96%). On B-
cell follicular lymphoma data test, although the CC and
MF annotation ratios of gene clusters found by each of
three methods are asymptotically equal (see Figure 4B),
the BP annotation ratio of WDCM clusters (84.9%) is
much higher than those of K-means clusters (71.6%)
and SOM clusters (74.8%). On bladder carcinoma data

set, from Figure 4C, although the BP annotation ratio of
WDCM clusters (59.82%) is less than those of SOM
clusters (64.30%), it is still beyond that of K-means clus-
ters (55.87%). Note that the CC and MF annotation
ratios of the WDCM clusters are consistently superior
to those of the K-means and SOM clusters.
Table 1 shows the values of ARI for algorithms WDCM,

k-means and SOM on these three data sets. Note that
among the three methods, WDCM provides the consis-
tently best ARI values. Specifically, the ARI value for the
proposed WDCM (0.5365) is much better than those for
k-means and SOM (0.2478 and 0.3681) on lung cancer
data set. Although these three ARI values (0.3991, 0.3481
and 0.2647) are close on B-cell follicular lymphoma data
set, the ARI value for WDCM is better than the other
values. For bladder carcinoma data set also, the proposed
WDCM outperforms the other algorithms in terms of
ARI. The values are reported in Table 1.
The above comparative analyses on the functional

annotation ratios of the three algorithms have demon-
strated that the genes in each cluster obtained using the
WDCM show not only the similar expression patterns,
but also more consistent functional annotations, which
means these genes are more inclined to be involved
in the same biological functions together. Also, the
Adjusted Rand Index comparative results indicate the
superiority of the performance of the proposed WDCM
compared to the other algorithms.

Test for robustness of the WDCM on clustering
incomplete data set
To test the robustness with which the WDCM clusters
the incomplete gene expression data, we applied the

Figure 3 Bladder carcinoma data set clustered using the WDCM. (A) Distribution parameters scatter plot, (B) Cluster profile plots.
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WDCM to cluster the above three gene expression data
sets containing missing values and compared the over-
lapped degree between the gene clusters for incomplete
data sets and the ones for complete data sets. These
three data sets were preprocessed by randomly removing
5-25% of the data in order to create the incomplete gene
expression data sets, and the WDCM then was applied
to these data sets. Table 2 lists the average Cluster
Overlap Ratio (COR) values with respect to the percen-
tages of missing values (0-25%) achieved by WDCM
over 100 runs for the lung cancer, B-cell follicular lym-
phoma and bladder carcinoma data sets, respectively.
The WDCM provided the higher COR values regarding
the smaller percentages of missing values for all three
data sets. The COR values exceeded 0.9 at 5% missing
value. At 10%, the COR value was also beyond 0.9 for
the follicular lymphoma and bladder carcinoma data
sets (0.9078 and 0.9702), and approximated 0.9 for the
lung cancer data set (0.8654). For the bladder carcinoma
data set, we see that the COR values were varied from
0.9823 to 0.9335, passing 0.9 at all missing values.
The results of the cluster overlapped degree compari-

son tests indicate that the WDCM gave a high over-
lapped degree of the gene clusters compared with those
of complete data set at low missing value, highlighting
the robustness and potential of the WDCM. We think
that the results might stem from the fact that the miss-
ing gene expression values of individual genes have little

influence on constructing their corresponding Weibull
distribution parameters at low missing values.

Discussion and conclusion
In this article, we propose a robust approach based on
Weibull distribution (WDCM) for clustering gene
expression data. It is based on the idea that a group of
genes tend to be clustered together if the distributions
of gene expressions of these genes belong to the com-
mon Weibull distribution and have the similar distribu-
tion parameters. Consequently, we cluster the genes by
clustering the distribution parameters of their gene
expressions. A hub nodes-based dynamic clustering
algorithm is utilized in the distributions clustering pro-
cess. The clusters number in a gene expression data set
is automatically determined in this clustering algorithm.
The performance of the proposed WDCM has been
compared with those of K-means and SOM clustering
algorithms by the biological annotation ratios to show
its effectiveness on three cancer gene expression data
sets. The results show that the WDCM is more capable
of grouping the genes with similar expression patterns
and strong functional consistency together. We also
used the external measure Adjusted Rand Index to vali-
date the performance of the WDCM. The comparative
results demonstrate that the WDCM provides the better

Figure 4 biological annotation ratios of clustering results. (A) Final annotation ratios of Lung cancer clusters found by three different
methods in GO biological processes (BP), cellular components (CC) and molecular functions (MF). (B) Final annotation ratios of Follicular
lymphoma clusters found by three different methods in GO biological processes (BP), cellular components (CC) and molecular functions (MF). (C)
Final annotation ratios of Bladder carcinoma clusters.

Table 1 ARI values of WDCM, k-means and SOM
algorithms for the lung cancer, B-cell follicular lymphoma
and bladder carcinoma gene expression data sets

Algorithm Lung cancer Follicular lymphoma Bladder carcinoma

WDCM 0.5365 0.3991 0.4105

k-means 0.2478 0.3481 0.1623

SOM 0.3681 0.2647 0.0926

Table 2 COR indices with respect to the specified
percentages of missing values for the lung cancer, B-cell
follicular lymphoma and bladder carcinoma data sets

Percentage of
missing

Lung
cancer

Follicular
lymphoma

Bladder
carcinoma

5% 0.9140 0.9495 0.9823

10% 0.8654 0.9078 0.9702

15% 0.8220 0.8738 0.9565

20% 0.7892 0.8418 0.9450

25% 0.7649 0.8120 0.9335
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clustering performance compared to k-means and SOM
algorithms. Moreover, the WDCM can be applied to
cluster the incomplete gene expression data set without
imputing the missing values. The results have demon-
strated that there is high overlap between the gene clus-
ters for the incomplete data set and those for the
complete data set, which illustrates the robustness of
the WDCM on clustering the incomplete data set at low
percentage of missing values.
In general it is known that due to the complex nature

of the gene expression data sets themselves and the
experimental errors in detecting the gene expression
data, it is difficult to discover an acknowledged best clus-
tering approach. In clustering process, the WDCM disre-
gards a few genes whose gene expression distributions
fail to fit the Weibull distribution. In future study, we
will consider replacing the single Weibull distribution
with the mixture distribution in order to cluster the
whole data set. Besides, we will also increase the robust-
ness of this approach on clustering the incomplete gene
expression data set containing the missing values of mod-
erate percentage. For the gene clusters found by WDCM,
we would like to investigate which gene clusters and
genes are correlated with some cancer phenotype, and
which biological processes or molecular functions these
genes in the clusters are concerned with. Our study may
be helpful to gain insights into the complex diseases.

Additional material

Additional file 1: A clustering algorithm based on “hub nodes”. A
clustering algorithm used to cluster the Weibull distribution parameters.

Additional file 2: P-values of tests for the three data sets. This file
consists of three spreadsheets, each lists the gene numbers and p-values
of Kolmogorov Smirnov test for one data set.
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