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Abstract

Background: The discovery of surprisingly frequent patterns is of paramount interest in bioinformatics and
computational biology. Among the patterns considered, those consisting of pairs of solid words that co-occur
within a prescribed maximum distance -or gapped factors- emerge in a variety of contexts of DNA and protein
sequence analysis. A few algorithms and tools have been developed in connection with specific formulations of
the problem, however, none can handle comprehensively each of the multiple ways in which the distance
between the two terms in a pair may be defined.

Results: This paper presents efficient algorithms and tools for the extraction of all pairs of words up to an
arbitrarily large length that co-occur surprisingly often in close proximity within a sequence. Whereas the number
of such pairs in a sequence of n characters can be Θ(n4), it is shown that an exhaustive discovery process can be
carried out in O(n2) or O(n3), depending on the way distance is measured. This is made possible by a prudent
combination of properties of pattern maximality and monotonicity of scores, which lead to reduce the number of
word pairs to be weighed explicitly, while still producing also the scores attained by any of the pairs not explicitly
considered. We applied our approach to the discovery of spaced dyads in DNA sequences.

Conclusions: Experiments on biological datasets prove that the method is effective and much faster than
exhaustive enumeration of candidate patterns. Software is available freely by academic users via the web interface
at http://bcb.dei.unipd.it:8080/dyweb.

Background
The computation of statistical indexes containing sub-
word frequency counts, expectations, and scores thereof,
arises routinely in the analysis of biological sequences.
This problem is usually manageable when the word
length is limited to some fixed, small value but rapidly
escalates in complexity when applied on a genomic
scale, perhaps without any length bound. In principle, a
sequence of n characters may contain Θ(n2) distinct
substrings, whence an exhaustive statistical index would
be by one order larger than its subject. In previous work
by [1], the size of such exhaustive tables has been
shown to reduce to O(n) by a prudent combination of
properties related to pattern maximality and monotoni-
city of scores. In informal terms, maximal substrings in
a sequence may be obtained by partitioning all sub-

strings into equivalence classes, in such a way that the
strings in each class share precisely the same set of
starting positions in that sequence. Thus, every word in
a class must be a prefix of some maximal word w, that
together with the list of occurrences represents the
entire class. A classical result bounds the number of
such representatives by O(n). In addition, it has been
shown that the z-scores or departure from expected
occurrence count of the elements in each class are
monotonically increasing. This allows one to score only
the representative in each class, since any other word in
that class is a prefix of, and not more surprising than,
the representative. Similar conservative approaches have
been already applied successfully to patterns affected by
indeterminacies of various kinds [2,3].
In this paper, we consider the problem of exhaustive

counting and discovery of pairs of subwords that co-
occur more frequently than expected within a specified
distance in a sequence. In the literature, these patterns
are also refered to as gapped factors.
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In [4], and [5], indexes are proposed to solve the pro-
blem of searching a text for an assigned gapped-factors
query. The problem of discovering such signals is
intrinsically more difficult than searching, since no spe-
cific query is provided as input, and all candidate pat-
terns must be weighed by some score of statistical
significance.
Within the bioinformatics literature, algorithms from

[6-9], have been proposed for the closely related problem
of discovering composite motifs. These are indeed combi-
nations of two or more approximate signals that may not
have an exact occurrence in the input sequences. Hence
those algorithms have been designed to compute a
slightly different statistic than ours. In [10] the exhaustive
enumeration of gapped factors has been proposed for the
detection of dyadic transcription factors.
In contexts other than bioinformatics, a generalization

of gapped factors was addressed in [11] under the name
of word association pattern, which refers to a tuple of k
components matching the input string within distance
d. The algorithm takes time O(dknk+1 log n), which
reduces to our problem by setting k = 2, yielding time
O(d2n3 log n), or O(n3 log n) when d is a constant. A
related algorithm was also proposed in [12], running in
time O(n3) but requiring O(n2) scans of the input string,
for the case of gapped factors.
We show that O(n2) time and space suffices to build

and represent this kind of statistical index using a com-
pact approach for both head-to-head and up to d head-
to-tail distances. An additional linear factor is to be
charged when dealing with up to d tail-to-head distance
or if d is a parameter. Furthermore, the computation of
z-scores can be included in our constructions within the
same complexity bounds.
Our presentation is organized as follows. We first

recapture previous results on optimal count for gapped
factors within head-to-head distance, and then present
algorithms dealing with other distance measures
between factors. We also show how to incorporate in
the computation z-scores, extending the framework to a
discovery process based on over-representation, and the
space savings induced by their monotonicity within
gapped factors equivalence classes.
Finally, we test our approach on the problem of disco-

vering spaced-dyads and compare the efficiency and

efficacy of our compact approach with respect to the
exhaustive enumeration of [10].

Methods
Problem statement
Let x be a string over some alphabet Σ, where |x| = n,
and let d be some fixed non-negative integer. Given two
strings y and z that occur in x, the triplet (y, z, d)
defines a gapped factor where y is the first component, z
is the second component, and it is asked that they co-
occur at a distance less than or equal to d. When d is
fixed we just refer to the pair of factors (y, z). For any
pair (y, z) of strings in x, the co-occurrence count is the
number of times an occurrence of z follows an occur-
rence of y within a distance d. The variety of ways in
which the distance between components may be mea-
sured leads to several variants for the problem, as exem-
plified in Figure 1, 2, and 3.
Definition 1. The basic head-to-head index IHH (y, z)

relative to x is the number of times that z has an occur-
rence in x within a distance d from an occurrence of y
to its left.
Definition 2. The basic tail-to-head index ITH (y, z)

relative to x is the number of times that z has an occur-
rence in x within a distance d ≥ 0 from the last symbol
of an occurrence of y to its left.
Definition 3. The basic head-to-tail index IHT (y, z)

relative to x is the number of times that z has an occur-
rence in x which ends within a distance d from a corre-
sponding occurrence of y to its left.
We can also require that no interleaving occurrence of

one or the other factor occurs between the considered
occurrences of y and z. We then talk about the relaxed
tandem index Î(y, z), and the tandem index I(y, z), for
which the head-to-head distance are defined as follows.
Definition 4. The relaxed tandem index Î(y, z) relative

to x is the number of times that z has an occurrence in
x within head-to-head distance d from a corresponding,
closest occurrence of y to its left.
Definition 5. The tandem index I(y, z) relative to x is

the number of times that z has a closest occurrence in x
within head-to-head distance d from a corresponding,
closest occurrence of y to its left.
We illustrate the definitions of tandems for head-to-

head distance in Figure 4.

Figure 1 Basic head-to-head index. Assuming there are no other occurrences of y and z in x, for a given distance d it is IHH (y, z) = 2.
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Let pi and pi+1 be the starting positions of the only
two occurrences of y in an input sequence, and let qk,
qk+1 and qk+2 be the starting positions of the only three
occurrences of z. Let d be the maximum distance
allowed for co-occurrences, as sketched in Figure 4. The
basic head-to-head index for (y, z) is IHH (y, z) = 4:
three co-occurrences corresponding to the occurrence
of y at pi and one corresponding to the occurrence of y
at pi+1. Hence, the set of co-occurrences is {(pi, qk), (pi,
qk+1), (pi, qk+2), (pi+1, qk+2)}.
To obtain the relaxed tandem index Î(y, z) only the

occurrences of z that fall within distance d from an
occurrence of y, but before the next occurrence of y, are
counted. In the case of Figure 4 this produces a contri-
bution of two pairs for the first occurrence of y, and
one for the second. In fact, the last occurrence of z is
now counted only once, in association with its closest
occurrence of y at pi+1.
Finally, to obtain the tandem index I(y, z), one more

adjustment is needed, since now only one of the two
occurrences of z that pair up with pi is to be counted,
namely, the closest one. This yields the final value of I(y, z)
= 2, from the two co-occurrences {(pi, qk) and (pi+1, qk +2)}.

Algorithms
Here we present algorithms to count and discover the
various kinds of gapped factors defined in the previous
section. The index for computing IHH with and without
interleaving occurrences was first introduced in [3]. We
add to this the description of notable variants and the
discovery frameworks.
As it was mentioned earlier, since there may be Θ(n2)

distinct substrings in x, then the number of possible
gapped factors, either interleaving or not is Θ(n4), and
such is the time necessary for their exhaustive enumera-
tion. Our algorithms exploit some properties of the

suffix tree data structure to reduce this complexity. A
suffix tree Tx of an input string x defined over an alpha-
bet Σ is a compact trie of all the suffixes of x$, where $
is a special symbol that does not belong to Σ. Suffix
trees can be constructed in time linear in the length of
the input string. We refer to [13-15] for detailed con-
structions. In our discussion, we use the letters v, x, y,
and z to denote strings, and the letters a and b for
nodes of the tree. The word ending precisely at vertex a
of Tx is denoted by w(a), and a is called the proper
locus of w(a). The locus of a substring v of x is the
unique vertex a of Tx such that v is a prefix of w(a)
and w(Father(a)) is a proper prefix of v.
Suffix trees enjoy several interesting properties [16,17].

In particular, since in any such tree there are exactly n
leaves (one for each suffix) and each internal node is a
branching node, then the total number of nodes is lin-
ear. By the structure of the tree, the occurrences of a
word v start precisely at the suffixes that are found in
the subtree rooted at the locus of v. Thus, any word v
ending in the middle of an arc will have the same start-
ing positions, and consequently the same number of
occurrences, as the word w(a) with a the locus of v (see
Figure 5).
Counting Gapped Factors: Head-to-Head distance
The O(n) words ending at the branching nodes and
leaves of the suffix tree represent a compendium of all
the substrings of the input string x, and each node or
leaf represents an equivalence class, in the sense that
strings with the same locus share the same set of start-
ing positions. Clearly, it is enough to consider as factors
only pairs of class representatives, where the representa-
tive of a class is the longest string in that class. For any
pair of words (y′, z′) not explicitly considered, there
exists another pair (y, z), formed by representatives,
hence such that y′ is a prefix of y, and z′ is a prefix of z,

Figure 2 Basic tail-to-head index. Assuming there are no other occurrences of y and z in x, for a given distance d it is ITH (y, z) = 1.

Figure 3 Basic head-to-tail index. Assuming there are no other occurrences of y and z in x, for a given distance d it is IHT (y, z) = 1.
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and the two pairs have the same number of co-occur-
rences as shown in Figure 6. Hence, for a given query
(y’, z’) we can report as result the value of IHH (y, z).
The occurrences for gapped factors that, within a

given distance d, have a fixed string y as their first com-
ponent are computed in three steps as follows:

a) Consider the starting positions p1, p2,..., pk of all
occurrences of y in x, where y = w(a) and a is a
node in Tx,
b) Let L be the mapping leading from each sequence
position to the corresponding leaf node, and give a
weight to each leaf, initially set to zero. For each pi
mark the positions pi + 1, pi +2,... pi +d, and add
one to the weight of the corresponding leaf nodes {L
(pi +1), L(pi + 2),..., L(pi + d)};
c) Traversing the tree bottom-up, annotate each
internal node b with the sum of the weights of the
children nodes.

Upon completion, the generic node b of the tree holds
the value of IHH(y, z), where z = w(b). The annotation of

the tree for a fixed y takes O(n) time if d is fixed. Since
this has to be repeated for each one of the O(n) choices
of the first component y, then the overall execution
time is O(n2). Indeed, with a properly tuned construc-
tion of the index, the time can be linear in the output
size [18].
Counting Gapped Factors: Tail-to-Head distance
When we consider tail-to-head distance, we cannot
directly apply the previous method and just add a shift
of length |y| to the marking phase. In fact, the prefix y’
of y, that has the same locus a in the tree as y will be at
a tail-to head distance from a certain z larger than the
distance between y and z. Thus, when we mark the posi-
tions pi + |y| + j - 1, 1 ≤ j ≤ d, as in Figure 7 some posi-
tions (those falling in segment A) that should be marked
for y’ will not be marked, and some other (those falling
in segment B) that should not be marked for y’ will be
actually marked. Note that even though A and B have
clearly the same length the strings that they intercept
are generally different.
This problem is overcome by building, in time and

space O(n3), the index ĪTH(y, z, h) between maximal

Figure 4 Interleaving occurrences. Illustrating interleaving occurrences.

Figure 5 Suffix tree. Partial Suffix Tree for the string AGCTAGCTAAA. The words AG, AGC, AGCT, and AGCTA share the same locus a, hence
they occur starting at the same positions {1,5} in the text.
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strings for all possible non negative exact distances h.
The index is built as follows:

a) Consider the starting positions p1, p2,..., pk of all
occurrences of y in x, where y = w(a) and a is a
node in Tx;
b) Let L be the mapping leading from each sequence
position to the corresponding leaf node, and give a
weight to each leaf, initially set to zero. For each pi
add one to the weight of the leaf node L(pi + |y| + h);
c) Traversing the tree bottom-up, annotate each
internal node b with the sum of the values of the
children.

At the end of this computation the generic node b of
the tree holds the value of ĪTH(y, z, h) where z = w(b).

The annotation of the tree for a fixed y and h takes O
(n) time. This process needs to be repeated for every
distance 0 ≤ h < n and for every choice of the first com-
ponent y, taking overall O(n3) time and space.
This set of trees can then be used to compute the tail-

to head index between any two strings, not necessarily
maximal, occurring in the sequence. Let y’ and z’ be
two strings that have respectively y and z as the strings
corresponding to their loci. For a query ITH(y’, z’) within
distance d one needs to compute ĪTH(y′, z′, h), 0 ≤ h ≤
d. For each h we need to distinguish two cases:

1. |y ’| + h > |y|: the occurrences of the corre-
sponding maximal strings y and z do not overlap,
hence ĪTH(y′, z′, h) = ĪTH(y, z, h − (|y| − |y′|)) (see
Figure 8).

Figure 6 Maximal classes. Some maximal classes in the suffix tree Tx.

Figure 7 Boundaries for tail-to-head distance. The tail-to-head distance cannot be computed by marking up to d positions from the tail of
the maximal string corresponding to y’: the positions falling within segment A would not be counted, while those in segment B would be
counted while they should not.
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2. |y’| + h ≤ |y|: the occurrences of the correspond-
ing maximal strings y and z overlap. Let w be the
string given by the concatenation with overlap of y
and z’ (see Figure 9): y1 ... y|y’|+h · z’. We can get the
number of co-occurrences directly by searching the
occurrences of w in the suffix tree.

The time required by these two operation is O(|y| +
|z’|). The tail-to-head index is finally given by

ITH(y, z) =
∑d

h=1 ĪTH
(
y, z, h

)
.

Counting Gapped Factors: Head-to-Tail distance
This case consists of gapped factors in which the dis-
tance is measured from the beginning of the first com-
ponent to the end of the second.
The case of head-to-tail distance is a very special case.

In fact here we are interested in counting the number of
strings that fall completely within a bounded distance d
from the beginning of the first component.
Let us build the suffix tree for the input sequence. For

a first component y = w(a), occurring at ny
positions {p1, p2, ..., pny } in x we consider the set of
substrings {x[pi + 1, pi + d - 1], i = 1.. ny}. We then
build a generalized suffix tree for
x[p1 + 1, p1 + d − 1]$1, x[p2 + 1, p2 + d − 1]$2, ..., x[pny + 1, pny + d − 1]$ny,
where each $i is an end-marker ($i ≠ $j if i ≠ j) needed
to correctly compute the index. The total length of
these strings, and so the order of the number of nodes
in the tree, is (d + 1) × ny.
For each string z = w(b), where b is a node of this

tree, the count of the number of leaves of the subtree

rooted at b will give the number of co-occurrences
between y and z at head-to-tail distance d. In this count
all the substrings of y are also counted. If we want to
avoid to include this obvious type of co-occurrence, we
can mark the leaves coming from the positions within
the occurrence of y while building the tree, and avoid
counting them.
Obviously, if a string z = w(b) is totally contained

within distance d from an occurrence of y, so will be
any of its prefixes z’ with locus b. On the other hand,
every prefix y’ of y with locus b such that y = w(a) will
share with y the same set of starting positions. In the
light of these considerations, a general query IHT (y’, z’)
will be answered with the indexed value IHT (y, z).
In terms of time complexity, we have that for each

string of the type y = w(a),a Î Tx with ny occurrences
we perform O(d × ny) operations. This must be repeated
for every node a Î Tx. The number of occurrences of
each node are given by the sum of the occurrences of
its children. In the worst case (think of the tree for an$)
their sum is O(n2). So the total complexity is O(d × n2).
Since d is constant, we have O(n2).
Avoiding interleaving occurrences
The computation of the tandem indexes of z and y pre-
scribes that two kinds of intermediate occurrences be
avoided, as described next.
Computing the Relaxed Tandem Index
To compute the relaxed tandem index, each oc-currence
of z must be referred to its closest occurrence of y to
the left. The algorithm to compute the relaxed tandem

Figure 8 Computing the tail-to-head index (case a). Computing the number of co-occurrence tail-to-head of y’ and z’ at distance d from
those of y and z when |y’| + d >|y|.

Figure 9 Computing the tail-to-head index (case b). Computing the number of co-occurrence tail-to-head of y’ and z’ at distance d from
those of y and z when |y’| + d ≤|y|.
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index is similar to the basic algorithm, where steps (a)
and (c) are unchanged, while in step (b) only the posi-
tions pi +1, pi +2,... pi + d’, where d’ = min{d, pi+1 - pi -
1} are marked. Time and space complexities of the basic
algorithm stay unchanged.
Computing the Tandem Index
To compute the tandem index we first apply steps (a)
and (b) for the construction of the relaxed tandem
index. Furthermore, for each occurrence pi of y we cre-
ate the list of nodes
Lpi = {β1 = L(pi + 1),β2 = L(pi + 2), ...,βd = L(pi + d)}. For
every pair of consecutive nodes (bi, bi+1) in the list, we
invoke the LCA algorithm of [19] in order to identify
their least common ancestor node b, and we subtract 1
to its weight. This adjustment is needed because in the
computation of the relaxed index the longest common
prefix z between nodes bi and bi+1, rep-resented by
node b, has been weighed twice, once from the path
that leads to the leaf bi, the other from the path that
leads to bi+1. This is true also for any node in the path
from the root to b. So step (c) is needed to propagate
both the weights and the adjustments. The weight of an
internal node is then given by the sum of the weights of
its children with the possible subtraction of the value
weighted during the LCA calls. An example is shown in
Figure 10 where the suffixes starting at qk and qk+1
share the common prefix z = w(b).
The strategy to avoid interleaving occurrences was

first presented in [3]. Independently, [20] presented a
similar approach to count gapped factors in a set of
sequences. In their work the LCA algorithm is used to
take into account just one instance per sequence.

Discovering Over-represented Gapped Factors
Let y and z be the first and second factors in a pair,
respectively, d the distance between them, and assume
that y and z do not overlap. We take the expected fre-
quency of D = (y, z) to be the product of the expected
frequencies of the individual terms y and z, formally: Fe
(D) = f(y)f(z), and consider two possible settings,
depending on whether f(y) and f(z) are computed on the
input sequence x or on a given external (super)
sequence. In both cases it may be argued along the lines
of [1] that it suffices to weigh the pairs corresponding
to the nearest branching nodes, that correspond to the
representatives of equivalence classes the score of which
cannot be smaller than that of any other pair from the
same classes.
Consider two substrings y’ and z’ of x with no proper

locus in Tx. Let a and b be their respective loci, and let
y = w(a) and z = w(b) be the corresponding strings (cf.
Figure 6).
Clearly, y’ and y share the same set of starting posi-

tions, and the same holds for z’ and z. In fact, this prop-
erty holds for all pairs of strings having respectively a
and b as proper locus. Hence these strings can be said
to belong to an equivalence class, let it be denoted by
Cyz, in the sense that the number of times that they co-
occur coincides with the number of times that y and z
co-occur. I.e., Fc(D’) = Fc(D), where D’ = (y’, z’) and Fc(·)
is the frequency count.
Moreover, under i.i.d. hypothesis we have for the

expected frequency Fe:

Fe(D′) = Fe(y′, z′) = f (y′)f (z′) ≥ f (y)f (z) = Fe(y, z) = Fe(D)

Figure 10 Avoiding interleaving occurrences. If L(qk) = bi and L(qk+1) = bi+1, a unit decrement must be taken from the index of the node
b = LCA(bi, bi+1).
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In other words, for all gapped factors D’ = (y’, z’) in
Cyz, the probability of D’ = (y’, z’) is not smaller than
that of D = (y, z).
Consider now the following scores comparing

expected and counted number of co-occurrences:

1. z1 = Fc − Fe

2. z2 =
Fc
Fe

3. z3 =
(Fc − Fe)

2

Fe

4. z4 =
Fc − Fe√
Fe(Fe − 1)

It follows from our discussion that since, moving
downward along an arc, Fc remains constant while Fe is
non-increasing, then the value of any such score is non-
increasing, whence it is enough to compute it only for
pairs of strings having a proper locus.
We conclude that it suffices to score only the repre-

sentative for each class, since the pair D(y, z) of strings
with a proper locus will attain the highest score among
members of Cyz.

Results and Discussion
As an example application we demonstrate the perfor-
mance of our method in connection with the discovery
of co-occurrences representing transcription factor bind-
ing sites. It is known that these sites have a variable
structure, although they are all characterized by a high
degree of similarity among their oc-currences. Many
pattern discovery algorithms (see, e.g., [21] and refer-
ences therein) assume that the errors are randomly dis-
tributed in the pattern. However, this is not necessarily
the case. The variability among binding sites might be
concentrated at their centers or on their sides. For
example, the factor Gal4p, that belongs to the zinc fin-
ger class, binds to a pair of conserved regions, separated
by a fixed length segment of DNA of variable content.
This kind of binding sites are also called a spaced dyad.
In [10], the problem of dyad discovery is solved

through an algorithm based on exhaustive enumeration
of pairs of components. A significance score is com-
puted with respect to a given background model, and
used to rate the dyads. The output is given by the pairs
with the highest scores. This approach was proved to be
effective in the prediction of such spaced dyads, how-
ever, the exhaustive enumeration of dyads, the computa-
tion of the background and the scanning of the
sequence for each candidate makes the computation
imposing and not scalable with the size of the
components.
To test our approach on the dyad discovery problem

we implemented a simplified version of the head-to-
head and tail-to-head algorithms. The software, called

DyVerb was developed in Java and it is available via a
web interface at http://bcb.dei.unipd.it:8080/dyweb/.
In a direct emulation of the RSAT dyad-analysis tool

by [10], we applied DyVerb to the computation of the
co-occurrences between all the TST leaves at tail-to-
head distance varying from 0 to 16, and the expected
frequency of the dyad is given by the product of the
counted frequencies of the components. The length of
the components was set to 3, and we searched both
strands. We then performed two runs of experiments to
verify both the efficacy in the discovery of the dyad
signals using several scores, and the execution time per-
formance. These experiments are described in the fol-
lowing subsections.

Efficacy of discovery on real datasets
We considered as benchmark the dataset from [10],
which consists in 8 gene families that are regulated by
zinc-bicluster transcription factors. In Table 1 we report
the results in the extraction of spaced dyads based on
the scores z2 and z3 and also the significance score
defined in [10], with monadic back-ground frequencies
taken from the input sequences. For completeness, we
report here the definition of the significance score:

Signif = −log10[P(D,≥ n) × Np]

where P (D, ≥ n) is the probability of observing at
least n occurrences of the dyad D in the input set, and
Np is the number of unique spaced dyads in which the
components have length 3 and distance varying from 0
to 16.
The table reports, for each set of sequences, the rank

of the discovered motif which is closest to the real one,
which is represented on the right with the gapped factor
discovered by DyVerb highlighted in bold. In most of

Table 1 Efficacy on dyad discovery

Efficacy of Discovery

rank motif

GAL4 1/1/1 CGGRnnRCYnYnCnCCG

CAT8 15/3/3 CGGnnnnnnGGA

HAP1 7/1/6 CGGnnnTAnCGG(nnnTA)

LEU3 1/1/1 RCCGGnnCCGGY

LYS 1/3/3 WWWTCCRW (T|C)GGAWWW

PDR 1/2/2 TYTCCGCGG ARY

PPR1 1/1/1 WYCGGnnWWYKCCGAW

PUT3 1/1/1 YCGGnAnGCnAnnnCCGA

UGA3 3/1/1 AAA(A|G)CCGC (G|C)GGCGGSAWT

UME6 2/1/1 TAGCCGCCGA

Discovery of dyad motifs by DyVerb for length 3 and distance up to 16. For
each family, the second column displays the rank of the score values in the
format z2 /z3 /significance of the corresponding motif. The latter appears in
superposition to the actual site, highlighted in bold.
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these tests, DyVerb ranked the gapped factors corre-
sponding to known motifs at the top.
Note that several motifs can score the same value. The

table lists such motifs following no particular order. This is
irrelevant for most of the experiments, in which indeed the
real motif commands the first position. For more subtle
motifs such as CAT8, the score z2 ranks the motif as 15th,
although the real position in the table is 24th. The value of
z3 for the same motif is the 3rd largest, but it appears at
the 6th position in the table. Similarly, for the significance
score, the motif is 3rd in rank, but shown at the 5th posi-
tion. We also found that for this motif all scores we com-
puted resulted in similar values. Another subtle motif is
HAP1. The best score here appears to be z3, however, for
this score only two values were found, namely, 0.002 and
0.001. Nonetheless, only 18 motifs scored 0.002, and
among those the gapped factor GGAnnnnnCGG that can
be mapped easily to the real motif.

Efficiency of discovery on real datasets
Additional experiments were performed for the purpose
of assessing scalability. For this, we implemented
exhaustive enumeration using the same programming
language (Java) and the same machine (a Pentium4 run-
ning at 2.26 GHz with 1 GB of memory) as used for
DyVerb. We noted the times required to compute differ-
ent scores, specifically z2, z3, and Signif, the significance
score. Table 2 shows the results of these experiments. It
can be seen that for large datasets, such as UME6, the
time required by DyVerb is significantly shorter than
that required by the exhaustive approach.

Conclusions
In this paper we presented algorithms based a on a con-
servative approach to the construction of statistical

indexes for the discovery of over-represented co-occur-
rences. The advantage over exhaustive enumeration is in
the substantial reduction of the space of candidates,
which unlike heuristic approaches, does not pose the
risk of missing the optimal ones. The web tool DyVerb
was developed to discover dyadic motifs.
Experiments on real datasets showed that the simple

probabilistic model used by DyVerb is capable of disco-
vering known signals, in a simple and fast way. Future
developments will address on one hand the optimization
of the data structures in use, in order to deal with larger
sequences, on the other, the implementation of more
advanced probabilistic models such as those previously
developed in [1] in connection with single patterns.
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