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Abstract

Background: Analysis of elementary modes (EMs) is proven to be a powerful constraint-based method in the
study of metabolic networks. However, enumeration of EMs is a hard computational task. Additionally, due to their
large number, EMs cannot be simply used as an input for subsequent analysis. One possibility is to limit the
analysis to a subset of interesting reactions. However, analysing an isolated subnetwork can result in finding
incorrect EMs which are not part of any steady-state flux distribution of the original network. The ideal set to
describe the reaction activity in a subnetwork would be the set of all EMs projected to the reactions of interest.
Recently, the concept of “elementary flux patterns” (EFPs) has been proposed. Each EFP is a subset of the support

(ie., non-zero elements) of at least one EM.

Results: We introduce the concept of ProCEMs (Projected Cone Elementary Modes). The ProCEM set can be
computed by projecting the flux cone onto a lower-dimensional subspace and enumerating the extreme rays of
the projected cone. In contrast to EFPs, ProCEMs are not merely a set of reactions, but projected EMs. We
additionally prove that the set of EFPs is included in the set of ProCEM supports. Finally, ProCEMs and EFPs are
compared for studying substructures of biological networks.

Conclusions: We introduce the concept of ProCEMs and recommend its use for the analysis of substructures of
metabolic networks for which the set of EMs cannot be computed.

Background
Metabolic pathway analysis is the study of meaningful
minimal pathways or routes of connected reactions in
metabolic network models [1,2]. Two closely related
concepts are often used for explaining such pathways:
elementary modes (EMs) [3,4] and extreme pathways
(EXPAs) [5]. Mathematically speaking, EMs and EXPAs
are generating sets of the flux cone [1,6]. Several
approaches have been proposed for the computation of
such pathways [7-14].

EM and EXPA analysis are promising approaches for
studying metabolic networks [15,16]. However, due to
the combinatorial explosion of the number of such
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pathways [17,18], this kind of analysis cannot be per-
formed for “large” networks. Recent advances in the
computation of EMs and extreme rays of polyhedral
cones [12,13] have made it possible to compute tens of
millions of EMs, but computing all EMs for large gen-
ome-scale networks may still be impossible. Addition-
ally, one is often interested only in a subset of reactions,
and not all of them. Therefore, even if the EMs are
computable, possibly many of them are not relevant
because they are not related to the reactions of interest.
The goal of the present paper is to introduce the new
concept of Projected Cone Elementary Modes (ProCEMs)
for the analysis of substructures of metabolic networks.
The organisation is as follows. Firstly, the mathematical
concepts used in the text are formally defined. Secondly,
we review the studies which have tried to investigate
(some of) the EMs or EXPAs of large-scale networks. In
the next step, we present the concept of ProCEMs and
propose a method to compute them. Finally, we compare
ProCEMs with elementary flux patterns (EFPs) from the
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mathematical and computational point of view, and ana-
lyse some concrete biological networks.

Formal Definitions

We consider a metabolic network N with m internal
metabolites and # reactions. Formally, we describe N by
its stoichiometric matrix S € R™ *” and the set of irre-
versible reactions Irr € {1, . . ., n}. If steady-state condi-
tions hold, i.e., there is no net production or
consumption of internal metabolites, the set of all feasi-
ble flux distributions defines a polyhedral cone

C={veR"S-v=0,v; > Oforall i € Irr}, (1)

which is called the (steady-state) flux cone [1,2].

A polyhedral cone in canonical form is any set of the
form P = {x € R" | Ax < 0}, for some matrix A € R¥* ",
To bring (1) in canonical form, we can replace the equal-
ities Sv = 0 by the two sets of inequalities S - v < 0 and
-S - v £ 0. Furthermore, the inequalities v; > 0, i € Irr are
multiplied by -1. Any non-zero element x € P is called a
ray of P. Two rays r and ¥’ are equivalent, written r = v, if
r=Ar, for some A > 0. A ray r in P is extreme if there do
not exist rays r’, re P, r # r“ such that r = v + r.

For everyve R” the setsupp(v) =f{ie {1,..,n} |v;=20}
is called the support of v.

A flux vector e € C is called an elementary mode
(EM) [3,4] if there is no vector v € C \ {0} such that
supp(v) K supp(e). Thus, each EM represents a minimal
set of reactions that can work together in steady-state.

The set of all pairwise non-equivalent EMs, E = {e', ¢?,

. ., €'}, generates the cone C [3]. This means that every
flux vector in C can be written as a non-negative linear
combination of the vectors in E.

Given a set Q € X x Y, where X resp. Y are sub-
spaces of R” of dimension p resp. g with p + g = n, the
projection of Q onto X is defined as

Px(Q) = {x € X|Fy € Y, (x,7) € Q). 2)

In the special case Q = {v}, we simply write Px(v)
instead of Px({v}).

Now consider a metabolic network A/ with p + ¢
reactions and a subnetwork A/ given by a subset of p
“interesting” reactions. For the flux cone C of N/ we
assume C € X x Y, where the reactions of A/ corre-
spond to the subspace X . The projection Px(C) of the
cone C on the subspace X is again a polyhedral cone,
called the projected cone on X . Any elementary mode
of the projected cone Px(C) will be called a projected
cone elementary mode (ProCEM). The projection Px(e)
of an elementary mode e € C to the subspace X will
be called a projected elementary mode (PEM). As we
will see in the sequel, the two concepts of PEM and
ProCEM are closely related but different.
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If the subnetwork A/ has to be analysed, PEMs might
be more relevant than EMs, as they are in lower dimen-
sion and easier to study. However, the only method cur-
rently known to compute PEMs is to enumerate the
complete set of EMs and then to project these onto the
subspace of interest. As we will see, ProCEMs provide an
interesting alternative in this situation.

The State of the Art

As mentioned above, the set of EMs of a genome-scale
network may be large, and in general, cannot be com-
puted with the available tools. Even if this is possible, one
cannot simply extract interesting information from it.
Therefore, a subset of EMs (or in case that we are inter-
ested in a subset of reactions, the set of PEMs) should be
computed to reduce the running time and/or output size
of the algorithm. Several approaches to this problem
have been proposed in the literature. These strategies can
be classified into four main categories:

Computation of a Subset of EMs

The first strategy is to constrain the complete set of EMs
(or EXPAs) to a subset describing a phenotype space or a
set of phenotypic data. For example, Covert and Palsson
[19] showed that consideration of regulatory constraints in
the analysis of a small “core metabolism” model can
reduce the set of 80 EXPAs to a set of 2 to 26 EXPAs,
depending on the applied regulatory constraints. On the
other hand, Urbanczik [20] suggested to compute “con-
strained” elementary modes which satisfy certain optimal-
ity criteria. As a result, instead of a full enumeration of
EMs, only a subset of them should be computed, which
results in a big computational gain. The idea of reducing
the set of EMs has been used recently in an approach
called yield analysis [21]. In this approach, the yield space
(or solution space) is defined as a bounded convex hull.
Then, the minimal generating set spanning the yield space
is recalculated, and therefore, all EMs with negligible con-
tribution to the yield space can be excluded. The authors
show that their method results in 91% reduction of the
EM set for glucose/xylose-fermenting yeast.

Computation of EMs in Isolated Subsystems

A second strategy to focus on the EMs (or EXPAs) of
interest is to select a (possibly disconnected) subsystem,
rather than the complete metabolic model, by assuming
all other reactions and metabolites to be “external”, and
computing the EMs (or EXPAs) of this selected subsys-
tem. This idea, i.e., cutting out subsystems or splitting
big networks into several subsystems, is broadly used in
the literature (e.g., see [22-34]). In some of these studies,
not only the network boundary is redrawn, but also
some reactions may be removed for further simplifying
the network.
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Although this strategy is useful, it can result in serious
errors in the computational analysis of network proper-
ties [35]. For example, dependencies and coupling rela-
tionships between reactions can be influenced by
redrawing the system boundaries [36]. Burgard et al.
[37] showed that subsystem-based flux coupling analysis
of the H. pylori network [25] results in an incomplete
detection of coupled reactions. Kaleta et al. [35] suggest
that neglecting such a coupling can lead to fluxes which
are not part of any feasible EM in the original complete
network. Existence of such infeasible “pathway frag-
ments” [38] can result in incorrect conclusions.

To better understand this problem, we consider
Figure 1A as an example. Let us assume that we are
interested in a subnetwork composed of reactions 1, . .
., 9. This subnetwork is called SuN. If we simply assume
the “uninteresting” reactions and metabolites to be the
external reactions and metabolites, we will obtain the
subsystem shown in Figure 1B. This subnetwork has
only four EMs, two of which are not part of any feasible
steady-state flux vector in the complete network. For
example, the EM composed of reactions 5 and 7 in Fig-
ure 1B cannot appear in steady-state in the original
complete network, because the coupling between reac-
tion 1 and reaction 5 is broken. Therefore, analyzing
this subnetwork instead of the original network can
result in false conclusions.
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Computation of Elementary Flux Patterns

We observed that some errors may appear in the analy-
sis of isolated subsystems. One possible solution to this
problem is to compute a “large” subset of PEMs, or
alternatively, as suggested by Kaleta et al. [35], to com-
pute the support of a subset of PEMs. These authors
proposed a procedure to compute the elementary flux
patterns (EFPs) of a subnetwork within a genome-scale
network. A flux pattern is defined as a set of reactions
in a subnetwork that is included in the support of some
steady-state flux vector of the entire network [35]. A
flux pattern is called an elementary flux pattern if it
cannot be generated by combination of two or more dif-
ferent flux patterns. Each EFP is the support of (at least)
one PEM. It is suggested that in many applications, the
set of EFPs can be used instead of EMs [35].

Although EFPs are promising tools for the analysis of
metabolic pathways, they also have their own shortcom-
ings. The first important drawback of EFPs is that they
cannot be used in place of EMs in certain applications
[9], where the precise flux values are required. For
example, in the identification of all pathways with opti-
mal yield [23,39] and in the analysis of control-effective
fluxes [27,28,40], the flux values of the respective reac-
tions in the EMs should be taken into account.

Another important shortcoming of EFP analysis is that
it is possible to have very different EMs represented by
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Figure 1 An example metabolic subnetwork. (A): A small metabolic network with 17 reactions. Metabolites are shown as nodes, while
reactions are shown by arrows. Reactions 1, 8, 9, 15 and 16 are boundary reactions, while all other reactions are internal reactions. We might be
interested only in a subnetwork containing nine reactions: 1, . . ., 9, which are shown by thick arrows. This subnetwork will be called SuN. (B):

The reduced subsystem comprising only the nine interesting reactions.

\©
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the same EFP, since flux values are ignored in EFPs. For
example, consider the case that two reactions i and j are
partially coupled [37]. This means that there exist at
least two EMs, say e and f, such that e;/e; # fi/f; [41].
However, if we consider a subnetwork composed of
these two reactions, then we will only have one EFP,
namely {i, j}. From the theoretical point of view, finding
all EMs that correspond to a certain EFP is computa-
tionally hard (see Theorem 2.7 in [42]).

Every EFP is related to at least one EM in the original
metabolic network. However, one of the limitations of
EFP analysis is that EFPs are activity patterns of some
EMs, not necessarily all of them. We will show this by
an example. In Figure 1A, the flux cone is a subset of
R, while the subnetwork SuN induces a 9-dimensional
subspace X = R?. If G is the set of EMs in Figure 1A,
then the set of PEMs can be computed as
P = {Px(e)le € G}. The set of the 10 PEMs of SuN in
Figure 1A is shown in Table 1. For the same network
and subnetwork, we used EFPTools [43] to compute the
set of the EFPs. The resulting 7 EFPs are also presented
in Table 1. If we compare the PEMs and EFPs, we find
out that the support of each of the first 7 PEMs is equal
to one of the EFPs. However, for the last three PEMs no
corresponding EFP can be found in Table 1. This is due
to the fact that supp(p8) = E4 U E5, supp(p9) = E3 U E5,
and supp(p10) = E1 U E2. Hence, the flux patterns cor-
responding to these PEMs are not elementary. There-
fore, some EMs may exist in the network which have no
corresponding EFP on a certain subnetwork. This means
that by EFP analysis possibly many EMs of the original
network cannot be recovered. Informally speaking, we
ask whether the set of EFPs is the largest set of PEM
supports which can be computed without enumerating
all EMs.

Table 1 List of elementary flux patterns, projected cone
elementary modes and projected elementary modes of
SuN.

EFPs EFP set ProCEM PEM vector
E1 {9} ul pl (0,0,000000,1)
E2 {8} u2 p2 0,0,0,0,0,0,0,1,0)
E3 {1, 4 u3 p3 (1,0,0,1,0,0,0,0,0)
E4 {1,2, 3} u4 p4 (1,1,1,0,0,0,0,0,0)
E5 0,57 u5 p5 (1,0,0,0,1,0,1,0, 0
E6 {1,4,6,7} ué p6 (1,0,0,1,0,1,1,0,0)
E7 {1,2,3,6,7} u’/ p7 (1,1,1,0,0,1,1,0,0)
- - u8 p8 (1,1,1,0,1,0,1,0,0)
- - u9 p9 (1,0,0,1,1,0,1,0,0
- p10 0,0,0,0,0,0,01, 1)
Flux through reactions 1, .. ., 9, respectively, are the elements of the shown

vectors. Zero vector and also the empty set are excluded.
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Projection Methods
A possible strategy to simplify the network analysis is to
project the flux cone down to a lower-dimensional space
of interest. In other words, if we are interested in a sub-
network, we may project the flux cone onto the lower-
dimensional subspace defined by the “interesting”
reactions. Note that projecting the flux cone is in general
different from removing reactions from the network.
Consider the simple network shown in Figure 2A and a
graphical representation of its corresponding flux space in
Figure 2B (here, the axes x;, x,, x3 correspond to reactions
1, 2, 3, thus the flux cone is the open triangle shown in
light gray). This network has two EMs, which are the gen-
erating vectors of the flux cone, g; and g,. Now, if we are
interested in a subnetwork composed of reactions 1 and 2,
then we can project the flux cone to the 2D subspace pro-
duced by these two reactions. This is comparable to light
projection on a 3D object to make 2D shadows. The pro-
jected cone is shown in dark gray. When the flux cone is
projected onto the lower-dimensional space, new generat-
ing vectors may appear. In this example, g; and g3 (in 2D
space) are the generating vectors of the projected cone.
Intuitively, one can think about g3 as the projected flux
vector through reaction 1 and 3. This projected flux cone
is certainly different from the flux cone of a network made
by deleting reaction 3 (Figure 2C). Such a network has
only one EM, and its corresponding flux cone can be gen-
erated by only one vector, namely, g;.

Historically, the idea of flux cone projection has
already been used in some papers. Wiback and Palsson
[44] suggested that the space of cofactor production of

(B)

92

X3
Figure 2 Flux cone projection. (A): A small metabolic network.
The reactions in the interesting subnetwork are shown as thick
arrows. (B): The flux cone of this network, shown in light gray, can
be generated by vectors g; and g,. The projected cone is shown in
dark gray. The projected cone can be generated by g; and g3 in a
2D plane. (C): the same metabolic network as in A, but with

reaction 3 removed. The flux cone of this network is generated by
only one vector, namely g;.
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red blood cell can be studied by projecting the cell-scale
metabolic network onto a 2D subspace corresponding to
ATP and NADPH production. A similar approach was
used by Covert et al. [19] and also by Wagner and
Urbanczik [45] to analyze the relationship between car-
bon uptake, oxygen uptake and biomass production. All
the above studies considered very small networks.
Therefore, the authors computed the extreme rays of
the flux cone and then projected them onto the sub-
space of interest, without really projecting the flux cone.
Urbanczik and Wagner [46] later introduced the con-
cept of elementary conversion modes (ECMs), which are
in principle the extreme rays of the cone obtained by
projecting the original flux cone onto the subspace of
boundary reactions. They suggest that the extreme rays
of this “conversion” cone, i.e., the ECMs, can be com-
puted even for large networks [47].

Following this idea, we introduce the ProCEM set
(“Projected Cone Elementary Mode” set), which is the
set of EMs of the projected flux cone. In contrast to
[46], we formulate the problem in a way that any sub-
network can be chosen, not only the boundary reactions.
Additionally, we compare the closely related concepts of
ProCEMs, PEMs and EFPs.

Method and Implementation

Computational Procedure

Our algorithm needs three input objects: the stoichio-
metric matrix S € R”*” of the network is A/, the set of
irreversible reactions Irr € {1, . . ., n}, and the set of
reactions Y, € {1, . . ., n} in the subnetwork of interest,
while as an output it will return the complete set of
ProCEMs. The computation of ProCEMs is achieved in
three main consecutive steps.

Step 1 - Preprocessing: The aim of this step is to
remove inconsistencies from the metabolic network and
to transform it into a form suitable for the projection in
Step 2. First, based on ¥ we sort the columns of S in
the form:

S=(AB) (3)

where the reaction corresponding to the i-th column
belongs to ¥ iff the i-th column is in A. Next, the
blocked reactions [37] are removed. Finally, each of the
reversible reactions is split into two irreversible “for-
ward” and “backward” reactions. The final stoichio-
metric matrix will be in the form:

S = (AB) @

where the columns of A represent the “interesting”
reactions after splitting reversible reactions and remov-
ing the blocked reactions. In the following, we assume
that A (resp. B) has p (resp. gq) columns. Given §’, the
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steady-state flux cone in canonical form will look as fol-
lows

C={(xy) eRM|G-x+H -y <0}, (5)

where matrix G (resp. H) represent the columns to be
kept (resp. eliminated):

—A —B

c-| 2| u-[2 (©)
) Op.q
Oq,p -1y

Here I, denotes the p x p identity matrix, and 0,,, the
p %X q zero matrix.

Step 2 - Cone Projection: In this step, the flux cone
is projected, eliminating the reactions corresponding to
columns in H. Several methods have been proposed in
the literature for the projection of polyhedra [48]. For
our purpose we chose the block elimination method
[49]. This method allows us to find an inequality
description of the projected cone by enumerating the
extreme rays of an intermediary cone called the projec-
tion come. In our case, the projection cone is defined as

W = {w e RZ"P*HT . w=0,w > 0}, (7)

where H” denotes the transpose of H.

We enumerate the extreme rays {r', 7% . . ., ¥} of W
using the double description method [50]. The projected
cone is given by

Px(C)={xcRPIR-G-x <0}, (8)
where
R=('..")T ©)

This representation of the projected cone contains as
many inequalities as there are extreme rays in W, thus a
large number of them might be redundant [48]. These
redundant inequalities are removed next (see below).

Step 3 - Finding ProCEMs: In the final step, the
extreme rays of the projected cone, i.e., the ProCEMs,
are enumerated. Similarly as in Step 2, the double
description method is employed to enumerate the
extreme rays of Px(C).

With the block elimination algorithm, it is also possi-
ble to perform the projection in an iterative manner.
This means that rather than eliminating all the “uninter-
esting” reactions in one step, we can partition these in ¢
subsets and then iteratively execute Step 2, eliminating
every subset of reactions one by one. By proceeding in
this fashion, the intermediary projection cones, W', W?,
..., W* get typically smaller, thus enumerating their
extreme rays requires less memory. On the other side,
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the more sets we partition into, the slower the projec-
tion algorithm usually gets.

Implementation and Computational Experiments

The ProCEM enumeration algorithm has been imple-
mented in MATLAB v7.5. In our implementation,
polco tool v4.7.1 [12,13] is used for the enumeration of
extreme rays (both in Step 2 and 3). For removing
redundant inequalities in Step 2, the redund method
from the Irslib package v4.2 is used [51]. All computa-
tions are performed on a 64-bit Debian Linux system
with Intel Core 2 Duo 3.0 GHz processor. A prototype
implementation is available on request from the
authors.

Dataset

The metabolic network model of red blood cell (RBC)
[44] is used in this study. The network is taken from
the example metabolic networks associated with CellNe-
tAnalyzer [52] and differs slightly from the original
model. Additionally, we studied the plastid metabolic
network of Arabidopsis thaliana [53] (see Additional
file 1). Then, the subnetwork of “sugar and starch meta-
bolism” is selected as the interesting subnetwork of the
plastid metabolic network.

Results and Discussion

Mathematical Relationships among PEMs, EFPs and
ProCEMs

From Table 1, one can observe that the set of ProCEMs
in Figure 1A is included in the set of PEMs. Addition-
ally, the set of EFPs is included in the set of ProCEM
supports. Here, we prove that these two properties are
true in general. This means that the analysis of Pro-
CEMs has at least two advantages compared to the ana-
lysis of EEPs. Firstly, ProCEMs can tell us about the flux
ratio of different reactions in an elementary mode, while
EFPs can only tell us whether the reaction has a non-
zero value in that mode. Secondly, enumeration of Pro-
CEMs may result in modes which cannot be obtained
by EFP analysis.

Theorem 1. In a metabolic network N with irreversi-
ble reactions only, let J (resp. P) be the set of ProCEMs
(resp. PEMs) for a given set of interesting reactions. Then
JE P

Proof. We have to show that for every u € J there
exists an elementary mode e € C in A such that
Px(e) = u. We know that for any u € J there exists
v e Csuch that Px(v) = u.

Any v e C can be written in the form v =Y _, ¢ - €,

1
where e, . . ., ¢" are elementary modes of A and ¢y, . .

.
. ¢, >0. It follows that Px(v) = 3_ ¢ - Px(€").
k=1
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If all the vectors Px(e) are pairwise equivalent, u is a
PEM.

Otherwise, u is a linear combination of at least two
non-equivalent PEMs, which are vectors in Px(C).

This implies that u is not an extreme ray of Px(C), in
contradiction with Lemma 1 in [9] saying that in a
metabolic network with irreversible reactions only, the
EMs are exactly the extreme rays. O

Theorem 2. In a metabolic network N with irreversi-
ble reactions only, let E (resp. ]) be the set of EFPs (resp.
ProCEMs) for a given set of interesting reactions. Then, E
C {supp(u) | ue J.

Proof. Suppose that for some F € E, there exists no v
€ J such that F = supp(v). Since F is an EFP, there exists
p € P such that F = supp(p). It follows p ¢ ], but
p € Px(C), where C is the flux cone. Therefore, there
exist r > 2 different ProCEMs, say u',..., u’ € J, such

.
that p=> ¢ - uk, with ¢; >0 for all k. Since uk > 0, for
k=1

.
all k, we have supp(p) = U supp(u*), with supp(u*) =
k=1
supp(p) for all k. Since supp(u®) is a flux pattern for all

k, this is a contradiction with F being an EFP. D

Computing the Set of EFPs from the Set of ProCEMs
Here, we present a simple algorithm to show that it is
possible to compute the set of EFPs when the set of
ProCEMs is known. Table 2 summarizes this procedure.
We know that the support of every ProCEM u is a flux
pattern Z. In the main procedure, we check whether every
such flux pattern is elementary or not. If Z is not elemen-
tary, then it is equal to the union of some other flux pat-
terns. Therefore, if all other flux patterns which are
subsets of supp(u) are subtracted from Z, this set becomes
empty. This algorithm has the complexity O(ng?), where

Table 2 Algorithm 1: Computing the set of EFPs based
on the set of ProCEMs
Input:
- J (the set of ProCEMs)
Output:
- E (the set of EFPs)
Initialization:
E=g;
Main procedure:

foreach u € J do
Z := supp(u):
foreach v € J do
if supp(v) ¢ supp(u) then
| Z = Z \ supp(v):
end
end
if Z /0 then
| E:=EU{supp(u)}
end
end
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q is the number of ProCEMs and # is the number of
reactions.

Comparing EFPs and ProCEMs

Analysis of Subnetworks in the Metabolic Network of RBC
In order to compare our approach (computation of Pro-
CEMs) with the enumeration of EFPs, we tested these
methods for analysing subnetworks of the RBC model
[44]. Again, we split every reversible reaction into one
forward and one backward irreversible reaction. The
resulting network contains 67 reactions, including 20
boundary reactions, and a total number of 811 EMs. For
comparing the methods, the set of all boundary reac-
tions was considered as the interesting subsystem,
resulting in 502 PEMs.

When we computed the EFPs of this network by EFP-
Tools [43], only 90 EFPs are determined. However, for
the same subnetwork, we computed 252 ProCEMs. This
means that the ProCEMs set covers more than half of
the PEMs, while the EFPs set covers less than one fifth
of the PEMs. These results confirm the relevance of
using ProCEMs for the analysis of subnetworks.

In order to compare the computation of EFPs and
ProCEMs, the following task was performed on the RBC
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model [44]. In each iteration, a random subnetwork
containing r reactions was selected. Then, EFPs and
ProCEMs were computed. The task was repeated for
different subnetwork sizes. The computational results
can be found in Figure 3.

From Figure 3, it can be seen that EFP computation is
faster than ProCEM computation for small subnetworks.
However, when the subnetwork size r increases, compu-
tation of ProCEMs does not become slower, while com-
putation of EFPs significantly slows down. This is an
important observation, because the difference between
the number of EFPs and ProCEMs also increases with r.
Analysis of Subnetworks in the Plastid Metabolic Network
of A. thaliana
ProCEM analysis becomes important when PEMs can-
not be computed. This may happen frequently in the
analysis of large-scale metabolic networks, as memory
consumption is a major challenge in computation of
EMs [12]. In such cases, cone projection might still be
feasible.

As an example, the metabolic network of A. thaliana
plastid was studied (Additional file 1). This network con-
tains 102 metabolites and 123 reactions (205 reactions
after splitting reversible reactions). Using efmtool (and
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also polco) [12], even after specifying 2 GB of memory,
computation of EMs was not possible due to running out
of memory. Therefore, for no subnetwork of the plastid
network, PEMs could be computed. However, if the ana-
lysis is restricted to the 57 reactions involved in sugar
and starch metabolism (see Additional file 1), one can
compute the ProCEMs or EFPs of this subnetwork. We
computed the ProCEMs as described in the Method and
Implementation section, using a projection step size of 5
reactions. The complete set of 1310 ProCEMs was com-
puted in approximately 15 minutes. However, when we
tried to compute the set of EFPs using EFPTools [35,43],
only 279 EFPs were computed after 4 days of running the
program (270 EFPs were computed in the first two days).
On the other hand, using a Matlab implementation of
Algorithm 1, the complete set of 1054 EFPs was obtained
in 30 seconds. In conclusion, in metabolic networks for
which the set of EMs cannot be enumerated, ProCEMs
prove to be a useful concept to get insight into reaction
activities.

Conclusions

In this paper, we introduce the concept of projected
cone elementary modes (ProCEMs). The set of Pro-
CEMs covers more PEMs than EFPs. Therefore, Pro-
CEMs contain more information than EFPs. The set of
ProCEMs is computable without enumerating all EMs.
Is there a bigger set of vectors that covers even more
PEMs and does not require full enumeration of EMs?
This question is yet to be answered. One possible exten-
sion to this work is to use a more efficient implementa-
tion of polyhedral projection. With such an
implementation, analysis of different subnetworks in
genome-scale network models using ProCEMs is an
interesting possibility for further research. For example,
the ProCEMs can be used in the identification of all
pathways with optimal yield [23] and in the analysis of
control-effective fluxes [27].

Additional material

Additional file 1: Plastid metabolic network. In the first tab of this
Excel file, general information about the plastid network of A. thaliana is
mentioned. In the second tab, stoichiometric matrix and the set of
reversible reactions (as a binary vector) is included. In the third tab, the
reactions involved in sugar and starch metabolism are listed.
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