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Abstract

Background: Gene expression analysis has been intensively researched for more than a decade. Recently, there
has been elevated interest in the integration of microarray data analysis with other types of biological knowledge
in a holistic analytical approach. We propose a methodology that can be facilitated for pathway based microarray
data analysis, based on the observation that a substantial proportion of genes present in biochemical pathway
databases are members of a number of distinct pathways. Our methodology aims towards establishing the state of
individual pathways, by identifying those truly affected by the experimental conditions based on the behaviour of
such genes. For that purpose it considers all the pathways in which a gene participates and the general census of
gene expression per pathway.

Results: We utilise hill climbing, simulated annealing and a genetic algorithm to analyse the consistency of the
produced results, through the application of fuzzy adjusted rand indexes and hamming distance. All algorithms
produce highly consistent genes to pathways allocations, revealing the contribution of genes to pathway
functionality, in agreement with current pathway state visualisation techniques, with the simulated annealing
search proving slightly superior in terms of efficiency.

Conclusions: We show that the expression values of genes, which are members of a number of biochemical
pathways or modules, are the net effect of the contribution of each gene to these biochemical processes. We
show that by manipulating the pathway and module contribution of such genes to follow underlying trends we
can interpret microarray results centred on the behaviour of these genes.

Background
Pathway based microarray data analysis is an attempt to
integrate microarray data analysis with biochemical
pathway knowledge [1]. Rather than concentrating on
the often subtle change occurring in the expression of
individual genes, gene expression analysis is facilitated
to identify coordinated changes occurring in the expres-
sion of sets of genes, forming biochemical pathways [2].
The ultimate goal of this approach is to decipher the
functional state of a cell at the level of the underlying
biochemistry.
Biochemical pathway data is readily accessible in var-

ious public databases, such as KEGG [3], Reactome [4],
SABIO-RK [5], EcoCyc [6] and others, while tools devel-
oped for visualisation of genes’ behaviour, based on
microarray data, include Eu.Gene [2], GenMapp [7],

Cytoscape [8], Pathfinder [9], GeneNet [10] and GScope
[11]. These software tools are based on superimposing a
single microarray dataset on a biochemical pathway
database, in order to visualise the expression of each
individual gene per pathway and thus establish the state
of individual pathways.
However, genes in a biochemical pathway often show

quite variable behaviour in terms of RNA production
and previous work in the field has already suggested
that not all such genes are representative of the path-
way’s behaviour [12]. To an extent this is a consequence
of the fact that genes forming a pathway may encode
proteins of very different functionality with some being
transcription factors acting in the cell nucleus while
others proteins residing on the cell membrane [13].
Additionally the existence of different levels of regula-
tion, including translation, protein maturation and
degradation rate, may confer gene expression insuffi-
cient evidence of gene functionality [14,15]. Notably,
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microarray analysis itself is accompanied by limitations,
as it involves numerous error-prone experimental steps
and requires the physical disruption of cells to gain
access to their gene expression patterns [16].
We however, have suggested an additional cause for

observing variation in the expression of genes, forming a
biochemical pathway. According to the Kyoto encyclo-
paedia of genes and genomes database (KEGG), it is
quite common for a gene to be a member of two or
more biochemical pathways. We refer to such genes as
multi-membership genes to distinct them from single-

membership genes that are members of one and only
pathway. Figure 1 reveals the number of single and
multi-membership genes forming each of the Escheri-
chia coli K12 pathways, currently stored in KEGG
database.
According to our hypothesis, differential expression of

a multi-membership gene may be the effect of different
regulation of that gene, by the biological system, at the
level of transcription due to its involvement in the activ-
ity of more than one biochemical pathways. Consequen-
tially, the observed expression of any such gene
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Figure 1 Number of single and multi-membership genes constituting each MG1655 Escherichia coli KEGG pathway. Single-membership
genes are represented in black, while multi-membership genes in lighter grey colour. Evidently, genes of multi-membership nature are present
in significant proportion in most biochemical pathways.
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corresponds to the net effect of its regulation in order to
contribute adequately to the activity of the biochemical
pathways it is a member of. To our knowledge the
multi-membership nature of genes and its impact on
pathway based microarray analysis has not been exten-
sively explored. This is an omission that can potentially
lead to misleading conclusions, given that multi-mem-
bership genes may mask the true behaviour of individual
pathways.
We assume that an increase or a decrease in the activ-

ity of a biochemical pathway is accompanied by a
respective trend for increase or decrease in the function-
ality of most of the genes forming the pathway, whose
fluctuations in expression affect the given pathways’
state. Thus, to the extent that gene functionality is
adjusted at the level of transcription, we expect genes to
be regulated by the living system in a way that follows
the trend of expression in a particular pathway and to
generally show consistent behaviour, with only few
exceptions, such as repressor genes and alternative
isoenzymes.
We have proposed a methodology that takes into

account the expression of all genes in a given organism,
that are members of biochemical pathways, and the con-
sensus of gene expression per pathway in order to iden-
tify the underlying pathway expression changes caused
by the biological system through regulation of the
expression of their constituent genes [17]. Unlike other
approaches where genes are treated as stable or differen-
tially expressed, our methodology considers the up- or
down-regulated state of each individual gene. We
attempt to ascribe any observed inconsistencies in gene
expression in a pathway, to the involvement of some of
its genes in the activity of other pathways of which they
are also members. We implemented a hill climbing
search approach [18], which was able to produce consis-
tent results, in agreement with the publications accom-
panying the data in question.
Given the tendency of the hill climbing search to get

trapped into local maxima, we proceeded further,
applying a simulated annealing [19] and a genetic algo-
rithm [20] search technique in order to explore the
performance of each one on a set of microarray experi-
ments. Since differences in the final fitness reached by
each of these methods do not have a straightforward
biological meaning we shifted our efforts towards
exploring the similarity of the produced results, in
conjunction with their corresponding fitness, by using
two complimentary approaches. In particular, we
developed a methodology for estimating the similarity
of two gene allocations in terms of the probability of
obtaining them purely by chance. Additionally, we
adopted the fuzzy adjusted rand index metric, widely
used measure of agreement for categorical data [21].

Interestingly, according to both measures the results
produced by all methods are highly consistent, while
the simulated annealing search appears to be only
slightly more efficient than the hill climbing and
genetic algorithm techniques.
In addition, we further developed the simulated

annealing approach to work with modules, that is,
shorter chains of biochemical events, which form part of
KEGG pathways, applying the methodology to a number
of microarray experiments.

Methods
Microarray datasets are trimmed to only include genes
present in KEGG pathways. For example, KEGG con-
tains 1384 Escherichia coli genes out of a total of 4288
protein-coding genes, for the harmless laboratory strain
K12 [22]. We apply discretisation of genes into three
categories, namely up-, down-regulated and stable,
based on an adequately chosen threshold and apply a
hill climbing, a simulated annealing and a genetic algo-
rithm, to alter the possible allocation of multi-member-
ship genes to their constituent pathways.
We assume that a differentially expressed gene is

regulated by the biological system to contribute to the
activity of at least one of the pathways it is a member
of. Thus, any configuration that satisfies this criterion is
considered valid, while an allocation where a multi-
membership gene has not been assigned to any of its
pathways is rejected. We attempt to identify for each
multi-membership gene the pathways whose activity
requires the contribution of that gene and the direction
of regulation required by each one those pathways. Allo-
cation of a gene to one of its constituent pathways sug-
gests that the biological system has adjusted the
expression of that gene in the given manner to satisfy
the activity of that pathway. Naturally, not allocating a
gene to a pathway suggests its expression is not related
to its involvement in the activity of this particular
pathway.
Given that KEGG pathways contain collections of

genes involved in extensive biochemical processes, we
further proceed to work with KEGG modules, following
a similar rationale to the one applied in the case of
pathways.

Notation
We use the following mathematical notation in our
methods and results. Let P be an N row by M column
binary matrix, PÎ {0,1}N×M, where pij (the element in the
ith row and jth column of matrix P) is equal to 1 if
gene i is a member of pathway j, and pij = 0 if gene i is
not a member of pathway j. Therefore P represents a
snapshot of the KEGG membership of genes to path-
ways for a given species and does not change.
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Let A Î {0,1}N×M be a binary matrix such that P-A Î
{0,1}N×M, where A represents a potential allocation of
genes to pathways that we use in our methods. Here aij

= 1 if gene i is allocated to pathway j and aij = 0 if gene
i is not allocated to pathway j. The restriction P-A Î
{0,1}N×M means that A can define pathways to have less
genes than originally in P, but can never have genes that
contradict P, i.e. we do not allow allocations that would
be contrary to the allocations in KEGG.

Fitness Function
Hill climbing, simulated annealing and genetic algo-
rithms are heuristic search methods and as such require
a fitness function to be defined, which the algorithm
attempts to maximise or minimise, depending on the
type of the problem in hand [23]. A fitness function
evaluates the worth of the current solution being con-
sidered by a method. The fitness function we implement
evaluates the worth of an allocation of multi-member-
ship genes to the pathways they are members of, and is
used by all three heuristic search methods.
Let us assume that we have a single set of gene

expression data (one experiment) for the N genes
called G. We score an allocation on how much each
pathway is down- or up-regulated according to equa-
tions (1) to (3). Note that the constant c is a threshold
parameter defining the state of a gene in terms of up-
and down-regulation. In particular, X (i) has a value of
+1, -1 or 0 if gene i is up-, down-regulated or stable
respectively.

X(i) =

⎧⎨
⎩

+1
−1
0

,if G(i) > c
, if G(i) < - c
,otherwise

(1)

F(A) =
M∑
j=1

∣∣∣∣∣
N∑
i=1

H
(
aij

)∣∣∣∣∣ (2)

H(aij) =
{
X(i)
0

,if aij = 1
, otherwise

(3)

F(A) is the fitness function, which we aim to maximise
by changing the allocation of multi-membership genes
to their corresponding pathways. We use equation (3) to
define if gene i is a member of pathway j, which is true
if aij = 1, and if that is the case to define if the gene is

up-, down-regulated or stable. Function
N∑
i=1

H(aij)reveals

the difference between the numbers of up- and down-
regulated genes in pathway j. Thus, the more genes of
similar expression are allocated to pathway j the greater

∣∣∣∣ N∑
i=1

H
(
aij

)∣∣∣∣ becomes for that pathway, leading to an

increase of the value of F(A).

Hill Climbing
Algorithm 1, Hill Climbing Search Algorithm

1. INPUT: a = list of gene IDs coupled with their
pathway IDs, b = expression vector of log2 ratios, c
= threshold for up-/down-regulated genes
2. Remove all genes between +c and -c
3. Randomly allocate each expressed gene to its
member pathways (create A)
4. Get fitness F(A), set F_old = F(A)
5. For j = 1: number of iterations
6. Save gene configuration
7. Use P to randomly choose a gene (i) with multiple
membership and randomly

choose one of the pathways(j) it belongs to
8. If according to A gene (i) is already present in the
pathway (j) Then
9. Remove the gene, i.e. set aij = 0
10. Else
11. If not present then place it in the pathway, i.e.
set aij = 1
12. End if
13. If the gene is not assigned to at least one path-
way then randomly choose a pathway and assign it
to it
14. Estimate fitness F(A)
15. If F(A) >F_old then
16. Set F_old = F(A)
17. Else
18. if F(A) <F_old then Restore gene configuration
(step (6))
19. End if
20. End for
21. OUTPUT: A

Simulated Annealing
In contrast to hill climbing, simulated annealing may
accept a solution of lower fitness, depending on a prob-
ability which is defined by gradually decreasing para-
meter T, termed temperature. We have chosen a
starting temperature T = 1 and a final temperature T =
0.01 as appropriate for 10000 iterations which have pro-
ven sufficient for the algorithm to converge. At step 15)
of the hill climbing algorithm above, the simulated
annealing approach accepts an allocation of lower fitness
with a probability which can be estimated based on
equations (4) to (6):
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Pt = e

−�F

Tt
(4)

Tt = Tt−1λ (5)

λ = e

log(TFINAL)− log(T0)
I

(6)

Where Pt is the probability of accepting an allocation
of lower fitness at the current iteration t, -ΔF is the dif-
ference between the current fitness and the one of the
allocation at the previous iteration, Tt is the current
temperature and TFINALthe temperature at the last itera-
tion, l is a constant and I the number of iterations for
the search to complete.

Genetic Algorithm
The genetic algorithm simulates evolution, where the
fittest individuals are more likely to survive. At each
generation we apply crossovers and mutations, changing
the allocation of multi-membership genes to their mem-
ber pathways. Algorithm 2 represents the main body of
the genetic algorithm.
Algorithm 2, Genetic Algorithm

1. INPUT: a = list of gene IDs coupled with their
pathway IDs, b = expression vector of log2 ratios, c
= threshold for up-/down-regulated genes
2. Remove all genes between +c and -c
3. Create 100 random Parent chromosomes
4. Get fitness F of each Parent chromosome
5. For i = 1: number of generations
6. For j = 1:number of individuals in Parent
7. Call mutation Algorithm with input Parentj
8. End for
9. Create a random list List of (number of Mutated)/
2
10. For j = 1:(number of Mutated)/2
11. Call crossover Algorithm with input Mutated
(List(j)), Mutated(List(j+1))
12. End for
13. Get fitness of each Mutated and Crossover
chromosome
14. Concatenate Parent, Mutated and Crossover
chromosomes and their corresponding fitness
15. Sort the resulting chromosomes and fitness
according to the later.
16. Set Parent = first 100 chromosomes and Fitness
= first 100 fitness values
17. End for
18. OUTPUT: Best Individual and Fitness

Algorithm 3 describes the crossover process, while

algorithm 4 the mutation process, called at steps 7 and
11 of the main genetic algorithm script, respectively.
Within Algorithm 3 the operator C = [A1,A2,...,Ax,Bx+1,
Bx+2,...BN] concatenates the lists A and B preserving
order and sets C to be the result.
Algorithm 3, Crossover Algorithm

1. INPUT: Parent A and Parent B
2. Choose a random number x between 1 and length
of Parent A
3. Set Crossover A = [A1,A2,...,Ax,Bx+1,Bx+2,...BN]
4. Set Crossover B = [B1,B2,...,Bx,Ax+1,Ax+2,...AN]
5. OUTPUT: Crossover A, Crossover B

Algorithm 4, Mutation Algorithm

1. INPUT: Parenti
2. Set Mutated = Parenti
3. For k = 1:length of Mutatedi
4. Produce a random number a between 0 and 1
5. If a < 1/length(Mutatedi) randomly choose a posi-
tion x in Mutatedi {k}
6. If Mutatedi {k}(x) = = 1, Then Set Mutated{k}(x) =
0
7. Else
8. If Mutatedi {k}(x) = = 0, Then Set Mutated {k}(x)
= 1
9. While sum of Mutated{k} = = 0, go to 4
10. End if
11. End for
12. OUTPUT: Mutated

A generation consisting of a hundred individuals
proved sufficient to reach the expected fitness over
about four hundred generations.

Hamming Distance
The Hamming Distance (Hamm below) measure reveals
the similarity between two binary strings of the same
length [24]. Thus, it was a natural choice of method to
evaluate the consistency of genes to pathways
allocations.
Let D,E Î BN×M be gene to pathway allocations, as

described in the Notation section, such that P-D Î
BN×M and P-E Î BN×M, i.e. D and E are allocations of
genes. Let the similarity between D and E be:

S(D,E) =
1

NM

N∑
i=1

(M−Hamm(Di,Ei)) (7)

Hamm(Di,Ei) =
{
1
0

,Di = Ei
, otherwise

(8)
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where Di is the ith row of D.
To obtain a meaningful interpretation of the observed

hamming distances, we developed a methodology to
estimate the probability of obtaining any hamming dis-
tance between two allocations produced by our meth-
ods, purely by chance. Firstly, for any given multi-
membership gene, we estimate the probability of obser-
ving each possible hamming distance between pairs of
allocations. The method is based on estimating the
number of possible valid binary strings representing the
allocation of a multi-membership gene to the pathways
it is a member of, according to KEGG database.
In the simplest case of a gene that is a member of two

pathways, its allocation is represented by a string of two
binary digits. As already mentioned, only solutions
where the gene has been allocated to at least one of the
pathways it belongs to are considered valid. Therefore, a
string consisting solely of zeros is not accepted as a
valid allocation. Consequentially, the square matrix on
Table 1 represents all valid combinations of allocations,
for a gene that is a member of two distinct biochemical
pathways, giving rise to all possible hamming distances.
The probability of observing any of the hamming dis-

tances on Table 1 is equal to the number of combina-
tions producing each of the possible hamming distances,
namely 0, 1 and 2, divided by the overall number of
possible combinations.
Again in the simplest case of a gene member of two

pathways we obtain the probabilities shown on Table 2.
For a gene that is a member of any number of pathways,
the number of such combinations for any given ham-
ming distance between 0 and r can be estimated accord-
ing Table 3.
Here n is the number of pathways the gene is a mem-

ber of and r is the hamming distance. Equation (9)
demonstrates that if we summate from 1 to n, we get
the number of possible combinations corresponding to
all possible hamming distances.

2n − 1︸ ︷︷ ︸
Table 1, hamm=0

+
n∑
r=1

(
n
r

) (
2n − 2

)
︸ ︷︷ ︸
Table 1, hamm=1,...,n

= 2n − 1 +
(
2n − 2

) n∑
r=1

(
n
r

)
︸ ︷︷ ︸

=2n−1

= 2n − 1 +
(
2n − 2

) (
2n − 1

)
= 2n − 1 +

(
2n − 1

) (
2n − 1

) − 2n + 1

=
(
2n − 1

) (
2n − 1

)

(9)

In the context of this text, we work with allocations of
more than one expressed multi-membership genes to
their pathways. This however, is still possible following
the above rationale. Again in the simplest case of two
genes, members of two pathways each, we can estimate
the probability of obtaining all possible hamming dis-
tances using Table 2 and applying simple addition and
multiplication of the values as shown on Table 4. Each
pair of hamming distances is added to obtain the com-
bined hamming distance, while each pairs’ correspond-
ing probability is multiplied to obtain the probability of
observing the combined hamming distance in question.
For any number of N genes we can obtain the corre-

sponding values using an N dimensional matrix like

Table 1 Hamming Distances between two allocations of a
gene member of two biochemical pathways

Allocation 2

Allocation 1 01 10 11

01 0 2 1

10 2 0 1

11 1 1 0

The table reveals all possible combinations of two allocations for a multi-
membership gene, participating in two distinct biochemical pathways, with
the corresponding hamming distance between the binary strings representing
these allocations. A string of zeros is considered invalid allocation, as we
assume that a differentially expressed gene is contributing to the activity of at
least one of its member pathways.

Table 2 Probability of obtaining any hamming distance
between two allocations of a gene member of two
pathways

Hamming Dist. 0 1 2

Probability 0.333 (3/9) 0.444 (4/9) 0.222 (2/9)

Given the number of possible combinations (Table 1) of allocations for a gene
member of two pathways, and the hamming distance between them, Table 2
shows the probability of obtaining each possible hamming distance, purely by
chance.

Table 3 Number of combinations of pairs allocations of
hamming distance from 0 to r

Hamming Dist. Number of possible occurrences

0: 2n - 1

1: (2n- 1 - n)n + n(n -1) = (2n -2)n

2: (
2n − 1−

(
n
2

))(
n
2

)
+

(
n
2

)((
n
2

)
− 1

)
=

=
(
n
2

) (
2n − 2

)

r: (
2n − 1−

(
n
r

))(
n
r

)
+

(
n
r

)((
n
r

)
− 1

)
=

=
(
n
r

) (
2n − 2

)

Using the equations on Table 3 we can estimate the number of all possible
combinations of allocations, represented as binary strings, of hamming
distance from 1 to r
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the above. As the number of genes grows this becomes
computationally expensive, however the problem is cir-
cumvented, as each gene can be added at a sequential
step, through a process of merging and expanding the
matrix. For example merging the data for the two
genes represented on Table 4 gives rise to the matrix
on Table 5.

Fuzzy Adjusted Rand Index
The adjusted rand index (ARI) is a common measure of
crisp cluster similarity, which has been extended to
fuzzy clustering giving the fuzzy adjusted rand index
(FARI) [21]. For each pair of elements FARI examines if
both clustering arrangements have placed the pair in the
same or different clusters. We have adopted FARI to
compare allocations of multi-membership genes pro-
duced by separate runs of our algorithms on the same
microarray dataset, given that each arrangement may
place a gene in one or more pathways. For our purposes
clusters correspond to pathways, assuming equal weights
for the contribution of a gene to all its member
pathways.
While the hamming distance between two multi-

membership gene allocations reveals biological similar-
ity, answering the question of how similar two alloca-
tions are the fuzzy adjusted rand index examines if each
pair of genes is placed together or in different pathways
by subsequent runs of our algorithms.

We use both methods as two allocations may have the
same fitness but different hamming distance. This can
occur in cases where groups of genes are placed
together but in different pathways by separate runs of
our scripts. In particular for allocations of the same or
very similar fitness, accompanied by significant ham-
ming distance, high FARI value can reveal the occur-
rence of the above described phenomenon.

Results and Discussion
Hypothesis Validation
While single-membership genes through their products
are solely contributing to the function of a particular
pathway, multi-membership genes can participate in the
functionality of any combination of the pathways they
are members of, at any particular time. Thus, unlike sin-
gle-membership genes, multi-membership genes’ inten-
sity values, as extracted from a microarray slide,
represent a net effect. The biological system may require
activation of certain pathways and regulate the produc-
tion of a protein part of their network in a way that its
quantity increases. At the same time it may require
deactivation of other pathways in which the same pro-
tein participates. The resulting balance may affect the
expression observed on the microarray leading to less
consistent readings for groups of proteins part of a bio-
chemical pathway, encoded by multi-membership genes,
when each pathway is examined in isolation from the
rest.
To examine this we have identified 19 experiments

(GSM99081 to 83, GSM99108 to 112, and GSM99171
and GSM99172) on Escherichia coli, from microarray
data available at Gene Expression omnibus (GEO) [25],
platform GPL3503 [26], that contain a large number of
expressed Urea Cycle genes. KEGG Urea Cycle pathway
consists of 16 single-membership and 12 multi-member-
ship genes. We divide the intensities, separately for the
group of single- and the group of multi-membership
genes, per experiment by their sum, to obtain a measure
of the contribution of each gene to the behaviour of the
pathway. We then compare the correlation between the
obtained contribution values of the 12 multi-member-
ship genes and the 16 single-membership genes,
throughout the 19 experiments. For both cases we
acquire a set of 171 correlation values, and perform a
two sample t-test which reveals that the values are sig-
nificantly different with a p-value of 1.3251 × 10-12.
Furthermore, in the case of single-membership genes
the correlation values are higher with 86.5% of the
values being above the level of significant correlation at
p = 1%. In contrast, for the multi-membership genes
only 41.5% of the values exceed the threshold of signifi-
cance at 1%. The assumption that multi-membership
genes expression is the net effect of their contribution

Table 4 Combined Hamming distance and probability for
a pair of genes, members of two pathways

Hamming/
Probability

0/0.333 1/0.444 2/0.222

0/0.333 0(0+0)/
0.111

(0.333 × 0.333)

1(1+0)/
0.148

(0.444 × 0.333)

2(2+0)/
0.074

(0.222 × 0.333)

1/0.444 1(0+1)/
0.148

(0.333 × 0.444)

2(1+1)/
0.197

(0.444 × 0.444)

3(2+1)/
0.987

(0.222 × 0.444)

2/0.222 2(0+2)/
0.074

(0.333 × 0.222)

3(1+2)/
0.987

(0.444 × 0.222)

4(2+2)/
0.049

(0.222 × 0.222)

Table 4 exemplifies how to estimate the combined hamming distance for two
multi-membership genes, members of two distinct biochemical pathways
each, along with the respective combined probability. Here again, we assume
that any configuration, where each gene is allocated to at least one pathway
is valid and that each one is equally likely to occur by chance.

Table 5 Compact Hamming distance and probability for
two genes, members of two pathways each

Hamming Distance 0 1 2 3 4

Probability 0.111 0.296 0.345 0.197 0.049

Table 5 is produced by merging Table 4, to only show each possible
hamming distance and the corresponding probability of observing it by
chance, for a set of two expressed multi-membership genes. Each gene is a
member of two distinct biochemical pathways.
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to their constituent pathways is in agreement with our
findings. Single membership genes apparently show
more consistent behaviour as they only contribute to
the functionality of one pathway.

Data processing with Hill climbing
In this section we perform a more detailed biological
validation of some of the results produced by the hill
climbing method. As the next section will show we do
not to repeat this analysis using the simulated or genetic
algorithm methods, as the results are virtually identical.
Figure 2 represents the result of applying the hill

climbing search to process a popular dataset from dia-
uxic shift experiments on Saccharomyces cerevisiae [27],
for a set of biochemical pathways. Yeast cells inoculated
in glucose rich medium turn to aerobic utilization of
ethanol produced during fermentation, upon exhaustion
of the available sugar. It is worth noting that KEGG
includes both glycolysis and gluconeogenesis in one sin-
gle pathway, as they share a number of common genes
and a substantial part of each process is effectively a
reversal of the other. Nevertheless, some genes are
unique to glycolysis while others to gluconeogenesis and

the two are never functional simultaneously, thus the
two pathways have been separated to improve the effi-
ciency of our analysis.
The first allocation on Figure 2 (top) corresponds to

changes occurring in the expression of genes following
the diauxic shift and represents the pathway state
observed when all multi-membership genes are consid-
ered active in all pathways they participate in, according
to commonly used visualisation approaches. Evidently,
most pathways contain both up- and down-regulated
genes. Pathways including Glycolysis, Gluconeogenesis,
the Pentose phosphate pathway and Pyruvate metabo-
lism contain similar numbers of both up- and down-
regulated genes, which makes it difficult to infer their
state.
As the second allocation on Figure 2 (bottom) reveals,

processing of the data with our hill climbing method
changes the picture substantially. As expected, upon
depletion of glucose the glycolysis pathway is suppressed
while expression is shifted in favour of gluconeogenesis.
Rather than towards Pyruvate, reactions flow towards
the biosynthetic precursor glucose-6-biphosphate which
is channelled accordingly to supply the TCA cycle and
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hill climbing search method.
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gluconeogenesis. The Pyruvate metabolism pathway
contains only up-regulated genes, while amino acid
metabolic pathways such as the valine, leucine, isoleu-
cine and methionine biosynthetic pathways are clearly
repressed, in agreement with [28]. This is to be expected
given the caloric restriction as the production of
methionine is costly from a metabolic point of view,
while valine, leucine and isoleucine are the most abun-
dant amino acids in the cell.
The unique up-regulated gene in the valine, leucine

and isoleucine biosynthetic pathways, LEU4, has been
reallocated to the Pyruvate metabolism of which it is
also a member, a pathway positively affected during the
diauxic shift in agreement with [27] and [28]. All down-
regulated genes in gluconeogenesis have been allocated
to glycolysis where they also participate. For the unique
down-regulated gene ALD6 in the beta-alanine pathway,
which the authors in [28] consider one of the 15 most
positively affected pathways by the diauxic shift, our
method implies that the observed down-regulation may
well be due to involvement of the gene in other path-
ways. This may be due to the involvement of ALD6 in
glycolysis, phenylalanine, tyrosine, tryptophan biosynth-
esis and other pathways exhibiting decreased activity.
Overall, the algorithm has been able to allocate genes

to pathways in a way that allows us to infer the state of
individual pathways with increased certainty removing
contradictions from the final results. Pathways are now
mostly filled with genes of similar expression, which we
consider to be the most indicative of a pathway’s state.
To further investigate the results of data processing

with our methodology we have applied it to Escherichia
coli K-12 data from [29], available as experiment
GSM513 at GEO. Escherichia coli cells were grown in
tryptophan enriched medium, leading to increased activ-
ity of the tryptophan metabolism pathway. Most trypto-
phan metabolism genes show subtle to substantial up-
regulation except from yqeF which shows significant
down-regulation (Table 6). Our method has removed
the down-regulated gene from the latter pathway,
ascribing its behaviour to the activity of other amino
acid degradation pathways, which is biologically

meaningful, given that the cell is presented with excess
tryptophan to partly cover its nutritional needs. In both
cases discussed here, our method produces results that
are consistent with the findings of the publications
accompanying the data, while reducing the number of
genes per pathway contradicting each other’s’ expression
and thus allowing us to infer the state of those pathways
with higher degree of confidence. The ability of this
kind of approach to produce such consistent results and
to substantially increase gene expression agreement per
pathway seems interesting in itself. It adds some further
evidence to the initial hypothesis that multi-membership
gene expression represents a net effect, in the sense that
the biological system regulates the expression of these
genes to accommodate its need through the adequate
function of the pathway they participate in.

Statistical evaluation of functional agreement
In pathway based microarray analysis, to validate data
quality and identify those pathways most affected by the
experimental conditions, it is common practice to esti-
mate the probability per pathway of observing as many
or more differentially expressed genes purely by chance.
For example, in [28] the authors describe Pathway Pro-
cessor, a tool that can be used to score biochemical
pathways according to the probability that as many or
more genes in a pathway would be significantly altered
in a certain experiment by chance alone. Pathways
accompanied by very low probability are considered
more likely to be affected by the experimental
conditions.
Similar approaches have been adopted to identify

interesting groupings produced by cluster analysis of
gene expression data. In [30] the authors use the hyper-
geometric distribution for the categorisation produced
by clustering, to model the probability of observing at
least k genes from a cluster of size n in a category of
size C from a total genome size of G genes. In this way
they obtain p-values (equation 10), allowing them to
examine if a cluster is enriched with genes from a parti-
cular functional category to a greater extent than would
be expected by chance. Clusters in which the majority
of genes belong to a certain category produce low prob-
ability with p-values near 0.

p = 1−
k−1∑
i=0

(
C
i

)(
G− C
n− i

)
(
G
n

) (10)

We have applied a similar approach to a microarray
dataset, consisting of experiments from GEO platform
17 [31], to compare the probability of the standard full
membership gene allocation to the probability of

Table 6 Log2 ratios of tryptophan metabolism genes, for
experiment GSM513

Gene Symbol Log2 ratio Gene Symbol Log2 ratio

atoB 1.1150 trpS 5.8490

yqeF -1.8120 katE -0.4370

fadB 2.6340 katG 1.4110

sucA 1.8200 tynA -0.7870

tnaA 1.4660

All genes showing significant differential expression are up-regulated with the
exception of YqeF.
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observing the allocations produced by processing of the
data with the described algorithms. For our purposes,
given the overall number of genes and the overall num-
ber of affected genes on the array, we obtain the prob-
ability of observing at least as many or more affected
genes in a pathway of a certain size, purely by chance.
Figure 3 shows the mean probability of obtaining the
results in hand, per experiment. Evidently, there is no
substantial change in probability, between our and the
full membership allocation. However, our methodology
adds an intuitional, biologically meaningful step to the
analytical process.

Methods’ Performance on pathway manipulation
The result of implementing the hill climbing, simulated
annealing and genetic algorithm to a set of 46 microar-
ray experiments from GEO platform GPL17 is shown
on Figure 4. Interestingly, all methods seem to perform
quite similarly in terms of fitness. In most cases the

simulated annealing approach is able to reach slightly
higher fitness values. However, the difference is only
subtle with a two sample t-test revealing no significant
difference between the values corresponding to each
search method. This is summarised on Table 7, which
shows the mean of the minimum, maximum and mean
fitness reached for the entire set of 46 experiments,
upon ten separate runs of each method.
Figure 5 represents a visualisation of the Convergence

of each optimisation method for a subset of four micro-
array experiments. The experiments were chosen based
on the mean fitness reached by 10 separate runs of each
search approach, in order to exemplify the entire range
of fitness values reached for GPL17. In particular the
mean fitness values reached for each experiment where
sorted in ascending order. GSM539 corresponds to the
lower mean fitness reached for an experiment in the
dataset, GSM516 to the highest mean fitness and
GSM526 and GSM518 to values equally distanced from
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method (dotted line).
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these two extremes. Evidently, the genetic algorithm
approach is slower than the other methods, requiring a
significantly larger number of fitness calls to converge.
The hill climbing and simulated annealing methods are
roughly equally efficient, with the hill climbing being
slightly faster, while the simulated annealing being able
to reach slightly higher fitness values, in experiments
with large number of expressed multi-membership
genes and thus larger search space. Naturally, as the
search space grows larger, due to a larger number of
expressed multi-membership genes or growing number
of pathways to which such genes can be assigned, the
algorithms require more iterations to converge.
Figure 6 shows the mean number of iterations

required for the algorithms to converge, while Figure 7
represents the same data in an ordered fashion from the

experiment with the least number of expressed multi-
membership genes and possible positions for gene allo-
cation to the experiment with most such positions.
As expected, the mean fitness value also shows an

increase as the number of allocations of genes to path-
ways grows (Figure 8), with highly significant correlation
value of 0.9769, 0.9777 and 0.9770 for the hill climbing,
simulated annealing and genetic algorithm respectively.
The number of allocations of genes to pathways is
determined by the number of expressed genes and the
number of pathways in which the expressed multi-mem-
bership genes participate.
On the contrary, there is no significant correlation

between the number of gene to pathways allocations
and the mean hamming distance between allocations
produced by subsequent runs of the three search algo-
rithms, as shown on Figure 9. In this case we observe
small correlation values of -0.2687, -0.4686 and -0.3559
for the hill climbing, the simulated annealing and
genetic algorithm respectively.
The same is true for the FARI’s (Figure 10) where the

correlation between the mean FARI per experiment and
the number of possible multi-membership gene to path-
way allocations is -0.0802, 0.0499 and 0.0308 for the hill
climbing, simulated annealing and genetic algorithm
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Figure 4 Mean fitness reached by each method, per experiment for GPL17. The figure reveals the mean fitness reached by the hill
climbing, simulated annealing and genetic algorithm methods per experiment, for 46 experiments corresponding to platform GPL17 from GEO.

Table 7 Mean of the minimum, maximum and mean
fitness reached by each method for GPL17

Hill Climbing Simulated Annealing Genetic Algorithm

Max. Min. Mean Max. Min. Mean Max. Min. Mean

357.5 354.0 356.1 359.0 355.0 357.4 357.8 353.9 356.1

The table summarises the minimum, maximum and mean fitness reached by
the hill climbing, simulated annealing and genetic algorithm method, for the
entire set of 46 experiments, from GPL17.
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respectively. Nevertheless, FARI values are extremely
high for allocations produced by separate runs of each
of the search techniques, as summarised on Table 8.
The minimum FARI observed is 0.902, and the values

remain high regardless of the observed variation in ham-
ming distance. For example the mean FARI for pairs of
allocations of hamming distance above 1 standard devia-
tion is 0.964, 0.962 and 0.963 for the hill climbing, simu-
lated annealing and genetic algorithm respectively. Based
on this observation we can assume with sufficient degree
of confidence that in cases of pairs of allocations, exhibit-
ing substantial hamming distance, groups of genes have
still been allocated together, in the same pathway, thus the
FARI values are high. However, the pathways have been
swapped, explaining the higher hamming distance values.

Work on KEGG modules
While the results discussed in the data processing with
hill climbing section seem biologically meaningful, a cer-
tain issue arises that is worth consideration. In

particular, it can be argued that since a gene can be
assigned to any of its member pathways without
removal from another, the allocation in the case of each
individual pathway does not affect the rest. In that sense
one can examine each pathway in isolation, considering
the majority of genes, in terms of up- and down-regula-
tion. In this case the maximisation problem is reduced
to a few simpler maximisation problems whose solutions
can then be combined.
This approach, however, has its own drawbacks which

need to be considered. Importantly, it is not possible to
apply this rationale in cases where up and down-regu-
lated genes are present in equal or even similar numbers
in a pathway, such as the case of gluconeogenesis and
the pentose phosphate pathway in the discussed diauxic
shift experiment. In fact, examining the dataset from
GPL17 discussed in the methods performance on path-
ways section we observed that this situation occurs in
four pathways on average in each experiment. Further-
more, the condition that a gene cannot be removed
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Figure 5 Convergence per method for a subset of 4 microarray experiments. The solid line corresponds to the mean hill climbing fitness
reached at each iteration, the dashed line to the simulated annealing and the dotted line to the genetic algorithm. Experiments were chosen to
roughly cover the range of fitness values reached in all microarray experiments. Experiments GSM539 and GSM516 where the ones with the
least and most possible allocation positions and thus the ones producing the smallest and largest fitness values in the dataset respectively.
Fitness values for experiments GSM518 and GSM526 are equally distanced from the two extremes.
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from all its pathways cannot be met. By implementing
the removal of the genes from each pathway that con-
tradict the expression of the majority, we have observed
that, on average, about 30 genes remain unassigned, cor-
responding to about 20% of all expressed multi-mem-
bership genes per experiment. Importantly, in algorithm
1, whenever this situation occurs the gene is reassigned
to a pathway.
Nevertheless, the initial argument bears merit, thus we

proceeded further to refine the proposed algorithmic
approach. In particular, we implemented a search work-
ing with KEGG modules rather than pathways, that is,
sub-networks which represent chains of events, leading
to gradual alteration of a substrate into a desired pro-
duct. In essence a module is still a pathway, where we
zoom in to look into a particular sequence of biochem-
ical reactions, such as the case of KEGG module
M00003, representing gluconeogenesis, which forms
part of the KEGG Glycolysis/gluconeogenesis pathway.
One clear advantage of working with modules is that

here, in principal we expect proteins forming the mod-
ule to show agreement in terms of activity, which when
reflected on their respective gene expression should pro-
duce more consistent results in terms of up- or down-

regulation than in the case of genes forming entire
KEGG pathways.
In addition, here we can disallow allocation of

expressed genes to modules of opposing nature. For
example, the Glycolysis KEGG module M00001 gradu-
ally breaks down glucose to pyruvate, producing energy.
In contrast, the gluconeogenesis module M00003 is
responsible for the synthesis of glucose from precursors
such as pyruvate. While KEGG includes glycolysis and
gluconeogenesis in a single pathway due to the large
number of genes shared by both, they are not simply
the reverse of each other. Moreover, the two modules
act in opposing directions and are not activated together
as this would lead to a futile cycle [32], as previously
mentioned. The same applies to amino acid and other
biosynthetic and degradation modules, such as leucine,
lysine and acylglycerol biosynthesis and degradation.
Hence, we have modified the algorithm to allow allo-

cation of expressed genes shared by modules of oppos-
ing nature, which in the case of Saccharomyces
cerevisiae applies to about 14% of multi-membership
genes, to only one of these modules at any particular
instance. For example whenever an up-regulated gene is
assigned to glycolysis, it is removed from
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Figure 6 Mean convergence per experiment and method. The hill climbing method (solid line) is the fastest, closely followed by the
simulated annealing (dashed line) approach, while the genetic algorithm (dotted line) proves significantly slower.
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gluconeogenesis, as long as it is a member of both mod-
ules. We implement this at step 11) of Algorithm 1, opt-
ing for simulated annealing, previously discussed. In the
following sections we present the results of implement-
ing this approach, to which we shall refer as module
algorithm, based on a number of microarray experi-
ments. We have examined the performance of the
search starting from random allocations and concentrate
on results characterised by high fitness values for biolo-
gical interpretation.

KEGG modules results
The module algorithm, not allowing gene allocation to
modules of opposing nature, was applied to 21 microar-
ray experiments obtained from GEO, characterised by
sufficient numbers of expressed genes and presence of
genes of contradicting behaviour in the same modules.
The datasets were also selected based on the experimen-
tal conditions, whose nature allows us to comment on
the obtained results. Importantly, upon processing the
presence of contradicting genes was reduced by 50% on
average with standard deviation of about 7%. Following
is a discussion of results produced by applying this

approach to the aforementioned experiments, concen-
trating on modules where genes appear to contradict
each other state of expression, especially where genes
are subject to reallocation.
In GSM1075, from [33], microarray data corresponds

to total RNA extracted from yeast cells subjected to ade-
nine starvation, after 30 minutes. As observed upon pro-
cessing of the data (Figure 11), the search has identified
the adenine biosynthesis module as activated, while gua-
nine biosynthesis appears supressed. We also obtain an
indication that pyrimidine ribonucleotide and deoxyribo-
nucleotide biosynthesis is supressed as the algorithm has
removed up-regulated genes from the modules. At the
same time glycolysis appears repressed as opposed to
gluconeogenesis which has been activated.
In GSM845 yeast cells subjected to starvation, after 12

hours, exhibit activation of gluconeogenesis and sup-
pression of glycolysis. As expected the search has
removed genes from biosynthetic modules while degra-
dation of amino acids appears activated in the case of
lysine and leucine (Figure 11).
In GSM876 from the same dataset, RNA is examined

12 hours after nitrogen depletion. The researchers
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Figure 7 Mean convergence per experiment, according to search space size. As in Figure 6, Figure 7 represents the mean convergence per
method and experiment. However, in this case experiments are represented in an ordered fashion, from the one with least expressed multi-
membership genes, and smallest search space to the one with most expressed multi-membership genes and largest search space.
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Figure 8 Mean fitness per experiment and method, according to search space. As the size of the search space grows, following the
number of possible genes to pathways allocations, the methods are able to reach higher fitness values.
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Figure 9 Mean hamming distance between allocations per experiment, according to number of possible genes to pathways
allocations. Experiments are ordered according to the number of possible genes to pathways allocations. There appears to be very small
correlation between the mean hamming distance in terms of percentage between separate runs of each search method and the size of the
search space.
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comment on the repressive effect of the conditions on
the cluster of glycolytic genes. Indeed our algorithm has
produced an allocation where Glycolysis is clearly
supressed while gluconeogenesis seems in the process of
activation, along with the glyoxylate cycle module (Fig-
ure 11). Nucleotide biosynthetic modules appear
supressed. Results are similar one, two and three days
after depletion (GSM877, 878 and 879, data not shown).
In another dataset that deals with the global response of

yeast, in terms of gene expression, to glucose addition (2
g/l pulse, 15min) in the growth medium, application of the
search algorithm to data corresponding to 15min

following the pulse, produces allocations where up-regu-
lated genes have been assigned to glycolysis (Figure 11). In
contrast gluconeogenesis appears supressed in agreement
with biological rationale. The same pattern is apparent
after 20, 30, 45, 90 and 120 minutes as well as following a
0.2 g/l pulse, after 10, 15 and 20 min and in GSM 990
where glucose is once again added to the growth medium.
In contrast in GSM 290980 where RNA extracted

from cells with no glucose in the medium after 2 hours
are compared to cells with glucose, the search ade-
quately assigns up-regulated genes to gluconeogenesis
while down-regulated genes are allocated to glycolysis.
As Figure 11 and reveals, the algorithm has reallocated
a number of up-regulated genes from biosynthetic mod-
ules which is a sensible result given the condition of
carbon starvation. The Entner-Doudoroff pathway which
is another chain of reactions for the catabolism of glu-
cose also appears repressed, while the leucine and lysine
degradation modules are clearly activated. The picture is
virtually identical after 4 hours of glucose starvation.

Module algorithm performance
Naturally, it is worth examining the relative perfor-
mance of the search based on modules, as in the case of
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Figure 10 Mean FARI between allocations per experiment, according to number of possible genes to pathways allocations. For the
FARI values between allocations produced by subsequent runs of each method there is no correlation whatsoever with the size of the search
space, as defined by the number of possible multi-membership genes’ allocations.

Table 8 FARI statistics between allocations produced by
10 separate runs of each search method

Maximum Minimum Mean Standard
Deviation

Hill Climbing 1.000 0.928 0.978 0.012

Simulated
Annealing

1.000 0.902 0.977 0.013

Genetic Algorithm 1.000 0.926 0.977 0.011

The table summarises the minimum, maximum and mean Fuzzy Adjusted
Rand Indexes between allocations produced by ten separate runs of the hill
climbing, simulated annealing and genetic algorithm search approaches.
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the pathway search algorithms. Figure 12 shows the
convergence of the module algorithm for four experi-
ments based on the mean fitness reached by 10 separate
runs of the search approach, in order to exemplify the
entire range of fitness values.

As previously observed the, the mean number of itera-
tions required for the algorithm to converge exhibits
significant correlation of 0.9419 to the number of possi-
ble gene allocations (Figure 13), as does the mean fitness
with correlation of 0.9616 (Figure 14). At the same time,
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there is no significant correlation (0.2265) between the
number of genes to modules allocations and the mean
hamming distance between allocations produced by sub-
sequent runs of the search, as exhibited on Figure 15.
This situation is similar to what we observed working
with KEGG pathways in the preceding sections.
The same applies to the mean FARI’s, where the cor-

relation between the mean FARI per experiment and
the number of possible multi-membership gene to mod-
ule allocations is -0.3700 (Figure 16). Once again we
observe extremely high FARI values for allocations pro-
duced by separate runs of the search, with mean FARI
of 0.9777 and standard deviation of only 0.0157. Impor-
tantly, FARI remain high even for variable hamming dis-
tances, which as in the case of gene to pathways

allocations suggests that in certain pairs of allocations,
exhibiting substantial hamming distance, groups of
genes have still been allocated together, in the same
module, leading to high FARI values.

Conclusions
We have shown that our algorithms can effectively
assign multi-membership genes to their constituent
pathways and modules, increasing the level of agree-
ment, in terms of the direction of expression in either
case. Nevertheless, working with modules seems advan-
tageous from both biological and analytical point of
view. That is, genes in a module are expected to show
more consistent behaviour, while the more detailed defi-
nition of biochemical processes forming modules allows
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Figure 12 Convergence of module algorithm. Experiments were chosen to cover the range of fitness values reached in all microarray
experiments for GPL17.
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Figure 13 Mean convergence of module algorithm per experiment, according to search space size. Experiments are represented in an
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us to identify modules of opposing nature. In such cases
we restrict allocation of the same expressed genes to
both processes.
The methodology is of potential interest, in the effort

to infer the state of individual pathways and modules
based on microarray data analysis. It suggests an inter-
esting direction for future work, as the multi-member-
ship nature of genes has not been extensively
considered as such in relevant research.
Interestingly, we have observed minimal variation in

the performance of the three search approaches,
namely the hill climbing, simulated annealing and
genetic algorithm. All methods produce highly consis-
tent results and reach roughly equal fitness values,
although the simulated annealing approach does seem
slightly superior. Furthermore, the consistency of the
produced allocations in terms of Hamming distance
and FARI values does not show any correlation to the
size of the search space, as defined by the number of
possible genes to pathways or modules allocations in
each experiment.
A related issue that may be resolved following this

approach is the observed swapping of piles of genes
between pathways, by subsequent runs of the search
algorithms. As discussed in the preceding sections, cer-
tain groups of genes seem to be allocated to different
biochemical processes, but still placed together by sepa-
rate applications of the methods described here. There
is room for further investigation in that respect.
An issue that requires more thorough investigation is

the presence of genes, e.g. repressors, for which it is
expected to observe change in expression that contra-
dicts the up- or down-regulated state of the pathway
they are members of. While our methods can still pro-
duce meaningful results, since this is confined to indivi-
dual cases, especially when modules are used for the
analysis, we plan to tackle this issue by improving our
fitness function, taking into account the behaviour of
suppressors and facilitating a more detailed pathway
categorisation, for example using the Reactome
database.
It is worth noting that the methodology has been

applied to Escherichia coli and Saccharomyces cerevisiae
which are relatively simple living forms. According to
KEGG statistics, the number of protein genes found in
Escherichia coli K-12 is 4149 with 1397 of them allo-
cated to biochemical pathways. In contrast, a human
cell encloses 25724 protein genes, 5283 of which have
currently been allocated to 198 KEGG pathways. Due to
the resulting larger search space the methodology dis-
cussed here is likely to generate greater reshuffling in
the results produced upon processing of microarray data
from such more sophisticated organisms.

Finally, an appealing direction for future work would
be the use of the proposed approach on a large dataset,
consisting of thousands of microarray experiments to
infer the state of individual pathways in terms of activa-
tion and subsequently apply association rules mining
between biochemical processes in an effort to elucidate
pathway regulation and interaction.
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