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Abstract

Background: We study the sparsification of dynamic programming based on folding algorithms of RNA structures.
Sparsification is a method that improves significantly the computation of minimum free energy (mfe) RNA structures.

Results: We provide a quantitative analysis of the sparsification of a particular decomposition rule, �∗. This rule splits
an interval of RNA secondary and pseudoknot structures of fixed topological genus. Key for quantifying sparsifications
is the size of the so called candidate sets. Here we assume mfe-structures to be specifically distributed (see
Assumption 1) within arbitrary and irreducible RNA secondary and pseudoknot structures of fixed topological genus.
We then present a combinatorial framework which allows by means of probabilities of irreducible sub-structures to
obtain the expectation of the �∗-candidate set w.r.t. a uniformly random input sequence. We compute these
expectations for arc-based energy models via energy-filtered generating functions (GF) in case of RNA secondary
structures as well as RNA pseudoknot structures. Furthermore, for RNA secondary structures we also analyze a
simplified loop-based energy model. Our combinatorial analysis is then compared to the expected number of
�∗-candidates obtained from the folding mfe-structures. In case of the mfe-folding of RNA secondary structures with
a simplified loop-based energy model our results imply that sparsification provides a significant, constant
improvement of 91% (theory) to be compared to an 96% (experimental, simplified arc-based model) reduction.
However, we do not observe a linear factor improvement. Finally, in case of the “full” loop-energy model we can
report a reduction of 98% (experiment).

Conclusions: Sparsification was initially attributed a linear factor improvement. This conclusion was based on the so
called polymer-zeta property, which stems from interpreting polymer chains as self-avoiding walks. Subsequent
findings however reveal that the O(n) improvement is not correct. The combinatorial analysis presented here shows
that, assuming a specific distribution (see Assumption 1), of mfe-structures within irreducible and arbitrary structures,
the expected number of �∗-candidates is �(n2). However, the constant reduction is quite significant, being in the
range of 96%. We furthermore show an analogous result for the sparsification of the �∗-decomposition rule for RNA
pseudoknotted structures of genus one. Finally we observe that the effect of sparsification is sensitive to the
employed energy model.
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Background
RNA structures, diagrams and genus filtration
An RNA sequence is a linear, oriented sequence of the
nucleotides (bases) A,U,G,C. These sequences “fold” by
establishing bonds between pairs of nucleotides. In this
paper, we only consider the Watson-Crick base pair A-U
or G-C and wobble base pairs U-G. The global confor-
mation of an RNA molecule is determined by topological
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constraints encoded at the level of secondary structure,
i.e., by the mutual arrangements of the base pairs [1].
Secondary structures can be interpreted as (partial)

matchings in a graph of permissible base pairs [2]. They
can be represented as diagrams, i.e. graphs over the ver-
tices 1, . . . , n, drawn on a horizontal line with bonds (arcs)
in the upper half-plane. The length of an arc (i, j) is
denoted by j − i. Furthermore, we call two arc (i, j) and
(r, s) (suppose i < r) cross if i < r < j < s holds. In this
representation one refers to a secondary structure with-
out crossing arcs as a simple secondary structure and
pseudoknot structure, otherwise, see Figure 1.

© 2012 Huang and Reidys; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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Figure 1 RNA structures as planar graphs and diagrams. (A) an RNA secondary structure and (B) an RNA pseudoknot structure.

A diagram is a labeled graph over the vertex set [ n]=
{1, . . . , n} in which each vertex has degree ≤ 3, repre-
sented by drawing its vertices in a horizontal line. The
backbone of a diagram is the sequence of consecutive inte-
gers (1, . . . , n) together with the edges {{i, i + 1} | 1 ≤ i ≤
n− 1}. The arcs of a diagram, (i, j), where i < j, are drawn
in the upper half-plane.We shall distinguish the backbone
edge {i, i+ 1} from the arc (i, i+ 1), which we refer to as a
1-arc. A stack of length � is a maximal sequence of “paral-
lel” arcs, ((i, j), (i + 1, j − 1), . . . , (i + (� − 1), j − (� − 1)))
and is also referred to as a �-stack, see Figure 2.
We shall consider diagrams as fatgraphs, G, that is

graphs G together with a collection of cyclic orderings,
called fattenings. Each fatgraphG determines an oriented
surface F(G) [3,4] which is connected if G is and has
some associated genus g(G) ≥ 0 and number r(G) ≥ 1
of boundary components. Clearly, F(G) contains G as a
deformation retract [5]. Fatgraphs were first applied to
RNA secondary structures in [6,7].
A diagram G hence determines a unique surface F(G)

(with boundary). Filling the boundary components with
discs we can pass from F(G) to a surface without bound-
ary. Euler characteristic, χ , and genus, g, of this surface is
given by χ = v − e + r and g = 1 − 1

2χ , respectively,
where v, e, r is the number of discs, ribbons and boundary
components in G, [5]. The genus of a diagram is that of

its associated surface without boundary and a diagram of
genus g is referred to as g-diagram.
A g-diagram without arcs of the form (i, i + 1) (1-arcs)

is called a g-structure. A g-diagram that contains only ver-
tices of degree three, i.e. does not contain any vertices
not incident to arcs in the upper half-plane, is called a g-
matching. A diagram is called irreducible, if and only if it
cannot be split into two by cutting the backbone without
cutting an arc, see Figure 2.

Folding algorithms
Folded configurations are energetically somewhat opti-
mal. Here energy is obtained by adding contributions of
loops [8] contained in RNA secondary and pseudoknot
structures. Any RNA structure has a unique and disjoint
decomposition into such loops which are really stems
from the fatgraph [9,10] interpretation of such structures
in which loops correspond to boundary components [11].
Additional constraints imply further properties, like for
instance certain minimum arc-length conditions [12] and
the nonexistence of isolated bonds. An mfe-RNA struc-
ture can be predicted in polynomials time by means of
dynamic programming (DP) routines [12,13].
The most commonly used tools predicting simple RNA

secondary structure mfold [13] and the Vienna RNA
Package [14], requireO(n2) space andO(n3) time. In the
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Figure 2 Diagram representation and irreducibility. A diagram over {1, . . . , 55}. The arcs (1, 21) and (11, 33) are crossing and the dashed arc
(9, 10) is a 1-arc which is not allowed. This structure contains 4 stacks with length 7, 4, 6 and 4, from left to right respectively. Irreducibility relative
also to a decomposition rule. The rule �∗ splitting Si,j to Si,k and Sk+1,j , S1,55 is not �∗-irreducible, while S2,40 and S43,55 are. However, for a specific
decomposition rule �, which removes the outmost arc, S43,55 is not �-irreducible while S2,40 is.

following we omit “simple” and refer to secondary struc-
tures containing crossing arcs as pseudoknot structures.
Generalizing the matrices of the DP-routines of sec-

ondary structure folding [13,14] to gap-matrices [15],
leads to a DP-folding of pseudoknotted structures [15]
(pknot-R&E) with O(n4) space an O(n6) time complex-
ity. The following references provide a certainly incom-
plete list of DP-approaches to RNA pseudoknot structure
prediction using various structure classes characterized in
terms of recursion equations and/or stochastic grammars:
[9,15-26]. The most efficient algorithm for pseudoknot
structures is [22] (pknotsRG) having O(n2) space and
O(n4) time complexity. This algorithm however considers
only a restricted class of pseudoknots.
Note that RNA secondary structures are exactly struc-

tures of topological genus zero [27]. The topological clas-
sification of RNA structures [10,11,28] has recently been
translated into an efficient DP-algorithm [9]. Fixing the
topological genus of RNA structures implies that there
are only finitely many types, the so called irreducible
shadows [11].

Sparsification
Let us have a closer look at sparsification and the results
of [29-31]. Sparsification is a method tailored to speed
up DP-algorithms predicting mfe-secondary structures
[29,31]. The idea is to prune certain computation paths
encountered in the DP-recursions, see Figure 3A. Let us
consider the case of RNA secondary structure folding.
Here sparsification reduces the DP-recursion paths to be
based on so called candidates. A candidate is in this case
an interval, for which the optimal solution cannot be writ-
ten as a sum of optimal solutions of sub-intervals. This
implies the structure over a candidate is an “irreducible”
structures when tracing back from the optimal solution.
Considering only these candidates gives the same optimal
solution as considering all possible intervals. The crucial
observation here is that if these irreducibles appear only

at a low rate we have a significant reduction in time and
space complexity.
Sparsification has been also applied in the context of

RNA-RNA interaction structures [30] as well as RNA
pseudoknot structures [32]. In difference to RNA sec-
ondary structures, however, not every decomposition
rule in the DP-folding of RNA pseudoknot structures
is amendable to sparsification. By construction, sparsi-
fication can only be applied for calculating mfe-energy
structures. Since the computation of the partition func-
tion [20,33] needs to take into account all sub-structures,
sparsification does not work.
Sparsification [29,31,32] can be described as follows:

let V = {v1, v2, . . .} be a set whose elements vi are
unions of pairwise disjoint intervals. Let furthermore Lv
denote an optimal solution (here optimal means to max-
imize the scores) of the DP-routine over v. By assump-
tion Lv is recursively obtained. Suppose we are given a
decomposition rule �1, for which the optimal solution
Lv is Lv = Lv1 + Lv2 + Lv3 , where v = v1∪̇v2∪̇v3.
Then, under certain circumstances, the DP-routine may
interpret Lv either as (Lv1 + Lv2) + Lv3 or as Lv1 +
(Lv2 + Lv3), see Figure 3B. To be precise, this situation is
encountered iff

• there exists an optimal solution Lv′1 for a
sub-structure over v′

1 where v′
1 = v1∪̇v2 via �2 and

Lv is obtained from Lv′1 and Lv3 via �1,
• there exists an optimal solution Lv′2 for a

sub-structure over v′
2 where v′

2 = v2∪̇v3 via �3 and
Lv is obtained by Lv1 and Lv′2 via �1.

Given a decomposition

Lv = Lv1 + Lv2︸ ︷︷ ︸
�2

+Lv3

︸ ︷︷ ︸
�1

,



Huang and Reidys Algorithms for Molecular Biology 2012, 7:28 Page 4 of 15
http://www.almob.org/content/7/1/28

(A) (B)
Figure 3 (A) Sparsification of secondary structure folding. Suppose the optimal solution Li,j is obtained from the optimal solutions Li,k , Lk+1,q

and Lq+1,j . Based on the recursions of the secondary structures, Li,k and Lk+1,q produce an optimal solution of Li,q . Similarly, Lk+1,q and Lq+1,j produce
an optimal solution of Lk+1,j . Now, in order to obtain an optimal solution of Li,j it is sufficient to consider either the grouping Li,q and Lq+1,j or Li,k and
Lk+1,j . (B) General idea of sparsification: Lv is alternatively realized via Lv1 and Lv′2 , or Lv′1 and Lv3 . Thus it is sufficient to only consider one of the
computation paths.

we call �2 s-compatible to �1 if there exists a decomposi-
tion rule �3 such that

Lv = Lv1 + Lv2 + Lv3︸ ︷︷ ︸
�3︸ ︷︷ ︸

�1

.

Note that if �2 is s-compatible to �1 then �3 is s-
compatible to �1. To summarize

Definition 1. (s-compatible) Suppose Lv is the optimal
solution for Sv over v, Lv = Lv′1 +Lv3 under decomposition
rule �1. Lv′1 is obtained from two optimal solutions Lv1
and Lv2 under rule �2. Then �2 is called s-compatible to
�1 if there exist some rule �3 such that Lv′2 = Lv2 + Lv3
and Lv = Lv1 + Lv′2 .

Figure 3B depicts two such ways that realize the same
optimal solution Lv. Sparsification prunes any such multi-
ple computations of the same optimal value. Note that by
symmetry, �2 and �3 are both s-compatible to �1.
We next come to the important concept of candidates.

The latter mark the essential computation paths for the
DP-routine.

Definition 2. (Candidates) Suppose Lv is an optimal
solution in a sense of maximizing. We call v is a �-
candidate if for any v1 � v obtained by � and v = v1∪̇v2,
we have

Lv > Lv1 + Lv2
and we shall denote the set of �-candidates set by Q�.

By construction a �-candidate v is a union of dis-
joint intervals such that its optimal solution Lv can-
not be obtained via a �-splitting. This optimal solution

allows to construct a non-unique arc-configuration (sub-
structure) over v [13,14] and the above �-splitting con-
sequently translates into a splitting of this sub-structure.
This connects the notion of �-candidates with that of
sub-structures and shows that a �-candidate implies a
sub-structure that is �-irreducible.

Lemma 1. [29,32] Suppose Lv is obtained by select-
ing the optimal solution from the decomposition rules
�1,�2, . . . ,�n. If � is s-compatible to all �i,∀1 ≤ i ≤ n,
then Lv can be obtained via �-candidates.

In summary, as for the impact of sparsification, [29]
claims that sparsification reduces the time complexity by
a linear factor. This claim is based on the assumption that
RNA molecules satisfy the polymer-zeta property [29].
Subsequent studies draw a slightly different picture [31]
concluding that that sparsification requires O(nZ) time,
where n denotes the length of input sequence, and Z is
a sparsity parameter satisfying n ≤ Z < n2. Recently, it
has been shown in [34] that an asymptotic time complex-
ity of a sparsified RNA folding algorithm using standard
energy parameters remains O(n3) under a wide variety of
condition.

Sparsification of RNA secondary structures
Here we recall some results of [29,31] on the sparsifica-
tion of RNA secondary structures. Secondary structures
satisfy a simple recursion which gives the optimal (max-
imum) solution over [ i, j] by Li,j = max{Vi,j,Wi,j}, where
Vi,j denotes the optimal solution in which (i, j) is a base
pair, and Wi,j denotes the optimal solution obtained by
adding the optimal solutions of two subsequent intervals,
respectively. Note that the optimal solution over a single
vertex is denoted by Li,i. We have the recursion equation
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for Vi,j andWi,j:

(�1) Vi,j = Li+1,j−1 + w(i, j),

(�2) Wi,j = max
i<k<j

{Li,k + Lk+1,j},

where w(i, j) is the energy contribution of (i, j) forming a
base pair, see Figure 4. In case two positions, i, j in the
sequence are incompatible then we have w(i, j) = −∞.
An interval [ i, j] is a �∗-candidate if the optimal solu-

tion over [ i, j] is given by Li,j = Vi,j > Wi,j. Indeed, [ i, j]
is a candidate iff [ i, j] is in the candidate set of �∗, and
we denote the set Q�∗ by Q. Suppose the optimal solution
Wi,j is given by Wi,j = Li,q + Lq+1,j and suppose we have
Li,q = Li,k + Lk+1,q. Then since [ i, q] is not a candidate,
Lemma 1 shows that we can computeWi,j = Li,k + Lk+1,j,
where [ i, k] is a candidate.

Sparsification on RNA pseudoknot structures
Sparsification can also be applied to the DP-algorithm
folding RNA structures with pseudoknots [32]. In contrast
to the decomposition rule �∗ that spliced an interval into
two subsequent intervals, we encounter in the grammar
for pseudoknotted structures additional more complex
decomposition rules [15]. As shown in [32] there exist
some decomposition rules which are not s-compatible
and which can accordingly not be sparsified at all, see
Figure 5B. For instance, given a decomposition rule � in
pknot-R&E subsequent decomposition rules which are
s-compatible to � are referred to as split type of � [32].
In the following we will study RNA pseudoknot struc-

tures of fixed topological genus, see RNA structures,
diagrams and genus filtration for details. An algorithm
folding such pseudoknot structures, gfold, has been pre-
sented in [9]. The decomposition rules that appear in
gfold are reminiscent to those of pknot-R&E but as
they restrict the genus of sub-structures, the iteration of
gap-matrices is severely restricted and the effect of sparsi-
fication of these decompositions is significantly smaller.
In the following, we restrict our analysis in pseudo-

knotted structures to only the decomposition rule �∗,
which splices an interval into two subsequent intervals.

Put differently, �∗ cuts the backbone of an RNA pseudo-
knot structure of fixed genus g over one interval without
cutting a bond.

Efficiency of sparsification
By construction, the fewer candidates the DP-routine
encounters, the more efficient the sparsification. Thus it
is of utmost importance to analyze the number of can-
didates. In the case of sparsification of RNA secondary
structures we have one basic decomposition rule �∗ act-
ing on intervals, namely �∗ splices an interval into two
disjoint, subsequent intervals. The implied notion of a�∗-
irreducible sub-structure is that of a sub-structure nested
in amaximal arc, wheremaximal refers to the partial order
of two arcs (i, j) ≤ (i′, j′) iff i′ ≤ i ∧ j ≤ j′. This observa-
tion relates irreducibility to nesting of arcs and following
this line of thought [29] identifies a specific property of
polymer-chains introduced in [35,36] to be of relevance
for the size of candidate sets:

Definition 3. (Polymer-zeta property) Let P(i, j)
denote the probability of a structure over an interval [ i, j]
under some decomposition rule �. Then we say � fol-
lows the polymer-zeta property if P(i, j) = b m−c for some
constant b, c > 0 andm = j − i.

Polymer-zeta comes from modeling the 2D-folding of
a polymer chain as a self-avoiding walk (SAW) in a 2D
lattice [37]. It implies that the probability of a base pair
(i, j) depends only on the length of the arc, i.e. P(i, j) =
P(m), where m = j − i. In [29] stipulate that RNA
molecules satisfy the polymer-zeta property and approx-
imate P(i, j) by P(m) = bm−c [29] using 50, 000 mRNA
sequences of an average length of 1992 nucleotides [38].
They find b ≈ 2.11 and c ≈ 1.47. The average prob-
ability P(m) is displayed in Figure 4, Page 865 [29] for
increasing m. Furthermore, it is implied via Figure six,
Page 867 [29] that the average number of candidates
converges to a constant, implying that sparsification
of DP-routine folding secondary structure takes �(n2)
time complexity.

max

WVL max { {
V L W { L L

Figure 4 The recursion solving the optimal solution for secondary structures.
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(A) (B) (C)
Figure 5 Decomposition rules for pseudoknot structures of fixed genus (decomposed into three colors). (A) three decompositions via the
rule �∗ , which is s-compatible to itself. (B) three decomposition rules �1,�2,�3 where �2,�3 are s-compatible to �1. (C) three decomposition
rules �1,�2,�3 where �2,�3 are not s-compatible to �1.

These findings have been questioned by [34], where it
has been observed that the time complexity of a sparsi-
fied RNA folding algorithm based on energyminimization
remains O(n3) independently of the energy function used
and the base composition of the RNA sequence. [34]
argues that the significant effect of sparsification on the
DP-routine is largely a finite-size effect. Namely, when the
sequence length is below some threshold, the algorithm is
dominated by the quadratic time factor. In this context, it
may be worth pointing out that In [31] noticed that the
improvement of a sparsified base-pairing maximization
algorithm depends heavily on the base composition of the
input. Backofen parameterizes explicitly the cardinality of
candidate sets in [31].

Contribution
In this paper we study the sparsification of the
decomposition rule �∗ [31,32] for RNA secondary and
RNA pseudoknot structures of fixed topological genus.
Based on Assumption 1 below our paper provides a
combinatorial framework for quantifying the effects of
sparsification of the �∗ rule.
We shall prove that the candidate set [29,31,32] is indeed

small. We compute the probability of an interval being
a candidate for two different energy models. For both
models, this is facilitated via computing the generating
function (GF) of structures and the generating function
of irreducible structures. By studying the asymptotics of
coefficients in these generating functions, we can compute
the expected number of candidates of a uniformly ran-
dom input sequence for large n. We show similar results
for RNA pseudoknot structures of fixed topological genus.
This provides new insights into the improvements of the
sparsification of the concatenation-rule �∗ in the pres-
ence of cross serial interactions. Our observations com-
plement the detailed analysis of Backofen [31,32]. We
show that although for pseudoknot structures of fixed
topological genus [10,11] the effect of sparsification on the
global time complexity is still unclear, the decomposition
rule that splits an interval can be sped up significantly.

Methods
Suppose w is an energy function for RNA structures. Let
wδ(σ ) denote the energy of an RNA structure σ over a
sequence δ. The partition function of δ is given by

Q(δ) =
∑
σ

e
wδ (σ )

RT ,

where R is the universal gas constant and T is the temper-
ature. (Here we consider wδ(σ ) as a positive score.) The
partition function induces a probability space in which the
probability of a structure σ is

Pδ(σ ) = e
wδ (σ )

RT

Q(δ)
.

The concept of a partition function is close to that
of a generating function. In case of ewδ(σ )/RT = 1, i.e.,
each structure contributes equally regardless the underly-
ing sequence and the partition function equals [ zn]G(z),
where G is the generating function and [ zn]G is the
coefficient of the term zn.
Two important energy models are arc-based [39] and

loop-based [8], respectively. The loop-based energy-
filtration is different from the notion of “stickiness” [40].
The compatibility of two positions by folding random
sequences is considered to be 6/16, reminiscent of the
probability of two given positions to be compatible by
Watson-Crick and Wobble base pairs rules.

Assumption 1. Let

W (σ ) =
(

6
16

)�

ηw(σ ),

where η > 1 is a constant, w(σ ) is the energy value
assigned to σ based on a given energy model and � is
the number of arcs contained in σ . Then the probability
of a particular structure σ to be the mfe-structure of a
uniformly random input sequence is

P(σ ) = W (σ )∑
σ ′ W (σ ′)

. (1)
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Asymptotics
In this section we compute two generating functions and
their singular expansions [11]. Let cg(n) and dg(n) denote
the number of g-matchings and g-structures having n arcs
and n vertices, respectively, with GF

Cg(z) =
∞∑
n=0

cg(n)zn Dg(z) =
∞∑
n=0

dg(n)zn.

The GF Cg(z) has been computed in the context of the
virtual Euler characteristic of the moduli-space of curves
in [41] and Dg(z) can be derived from Cg(z) by means
of symbolic enumeration [11]. The GF of genus zero dia-
grams C0(z) is well-known to be the GF of the Catalan
numbers, i.e., the numbers of triangulations of a polygon
with (n + 2) sides,

C0(z) = 1 − √
1 − 4z
2z

.

As for g ≥ 1 we have the following situation [11]

Theorem 1. Suppose g ≥ 1. Then the following asser-
tions hold

(a) Dg(z) is algebraic and

Dg(z) = 1
z2 − z + 1

Cg

(
z2(

z2 − z + 1
)2

)
. (2)

In particular, z2/(z2 − z + 1)2 = 1/4 is the only
dominant singularity of Dg(z). we have for some
constant ag depending only on g and γ ≈ 2.618:

[ zn]Dg(z) ∼ ag n3(g−
1
2 )γ n. (3)

(b) The bivariate GF of g-structures over n vertices,
containing exactly m arcs, Eg(z, t), is given by

Eg(z, t) = 1
tz2 − z + 1

Dg

(
t z2

(t z2 − z + 1)2

)
. (4)

Irreducible g-structures
In the context of �∗-candidates we observed that irre-
ducible sub-structures are of key importance. It is accord-
ingly of relevance to understand the combinatorics of
these structures. To this end let D∗

g (z) = ∑∞
n=0 d

∗
g (n)zn

denote the GF of irreducible g-structures.

Lemma 2. For g ≥ 0, the GFD∗
g (z) satisfies the recursion

D∗
0(z) = 1 − 1

D0(z)

D∗
g (z) = − (D∗

0(z) − 1)Dg(z) + ∑g−1
g1=1D∗

g1(z)Dg−g1(z)
D0(z)

.

For a proof of Lemma 2, see Section Proofs.

Theorem 2. For g ≥ 1 we have

(a) the GF of irreducible g-structures over n vertices is
given by

D∗
g (z) = (z2−z+1)

(
Ug(u)

(1 − 4u)3g− 1
2

+ Vg(u)

(1 − 4u)3g−1

)
,

(5)

where u = z2
(z2−z+1)2 , Ug(z) and Vg(z) are both

polynomials with lowest degree at least 2g, and
Ug(1/4), Vg(1/4) 
= 0. In particular, for some
constant a∗

g > 0 and γ ≈ 2.618:

D∗
g (n) ∼ a∗

gn
3
(
g− 1

2

)
γ n. (6)

(b) the bivariate GF of irreducible g-structures over n
vertices, containing exactly m arcs, E∗

g (z, t), is given
by

E∗
g (z, t)=(tz2−z+1)

(
Ug(v)

(1 − 4v)3g− 1
2

+ Vg(v)
(1 − 4v)3g−1

)
,

(7)

where v = tz2
(tz2−z+1)2 .

We shall postpone the proof of Theorem 2 to
Section Proofs.

Themain result
Nussinov-like energymodel
In the following we mimic some form of mfe-g-structures:
inspired by the Nussinov energy model [39] we consider
the weight of a g-structure over n vertices σg,n to be
given by w(σg,n) = c�, where c is a constant contribu-
tion of a single arc and � is the number of arcs in σg,n
[40]. Then by Assumption 1, we have the weight function
W (σg,n) = (6/16)�ηc� = ((6/16)ηc)�. Note that the case
(6/16)ηc = 1 corresponds to the uniform distribution,
i.e. all g-structure have identical weight.
This approach requires to keep track of the number of

arcs, i.e. we need to employ bivariate GF. In Theorem 1
(b) we computed this bivariate GF and in Theorem 2
(b) we derived from this bivariate GF E∗

g (z, t), the GF of
irreducible g-structures over n vertices containing � arcs.
The idea now is to substitute for the second indetermi-

nant, t, some fixed τ = (6/16)ηc ∈ R. This substitution
induces the formal power series

Dg,τ (z) = Eg(z, τ),

which we regard as being parameterized by τ . Obviously,
setting τ = 1 we recover Dg(z), i.e. we have Dg(z) =
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Dg,1(z) = Eg(z, 1). Note that for τ > 1/4, the polynomial
τz2 − z+ 1 has no real root. Thus we have for τ > 1/4 the
asymptotics

dg,τ (n) ∼ ag,τn
3
(
g− 1

2

)
γ n
τ and d∗

g,τ (n) ∼ a∗
g,τn

3
(
g− 1

2

)
γ n
τ ,

(8)

with identical exponential growth rates as long as the
supercritical paradigm [42] applies, i.e. as long as γτ , the
real root of minimal modulus of(

τ z2

(τ z2 − z + 1)2

)
= 1

4
,

is smaller than any singularity of 1
τz2−z+1 . In this situation

τ affects the constant ag,τ and the exponential growth rate
γτ but not the sub-exponential factor n3(g− 1

2 ). The latter
stems from the singular expansion of Cg(z). Analogously,
we derive the τ -parameterized family of GF D∗

g,τ (z) =
E∗
g (z, τ). We set the contribution of a single arc c = 1

and the constant η = e, where e is the Euler number.
Then we have the parameter τ = (6/16)e1 ≈ 1.0125. By
abuse of notation we will omit the subscript τ assuming
τ = (6/16)e1.
The main result of this section is that the set of �∗-

candidates is a small proportion of all entries. To put this
size into context we note that the total number of entries
considered for the �∗-decomposition rule is given by

M(n) =
n∑

m=1
(n − m + 1).

Theorem3. Suppose anmfe-g-structure over an interval
of length m is irreducible with probability d∗

g (m)/dg(m),

then the expected number of candidates of g-structures for
sequences of lengths n satisfies

Eg(n) = �(n2)

and furthermore, setting Eg(n) = Eg(n)/M(n) we have

Eg(n) ∼ d∗
g (n)/dg(n) ∼ bg ,

where bg > 0 is a constant.

We provide an illustration of Theorem 3 in Figure 6.

Proof. We proof the theorem by quantifying the proba-
bility of [ i, j] being a �∗-candidate. In this case any (not
necessarily unique) sub-structure, realizing the optimal
solution Li,j, is �∗-irreducible, and therefore an irre-
ducible structure over [ i, j].
Letm = (j − i + 1), by assumption, the probability that

[ i, j] is a candidate conditional to the existence of a sub-
structure over [ i, j] is given by

P∗
(
[ i, j] |[ i, j] is a candidate) = d∗

g (m)

dg(m)
, (9)

Note thatP∗
(
[ i, j] |[ i, j] is a candidate) does not depend

on the relative location of the interval but only on the
interval-length. Let Pg(m) = d∗

g (m)/dg(m), then accord-
ing to Theorem 1,

(1 − ε)agm
3
(
g− 1

2

)
γm ≤ dg(m) ≤ (1 + ε)agm

3
(
g− 1

2

)
γm,

(1 − ε)a∗
gm

3
(
g− 1

2

)
γm ≤ d∗

g (m) ≤ (1 + ε)a∗
gm

3
(
g− 1

2

)
γm,

nn

E (n)E (n)0 1

(A) (B)
Figure 6 The expected number of candidates for secondary and 1-structures from an random input with a simplified arc-based energy
model, E0(n) and E1(n): we compute the expected number of candidates obtained by folding 100 random sequences for secondary
structures (A)(solid) and 1-structures (B)(solid).We also display the theoretical expectations implied by Theorem 3 (A)(dashed) and (B)(dashed).
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for m ≥ m0 where m0 > 0 and 0 < ε < 1 are constants.
On the one hand

Pg(m) = d∗
g (m)

dg(m)
≤ (1 + ε)a∗

gm
3
(
g− 1

2

)
γm

(1 − ε)agm
3
(
g− 1

2

)
γm

= (1 + ε′)
a∗
g

ag

= (1 + ε′)bg ,
(10)

where bg = ag/a∗
g > 0 is a constant. On the other hand,

we have

Pg(m) = d∗
g (m)

dg(m)
≥ (1 − ε)a∗

gm
3
(
g− 1

2

)
γm

(1 + ε)agm
3
(
g− 1

2

)
γm

= (1 − ε′′)
a∗
g

ag

= (1 − ε′′)bg .
(11)

Setting ε = max{ε′, ε′′}, we can conclude that Pg(m) ∼
d∗
g (m)/dg(m), see Figure 7.
We next study the expected number of candidates over

an interval of lengthm. To this end let

Xm = |{[ i, j] |[ i, j] is a �∗-candidate of lengthm }|.

The expected cardinality of the set of �∗-candidates of
lengthm = (j− i+ 1) encountered in the DP-algorithm is
given by

Eg(Xm) ≤ (n − (m − 1))Pg(m),

since there are n − (m − 1) starting points for such an
interval [ i, j]. Therefore, by linearity of expectation, for
sufficiently largem > m0, Pg(m) ≤ (1+ ε)bg with ε being
a small constant. Thus we have

Eg(n) = Eg

(∑
m

Xm

)
≤

m0∑
m=1

(n−m+1)Pg(m)+(1 + ε)bg

n∑
m=m0

(n − m + 1).

(12)
Consequently, the expected size of the �∗-candidate set

is �(n2). We proceed by comparing the expected number
of candidates of a sequence with length n withM(n),

Eg(n)

M(n)
≤

∑m0
m=1(n−m+1)Pg(m)+(1+ε)bg

∑n
m=m0(n−m+1)∑n

m=1(n−m+1)

≤ (1 + ε)bg +
∑m0

m=1(Pg(m) − (1 + ε)bg)(n − m + 1)∑n
m=1(n − m + 1)

≤ (1 + ε)bg + k · n
n2

.

For sufficient large n ≥ n0, Eg(n)/M(n) ≤ (1 + ε′)bg .
Furthermore
Eg(n)

M(n)
≥

∑m0
m=1(n−m+1)Pg(m)+(1−ε)bg

∑n
m=m0(n−m+1)∑n

m=1(n−m+1)

≥ (1 − ε)bg ,

from which we can conclude Eg (n)/M(n) ∼ d∗
g (m)/

dg(m) ∼ bg and the theorem is proved.

Loop-based energymodel
In this section we discuss the loop-based energy model of
RNA secondary structure folding. To be precise we evoke
here trivariate GFs F(z, t, v) and F∗(z, t, v) whose coeffi-
cients counting the numbers of secondary structures and
irreducible secondary structures over n vertices having �

arcs and energy j, respectively. This becomes necessary
since the loop-based model distinguishes between arcs

(A) (B)
mm

P (m)P (m)0 1

Figure 7 The probability distribution of P0(m) (A) and P1(m) (B) on a simplified arc-based energy model.
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and energy. The “cancelation” effect or reparameterization
of stickiness [40] to which we referred to before does not
appear in this context. Thus we need both an arc- as well
as an energy-filtration.
A further complication emerges. In difference to the GFs

Eg(z, t) and E∗
g (z, t) the new GFs are not simply obtained

by formally substituting (tz2/((tz2−z+1)2) into the power
series Dg(z) and D∗

g (z) as bivariate terms. The more com-
plicated energy model requires a specific recursion for
irreducible secondary structures.
The energy model used in prediction of secondary

structure is more complicated than the simple arc-based
energy model. Loops which are formed by arcs as well
as isolated vertices between the arcs are considered to
give energy contribution. Loops are categorized as hair-
pin loops (no nested arcs), interior loops (including bulge
loops and stacks) and multi-loops (more than two arcs
nested), see Figure 8. An arbitrary secondary structure can
be uniquely decomposed into a collection of mutually dis-
joint loops. A result of the particular energy parameters
[8] is that the energy model prefers interior loops, in par-
ticular stacks (no isolated vertex between two parallel arc),
and disfavors multi-loops. Based on this observation, we
give a simplified energy model for a loop λ contained in
secondary structure which only depends on the loop types
by

• w(λ) = 0.5 if λ is a hairpin loop,
• w(λ) = 1 if λ is an interior loop,
• w(λ) = −5 if λ is a multi-loop,

where λ is a loop in a structure. The energy for a secondary
structure σ accordingly is given by

w(σ ) =
∑
λ∈σ

w(λ). (13)

Let F∗
0(z) and F0(z) be the energy-filtered GFs obtained

by setting t = 6/16 and v = η = e in F∗(z, t, v) and
F(z, t, v), where e is the Euler number. Then

fn =
∑
σ

(
6
16

)�

ew(σ ) =
∑
σ

W (σ ),

f∗n =
∑
σ ′

(
6
16

)�′

ew(σ ′) =
∑
σ ′

W (σ ′),

where σ is an arbitary and σ ′ is an irreducible sec-
ondary structure. Along these lines, �, �′ denote the
number of arcs in σ and σ ′. In other words, what hap-
pens here is that we find a suitable parameterization
which brings us back to a simple univariate GF whose
coefficients count the sum of weights of structures over
n vertices.

Lemma 3. The energy-filtered generating function of
RNA secondary structures, F∗

0(z), satisfies the recursion

F∗
0(z) = 6

16
e0.5z2

z
1 − z

+ 6
16

e1z2
(

1
1 − z

)2
F∗
0(z)

+ 6
16

e−5z2

(
F∗
0(z)

1
1−z

)2
1 − F∗

0(z)
1

1−z

1
1 − z

.

(14)

and F∗(z) is uniquely determined by the above equation.
Furthermore

F0(z) = 1
1 − z

1
1 − F∗

0(z)
1

1−z
. (15)

Proof. We first consider the GF F∗
0(z) whose coefficient

of zn denotes the total weight of irreducible secondary
structures over n vertices, where (1, n) is an arc. Thus it
gives a term 6/16z2. Isolated vertex lead to the term

zp
∞∑
i=0

zi = zp
1

1 − z
,

where p denotes the minimum number of isolated vertices
to be inserted. Depending on the types of loops formed by
(i, n), we have

• hairpin loops: z
1−z ,

• interior loops: F∗
0(z)

(
1

1−z

)2
,

• multi-loops: there are at least two irreducible
sub-structures, as well as isolated vertices, thus

1
1 − z

∞∑
i=2

(
F∗
0(z)

1
1 − z

)i
=

(
F∗
0(z)

1
1−z

)2
1 − F∗

0(z)
1

1−z

1
1 − z

.

... ... ...
(A) (B) (C)

Figure 8 Diagram representation of loop types in secondary structures: (A) hairpin loop, (B) interior loop, (C) multi-loop.
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Considering the contributions from the energy model we
compute

F∗
0(z) = 6

16

⎛
⎜⎝e0.5z2

z
1 − z

+ e1z2
(

1
1 − z

)2
F∗
0(z)

+ e−5z2

(
F∗
0(z)

1
1−z

)2
1 − F∗

0(z)
1

1−z

1
1 − z

⎞
⎟⎠ ,

which establishes the recursion. The uniqueness of the
solution as a power series follows from the fact that each
coefficient can evidently be recursively computed.
An arbitrary secondary structure can be considered

as a sequence of irreducible sub-structures with certain
intervals of isolated vertices. Thus

F0(z) = 1
1 − z

∞∑
i=0

1
1 − z

F∗
0(z) = 1

1 − z
1

1 − F∗
0(z)

1
1−z

.

Lemma 4. F∗
0(z) and F0(z) have the same singular

expansion.

f∗0(n) ∼ αn− 3
2 γ n, and f0(n) ∼ βn− 3

2 γ n, (16)

where α ≈ 0.24 and β ≈ 2.88 are constants and γ ≈
2.1673

Proof. Solving eq. 14 we obtain a unique solution
for F∗

0(z) whose coefficient are all positive. Observ-
ing the dominant singularity of F∗

0(z) is ρ ≈ 0.4614.
F0(z) is a function of F∗

0(z) and we examine the
real root of minimal modulus of 1 − F∗

0(z)
1

1−z = 0 is

bigger than ρ. Then by the supercritical paradigm
[42] applying, F0(z) and F∗

0(z) have identical expo-
nential growth rates. Furthermore, F∗

0(z) and F0(z)
have the same sub-exponential factor n− 3

2 , hence the
lemma.

Theorem 4. Suppose an mfe-secondary structure over
an interval of length m is irreducible with probability
P0(m) = f∗0(m)

f0(m)
, then the expected number of candidates

from a random sequence of length n with a simplified
loop-based energy model is

E0(n) = �(n2)

and furthermore, setting Eg(n) = Eg(n)/M(n), we have

E0(n) ∼ f∗0(n)/f0(n) ∼ b,

where b = α/β ≈ 0.08.

Proof. By Lemma 4 we have f∗0(m)/f0(m) ∼ b where b
is a constant. The proof is completely analogous to that of
Theorem 3.

We show the distribution of P0(m) and E0(n) in
Figure 9.

Conclusion
In this paper we quantify the effect of sparsification of
the rule �∗. This rule splits intervals and separates con-
catenated sub-structures. The sparsification of �∗ alone
is claimed to provide a speed up of up to a linear fac-
tor of the DP-folding of RNA secondary structures [29].

(A) (B)
nm

P (m)0 E (n)0

Figure 9 The distribution of P0(m) (A) and E0(n) obtained by folding 100 random sequences on the loop-basedmodel (B)(solid), as well
as the theoretical expectation implied by Theorem 4 (B)(dashed).
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A similar conclusion is drawn in [30] where the spar-
sification of RNA-RNA interaction structures is shown
to experience also a linear reduction in time complexity.
Both papers [29,30] base their conclusion on the valid-
ity of the polymer-zeta property. However, [34] comes to
a different conclusion reporting a mere constant reduc-
tion in time complexity. While �∗ is the key for the time
complexity reduction of secondary structure folding, it
is conceivable that for pseudoknot structures there may
exist non-sparsifiable rules in which case the overall time
complexity is not reduced.
In any case, the key is the set of candidates and we

provide an analysis of �∗-candidates by combinatorial
means. In general, the connection between candidates,
i.e. unions of disjoint intervals and the combinatorics of
structures is actually established by the algorithm itself via
backtracking: at the end of the DP-algorithm a structure
is being generated that realizes the previously computed
energy as mfe-structure. This connects intervals and sub-
structures.
So, does the condition c > 1 in polymer-zeta apply

in the context of RNA structures? In fact this condition
would follow if the intervals in question are distributed
as in uniformly sampled structures. This however, is far
from reasonable, due to the fact that the mfe-algorithm
deliberately designs some mfe-structure over the given
interval. What the algorithm produces is in fact antag-
onistic to uniform sampling. We here wish to acknowl-
edge the help of one anonymous referee in clarifying this
point.
Our results imply that polymer-zeta does not hold.

Our framework critically depends on a specific distri-
bution of mfe structures within irreducible and arbi-
trary structures, explicated in Assumption 1. We have
cross-checked Assumption 1 with the number of can-
didates in DP-programs (using the same energy model),
see Figure 7 and Figure 9. With this conclusion we are
in accord with [31,34] but provide an entirely different
approach.
The non validity of polymer-zeta has also been observed

in the context of the limit distribution of the 5’-3’ distances
of RNA secondary structures [43]. Here it is observed
that long arcs, to be precise arcs of lengths O(n) always
exist. This is of course a contradiction to the polymer-zeta
property in case of c > 1.
The key to quantification of the expected number of

candidates is the singularity analysis of a pair of energy-
filtered GF, namely that of a class of structures and
that of the subclass of all such structures that are irre-
ducible. We show that for various energy models the
singular expansions of both these functions are essen-
tially equal–modulo some constant. This implies that the
expected number of candidates is �(n2) and all constants
can explicitly be computed from a detailed singularity

analysis. The good news is that depending on the energy
model, a significant constant reduction, around 96% can
be obtained. This is in accordance with data produced
in [31] for the mfe-folding of random sequences. There
a reduction by 98% is reported for sequences of length
≥ 500.
Our findings are of relevance for numerous results, that

are formulated in terms of sizes of candidate sets [32].
These can now be quantified. It is certainly of inter-
est to devise a full fledged analysis of the loop-based
energy model. While these computations are far from
easy our framework shows how to perform such an
analysis.
Using the paradigm of gap-matrices Backofen has

shown [32] that the sparsification of the DP-folding of
RNA pseudoknot structures exhibits additional instances,
where sparsification can be applied, see Figure 5B. Our
results show that the expected number of candidates is
�(n2), where the constant reduction is around 90%. This
is in fact very good new since the sequence length in the
context of RNA pseudoknot structure folding is in the
order of hundreds of nucleotides. So sparsification of fur-
ther instances does have an significant impact on the time
complexity of the folding.

Proofs
In this section, we prove Lemma 2 and Theorem 2.
Proof for Lemma 2: let D(z,u) and D∗(z,u) be

the bivariate GF D(z,u) = ∑
n≥0

∑� n
2 �

g=0 dg(n)znug , and

D∗(z,u) = ∑
n≥1

∑� n
2 �

g=0 d
∗
g (n)znug . Suppose a structure

contains exactly j irreducible structures, then

D(z,u) =
∑
j≥0

R(z,u)j = 1
1 − R(z,u)

(17)

and

D∗
g (z) =[ug]D∗(z,u) = −[ug]

1
D(z,u)

, g ≥ 1, (18)

as well as D∗
0(z) = 1− [u0] 1

D(z,u)
. Let F(z,u) = ∑

n≥0∑
g≥0 fg (n) zn ug = 1

D(z,u)
. Then F (z,u)D (z,u) = 1,

whence for g ≥ 1,

g∑
g1=0

Fg1(z)Dg−g1(z) =[ug]F(z,u)D(z,u) = 0, (19)

and F0(z)D0(z) = 1, where Fg(z) = ∑
n≥0 fg(n)zn =

[ug]F(z,u) = [ug] 1
D(z,u)

. Furthermore, we have F0(z) =
1

D0(z) and

Fg(z) = −
∑g−1

g1=0 Fg1(z)Dg−g1(z)
D0(z)

, g ≥ 1, (20)
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which implies D∗
0(z) = 1 − F0(z) = 1 − 1

D0(z) and

D∗
g (z) = −Fg(z)

= − (D∗
0(z) − 1)Dg(z) + ∑g−1

g1=1D∗
g1(z)Dg−g1(z)

D0(z)
.

(21)

Proof for Theorem 2 Let [ n]k denote the set of com-
positions of n having k parts, i.e. for σ ∈[ n]k we have
σ = (σ1, . . . , σk) and

∑k
i=1 σi = n.

Claim.

D∗
g+1(z) = Dg+1(z)

D0(z)2
+

g−1∑
j=0

(−1)g+2−j

D0(z)g+2−j

×
⎛
⎝ ∑

σ∈[g+1]g+1−j

g+1−j∏
i=1

Dσi(z)

⎞
⎠ .

(22)

We shall prove the claim by induction on g. For g = 1
we have

D∗
1(x) = D1(z)

(D0(z))2
, (23)

whence eq. (22) holds for g = 1. By induction hypoth-
esis, we may now assume that for j ≤ g, eq. (22) holds.
According to Lemma 2, we have

D∗
g+1(z) = − (D∗

0(z)−1)Dg+1(z)+∑g
g1=1D∗

g1(z)Dg+1−g1(z)
D0(z)

= Dg+1(z)
D0(z)2

−
g∑

g1=1

⎛
⎝Dg1(z)
D0(z)3

+
g1−2∑
j=0

(−1)g1+1−j

D0(z)g1+2−j

×
⎛
⎝ ∑

σ∈[g1]g1−j

g1−j∏
i=1

Dσi(z)

⎞
⎠

⎞
⎠Dg+1−g1(z).

We next observe

−
g∑

g1=1

Dg1(z)
D0(z)3

Dg+1−g1(z)

= (−1)g+2−(g−1)

D0(z)g+2−(g−1)

⎛
⎝ ∑

σ ′∈[g+1]g+1−(g−1)

g+1−(g−1)∏
i=1

Dσ ′
i
(z)

⎞
⎠ ,

(24)

and setting h = g1 − j we obtain,

−
g∑

g1=1

g1−2∑
j=0

(−1)g1+1−j

D0(z)g1+2−j

⎛
⎝ ∑

σ∈[g1]g1−j

g1−j∏
i=1

Dσi(z)

⎞
⎠Dg+1−g1(z)

=
g∑

g1=1

g1∑
h=2

(−1)h+2

D0(z)h+2

⎛
⎝ ∑

σ∈[g1]h

h∏
i=1

Dσi(z)

⎞
⎠Dg+1−g1(z)

=
g∑

h=2

(−1)h+2

D0(z)h+2

⎛
⎝ g∑

g1=h

⎛
⎝ ∑

σ∈[g1]h

h∏
i=1

Dσi(z)

⎞
⎠Dg+1−g1(z)

⎞
⎠

=
g∑

h=2

(−1)h+2

D0(z)h+2

⎛
⎝ ∑

σ ′∈[g+1]h+1

h+1∏
i=1

Dσ ′
i
(z)

⎞
⎠

and setting j = g − h

=
g−2∑
j=0

(−1)g+2−j

D0(z)g+2−j

⎛
⎝ ∑

σ ′∈[g+1]g+1−j

g+1−j∏
i=1

Dσ ′
i
(z)

⎞
⎠ .

Consequently, the Claim holds for any g ≥ 1.
For any g ≥ 1, we have [11]

Dg(z) = 1
z2 − z + 1

Pg(u)

(1 − 4u)3g−1/2 ,

D0(z) = 1
z2 − z + 1

2
(1 + √

1 − 4u)
,

where Pg(u) is a polynomial with integral coefficients of
degree at most (3g−1), Pg(1/4) 
= 0, [u2g]Pg(u) 
= 0 and
[uh]Pg(u) = 0 for 0 ≤ h ≤ 2g − 1. Let u = z2

(z2−z+1)2 , the
Claim provides in this context the following interpretation
of D∗

g (z)

1
z2 − z + 1

D∗
g (z) = Pg(u)

(1 − 4u)3g−1/2

(
1 + √

1 − 4u
2

)2

+
g−2∑
j=0

(
−1 + √

1 − 4u
2

)g+1−j

×
∑

σ∈[g]g−j

∏g−j
i=1 Pσi(u)

(1 − 4u)3g−
g−j
2

,

(25)
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and
g−2∑
j=0

(
−1 + √

1 − 4u
2

)g+1−j ∑
σ∈[g]g−j

∏g−j
i=1 Pσi(u)

(1 − 4u)3g−
g−j
2

=
g−2∑
j=0

g+1−j∑
k=0

(
−1
2

)g+1−j(g+1 − j
k

)∑
σ∈[g]g−j

∏g−j
i=1 Pσi(u)

(1 − 4u)3g−
g−j+k

2

=
g−2∑
j=0

2g+1−2j∑
s=g−j

(
−1
2

)g+1−j(g+1−j
s−g+j

)∑
σ∈[g]g−j

∏g−j
i=1 Pσi(u)

(1−4u)3g− s
2

.

As 0 ≤ j ≤ g − 2 and g − j ≤ s ≤ 2g + 1 − 2j, we have
s ≥ 2. Consequently we arrive at

1
z2 − z + 1

D∗
g (z) = Ug(u)

(1 − 4u)3g−1/2 + Vg(u)

(1 − 4u)3g−1 ,

(26)

where

Ug(u) = Pg(u)

4
+ Pg(u)(1 − 4u)

4
+

g−2∑
j=0

∑
g−j≤s≤2g+1−2j

s is odd

×
(

−1
2

)g+1−j (g + 1 − j
s − g + j

) ⎛
⎝ ∑

σ∈[g]g−j

g−j∏
i=1

Pσi(u)

⎞
⎠

× (1 − 4u)
s−1
2 ,

and

Vg(u) = Pg(u)

2
+

(
−1
2

)3
⎛
⎝ ∑

σ∈[g]2

2∏
i=1

Pσi(u)

⎞
⎠+ 3

(
−1
2

)3

×
⎛
⎝ ∑

σ∈[g]2

2∏
i=1

Pσi(u)

⎞
⎠ (1 − 4u) +

g−3∑
j=0

∑
g−j≤s≤2g+1−2j

s is even

×
(

−1
2

)g+1−j (g + 1 − j
s − g + j

) ⎛
⎝ ∑

σ∈[g]g−j

g−j∏
i=1

Pσi(u)

⎞
⎠

× (1 − 4u)
s−2
2 .

We have for σ ∈[ g]k , k ≥ 1

[uh]

⎛
⎝ ∑

σ∈[g]k

k∏
i=1

Pσi(u)

⎞
⎠ =

∑
σ∈[g]k

k∏
i=1

[uhi ]Pσi(u),

where
∑k

i=1 hi = h, hi ≥ 0. Then we obtain that

[uh]

⎛
⎝ ∑

σ∈[g]k

k∏
i=1

Pσi(u)

⎞
⎠ = 0, 0 ≤ h ≤ 2g − 1. (27)

Since [uhi ]Pσi(u) = 0, hi ≤ 2σi − 1, [u2σi ]Pσi(u) 
= 0 and∑k
i=1 σi = g. Thus for 0 ≤ h ≤ 2g − 1,

[uh]Ug(u) = 0 and [uh]Vg(u) = 0. (28)

As shown in [11] we have

Pg(1/4) = �
(
g − 1/6

)
�

(
g + 1/2

)
�

(
g + 1/6

)
9g4−g

6π3/2�
(
g + 1

)
(29)

and we obtain Ug(1/4) = Pg(1/4)/4. Furthermore,

Vg(1/4) = Pg(1/4)
2

+
(

−1
2

)3
⎛
⎝ ∑

σ∈[g]2

2∏
i=1

Pσi(1/4)

⎞
⎠

= 1
8

⎛
⎝4Pg(1/4) −

g−1∑
j=1

Pj(1/4)Pg−j(1/4)

⎞
⎠ 
= 0.

We can recruit the computation of [11] in order to
observe 4Pg(1/4) − ∑g−1

j=1 Pj(1/4)Pg−j(1/4) 
= 0. In order
to compute the bivariate GF, E∗

g (z, t), we only need to
replace in eq. (22) Dg(z) by Eg(z, t) and the proof is
completely analogous.
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