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Abstract

Background: Because of the large volume of data and the intrinsic variation of data intensity observed in
microarray experiments, different statistical methods have been used to systematically extract biological information
and to quantify the associated uncertainty. The simplest method to identify differentially expressed genes is to
evaluate the ratio of average intensities in two different conditions and consider all genes that differ by more than
an arbitrary cut-off value to be differentially expressed. This filtering approach is not a statistical test and there is
no associated value that can indicate the level of confidence in the designation of genes as differentially expressed
or not differentially expressed. At the same time the fold change by itself provide valuable information and it is
important to find unambiguous ways of using this information in expression data treatment.

Results: A new method of finding differentially expressed genes, called distributional fold change (DFC) test is
introduced. The method is based on an analysis of the intensity distribution of all microarray probe sets mapped
to a three dimensional feature space composed of average expression level, average difference of gene expression
and total variance. The proposed method allows one to rank each feature based on the signal-to-noise ratio and to
ascertain for each feature the confidence level and power for being differentially expressed. The performance of
the new method was evaluated using the total and partial area under receiver operating curves and tested on 11
data sets from Gene Omnibus Database with independently verified differentially expressed genes and compared
with the t-test and shrinkage t-test. Overall the DFC test performed the best – on average it had higher sensitivity
and partial AUC and its elevation was most prominent in the low range of differentially expressed features,
typical for formalin-fixed paraffin-embedded sample sets.

Conclusions: The distributional fold change test is an effective method for finding and ranking differentially
expressed probesets on microarrays. The application of this test is advantageous to data sets using formalin-fixed
paraffin-embedded samples or other systems where degradation effects diminish the applicability of correlation
adjusted methods to the whole feature set.
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Background
The development of technology over the past two dec-
ades has established microarrays as a standard tool for
genomic research and discovery [1,2]. Nowadays, scien-
tists can simultaneously measure the expression of tens
of thousands of genes from an experimental sample and
identify those genes, which demonstrate a significant
change in expression level under the impact of certain
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experimental conditions. Numerous methods have been
proposed to determine differentially expressed genes
(DEGs), see, for example [2-9] and references cited
therein. In the majority of cases, the utility of these
methods was demonstrated by application to the analysis
of expression levels of RNA extracted from fresh frozen
(FF) tissue samples. However, clinical genomic research
is often focused on retrospective studies, utilizing arch-
ival samples stored in formalin-fixed and paraffin-
embedded (FFPE) blocksa. By nature of the fixation
method, FFPE samples are partially degraded and
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contain low amounts of total RNA ([10] and references
therein for more details) leading to increased expression
variability [10,11]. This RNA degradation is dependent
on a number of factors, including fixation protocol, stor-
age time and storage conditions with the resulting vari-
ability introducing a number of challenges for gene
expression studies [10,11]. Apart from high technical
variance, FFPE samples typically exhibit low gene expres-
sion intensities and a compression of fold change across
experimental groups relative to matched FF samples (see,
for example [11]), thereby compromising the ability to
detect DEGs in samples preserved in this manner. Add-
itionally, RNA transcripts from FFPE samples degrade at
different rates and to different levels [11-13], which can
introduce false negative and false positive correlations
between the expression levels of genes. These differential
degradation effects impede the direct application of cor-
relation adjusted methods [14,15] to FFPE samples, and
a pre-selection of the most stable (decaying at the same
rate) genes should be considered [12]. Therefore, the
development of a method dedicated to the analysis of
RNA differential expression from FFPE samples is neces-
sary to support the many studies attempting to make dis-
coveries from the wealth of FFPE archival material
available. The absence of such a method is especially sur-
prising in the view of enormous improvement of the
methods and protocols for the extraction of RNA from
FFPE samples in recent years [16].
In order to shrink the large technical variance inherent

in expression levels measured from FFPE tissue samples,
one should have enough samples, Ns >> 1. Typically
microarrays have very large number of probesets Np > 104

[17]. Therefore FFPE-derived gene expression experiments
fall within the Np >> Ns >> 1 paradigm, with the asso-
ciated complications for subsequent analysis [18]. If we
assume that asymptotically, Np → ∞, we may then intro-
duce a dependence of distributions of variables such
as fold change and total variance on the expression level
and develop an approach where the significance of a gene’s
differential expression estimation accounts for its expres-
sion level.
Compression of the expression distribution in FFPE

samples towards the lower side [10,11] necessitates a
DEG selection method that work equally well with fea-
tures at any expression level. Spanning the full expres-
sion scale will enable the selection of features with low
expressions (typically comprising the main distribution
of features in FFPE samples) and with high expressions.
Summarizing the requirements for successful DEG se-

lection method for FFPE sample sets, we can say that it
should work with reasonable number of samples Ns >> 1,
pick up DEGs equally well at any expression level and be
not bounded to specific pre-processing method. The same
requirements are actually applicable to successive method
working with samples obtained by any preservation
method, be it FF or FFPE or some other [19,20].
In the following paper, we will use term feature, instead

of probeset, transcript, gene, or protein, to emphasize
that the methodology presented has general applicability.
This paper presents the description of a method, called

the distributional fold change (DFC) test, which is based
on the analysis of the distribution of intensities of all fea-
tures on a microarray mapped to a three dimensional
feature space composed of the average difference of gene
expression (logarithm of fold change), total variance and
average expression level. It introduces a score based on
signal-to-noise ratio that can be used for accurate rank-
ing of DEGs independently of the expression range they
come from – high, medium or low, which is extremely
important for DEGs from FFPE samples. It also allows
the introduction of a statistical (and expression
dependent) threshold for the fold change and in this way
removes one of the drawbacks of standard methods of
filtering based on fold change – the arbitrariness of a
cut-off value.
We evaluate the performance of the new ranking

method by comparison with the standard t-test
(selected as a basic reference test) and with shrinkage
CAT-test [7,14], which was shown [7] (see also [9]) to
be a good representative of the set of methods [4-6]
developed to stabilize gene expression variance. Account
of variance in the data is very important for FFPE data
sets and in the performance evaluation of DFC test we
limited our comparison to only these tests. Extended
comparison of AUC values obtained by DFC test with
those from t-test based methods [4-7] and fold change
based tests [9] is provided in Additional file 1. The
MATLAB source code of the DFC test program is pro-
vided in Additional file 2.
Data sets with established DEGs were selected for test-

ing as these had been previously used for comparison of
different methods for detecting differential expression
[8,9]. We limited our comparison to such real life data
sets in order to exclude any possibility of bias that could
foster the advantage of DFC test.
Methods
Distributional fold change test: general approach
In a two class comparison setting, the purpose of the
DFC test is to remove features based on the analysis of
difference between the average expressions in Class 1
and Class 2 respectively:

d ¼ E X1½ � � E X2½ � ð1Þ

Here X = log2(I), logarithm to base 2 of intensity I. Vari-
able d is also called as logFC because of its close
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connection with the logarithm of fold change, which is
usually defined as the ratio of mean intensities:

FC ¼ E I1½ �
E I2½ � ð2Þ

The connection between FC and d is FC = 2d when
expression variances in both classes are close (and/or
when expectations in (2) are replaced by medians).
First, we assume that the log transformed intensities

have independent normal distributions and therefore
their means μ1 = E[X1] and μ2 = E[X2] and d, as
their difference, also have normal distributions. The
variance of d can then be estimated as a sum of
variances var(μ1) and var(μ2):

vs dð Þ ¼ v μ1ð Þ þ v μ2ð Þ ¼ vs X1ð Þ
N1

þ vs X2ð Þ
N2

; ð3Þ

where Ni is the number of samples in the corresponding
class. It is generally accepted that, for small sample sizes,
traditional estimation of variance can be inaccurate and
therefore needs a stabilizing correction. We apply a min-
imal correction approach and use the following ansatz:

vs Xjμð Þ ¼ 1
N

XN
i¼1

Xi � X
� �2 þ v0 μð Þ

 !

¼ N � 1
N

v Xð Þ þ 1
N
vEE μð Þ: ð4Þ

Here vEE is an average variance of unregulated features
having (nearly) the same expression (see eq. (9) below for
definition of vEE ). Note that definition (4) extrapolates the
variance from standard unbiased definition of variance
when v Xð Þ ¼ vEE μð Þ and is equivalent to the definition
from likelihoodmaximization when v Xð Þ >> vEE μð Þ. More
complicated shrinkage approaches can be applied to im-
prove test performance on data sets with very small sam-
ple size < 10.
The analysis of microarray gene expression data has

shown that distributions of d and total and internal var-
iances are expression dependent (Figure 1). We will use
a simple approximation of these dependencies as de-
pendence on the mean expression μ = (μ1 + μ2)/2 only.
Next, we suppose that all features on a microarray can

be considered as a mixture of unregulated (equally
expressed) and regulated (differentially expressed) fea-
tures. We will also suppose, for simplicity, that the
logFC distribution of unregulated features d0 at each
expression level, μ, can be described by normal distribu-

tion N d0 ¼ 0; v0 μð Þ ¼ σ0 μð Þ2� �
.

We are interested in finding features that are signifi-
cantly different from unregulated features. Therefore we
test the null hypothesis, that the centre of feature’s logFC
distribution coincides with the centre of unregulated
features distribution: d μð Þ ¼ d0 μð Þ. Note that this test is
different from the testing hypothesis of μ1 – μ2 = 0 by
account of the null (unregulated) logFC distribution,
which is supposed to be known and independent from
the distribution of regulated features (variance of the
null distribution is further defined in the next section,
see eq. (12)). A test statistic for evaluating the signifi-
cance level of each feature with respect to this hypothesis
is defined as statistics of the DFC-score:

Zd ¼ d μð Þ � d0 μð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vs d μj Þ þ v0ðμð Þp : ð5Þ

This statistic is an intermediate between the normal
Z-statistic and T-statistic because of the presence of the
variance of null features logFC distribution, which is
expected to be (almost) independent of the sample size.
Note that this definition of significance level statistic is
similar to those of moderated t-statistics, used in a series
of papers on variance stabilization [7] (and references
cited therein), but principally differs from them in that
the additional term v0(μ) in variance is defined not
through the variance of mean internal variance, but
mainly through the variance of null features logFC dis-
tribution and only to a limited extent through the fea-
tures’ internal variance.
Even without knowing the exact statistic for the DFC-

score, it can be used for ranking features and selection
of a fixed number, or best fraction of features with high-
est score.

Null (unregulated) features distribution and
variance threshold
Previously we supposed that we knew the properties of
the null features distribution. Here we consider how one
can establish them.
As mentioned previously, the log fold change d and

total variance vT depend on average expression μ. We
suppose that the number of features is large and enough
to accurately define these dependences, which will be
exact in the limit Np → ∞.
Consider features in a slice (μ – Δμ/2, μ + Δμ/2)

of three dimensional space of log fold change d, log
total variance log2vT and average expression μ. With the
assumption of Np → ∞, this slice can be made infini-
tesimally thin. The two– dimensional probability distri-
bution f(log2vT, d | μ) is used below to find the
expectation of log variance LV = log2vT, conditioned on
the value of log fold change. According to our assumption,
the unconditional distribution function can be considered
as a mixture of unregulated (EE: equally expressed) and
regulated (DE: differentially expressed) features

f LV ; d μj Þ ¼ πfDE LV ; d μj Þ þ 1� πð ÞfEE LV ; d μj Þ:ððð ð6Þ



Figure 1 Distribution of features in the two-dimensional space of log2(variance) and average expression. Data for two different pre-
processing methods: MAS5 – left panel and RMA – right panel from data set GSE6011 (see Table 1) consisting of 37 samples. Blue line provides
the mean E[μ |log2(vT)] under fixed variance and red line the mean E[log2(vT) | μ] under fixed average expression. The following colour scheme
is used for plotting 2D distribution: green – minimum (0), yellow – maximum. Bright yellow spots therefore indicate high density location of
features. On each panel, marginalized distribution of features over variance is shown on the left side and marginalized distribution over average
expression is shown at the bottom of the panel.
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Here π is prior probability of a feature to be differen-
tially expressed and is supposed to be very small, π <<1.
For unregulated features the probability distribution can
be written as a product of two marginal distributions

fEE LV ; d μj Þ ¼ f MEE LV μj Þ � f MEE d μj Þ:ð�� ð7Þ

Here and below f MDE;EE djμð Þ ¼
Z1
�1

fDE;EE LV 0; djμð ÞdLV 0

and f MDE;EE LV jμð Þ ¼
Z1
�1

fDE;EE LV ;Δjμð ÞdΔ:. Using (7) and

notation

FDE;EE LV ; djμð Þ ¼
ZLV
�1

fDE;EE LV 0; djμð ÞdLV 0;

we can rewrite eq. (6) in integral form

f MEE djμð Þ ¼ F LV ; djμð Þ

1� πð Þ
ZLV
�1

f MEE LV 0jμð ÞdLV 0

� 1þ π

1� π

FDE LV ; djμð Þ
FEE LV ; d> jμð Þ

� ��1

: ð8Þ

The relationship (8) can be simplified if we find such
LV and d values, at which FDE(LV, d|μ) < or ≈ FEE(LV,
d|μ) and therefore with account of π <<1 one can
replace the expression in curly brackets by 1. In
Additional file 1 it is shown that this can be done for
some range of |d| around d = 0 and LV < LVTh(μ), with
the threshold value defined as

LVTh ¼ log2vEE ¼ E½LV d ¼ 0; μj �: ð9Þ

In this range the eq. (8) can be reduced to

f MEE djμð Þ∝
ZLVTh

0

f LV ; djμð ÞdLV : ð10Þ

We will suppose that approximation (10) holds for all
d values, that is for all d and all log2vT < LVTh(μ) the
distribution function f(LV, d|μ) ≈ fEE(LV, d|μ). The thresh-
old (9) is an approximate way to separate a subset of
unregulated (null) features:

d0 μð Þf g : log2vT < LVTh μð Þ; ð11Þ

and can be used as a boundary to set up a variance
filter. Its application to remove null features is shown
in Figure 2. We supposed in previous section that
fEE
M (d|μ) ~ N(0, σ0(μ)

2). Basing on approximation (10)
and using the definition (11) the dependence σ0(μ) can
be estimatedb from fit

N 0; σ0 μð Þ2� �
∝
ZLVTh

0

f ðLV ; d μj ÞdLV : ð12Þ



Figure 2 Application of an expression dependent threshold (14). Scatterplot of features in the two-dimensional space of log2(variance),
average expression for two different pre-processing methods: MAS5 – left panel and RMA – right panel. Data from data set GSE6011 (see Table 1)
consisting of 37 samples. Blue dot represent features satisfying condition (11) and therefore considered as coming from null distribution. Green
points represent features having total variance above expression dependent threshold and considered as non-nulls. On each panel, marginalized
distributions of all and non-null features over variance is shown on the left side and marginalized distribution of all and non-null features over
average expression is shown at the bottom of the panel.
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Significance level and power for testing each
individual feature
The standard deviation σ0(μ) reflects the expression
dependence of the unregulated features probability
distribution and together with significance parameter α
(for Type I error) can now be used to set expres-
sion dependent threshold on the absolute value of
the logFC

Δ1Th α; μð Þ ¼ σ0 μð ÞΦ�1 1� α=2ð Þ ð13Þ

Here Φ−1 is normal inverse cumulative distribution
function. Below this threshold, all features are consid-
ered as having insufficient evidence for differential ex-
pression at the confidence level α. As this is specified for
the null distribution obtained from analysis of all
features on a microarray with nearly the same expres-
sion that is through sharing information across these
features, the parameter α indicates the significance level
of taking multiple testing into account. For α = 1 the
threshold (13) turns to 0 and no information about
multiple testing is included into finding differentially
expressed features.
To define a power (probability of not committing

Type II error) of detecting a DE feature, we calculate
from eq.(3) standard deviation of d

s μð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vs X1jμð Þ

N1
þ vs X2jμð Þ

N2

s
ð14Þ
and use Student’s t(d(μ)/s(μ),DF) distribution with degrees
of freedom DF,

DF ¼ vs1=N1 þ vs2=N2ð Þ2
vs1=N1ð Þ2
N1�1 þ vs2=N2ð Þ2

N2�1

; ð15Þ

as an alternative distribution to impose statistical power
requirements. Only features with power at least equal to
1− βTh above a level specified by the significance α shall
pass the filter:

Δ2Th βTh; μ
� � ¼ s μð ÞT�1 1� βTh;DF

� �
ð16:aÞ

dD μð Þf g : logFCj j > Δ1Th α; μð Þ þ Δ2Th βTh; μ
� �� �

\ log2vT > LVTh μð Þð Þ: ð16:bÞ
Here T –1 is Student's t inverse cumulative distribution

function. Note that in the definition of non-null features
{dD(μ)}, the requirement for the variance to be above the
threshold is also included in order to reflect that condi-
tion (11) was used to define properties of null features
distribution. The condition is not directly required and
is optional in software implementationc.
Strictly speaking in (16.a) we should not assume that d

(μ)/s(μ) follows the Student’s t-distribution as stabilized
variances (4) are used to calculate s(μ) (14), but keeping
in mind that Welch’s definition of degrees of freedom
(15) is an approximate solution of Behrens-Fisher prob-
lem [21] and that correction (4) is small except in rare
cases of very small number of samples, we suppose that
the t-distribution is a sufficient approximation.
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The information obtained here can be used to cal-
culate the power (of testing feature for being DE) con-
ditional on significance level α, for selected features. For
|log FC| > Δ1Th(α, μ):

βðd αj Þ ¼ 1� T
dj j � Δ1Th α; μð Þ

s dð Þ ;DF

	 

: ð17Þ

Here T is Student's t cumulative distribution function.
Note that conditions (16) can be transferred onto a
requirement for fold change conditional power:

β djαð Þ < βTh
� � \ dj j > Δ1Th α; μð Þð Þ \ log2vT > LVThð Þ

ð18Þ

Thus the DFC filter incorporates three different statis-
tical filters: the multiple testing based threshold through
parameter α, the t-test conditioned on the values of α
through parameter β and the variance filter. Compared
with a traditional fold change filter where the threshold
is arbitrarily selected, the DFC threshold is defined by
the features significance level and conditional power and
depends on the properties of a particular data set. This
method has the advantage of being self-adjusting
through the accurate estimation of the unregulated fea-
tures distribution d0 and taking into account the d(μ)
distribution of regulated features thus providing an op-
tion to impose power requirements. The two signifi-
cance parameters, α and β, allow for a controlled tuning
of filtering threshold.
When α = 1, the method is reduced to the selection of

features by a standard t-test with threshold pTh = 2βTh
combined with variance filter; when βTh = 0.5 (and α <
1) the method is reduced to selection based on the
‘Unusual Ratio’ variant of fold change method (see, for
example, [2]) with internal definition of the null feature
distribution. There is no need in setting restrictive values
for α and β, standard settings α = 0.05 and β = 0.2
should be sufficient as their intention is to remove un-
regulated features. Once the (α, βTh) selection criteria
are applied and unregulated features removed, ranking
of differentially expressed features can be performed by
DFC score (5) and used for selecting best subset of dif-
ferentially expressed features.

Evaluation method
To evaluate the performance of the DFC algorithm, we
use the receiver operating characteristic (ROC) curve
[22]. This is a graphical plot of the parametric depend-
ence of the fraction of true positives τ = true positive
rate (TPR) on the fraction of false positives η = false
positive rate (FPR) as the number of features predicted to
be differentially expressed (K or, equivalently, ν = K/Np),
varies. For a given range of η or τ, one ROC curve is
better than another if it is lying to the northwest (τ is
higher for fixed η, or η is lower for fixed τ) of the first.
We use the area under ROC curve (AUC):

AUC ¼
Z1
0

τ ηð Þdη ð19Þ

as one of criteria for comparison, because it has an
important statistical property: the AUC of a test is
equivalent to the probability that the test will rank a ran-
domly chosen positive instance higher than a randomly
chosen negative instance [23]. AUCs and ROC curves
have been used in some previous works for comparison
of different feature selection tests see, for examples
[7-9], and are standard metrics used for the evalu-
ation and comparison of diagnostic tests.
The number of features on a microarray Np is usually

extremely large (Np > 104) and is much higher that the
number of true DEGs NT, (less than 100 for data sets
listed in Table 1) Np >> NT. This is even more valid for
data sets from FFPE samples (see also section Back-
ground). Therefore, when dealing with FF and FFPE
sample sets of much higher interest is accessing per-
formance of an algorithm relative to the ideal one, for
only a small fraction

1=Np << v << 1 ð20Þ
of best features selected by a method (say up to ν ~ 0.05,
which for the HG-U133A microarray would correspond
to ~ 1000 features). Taking into account the relation

v ¼ η 1� NT=Np
� �þ τ NT=Np

� �
;

one can also use η to estimate ν (or vice versa), unless η
drops to values below ~0.001.
It is possible for a high-AUC test to perform worse

than a low-AUC test in a specific region of ROC space.
In our case, for evaluation of a method working well also
with FFPE sample sets, the range (20) of small ν and η is
of highest interest. Here, a more appropriate parameter
is partial AUC [22], which is defined as an area under
ROC curve when integration in (19) is carried out
only up to η: pAUC(η) =

R
0
ητ(η ')dη '. For an ideal re-

ceiver τ(η) = 1, therefore pAUCideal(η) = η and the pAUC
of a method, standardized on the pAUC of ideal receiver
will be:

SPA ηð Þ ¼ 1
η

Zη
0

τ η0ð Þdη0 ð21Þ

We use standardized partial area (SPA) curves and
their ratios as the main criteria for comparison. Note
that standardized partial area SPA ≤ SPA(1) = AUC and



Table 1 Data sets from GEO database

N GEO data set Experiment summary/Title NA NB NPC NKa

1 GSE8441 Study of whether inadequate protein intake differentially affects skeletal
muscle transcript levels and expression profiles in older adults [24]

11 11 9 5

2 GSE9499 DNA methyltransferase 3B (DNMT3B) mutations in ICF syndrome [25] 15 7 77 6

3 GSE2638 and 2639 GSE2639: HUVEC were left untreated or stimulated for 5h with 2 ng/ml
TNF. Comparsion of the gene profiles revealed TNF-mediated gene
expression changes in HUVEC [26]. Study TNF stimulated vs controls.

7 7 13 8

4 GSE2638 and 2639 GSE2638: HMEC cultures were left untreated or stimulated for 5h with
2 ng/ml TNF. Comparison of the gene expression profiles revealed the
TNF-mediated gene expression changes [26]. Study HMEC vs HUVEC

3 4 16 9

5 GSE3860 Comparison of Hutchinson–Gilford Progeria Syndrome fibroblast cell
lines to control fibroblast cell lines [27].

9 9 8 11

6 GSE6344 Gene expression in Stage 1,2 Normal and Tumor kidney cancer [28] 10 10 19 15

7 GSE7765 Dioxin-induced gene expression changes in MCF-7 human breast
cancer cells [29]

3 3 13 18

8 GSE6740_1 Comparison of transcriptional profiles of CD4+ and CD8+ T cells from
HIV-infected patients and uninfected control group [30]. Study of
CD4+ T cells

10 10 40 24

9 GSE6740_2 Comparison of transcriptional profiles of CD4+ and CD8+ T cells from
HIV-infected patients and uninfected control group [30]. Study of
CD8+ T cells

10 10 62 25

10 GSE6011 Expression data from quadriceps muscle of young DMD patients and
age matched controls [31]

14 23 10 30

11 GSE2531 Total RNA from two commonly used choriocarcinoma cell lines,
JEG3 and BeWo, are compared in this experiment to identify
differentially expressed transcripts [32].

3 4 17 36

Total NP 284

Data sets from GEO database [33], used for testing efficiency of DFC test. Samples in all data sets were profiled on Affymetrix GeneChip HG-U133A microarrays
with 22283 probesets. Shortcuts: NA – number of samples in condition A, NB – number of samples in condition B, NPC – number of probesets checked by RT PCR.
Total number of probesets, checked by RT PCR is 284. For easy access for data set’s detailed information we provide in the last column NKa – data set’s number in
the description file of ref [9].
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its value shows how close the performance of a method
is to the performance of an ideal method in the range of
FPR [0, η]. SPA can be also considered as the average
TPR over the same range [0, η]. We use both AUC and
SPA to assess the performance of the DFC test.
In typical for FFPE data sets situations where Np >>

NT, ROC curves on a normal scale (η) are of little use
and are much more informative on logarithmic scale;
hence we present our result on log10η scale.
Results
Data sets
We evaluated the performance of the DFC test using 11
publicly available Homo sapiens microarray data sets,
listed in Table 1, each of which have had a portion of
discovered DEGs experimentally validated by a real-time
polymerase chain reaction (RT-PCR). They are chosen
from FF sample sets, listed and described in Ref. [9].
The selection of experimental data sets was based on the
requirement that total number of DEGs confirmed by
RT-PCR should be above ~10 (see Additional file 1 for
details of subset selection). Having a large number (>>1)
of verified DEGsd is important for building representa-
tive ROC curves and for the estimation of area and par-
tial area under ROC curves.
It is known [8] that the majority of true DEGs verified

by RT-PCR in experimental studies on FF samples tend
to have high expression levels. This was also exploited in
some feature selection methods [9]. The DFC method is
designed to pick up DEGs independent of their expres-
sion level and therefore should work in these as well as
in FFPE data sets where the expression values tend to be
comparatively lower.
Following [8,9] we consider that the evaluation of

results based on real experimental data sets should take
precedence over those based on artificial data sets.
Therefore analysis of the test performance is based on
real-world experimental data sets only.
There are several methods available for pre-processing

data profiled on Affymetrix microarrays [1,34]. We used
Affymetrix Expression Console with standard settings to
apply two of the most frequently used pre-processing
methods: MAS5 [35,36], which is designed to work on a
single chip basis, and RMA [37,38], a multiarray-based
approach. As can be seen from Figure 1, these two
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methods provide very different distributions of features
in expression – variance space and we considered it
sufficient to concentrate only on these two methods.

Evaluation
Within the DFC algorithm, features are ranked on the
basis of the Zd score (5) and their relevance to differen-
tial expression is assessed using two criteria (13,16): fold
change should have an appropriate significance level < α
and power > 1 – βTh. The latter two are complemented
by requirement that variance should be above a specified
threshold. To create continuous ROC curves we set α = 1
and βTh = 0.5 and ranked features using Zd p-values,
calculated based on the assumption that Zd follows nor-
mal distributione. Specific values of α and βTh define
starting point on the curve and their selection is equiva-
lent to setting appropriate cut-off p-values. For t- and
shrinkage t- test this is typically done by controlling the
false discovery rate.
Our aim is to develop and check performance of a test

for systems where technical variation is large (such as
FFPE samples sets) and assessment of reliability of
detecting differential expression is of extreme import-
ance. Therefore we compared the performance of the
DFC test with t-test based methods: the standard t-test
and with the CAT-test [14] with the ‘diagonal’ optionf.
This option is equivalent [14] to shrinkage t-test [7],
which was shown [7,9] (see also Additional file 1) to per-
form similarly to other variance stabilization derivatives
of the t-test [4-6], and can be considered as their repre-
sentative. The ordinary t-test is provided as a reference
for the improvement of any t-test based method, which
DFC test and CAT test clearly are. According to [7] the
ordinary t statistic shows average though never optimal
performance (regardless of the variance structure across
features). Detailed comparison of AUCs for DFC test
and a set of t-test based methods [4-7], as well as with
fold change test and its ad hoc modification weighted
average difference (WAD) [9] method is presented in
the Additional file 1.
The AUC values for MAS5- and RMA-pre-processed

data for the selected experimental data sets (described
in Table 1), are shown in Table 2. One can see that,
on average, the DFC test achieves higher AUCs than the
t-test and shrinkage t-test.
For estimation of the significance of differences in AUC

values we applied a paired-sample single-sided t-test. The
observed AUC values are very close to 1 and conse-
quently, their distributions and distributions of their dif-
ferences cannot be very well approximated by normal
distributions. To obtain a more comprehensive estimation
of the significance of difference, we applied a paired-
sample single sided Wilcoxon signed rank test to AUC
values and paired-sample single sided t-test to logit
transformed AUC values, 0.5⋅ln(AUC/(1-AUC)). The logit
transformation [39] maps the interval (0,1) onto (−∞, +∞)
and makes transformed variables more normally distribu-
ted and therefore t-test better applicable. The results
shown in Table 3 indicate that all differences are signifi-
cant (on a significance level better than 0.05).
One of the most important characteristics of the

method is its ability to find DEGs independently of the
pre-processing method applied to data. This should be
evident from AUC as an overall characteristic of the
test’s performance. Calculation of correlation coefficients
between (logit transformed) AUCs for MAS5 and RMA
pre-processed data (see Table A4 in the Additional file
1) showed that the DFC test has the highest correlation
between AUCs (ρDFC = 0.92), although its prevalence is
not high enough to make it significantly different from
other tests (ρt-test = 0.88 and ρshrinkT = 0.87), with differ-
ences in the correlation coefficients having p-values
above 0.3 (see also Additional file 1 for broader range of
comparisons).
Figure 3 shows ROC and SPA curves for 3 out of 11

analysed data sets, selected to represent different pre-
processing methods and different number of features
proved by RT-PCR. The first data set was pre-processed
with MAS5 and has the highest number of samples. The
other two data sets were pre-processed with RMA and
have a reasonable number of samples and features tested
by RT-PCR. Curves for all data sets are provided in Add-
itional file 1. One can see that independent of the pre-
processing method, the DFC test performs in general
slightly better than CAT(diag) and much better than t-
test. This observation is confirmed when 〈ROC|ν〉 and
〈SPA|ν〉 curves are compared. These curves are obtained
by averaging parametric dependences over all 11 data
sets (indicated by angular brackets) under a fixed frac-
tion ν of top ranked features selected. The dependences
are shown in Figures 4 and 5 by thick lines and the plots
are provided for both pre-processing methods, MAS5
and RMA. To reveal the extent of variance in the data
for each method, Figure 4 also shows thin lines drawn at
half of the standard error above and below the corre-
sponding average curve.
The behaviour of the DFC test ROC and SPA curves

displayed in Figures 4 and 5 agrees with what one would
expect from a test performing better than the standard
t-test on a reasonably sized (more than 10 samples) data
set with ~ 100 differentially expressed features. When a
high fraction of features, ν > 0.5, is taken as differentially
expressed the difference between the DFC test and t-test
is minimal, as both tests remove the most easily detect-
able, non-expressed features. When a very small fraction
of features ν ~ 1/Np is taken as differentially expressed,
resulting in only few features selected, the difference
between the DFC test and t-test will be small again, as



Table 2 AUC performance of DFC test, t-test, and shrinkage t-test

GEO data set Ns AUC for MAS5 pre-processed data AUC for RMA pre-processed data

t-test ShrinkTa DFC t-test ShrinkTa DFC

GSE8441 22 0.92912 0.94404 0.96996 0.91206 0.92842 0.96812

GSE9499 22 0.96425 0.98255 0.98529 0.94735 0.97241 0.9718

GSE2639 14 0.99782 0.99838 0.9987 0.99851 0.99784 0.99896

GSE2638 7 0.79197 0.83621 0.86199 0.75527 0.82421 0.83175

GSE3860 18 0.98986 0.99581 0.99742 0.98647 0.99246 0.99568

GSE6344 20 0.97165 0.98078 0.98854 0.97586 0.98216 0.9889

GSE7765 6 0.96323 0.97846 0.98564 0.96267 0.98146 0.98939

GSE6740_1 20 0.99491 0.99676 0.99701 0.9972 0.99803 0.99803

GSE6740_2 20 0.99115 0.99313 0.99283 0.97599 0.98248 0.98487

GSE6011 37 0.86072 0.8674 0.90942 0.97544 0.98126 0.97892

GSE2531 7 0.91614 0.94288 0.9379 0.93889 0.94368 0.94107

Averageb 0.9718 0.9812 0.9857 0.9745 0.9815 0.9861

AUC performance of DFC test, t-test, and shrinkage t-test on MAS5 and RMA pre-processed data from data sets described in Table 1. Ns is the number of samples
in the set. aShrinkT -test values were calculated with CAT-test [14], option ‘diagonal’. bAverage was calculated for logit transformed AUC values, LTA = 0.5⋅ln(AUC/
(1-AUC)) and then transformed back to AUC scale.
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the differential expression of the few features should be
very strong and can be effectively selected by t-test
alone. One can expect an improvement of DFC over t-
test when dealing with an intermediate range (20).
To quantify the DFC test improvement over t- and

CAT- tests, we calculated the sensitivity ratios
〈τ(DFC)|ν〉 / 〈τ(other)|ν〉 and partial area ratios 〈SPA
(DFC)|ν〉 / 〈SPA(other)|ν〉 as a function of ν (top fraction
of ranked features). These are shown in Figures 6 and 7,
for both pre-processing methods. One can see that the
improvement over the t-test is significant (at the z-test
level of ≤ 0.1) in the most important range (20). This
is true for both the average sensitivity and partial area
increase. Taking into account confidence intervals, the
DFC- test behaviour in MAS5 and RMA pre-processed
data sets is equivalent. Sensitivity 〈τ|ν〉 increase over the
t- test is around 50 ÷ 100% for 0.0003 < ν < 0.001, then
it gradually decreases to ~ 0 % at ν > 0.2 passing through
~ 30% when ν is ~ 0.01. Partial area increase can be
described by nearly the same dependence with the
exception that it decreases gradually to ~ 2% at ν =1.
Improvement of the DFC- test over the CAT-test

is in a narrower region. This can be clearly seen from
Figure 7, where the improvement in the partial area
under ROC curve is significant for ν > 0.0015 only.
Table 3 Significance of differences in AUC

Test MAS5

DFC – t-test

Wilcoxon on AUC 0.0005

t-test on 0.5⋅ln(AUC/(1-AUC)) 3e-5

Paired-sample single sided Wilcoxon test p-values calculated for AUC and paired-sa
0.5×ln(AUC/(1-AUC)).
It decreases from ~30 ÷ 50% to 10% when ν changes
from 0.0015 to 0.01 and then gradually to ~ 1% at ν =1.
Using data represented in Figure 4, one can also cal-

culate the Youden Index (YI), which is the maximum
difference between the true positive and false positive
rates, YI = max(τ(ν)−η(ν)) [22]. The YI ranges between
0 for random test and 1 for an ideal test. The thresh-
old at the point νmax on the ROC curve correspond-
ing to the YI is often taken to be the optimal threshold
(see, for example, [12,22]). Results for YI and νmax =
argmax(τ(ν)−η(ν)) are provided in Table 4 and show
that the DFC test outperforms the shrinkage CAT-test
and t-test. It has the highest YI and the lowest νmax.
All data sets were profiled on Affymetrix GeneChip HG-
U133A microarrays with 22283 probesets. Therefore
the optimal range for the number of features selected by
the t-test is approximately (2.7 ÷ 4) × 104, by CAT-test
approximately (1.8 ÷ 2.7) × 104 and by DFC- test ap-
proximately (0.9 ÷ 2)×104 features.
Discussion
We have proposed a new method for removing non-
differentially expressed features and ranking differen-
tially expressed features from gene expression data.
RMA

DFC – CAT DFC – t-test DFC – CAT

0.0122 0.0005 0.0322

0.0017 3e-4 0.0103

mple single sided t- test p-values calculated for logit transformed AUC, variable



Table 4 Youden Index YI , CI – 80% confidence interval for YI and νmax for DFC-, CAT- and t-test

MAS5 RMA

t-test CAT-test DFC-test t-test CAT-test DFC-test

YI 0.77 0.83 0.84 0.77 0.80 0.83

CI [0.72,0.85] [0.78, 0.88] [0.79, 0.90] [0.72, 0.85] [0.76, 0.87] [0.78, 0.90]

νmax 0.12 0.08 0.04 0.18 0.12 0.09
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It was designed to work with expression data from
microarrays containing large number of features ( Np >
104), allowing one to analyse the distribution of all fea-
tures on a microarray mapped to a three dimensional
space composed of average difference of feature expres-
sion (logarithm of fold change), total variance and
average expression level. A simple approach was intro-
duced to define the expression dependent null features
distribution and to estimate null features expression
dependent average variance (9) and variance of logFC
(12). These dependences are incorporated into the DFC
test score Zd (5) for individual feature, which in this
way explicitly takes into account information about pres-
ence of other features and can be used for accurate fea-
ture ranking.
The definition of the score Zd (5) is similar to moder-

ated t-statistics, used in a series of papers on variance
stabilization ([1,7] and references sited therein), but prin-
cipally differs from them in that the variance stabilization
is defined through the variance of null features logFC
distribution (12) and to a limited extent through the fea-
tures’ internal variance.
The same dependences (9) and (12) were used to

introduce a statistical (and expression dependent)
threshold for the fold change based on specification of
power 1 – β at given significance level α. This method
has the advantage of being self-adjusting through the
accurate estimation of the unregulated features distribu-
tion f(d0) and taking into account the f(d|μ) distributions
of regulated features, thus providing an option to impose
power requirements. The two parameters, α and β, con-
trol Type I and Type II errors and allow for a tuning,
to particular purposes of experiment, of a threshold
(16) below which features are considered as having no
sufficient evidence to be called differentially expressed.
One can show that features passing DFC test all have
(ordinary t-test) p-values below expression dependent
threshold p ≤ pTh (we use notation pTh to distinguish it
from α), which includes correction dependent on prop-
erties of unregulated features distribution

pTh α; βjμð Þ ¼ 2 1� T
σ0 μð Þ
s μð Þ Φ�1 1� α

2

� ���

þT�1ð1� βTh;DF
�
;DF

�� ð22Þ
When α = 1, the method is reduced to selection of fea-
tures by t-test with threshold pTh = 2βTh (combined with
variance filter), when βTh = 0.5 the method is reduced to
selection based on the ‘Unusual Ratio’ variant of fold
change method [2] with an internal definition of null
features distribution. Once the selection criteria (α, βTh)
are applied and the set of unexpressed features removed,
ranking of differentially expressed features can be per-
formed by the DFC score (5).
Standard approaches for multiple test correction

[1,2,18] (and references therein) do not take into ac-
count expression dependence of the threshold (22). This
problem will be considered in a separate publication.
Here we note only that multiplicity correction affects
only the arbitrary threshold choice and does not change
the ranking of features [1]. Ranking of features with
score (5) should be complemented with functional ana-
lysis (see, e.g. [1, chapter 5]) for final reduction of the
number of false positives based on biological grounds.
The definition of the Type II error (17) has some simi-

larity with re-centered t- statistic [40], but differs from
the TREAT method in the way how threshold is defined.
In ref. [40] “a pre-specified threshold (τ) for the log-fold-
change below which differential expression is not
of material interest” [34] is introduced in order to
address the thresholded null hypethesis H0: |d| ≤ τ
against alternative H1: |d| > τ. The relevance of particu-
lar choice (τ=log2(1.1), or τ=log2(1.5) or τ=log2(2) were
used in [40] for three data sets) to particular dataset ac-
tually has to be independently verified, while in our ap-
proach the threshold (13) is 1) expression dependent
and 2) is defined through the significance parameter α
and it fully reflects properties of particular experiment.
Ranking of features in [40] is performed using TREAT
test p-value, which is equivalent to 2β (17) but with re-
placement of Δ1Th(α,μ) by an arbitrary threshold τ . Par-
ameter β (conditional on the value of α (or τ according
to definition in [40])) is good for defining the threshold
(16) above which features differential expression can be
considered as reliably detected, but we believe is not well
suited for ranking of features (see also [41] for a discus-
sion of fold change and p-value cutoffs). The best param-
eter for this purpose is signal-to-noise ratio Zd (5) and
as it is shown in the paper and Additional file 1 it out-
performs ranking by moderated t- test statistics and fold
change based methods.



Figure 3 Receiver operating characteristic curves (left panel) and standardized partial AUC curves (right panel) for different data
sets. Upper row – data sets GSE6011, 37 samples, MAS5 pre-processing, 10 true DEGs, middle row – data sets GSE6344, 20 samples, RMA
pre-processing, 19 true DEGs and lower row – data sets GSE 6740, 20 samples, RMA pre-processing, 62 true DEGs. To facilitate comparison of
dependencies at low false positive rates log10 scale is applied (in subsequent figures also).
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Figure 4 Average ROC curves. Average ROC curves for two different pre-processing methods: MAS5 – left panel and RMA – right panel. Data
from 11 data sets having 284 true DEGs. Thick lines are 〈τ|ν〉 and thin lines represent 〈τ|ν〉 ± se(〈τ|ν〉)/2 (half of the standard error below and above
corresponding line with the same colour.
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The performance of the DFC test was verified using 11
real experimental data sets, with DEGs independently
verified by RT-PCR. Their selection was based on the
requirement of having in each set sufficiently large
number of verified DEGs to build AUC. The total num-
ber of verified DEGs in these data sets was 284. We
demonstrated that the DFC test is significantly better
than the t-test in terms of the total and partial area
under receiver operating curves. The improvement was
dramatic (on average > 30%) in the most important (for
FF and FFPE sample sets) range of the number of
selected features K < 1000.
Figure 5 Average SPA curves. Average standardized partial area (SPA) cu
RMA – right panel. Data from 11 data sets having 284 true DEGs.
Some improvement was obtained in comparison with
shrinkage t-test [7,14], which can be considered as
one of the best variance stabilizing methods, although
improvement in partial area under ROC curve was
within confidence limits (for 0.1 confidence level) for a
number of selected features below ~30. Variance
stabilization is very important for small data sets,
although, as comparison shows, even for medium range
data sets of 10 ÷ 30 samples, improvement can be
significant. Taking into account that the DFC test was
not optimized for variance stabilization (FFPE sample
sets are seldom small), its performance can potentially
rves for two different pre-processing methods: MAS5 – left panel and



Figure 6 DFC test sensitivity increase. DFC test sensitivity 〈τ|ν〉 increase over t- and CAT(diag)- test as a function of ν for two different pre-
processing methods: MAS5 – left panel and RMA – right panel. Thick lines show the ratios and corresponding thin lines show ±1.28σ deviations
from the ratio. Data from 11 data sets having 284 true DEGs.
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benefit from the inclusion of expression dependent
stabilization of variance.
Analysis of correlation coefficients between AUCs for

MAS5 and RMA pre-processed data showed that DFC
method works equally well with both methods. Correl-
ation is very high (ρDFC = 0.92) and is higher (though
not significantly) than for the other tests considered.
This demonstrates that the DFC method does accurately
take into account expression dependence of fold change
and total variance, which are very much different in
MAS5 and RMA pre-processed data, see, for example,
Figure 1 for variance dependences.
Figure 7 DFC test partial area increase. Partial area 〈SPA|ν increase over
methods: MAS5 – left panel and RMA – right panel. Thick lines are the ratio
Data from 11 data sets having 284 true DEGs.
We already mentioned above that our comparison was
limited by only tests that take into account feature’s vari-
ance (which is very important for FFPE datasets as they
have high technical variance [10,11]). The fold change
test has no associated value that can indicate the level
of confidence in the designation of feature as DE. Its
performance depends on features variances which can
be very different for different pre-processing methods
applied to data [42], see for example Figure 1 for com-
parison of MAS5 and RMA pre-processed data. Fold
change test was shown [7] to be good only if features
variances are all fairly similar [7]. Basing on this
t- and CAT(diag)- test value for two different pre-processing
s and corresponding thin lines show ±1.28σ deviations from the ratio.
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observation and taking into account that features var-
iances are fairly similar for RMA pre-processed data in
the high expression range (e.g., 9 – 12 on Figure 1) and
decrease with expression for MAS5 pre-processed data
(e.g., for expressions in the range 6 – 12 on Figure 1)
one can expect that fold change test should perform well
on RMA pre-processed data when a small number of
features is looked after and fail on MAS5 pre-processed
data. On the contrary, the WAD method [9] should per-
form well on the data with variances inversely propor-
tional to the expression. Therefore it should work well
for MAS5 pre-processed data, and fail on RMA pre-
processed data. This corroborates with findings in [9]
(see also Additional file 1). Nevertheless, when the set
sizes and number of independently verified features are
restricted to be reasonable, Ns and NPC > 10, the DFC
test and moderated t- tests [4-7] perform better than
either of them (see Additional file 1).
The independence of fold change test on features

variances triggered researchers to look for combined
approaches – to require that DE features satisfy both p-
value and fold change criteria simultaneously [40].
Here the question arises as to how to combine these two
tests – it was shown recently [41] that the cutoffs can
significantly alter microarray interpretations. DFC test
is free from these shortcomings as the ranking of fea-
tures is performed using the signal-to-noise ratio (5) and
the threshold (16) is defined by expression dependent
properties of particular experiment and only removes
unreliable features. No artificial fold change thresholds
are introduced.
Summarizing discussion we can say that DFC method

was developed and shown to work with reasonable num-
ber of samples Ns >> 1, pick up DEGs equally well at
any expression level and is not bounded to specific pre-
processing method.

Conclusions
We have proposed a new method, called distributional
fold change test for removing non-differentially expressed
genes, and ranking differentially expressed genes from
gene expression data. The method was designed to work
with data sets of FFPE samples profiled on microarrays,
containing large number of genes (> 104) and to accur-
ately select and rank differentially expressed genes, taking
into account their expression level.
The method is based on analysis of the distribution of

all genes on a microarray mapped to a three dimensional
feature space composed of average difference of gene
expression (logarithm of fold change), total variance and
average expression level. It allows for the imposition of a
statistical (and expression dependent) threshold for the
fold change and the introduction a score based on signal-
to-noise ratio which is used for accurate gene ranking.
Performance of the DFC test was verified using 11 real
experimental data sets, with DEGs independently veri-
fied by RT-PCR. We demonstrated that DFC test is sig-
nificantly better than the t-test in terms of detecting
DEGS as measured by the total and partial area under
receiver operating curves. Its advantage is most promin-
ent in the range of low fraction of DEGs, which is the
most important range for the analysis of fresh frozen
and especially FFPE sample sets. Given its excellent per-
formance we believe that the DFC test should be rou-
tinely used for the analysis of microarray data.

Endnotes
aSuch studies benefit from the availability of complete

(or near complete) clinical information on patient his-
tory, treatments and prognosis/survival.

bDetails of fitting procedure to get the dependence
σ0(μ) is provided in the Additional file 1.

cThe condition log2vT > LVTh(μ) is a convenient way
if imposing expression dependent variance filter with
threshold defined by properties of the null features dis-
tribution (see eq. 11). Its application is favourable in
situations of imposing stringent selection criteria. When
imposing mild selection criteria or looking for ranking of
all features it shall be switched off (see also endnote e).

dThese DEGs may comprise only a portion of true
DEGs – not all DEGs can be physically checked by RT-
PCR due to limitations of the method – but nevertheless
allow a comparative analysis of the DFC test’s perform-
ance compared to the reference tests.

eFor two data sets, GSE6740_2 (MAS5 pre-processing)
and GSE9499 (RMA pre-processing), we had to lift the
variance filter in order to calculate the AUC.

fThis option was chosen because, for extremely high-
dimensional data, estimating correlation is very difficult
and in such instances it is recommended to conduct
diagonal analysis [15].

Additional files

Additional file 1: DFC_Test._Farztdinov. PDF file containing Appendix
to the article with details on the estimation of properties of null features
distribution, detailed description of sample sets selection for testing,
comparison of DFC test with wide range of tests, and ROC and SPA
curves for all tested data sets.

Additional file 2: DFC_Test.m. The plain text file containing the source
code of FDC test program for MATLAB 2009b with Statistics toolbox (or
later MATLAB versions).
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ShrinkT: Shrinkage t-test, same as CAT(diag); SPA: Standardized partial area
under ROC curve; TPR: True positive rate; WAD: Weighted average difference;
YI: Youden Index.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
VF conceived of the study, developed, implemented and tested the method
and drafted the manuscript. FMD made critical suggestions and contributed
to the finalisation of the manuscript draft. Both authors read and approved
the final manuscript.

Acknowledgements
This research was conducted as a part of the Almac Diagnostics company
program for developing methods specifically applicable for expression
analysis of RNA extracted from FFPE samples. It was supported by the Invest
Northern Ireland grant 1009/101038722 and partly by the European
Sustainable Competitiveness Programme 2007–2013 under the European
Regional Development Fund. The authors gratefully acknowledge Vitali
Proutski for continuous support during this work and Miika Ahdesmäki for
providing the Matlab version of shrinkage CAT score package. Discussions
with colleagues Steve Deharo, Gera Jellema, Eamonn O’Brien, Vitali Proutski,
and others are highly appreciated. The authors are thankful to Miika
Ahdesmäki and Timothy Davison for their suggestions for improvement of
the manuscript content. Timothy Davison also made contribution to
improving the language of the manuscript.

Received: 18 June 2012 Accepted: 22 October 2012
Published: 2 November 2012

References
1. Göhlmann H, Talloen W: Gene Expression Studies Using Affymetrix Microarrays.

Boca Raton: CRC Press; 2009.
2. Zhang A: Advanced analysis of gene expression data. Singapore: World

Scientific; 2006.
3. Kim SY, Lee JW, Sohn IS: Comparison of various statistical methods for

identifying differential gene expression in replicated microarray data.
Stat Methods Med Research 2006, 15:3–20.

4. Smyth GK: Linear models and empirical bayes methods for assessing
differential expression in microarray experiments. Stat Appl Genet Mol Biol
2004, 3(1):Article 3.

5. Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays
applied to the ionizing radiation response. Proc Natl Acad Sci USA 2001,
98(9):5116–5121.

6. Sartor MA, Tomlinson CR, Wesselkamper SC, Sivaganesan S, Leikauf GD,
Medvedovic M: Intensity-based hierarchical Bayes method improves
testing for differentially expressed genes in microarray experiments.
BMC Bioinformatics 2006, 7:538.

7. Opgen-Rhein R, Strimmer K: Accurate ranking of differentially expressed
genes by a distribution- free shrinkage approach. Statist Appl Genet Mol
Biol 2007, 6:9.

8. Hu J, Xu J: Density based pruning for identification of differentially
expressed genes from microarray data. BMC Genomics 2010,
11(Suppl 2):S3.

9. Kadota K, Nakai Y, Shimizu K: A weighted average difference method for
detecting differentially expressed genes from microarray data. Algorithm
Mol Biol 2008, 3:8.

10. Farragher SM, Tanney A, Kennedy RD, Harkin PD: RNA expression analysis
from formalin fixed paraffin embedded tissues. Histochem Cell Biol 2008,
130:435–445.

11. Abdueva D, Wing M, Schaub B, Triche T, Davicioni E: Quantitative
expression profiling in formalin-fixed paraffin-embedded samples by
affymetrix microarrays. J Mol Diagn 2010, 12:409–17.

12. Kennedy RD, Bylesjo M, Kerr P, Davison T, Black JM, Kay EW, Holt RJ,
Proutski V, Ahdesmaki M, Farztdinov V, Goffard N, Hey P, McDyer F,
Mulligan K, Mussen J, O'Brien E, Oliver G, Walker SM, Mulligan JM, Wilson C,
Winter A, O'Donoghue D, Mulcahy H, O'Sullivan J, Sheahan K, Hyland J,
Dhir R, Bathe OF, Winqvist O, Manne U, et al: Development and
independent validation of a prognostic assay for stage II colon cancer
using formalin-fixed paraffin-embedded tissue. J Clin Oncol 2011,
29:4620–4626.

13. Mittempergher L, de Ronde JJ, Nieuwland M, Kerkhoven RM, Simon I, et al:
Gene expression profiles from formalin fixed paraffin embedded breast
cancer tissue are largely comparable to fresh frozen matched tissue.
PLoS One 2011, 6(2):e17163.

14. Zuber V, Strimmer K: Gene ranking and biomarker discovery under
correlation. Bioinformatics 2009, 25:2700–2707.

15. Ahdesmäki M, Strimmer K: Feature selection in omics prediction problems
using cat scores and false non-discovery rate control. Ann Appl Stat 2010,
4:503–519.

16. Klopfleisch R, Weiss AT, Gruber AD: Excavation of a buried treasure–DNA,
mRNA, miRNA and protein analysis in formalin fixed, paraffin embedded
tissues. Histol Histopathol 2011, 26(6):797–810.

17. Affymetrix, Inc: Technical Note: Design and Performance of the Gene-Chip
Human Genome U133 Plus 2.0 and Human Genome U133A Plus 2.0 Arrays,
2003. Affymetrix, Inc. Technical Note: GeneChipW Expression Platform:
Comparison, Evolution, and Performance, 2004. http://media.affymetrix.com/
support/technical/technotes/expression_comparison_technote.pdf.

18. Hastie T, Tibshirani R, Friedman J: The Elements of Statistical Learning; Data
Mining, Inference and Prediction. 2nd edition. New York: Springer; 2009.

19. Braun M, Menon R, Nikolov P, Kirsten R, Petersen K, Schilling D, Schott C,
Gündisch S, Fend F, Becker KF, Perner S: The HOPE fixation technique–a
promising alternative to common prostate cancer biobanking
approaches. BMC Cancer 2011, 11:511.

20. Klopfleisch R, von Deetzen M, Weiss AT, Weigner J, Weigner F, Plendl J,
Gruber AD: Weigners fixative--an alternative to formalin fixation for
histology with improved preservation of nucleic acids. Vet Pathol 2012,
Apr 26. [Epub ahead of print].

21. Sawilowsky SS: Fermat, Schubert, Einstein, and Behrens–Fisher: the
probable difference between two means when σ1 ≠ σ2. Journal Mod App
Stat Meth 2002, 1:461–472.

22. Krzanowski WJ, Hand DJ: ROC curves for continuous data. Boca Raton: CRC
Press; 2009 [Monographs on statistics and applied probability, vol 111].

23. Fawcett T: An introduction to ROC analysis. Pattern Recogn Lett 2006,
27:861–874.

24. Thalacker-Mercer AE, Fleet JC, Craig BA, Carnell NS, et al: Inadequate
protein intake affects skeletal muscle transcript profiles in older humans.
Am J Clin Nutr 2007, 85:1344–52.

25. Jin B, Tao Q, Peng J, Soo HM, et al: DNA methyltransferase 3B (DNMT3B)
mutations in ICF syndrome lead to altered epigenetic modifications and
aberrant expression of genes regulating development, neurogenesis
and immune function. Hum Mol Genet 2008, 17:690–709.

26. Viemann D, Goebeler M, Schmid S, Nordhues U, et al: TNF induces distinct
gene expression programs in microvascular and macrovascular human
endothelial cells. J Leukoc Biol 2006, 80:174–85.

27. Csoka AB, English SB, Simkevich CP, Ginzinger DG, et al: Genome-scale
expression profiling of Hutchinson-Gilford progeria syndrome reveals
widespread transcriptional misregulation leading to mesodermal/
mesenchymal defects and accelerated atherosclerosis. Aging Cell 2004,
3:235–43.

28. Gumz ML, Zou H, Kreinest PA, Childs AC, et al: Secreted frizzled-related
protein 1 loss contributes to tumor phenotype of clear cell renal cell
carcinoma. Clin Cancer Res 2007, 13:4740–9.

29. Hsu EL, Yoon D, Choi HH, Wang F, et al: A proposed mechanism for the
protective effect of dioxin against breast cancer. Toxicol Sci 2007,
98:436–44.

30. Hyrcza MD, Kovacs C, Loutfy M, Halpenny R, et al: Distinct transcriptional
profiles in ex vivo CD4+ and CD8+ T cells are established early in
human immunodeficiency virus type 1 infection and are characterized
by a chronic interferon response as well as extensive transcriptional
changes in CD8+ T cells. J Virol 2007, 81:3477–86.

31. Pescatori M, Broccolini A, Minetti C, Bertini E, et al: Gene expression
profiling in the early phases of DMD: a constant molecular signature
characterizes DMD muscle from early postnatal life throughout disease
progression. FASEB J 2007, 21:1210–26.

32. Burleigh DW, Kendziorski CM, Choi YJ, Grindle KM, et al: Microarray analysis
of BeWo and JEG3 trophoblast cell lines: identification of differentially
expressed transcripts. Placenta 2007, 28:383–9.

33. Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF,
Soboleva A, Tomashevsky M, Edgar R: NCBI GEO: mining tens of millions

http://media.affymetrix.com/support/technical/technotes/expression_comparison_technote.pdf
http://media.affymetrix.com/support/technical/technotes/expression_comparison_technote.pdf


Farztdinov and McDyer Algorithms for Molecular Biology 2012, 7:29 Page 16 of 16
http://www.almob.org/content/7/1/29
of expression profiles--database and tools update. Nucleic Acids Res 2007,
35(Database issue):D760–D765.

34. Bolstad B: Preprocessing and Normalization for Affymetrix GeneChip
Expression Microarrays. In Methods in microarray normalization. Edited by
Stafford P. Boca Raton: CRC Press; 2008:41–60.

35. Hubbell E, Liu WM, Mei R: Robust estimators for expression analysis.
Bioinformatics 2002, 18:1585–1592.

36. Affymetrix, Inc: White paper: Statistical Algorithms Description Document.
2002. http://www.affymetrix.com/support/technical/whitepapers/sadd
whitepaper.pdf.

37. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP: Summaries
of Affymetrix GeneChip probe level data. Nucleic Acids Res 2003,
31(4):e15.

38. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U,
Speed TP: Exploration, normalization, and summaries of high
density oligonucleotide array probe level data. Biostatistics 2003,
4:249–264.

39. Cramer JS: Logit Models from Economics and Other Fields. Cambridge:
Cambridge University Press; 2003.

40. McCarthy DJ, Smyth GK: Testing significance relative to a fold-change
threshold is a TREAT. Bioinformatics 2009, 25(6):765–71.

41. Dalman MR, Deeter A, Nimishakavi G, Duan ZH: Fold change and p-value
cutoffs significantly alter microarray interpretations. BMC Bioinformatics
2012, 13(Suppl. 2):S11.

42. Cui X, Churchill GA: Statistical tests for differential expression in cDNA
microarray experiments. Genome Biol 2003, 4:210.

doi:10.1186/1748-7188-7-29
Cite this article as: Farztdinov and McDyer: Distributional fold change
test – a statistical approach for detecting differential expression in
microarray experiments. Algorithms for Molecular Biology 2012 7:29.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://www.affymetrix.com/support/technical/whitepapers/sadd

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Distributional fold change test: general approach
	Null (unregulated) features distribution and variance threshold
	Significance level and power for testing each individual feature
	Evaluation method

	Results
	Data sets
	Evaluation

	Discussion
	Conclusions
	Endnotes
	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	References

