
Swenson et al. Algorithms for Molecular Biology 2012, 7:31
http://www.almob.org/content/7/1/31

RESEARCH Open Access

Gene tree correction for reconciliation and
species tree inference
Krister M Swenson1,2*, Andrea Doroftei1 and Nadia El-Mabrouk1*

Abstract

Background: Reconciliation is the commonly used method for inferring the evolutionary scenario for a gene family.
It consists in “embedding” inferred gene trees into a known species tree, revealing the evolution of the gene family by
duplications and losses. When a species tree is not known, a natural algorithmic problem is to infer a species tree from
a set of gene trees, such that the corresponding reconciliation minimizes the number of duplications and/or losses.
The main drawback of reconciliation is that the inferred evolutionary scenario is strongly dependent on the
considered gene trees, as few misplaced leaves may lead to a completely different history, with significantly more
duplications and losses.

Results: In this paper, we take advantage of certain gene trees’ properties in order to preprocess them for
reconciliation or species tree inference. We flag certain duplication vertices of a gene tree, the “non-apparent
duplication” (NAD) vertices, as resulting from the misplacement of leaves. In the case of species tree inference, we
develop a polynomial-time heuristic for removing the minimum number of species leading to a set of gene trees that
exhibit no NAD vertices with respect to at least one species tree. In the case of reconciliation, we consider the
optimization problem of removing the minimum number of leaves or species leading to a tree without any NAD
vertex. We develop a polynomial-time algorithm that is exact for two special classes of gene trees, and show a good
performance on simulated data sets in the general case.

Keywords: Gene tree, Species tree, Reconciliation, Error correction, Maximum agreement subtree (MAST)

Background
Almost all genomes which have been studied contain
genes that are present in two or more copies. Dupli-
cated genes account for about 15% of the protein coding
genes in the human genome, for example [1]. In prac-
tise, homologous gene copies (e.g. copies in one genome
or amongst different genomes that are descended from
the same ancestral gene) are identified through sequence
similarity; using a BLAST-like method, all gene copies
with a similarity score above a certain threshold would
be grouped into the same gene family. Using a classical
phylogenetic method, a gene tree, representing the evo-
lution of the gene family by local mutations, can then
be constructed based on the similarity scores. However,
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macroevolutionary events (duplications, losses, horizon-
tal gene transfer) affecting the number and distribution
of genes among genomes [2], are not explicitly reflected
by this gene tree. Having a clear picture of the specia-
tion, duplication and loss mechanisms that have shaped a
gene family is however crucial to the study of gene func-
tion. Indeed, following a duplication, the most common
occurrence is for only one of the two gene copies to main-
tain the parental function, while the other becomes non-
functional (pseudogenization) or acquires a new function
(neofunctionalization) [3].
The most commonly used methods to infer evolution-

ary scenarios for gene families are based on the reconcilia-
tion approach that compares the species tree S (describing
the relationships among taxa) to the gene tree T. Assum-
ing no sequencing errors and a “correct” gene tree, the
incongruence between the two trees can be seen as a foot-
print of the evolution of the gene family through processes
other than speciation, such as duplication and loss. The
concept of reconciling a gene tree to a species tree under
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the duplication-loss model was pioneered by Goodman
[4] and then widely accepted, utilized and also general-
ized to models of other processes such as horizontal gene
transfer [5-7]. Several definitions of reconciliation exist
in the literature, one of them expressed in term of “tree
extension” [8]. More precisely, a reconciliation R between
T and S is an extension of T (obtained by grafting new
subtrees onto existing edges of T) consistent with the
species tree (i.e. reflecting the same phylogeny). A dupli-
cation and loss history for the gene family is then directly
deduced from R. As many reconciliations exist, a natural
approach is to select the one that optimizes a given cri-
terion. Natural combinatorial criteria are the number of
duplications (duplication cost), losses (loss cost) or both
combined (mutation cost) [9,10]. The so called Lowest
Common Ancestor (LCA) mapping between a gene tree
and a species tree, formulated in [11,12] and widely used
[2,10,12-16], defines a reconciliation that minimizes both
the duplication and mutation costs. It has been shown
in [8] that minimizing duplications follows from mini-
mizing losses (i.e. a reconciliation minimizing losses also
minimizes duplications, but the converse is false). When
no preliminary knowledge on the species tree is given, a
natural problem, known as the species tree inference prob-
lem, is to infer, from a set of gene trees, a species tree
leading to a parsimonious evolution scenario, for a given
cost. Similar to the case of a known species tree, meth-
ods have been developed for the duplication andmutation
costs [9,10,17]. For both criteria, the problem of infer-
ring an optimal species tree given a set of gene trees is
NP-hard [10].
The main criticism of reconciliation is that the inferred

duplication and loss history for a gene family is strongly
dependent on the gene tree considered for this family.
Indeed, a few misplaced leaves in the gene tree can lead
to a completely different history, possibly with signifi-
cantly more duplications and losses [18]. Reconciliation
can therefore inspire confidence only in the case of a
well-supported gene tree. Typically bootstrapping values
are used as a measure of confidence in each edge of a
phylogeny. How should the weak edges of a gene tree
be handled? One reasonable answer is to transform the
binary gene tree into an unresolved gene tree by remov-
ing each weak edge and collapsing its two incident vertices
into one. Extensions of the duplication-loss model to non-
binary gene trees have been considered [19,20]. Another
strategy adopted in [9] is to explore the space of gene
trees obtained from the original gene treeT by performing
Nearest Neighbor Interchanges (NNIs) around weakly-
supported edges. The problem is then to select, from this
space, the tree giving rise to the minimum reconciliation
cost.
In this paper, we explore a different strategy for “correct-

ing” or preprocessing a gene tree T, prior to reconciliation

or species tree inference. Criteria for identifying poten-
tially misplaced leaves were given in [8]. The duplication
vertices of T with respect to a species tree S can be subdi-
vided into apparent and non-apparent duplication (NAD)
vertices, where the latter class has been flagged as poten-
tially resulting from themisplacement of leaves in the gene
tree. The reason is that each one of the NAD vertices
reflects a phylogenetic contradiction with the species tree
that is not due to the presence of duplicated gene copies.
In the case of an unknown species tree, we showed in
[8] that deciding whether T can be explained using only
apparent duplications (we say thatT is anMD-tree) can be
done in polynomial time, as well as inferring an appropri-
ate species tree. Here, we present algorithmic results for
removing, for a given gene tree (or a forest of gene trees),
the minimum number of leaves or leaf-labels (species)
leading to a tree without any NAD vertex, in both cases of
a known or an unknown species tree. The minimum leaf
removal problem in case of a known species tree has been
recently proved to be APX-hard [21].
In the next section, we begin by formally introducing

our concepts. We then motivate and state our prob-
lems in Section “Motivations and problem statements”.
Section “Minimum species removal inference and recon-
ciliation” gives a greedy heuristic for theminimum species
removal problem in the case of an unknown species tree,
and shows that any algorithm for this case can be applied
to the case where the species tree is known. Section “Algo-
rithms for theminimum removal reconciliation problems”
is dedicated to the algorithmic developments in the case
of a known species tree. We first describe two special
classes of gene trees which lead to an exact polynomial-
time algorithm. We then present a heuristic algorithm
for the general case. In Section “Empirical results”, we
test the optimality of our algorithm for the minimum
leaf-removal problem in the case of a known species
tree, and the ability of the presented approach to iden-
tify misplaced genes. This paper is an extended version
of [22].

Definitions
Trees
In this paper, we only consider rooted trees. Let G =
{1, 2, · · · , g} be a set of integers representing g different
species (genomes). A species tree on G is a rooted binary
tree with exactly g leaves, where each i ∈ G is the label
of a single leaf (Figure 1a). A gene tree on G is a rooted
binary tree where each leaf is labelled by an integer from
G, with possibly repeated leaves (Figure 1b). A gene tree
represents a gene family, where each leaf labelled i rep-
resents a gene copy located on genome i. In the case of
a species tree or a uniquely leaf-labelled gene tree (i.e.
no leaf-label occurring more than once) we will make no
distinction between a leaf and its label.
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Figure 1 (a) A species tree S forG={1, 2, 3, 4}. The three internal vertices of S are named A, B and C; (b) A gene tree T. A leaf label x indicates a gene
copy in genome x. Internal vertices are labelled according to the LCA mapping between T and S. Flagged vertices are duplication vertices of T with
respect to S (Section “LCA Mapping”); (c) A reconciliation R(T , S) of T and S. Dotted lines represent subtree insertions. The correspondence between
vertices of R(T , S) and S is indicated by vertex labels. Flagged vertices are duplication vertices. All other internal vertices of R(T , S) are speciation
vertices. This reconciliation reflects a history of the gene family with two gene duplications preceding the first speciation event, and 4 losses.

Given a treeU, the size of U, denoted by |U|, is the num-
ber of leaves of U, and the genome set of U, denoted by
L(U), is the subset of G defined by the labels of the leaves
of U. Given a vertex x of U, Ux is the subtree of U rooted
at x. The genome set of Ux is denoted by L(x) (for exam-
ple, in the tree of Figure 1a,L(B) = {1, 2}). If x is not a leaf,
we denote by xl and xr the two children of x. Finally, if x is
not the root, any vertex y �= x on a path from x to the root
is an ancestor of x.
Given a tree U on a genome set G, a leaf removal

consists of removing a given leaf from U, along with its
parental node x, and if x is not the root joining the par-
ent of x and the remaining child by a new edge. A tree U ′
obtained from U through a sequence of leaf removals is
said to be included inU. The treeU restricted to a subset
G′ ofG is the treeU ′ obtained fromU through a sequence
of leaf removals that removes all the leaves with labels in
G \ G′.
Finally, a subtree Ux of U, for a given vertex x, is said to

be a maximum subtree of U verifying a given property P
if and only if Ux verifies property P and, for any vertex y
that is an ancestor of x, Uy does not verify property P.

Reconciliation
Applying a classical phylogenetic method to the gene
sequences of a given gene family leads to a gene tree T
that is different from the species tree S, mainly due to the
presence of multiple gene copies in T, and that may reflect
a divergence history different from S. The reconciliation
approach consists in “embedding” the gene tree into the
species tree, revealing the evolution of the gene family by
duplications and losses.
There are several definitions of reconciliation between

a gene tree and a species tree [2,10-15]. Here we define
reconciliation in terms of subtree insertions, follow-
ing the notation used in [14,23]. We begin with some
definitions:

• A subtree insertion in a tree T grafts a new subtree
onto an existing edge of T. Formally, inserting a
subtree onto an edge linking two nodes x and y (y is a

child of x) consists in creating a new node z with
parent x and two children being y and the root of the
inserted subtree.

• A tree T ′ is said to be an extension of T if it can be
obtained from T by subtree insertions on the edges of
T.

• The gene tree T is said to be DS-consistent with S
(DS standing for Duplication/Speciation) if T reflects
a history with no loss, i.e. if for every vertex t of T
such that |L(t)| ≥ 2, there exists a vertex s of S such
that L(t) = L(s) and one of the two following
conditions holds:

(D) either L(tr) = L(t�) (indicating a
Duplication),

(S) or L(tr) = L(sr) and L(t�) = L(s�)
(indicating a Speciation).

Definition 1. A reconciliation between a gene tree T
and a species tree S on G is an extension R(T , S) of T that
is DS-consistent with S.

For example, the tree of Figure 1c is a reconciliation
between the gene tree T of Figure 1b and the species
tree of Figure 1a. Such a reconciliation between T and S
implies an unambiguous evolution scenario for the gene
family, where a vertex of R(T , S) that satisfies property (D)
represents a duplication (duplication vertex), a vertex that
satisfies property (S) represents a speciation (speciation
vertex), and an inserted subtree represents a gene loss.
The number of duplication vertices of R(T , S) is called the
duplication cost of R(T , S).
The notion of reconciliation can naturally be extended

to the case of a set, or forest, of gene trees F =
{T1, . . . ,Tf }: a reconciliation between F and S is a set
R(F , S) = {R1(T1, S), . . . ,Rf (Tf , S)} of reconciliations,
respectively for T1, . . . ,Tf , such that each Ri(Ti, S) is DS-
consistent with S.
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LCAMapping
The LCA mapping between a gene tree T and a species
tree S, denoted by M, maps every vertex t of T to the
Lowest Common Ancestor (LCA) of L(t) in S. A vertex t
of T is called a duplication vertex of T with respect to
S if and only if M(t�) = M(t) and/or M(tr) = M(t) (see
Figure 1b). We denote by d(T, S) the number of dupli-
cation vertices of T with respect to S. Any vertex of T
that is not a duplication vertex is a speciation vertex with
respect to S.
The LCA mapping induces a reconciliation M(T , S)

between T and S, where an internal vertex t of T leads to
a duplication vertex in M(T , S) if and only if t is a dupli-
cation vertex of T with respect to S. In other words, the
duplication cost of M(T , S) is d(T , S) (see for example
[10,13,15] for more details on the construction of a recon-
ciliation based on the LCA mapping). Moreover, M(T , S)
is a reconciliation that minimizes the duplication, loss,
and mutation costs [8,14].

Duplication vertices and MD-trees
Let T be a gene tree. As noticed in [8], any vertex t of T
such that L(t�) ∩ L(tr) �= ∅ (i.e. the left and right sub-
trees rooted at t contain a gene copy in the same genome)
will be a duplication vertex in any reconciliation between
T and any species tree S, in particular in M(T , S). Such
a vertex is called an Apparent Duplication vertex (AD
vertex for short) of T. In the tree of Figure 1b, the root
is an AD vertex as its left and right subtree both contain
a gene copy in genome 1. Following our notation in [8], a
gene tree T is said to be a Minimum Duplication Tree
(henceforth called an MD-tree) if there exists a species
tree S such that d(T , S) is exactly the number of apparent
duplications present in T. In which case, T is said to be
MD-consistent with S.
However, this is not always true, in other words, a dupli-

cation vertex of T with respect to a species tree S is
not necessarily an AD vertex. We call such a duplication
vertex a Non-Apparent Duplication vertex, or simply a
NAD vertex. For example, the tree of Figure 1b contains
one NAD vertex, indicated by a square, and thus T is not
MD-consistent with S.

Motivations and problem statements
Non-apparent duplication vertices point to disagreement
between a gene tree T and a species tree S that are not due
to the presence of repeated leaf labels (i.e.multiple copies
in the same genome). More precisely, we say that a ver-
tex x of T splits three species {a, b, c} into {a, b; c} if the
genome set of one of its children contains a and b but not
c, and the genome set of its other child contains c but nei-
ther a nor b. Then for any NAD x of T, there is a triplet
of species {a, b, c} that are split differently by x and by the
LCA mapping of x in S (see proof of Theorem 5 in [8]).
We will say that such a triplet exhibits a wrong phylogeny.
For example, in Figure 1, {1, 2, 3} is split into {1, 3; 2} by
the NAD vertex of T, and into {1, 2; 3} by the vertex A in
S. It has therefore been suggested that NAD vertices may
point at gene copies that are erroneously placed in the
gene tree.
Observations made in [8] tend to support this hypoth-

esis. In particular, using simulated data-sets based on the
species tree of 12 Drosophila species given in [24] and a
birth-and-death process, starting from a single ancestral
gene, and with different gene gain/loss rates, it has been
found that 95% of gene duplications lead to an AD vertex.
Notice however that a misplaced gene in a gene tree

T does not necessarily lead to a NAD vertex. In other
words, NAD vertices can only point to a subset of mis-
placed leaves. However, in the context of reconciliation,
the damage caused by a misplaced leaf leading to a NAD
vertex is to significantly increases the real mutation-cost
of the tree, as shown in Figure 2.
Following the later observations, we exploit the proper-

ties of NAD vertices for gene tree correction. For gener-
ality, we consider a forest of gene trees F = {T1, . . . ,Tf }.
If F is not MD-consistent with a given species tree S
(i.e. there is at least one tree in F that is not MD-
consistent with S) then an MD-consistent forest can
always be obtained from F by performing a certain num-
ber of leaf removals. Indeed, a gene tree with only two
leaves is always MD-consistent with any species tree.
Our first optimization problem is the following, where
the size of F is just the sum of sizes of all the trees
of F .

(a) (b) (c)

1 23 1321 2 3 1 23 12 3

Figure 2 Let S = ((1, 2), 3) (the tree in (a)) be the phylogenetic tree for the three species {1, 2, 3}. Let T = (1, 2) be a gene tree. (a), (b) and
(c) are the three possibilities for T after a random insertion of a leaf labelled 3. (a) is the only case leading to a tree without any NAD vertex. It reflects
a history of the three gene copies without any duplication or loss; (b) and (c) each contains a NAD vertex, and can be explained by a
duplication-loss history of minimummutation cost of 4: 1 duplication and 3 losses.
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MINIMUMLEAFREMOVALRECONCILIATION (MINLRR):

Input: A genome set G, a forest of gene trees F =
{T1, . . . ,Tf } on G, and a species tree S for G;
Output: A forest of gene trees FMAX = {TMAX

1 , . . . ,
TMAX
f } of maximum size (i.e. obtained from F by a min-

imum number of leaf removals) which is MD-consistent
with S, where each TMAX

i is included in Ti.

In the case of an unknown species tree, we have shown
in [8] that deciding whether a forest of gene trees F is an
MD-forest (i.e. a set of MD-trees) can be done in polyno-
mial time and space, as well as computing a parsimonious
species tree. For a forest which is not an MD-forest,
a natural generalization of the MINLRR problem is the
following:

MINIMUM LEAF REMOVAL INFERENCE (MINLRI):

Input: A genome set G and a forest of gene trees F =
{T1, . . . ,Tf } on G;
Output: An MD-forest FMAX = {TMAX

1 , . . . ,TMAX
f }

of maximum size (i.e. obtained from F by a minimum
number of leaf removals), where each TMAX

i is included
in Ti.

A more conservative strategy that can be used to reduce
the risk of inferring a wrong species tree, is to remove the
minimum number of species from G such that the for-
est F restricted to the new genome set is an MD-forest.
Removing the minimum number of species instead of
leaves can also be considered in the case of reconciliation,
a scenario that may be applicable when full confidence is
not put in the species tree.

MINIMUM SPECIES REMOVAL RECONCILIATION
(MINSRR):

Input: A genome set G, a forest of gene trees F =
{T1, . . . ,Tf } on G and a species tree S for G;
Output: A maximum subset G′ of G such that forest F
restricted to G′ (i.e. the set of trees Ti restricted to G′) is
MD-consistent with the species tree S restricted to G′.

MINIMUM SPECIES REMOVAL INFERENCE(MINSRI):

Input: A genome set G and a forest of gene trees F =
{T1, . . . ,Tf } on G;
Output: A maximum subset G′ of G such that the forest
F restricted to G′ is an MD-forest.

The latter two optimization problems (MINSRR
and MINSRI) are the subject of the next section.
Section “Algorithms for the minimum removal reconcilia-
tion problems” focuses on the two optimization problems
related to reconciliation (MINLRR and MINSRR).

Minimum species removal inference and
reconciliation
By linking the species tree inference problem to a supertree
problemwe have been able to prove that deciding whether
a gene tree T is an MD-tree can be done in polynomial-
time [8]. We used a constructive proof based on a min-cut
strategy, which has been largely considered in the con-
text of supertrees [25-27]. In this section, we develop a
greedy heuristic for MINSRI based on a minimum vertex
cut strategy.
Let F = {T1,T2, . . . ,Tf } be a forest of gene trees on

a genome set G. Define level0(F) to be the set of high-
est (i.e. closest to the root) vertices of all Tis that are
not AD-vertices. levelj(F) is then the set of vertices of
all Tis that are closest non-AD descendants of the ver-
tices for levelj−1(F). For a given level j, forest F , and
vertex x ∈ levelj(F), consider the bipartition B(x) =
(L(xl),L(xr)). Then Gj = (V ,E) is the corresponding
hypergraph [28] where V = G, and L(xl),L(xr) ∈ E for
x ∈ levelj(F).
In order for F to be an MD-forest, all the vertices of

levelj(F), for any j, should represent speciation vertices
with respect to some species tree S (as otherwise they
would represent additional non-apparent duplication ver-
tices, preventing the forest from being an MD-forest). In
other words, the bipartitions B(x) for all x ∈ level0(T)

should reveal a first speciation event, which is possible if
and only if the graph G0 contains at least two connected
components. Indeed, in this case for any species tree S
with a root r splitting G into two disconnected subsets,
all the vertices of level0(F) would be speciation vertices.
Conversely, if G0 contains a single connected component,
then for any species tree S, at least one node of level0(T)

would be a NAD node. The same reasoning applies to any
levelj(F) and Gj.
On the other hand, if Gj is connected for some levelj(F),

there exists no species tree so that all x ∈ levelj(F) rep-
resent speciation events. In this case, some number of
species must be removed to make Gj disconnected. This
corresponds exactly to a vertex cut in Gj. These obser-
vations leads to the following heuristic for the MINSRI
problem.

ALGORITHMMINIMUMSPECIESREMOVAL INFERENCE(F )

1. G′ = G; j = 0; Compute level0(F);
2. WHILE levelj(F) is not empty DO
3. Construct the hypergraph Gj;
4. IF Gj is connected THEN
5. G′ = G′ \ MINIMUM-VERTEX-CUT(Gj);
6. Restrict F to G′;
7. END IF
8. j = j + 1;
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9. Compute levelj(F);
10. ENDWHILE
11. RETURN (G′)

MINIMUM-VERTEX-CUT in a hypergraph can be com-
puted using the minimum vertex cut algorithm for simple
graphs: each hyperedge corresponds to a clique in the
simple graph. It is easy to confirm that a set of vertices dis-
connects the hypergraph if and only if it disconnects the
corresponding simple graph. Vertex cut on a simple graph
can be implemented with 2n − 2 calls to the standard s-t
vertex cut algorithm (based on minimum s-t edge cut). By
reusing computation, Hao and Orlin [29] showed how to
do all 2n−2 calls to the s-t cut algorithm in the same time
it takes to do a single call. Thus, MINIMUM-VERTEX-CUT
can be solved in O(|V ||E| lg(|V |2/|E|) time. Since we call
MINIMUM-VERTEX-CUT O(|V |) times in the worst case,
ALGORITHM MINIMUM SPECIES REMOVAL INFERENCE
runs in O(|V |2|E| lg(|V |2/|E|) time.
In the next section we give algorithms for MINSRR and

MINLRR. We conclude this section by highlighting the
relationship between MINSRR and MINSRI.

Remark 1. MINSRR reduces toMINSRI.

This is easy to see; take the species tree S given by the
instance of MINSRR and add it to the forest F for the
MINSRI problem. The solution to MINSRI gives a species
tree that must be a subtree of S. Thus, any algorithm for
MINSRI can be used to solve MINSRR.

Algorithms for theminimum removal
reconciliation problems
In this section, we assume that a species tree S is known
for the genome set G. For simplicity, we present the algo-
rithms in the case of a single gene tree T, although it is
straightforward to generalize them to the case of a forest
of gene trees.
Let T be a gene tree for a gene family on G. We sup-

pose that T is not an MD-tree consistent with S (i.e.
there is at least one duplication vertex of T that is a
NAD vertex). We begin by describing special classes of
gene trees for which exact polynomial-time algorithms
have been developed for the MINLRR and MINSRR
problems.

Uniquely leaf-labelled gene trees
When the considered gene family contains at most one
gene per genome, the gene tree T is uniquely leaf-labelled.
In this case, minimizing the number of leaves, or equiv-
alently species, that should be removed from T to obtain
an MD-tree consistent with S is equivalent to finding the
maximum number of genomes that lead to the same phy-
logeny in T and S. In other words, it is immediate to see

that the MINLRR problem reduces, in this case, to the
MAST problem given below.

MAXIMUM AGREEMENT SUBTREE (MAST):

Input: A uniquely leaf-labelled gene tree T on G and a
species tree S for G;
Output: A tree TMAX included in T such that it is MD-
consistent with S and of maximum size.

A more general definition is given in the literature,
where the MAST problem is defined on a set of uniquely
leaf-labelled trees as the largest tree included in each tree
of the set. This definition is equivalent to ours in the case
of a gene tree T and a species tree S.
The MAST problem arises naturally in biology and

linguistics as ameasure of consistency between two evolu-
tionary trees over species or languages [30]. In the evolu-
tionary study of genomes, different methods and different
gene families are used to infer a phylogenetic tree for a set
of species, usually yielding different trees. In such a con-
text, one has to find a consensus of the various obtained
trees. Considering the MAST problem, introduced by
Finden and Gordon [31], is one way to obtain such a con-
sensus. Amir et al. [32] showed that computing aMAST of
three trees with unbounded degree is NP-hard. However,
in the case of two binary trees, the problem is polynomial.
The first polynomial-time algorithm for this problem was
given by Steel and Warnow [33]. It is a dynamic program-
ming algorithm considering the solution for all pairs of
subtrees of T and S; it has a running time of O(n2), where
n is the number of leaves in the trees. Later, Cole et al.
[30] developed an O(n lg n) time algorithm, which, as far
as we know, is the most efficient algorithm for solving the
MAST problem on two binary trees. We use this result
in the MINLRR version of our algorithms. In the case of
k binary trees, the current fastest known algorithms run
in O(kn3) time [34,35]. We use this result in the MINSRR
version of our algorithms.

No AD above NAD
In this section, we consider a tree T containing no AD
vertex above a NAD vertex (Figure 3a). More precisely, T
satisfies CONSTRAINT C below:
CONSTRAINT C: For each NAD vertex x of T, if y is an

ancestor of x that is a duplication vertex, then y is a NAD
vertex.
We show that the MINSRR problem reduces, in this

case, to the MAST problem, while the MINLRR prob-
lem reduces to a “generalization” of the MAST problem
to weighted trees, where a weighted tree is a uniquely
leaf-labelled tree with weighted leaves.

Definition 2. Let U be a tree on G. The weighted tree
induced by (U,S) is the tree included in S obtained from
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Figure 3 Solving the MINIMUM LEAF REMOVAL RECONCILIATION problem for a tree satisfying CONSTRAINT C; (a) A gene tree T on
G = {1, 2, 3, 4, 5, 6, 7, 8}; (b) A species tree S for G. Internal vertices of S are identified with different characters. Labels of internal vertices of T are
attributed according to the LCA mapping between T and S. T contains 5 duplication vertices with respect to S: two AD vertices (surrounded by a
circle) and three NAD vertices (surrounded by a square); (c) The tree T I obtained by replacing the two subtrees of T rooted at each of the two AD
vertices by their weighted induced trees. Leaves’ weights are given in brackets; (d) The weighted agreement subtreeWMAX of T I and S of maximum
value. v(WMAX ) = 7; (e) The subtree TMAX of T induced byWMAX . TMAX is an MD-tree consistent with S.

S by removing all leaves that are not in L(U), with a
weight attributed to each leaf s, representing the number
of occurrences of s in U (i.e. the number of leaves of U
labelled s).

Let T1,T2, · · ·Tm be the maximum subtrees of T rooted
at an AD vertex (i.e. subtrees of T rooted at the high-
est AD vertices). Then, the tree TI obtained by replacing
each Ti, for 1 ≤ i ≤ m, by the weighted tree induced by
(Ti, S), is a weighted uniquely leaf-labelled tree. An exam-
ple is given in Figure 3a,b and c. Let ρs be the operation
of removing the weighted leaf s from TI . Then the cor-
responding removals in T consist of removing from T all
leaves labelled s.
Finally, we formulate the generalization of the MAST

problem to weighted trees as follows, where the value
v(W ) of a weighted treeW is the sum of its leaves’ weights.

WEIGHTEDMAXIMUMAGREEMENTSUBTREE (WMAST):

Input: Aweighted treeW onG and a species tree S forG;
Output: A weighted treeWMAX included inW such that
it is MD-consistent with S and of maximum value.

We are now ready for the main theorem.

Theorem 1. Let T be a gene tree satisfying CON-
STRAINT C. Let WMAX be a solution of the WMAST
problem on TI and S, and TMAX be the subtree included in
T obtained by removing from T all the leaves that are not
leaves of WMAX. Then TMAX is a solution of the MINLRR
problem on T and S.

In other words, solving the MINLRR problem on T
is equivalent to solving the WMAST problem on TI .
We show in the proof of Theorem 2 that WMAST can
be solved by the traditional MAST algorithms with no
change in the asymptotic running time.
A complete example of the algorithmic methodology

used for solving the MINLRR problem on T and S is given
in Figure 3. The algorithm will be detailed in the next
section.
We now provide a proof of Theorem 1, subdivided into

the two following lemmas.

Lemma 1. The tree TMAX is MD-consistent with S.

Proof. We show, by contradiction, that TMAX does not
contain any NAD vertex. Suppose that TMAX contains a
NAD vertex x. Then x maps to the same vertex s of S
than one of its children, lets say the left child. Then there
exists two leaves of TMAX

xl , labelled a and b, and one leaf
of TMAX

xr labelled c such that the triplet {a, b, c} exhibits a
wrong phylogeny. As a non-duplication vertex inT cannot
become a duplication vertex after leaf removals, we have
only two possibilities for x in T :

1. x is a NAD vertex in T. Then the genome sets of Txl
and Txr are disjoint. Moreover, the genome set of
WMAX

xl (resp..WMAX
xr ) is a subset of the genome set

of Txl (resp. Txr ). On the other hand, as x is not a
duplication vertex inWMAX , one of the three genes
a, b and c should be absent inWMAX

x . And thus,
{a, b, c} can not be a subset of the genome set of
TMAX
x , a contradiction.
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2. x is an AD vertex in T. Then the subtree Tx of T
rooted at x contains at least two leaves labelled with
the same label d (different from a, b and c), one in
Txl and one in Txr . Moreover the leaf labelled d in S
should belong to the subtree of S rooted at s, and
thus to the subtree Si rooted at the left or right child
of s. Such subtree Si contains at least one leaf labelled
a or b or c.

On the other hand, let y be the parent of x in TI . As an
optimal solution of the WMAST problem on TI removes
leaves from the subtree TI

x , such an operation should
result in removing the duplication vertex y. In other
words, x and y should map to the same vertex s in S. More-
over the result of the leaf removal from TI

x should result
in a different LCA mapping for x and y. Indeed, remov-
ing leaves from the corresponding subtree in TI does not
contribute to eliminating any NAD from TI . It follows
that S should exhibit the phylogeny ((a, b, c), d), which is a
contradiction with the result of the last paragraph.

Lemma 2. Let T ′ be a tree included in T that is MD-
consistent with S. Then |T ′| ≤ |TMAX |.

Proof. We will show that, for any s ∈ G, if a leaf i
labelled s is removed from T (i.e. i is not a leaf in T ′), then
all leaves of T labelled s are removed from T.
Suppose this is not the case. Let y be the vertex of T rep-

resenting the least common ancestor of all leaves labelled s
in T. Then y is an AD node. As a leaf i labelled s is removed
from T, such removal should contribute to resolving a
NAD vertex x of T. From CONSTRAINT C, such a vertex
should be outside the subtree of T rooted at y. Moreover,
it should clearly be an ancestor of y (otherwise removing i
will have no effect on x).
As x is a NAD vertex, it maps to the same vertex s of S as

one of its children, say the left child. Then, there exist two
leaves of Txl labelled a and b, and one leaf of Txr labelled
c such that the triplet {a, b, c} exhibits a wrong phylogeny.
Moreover, as removing leaf i labelled s contributes to solv-
ing x, we can assume that a = s. However, from our
assumption, there remains a leaf labelled s in T ′. Thus:
either (1) at least one leaf labelled b and one leaf labelled
c remains in T ′, or (2) all leaves labelled b or all leaves
labelled c are removed. In case (1), the wrong phylogeny
exhibited by the triplet {a, b, c} is still present, preventing
vertex x from being a non-duplication vertex. In case (2),
as all copies of b (or equivalently c) are removed, there is
no need to remove leaf i labelled s to correct the wrong
phylogeny exhibited by the triple {a, b, c}.
Therefore, the weighted tree W ′ induced by T ′ is

obtained from TI through a sequence of leaf removals.
Now, asWMAX is the solution of theWMAST problem on
TI , then v(WMAX) ≥ v(W ′), and thus |TMAX | ≥ |T ′|.

Finally, the following corollary makes the link between
the MINSRR problem and the MAST problem.

Corollary 1. Let T be a gene tree satisfying CON-
STRAINT C. LetWMAX be a solution to theMAST problem
on TI and S (ignoring weights), and TMAX be the subtree
of T induced by WMAX. Then TMAX is a solution to the
MINSRR problem on T and S.

To apply the algorithm to MINSRR with the forest F =
{T1,T2, . . . ,Tk}, all trees TI

i must simultaneously agree
with S, so the O(kn3) MAST algorithm [34,35] must be
used.

An Algorithm for the general case
In this section, we present a general algorithm, that is
exact in the case of a uniquely leaf-labelled gene tree
(Section “Uniquely leaf-labelled gene trees”) or a gene tree
satisfying CONSTRAINT C (Section “NoAD above NAD”),
and a heuristic in the general case. We first introduce pre-
liminary definitions. For a given tree U (weighted or not),
consider the two following properties on U :

Property ONLY-NAD: U has no AD vertices;
Property ONLY-AD: U is rooted at an AD vertex and con-
tains no NAD vertex.

We define the NAD-border of U as the set of roots
of the maximum subtrees of U verifying Property ONLY-
NAD, and the AD-border of U as the set of roots of the
maximum subtrees of U verifying Property ONLY-AD.
ALGORITHM CORRECT-TREE is a recursive algorithm

that takes as input a gene tree T and a species tree S, and
outputs a number of leaf removals transforming T into a
tree that is MD-consistent with S. It proceeds as follows:

• Stop condition - Lines 2 to 4: If T is MD-consistent
with S, then no leaf removal is performed, and the
algorithm terminates.

• Recurrence Loop - Lines 6 to 13: Resolve all maximum
subtrees of T verifying CONSTRAINT C as described
in Section “No AD above NAD”, that is:

1. Construct the weighted tree TI (Lines 6-8);
2. For each root x of a maximum subtree TI

x of TI

satisfying CONSTRAINT C (Line 9), solve the
WMAST problem on TI

x , which leads to the
weighted treeWMAX

x (Line 10), compute the
induced tree Tx (Line 11) and store the number of
performed leaf removals (Line 12).

Algorithm Correct-Tree (T, S)
1. LeafRemoval=0;
2. IF T is a tree MD-consistent with S THEN
3. RETURN (LeafRemoval)
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4. END IF
5. TI = T ;
6. FOR ALL x ∈ AD-border(T) DO
7. Replace TI

x by its induced weighted tree;
8. END FOR
9. FOR ALL x ∈ NAD-border(TI ) DO
10. WMAX

x = WMAST(TI
x);

Replace Tx by the subtree induced byWMAX
x ;

LeafRemoval = LeafRemoval +
(v(TI

x) − v(WMAX
x ));

11. END FOR
12. RETURN (LeafRemoval+CORRECT-TREE(T, S))

If T is a uniquely leaf-labelled tree then TI = T , NAD-
border(TI ) is reduced to the root of the tree, and thus loop
9–13 is just executed once. Moreover, as TI is unweighted
(all labels are equal to 1), WMAST is reduced to MAST.
The whole algorithm thus reduces to one resolution of the
MAST problem.
If T satisfies CONSTRAINT C, then NAD-border(TI ) is

also reduced to the root of the whole tree, and thus loop
9–13 is just executed once. In this case, the methodol-
ogy is the one following Theorem 1, and illustrated in
Example 3.
In the general case, NAD-border(TI ) is not restricted

to a single vertex, and loop 9–13 can be executed many
times.Moreover, at the end of loop 9–13, the resulting tree
is not guaranteed to be MD-consistent with S, as NAD
vertices higher than those in NAD-border(TI ) may exist.
ALGORITHM CORRECT-TREE may therefore be applied
many times.

Theorem2. Algorithm Correct-tree has time-complexity
O(n2 lg n), where n is the size of T.

Proof. Let n be the size of T. Loop 2–4 requires the
LCA mapping between T and S, and the identification of
AD and NAD vertices. As the LCA mapping can be com-
puted in linear time [8,36], testing whether a tree T is
MD-consistent with S can be tested in time O(n). Clearly,
Loop 6–8 can be executed in timeO(n). As for Loop 9–13,
it has the time complexity O(C) of WMAST. Therefore,
the complexity for one execution of the recursive ALGO-
RITHM CORRECT-TREE is O(C). As in the worst case the
algorithm can be executed�(n) times, the total worst case
running time is O(nC).
Let us consider the complexity of WMAST. The O(n2)

algorithm of Steel and Warnow [33] naturally generalizes
to the case of weighted trees, and leads to the same com-
plexity, O(n2). However, we show in the rest of this proof
that an instance of WMAST can be transformed into an
instance of MAST in linear-time, which allows us to con-
sider C as being the best complexity found for MAST,

namely the O(n log(n)) running-time of the algorithm
given in [30].
Let G be a genome set, W be a weighted tree on

G and S be a species tree for G. Then consider the
expanded genome set Gexp obtained from G by replacing
each genome g with weight c in W by a set of genomes
{g1, · · · gc}, the expanded gene tree Wexp obtained from
W by replacing each leaf g with weight c > 1 by an
expanded leaf, i.e. a caterpillar tree of size c containing the
leaves g1, · · · gc (i.e. the tree (gc, (· · · g3, (g2, g1) · · · )), and
the expanded species tree Sexp obtained from S by replac-
ing each leaf g with weight c > 1 inW by a caterpillar tree
of size c containing the leaves g1, · · · gc. Then Wexp and
Sexp are uniquely leaf-labelled trees. It is easy to see that
a solution WMAX

exp of MAST will contain, for any g ∈ G,
either c or 0 leaves labelled g (i.e. either 0 or all leaves
labelled g removed fromWexp). Therefore the compressed
treeWMAX

exp , obtained by recovering a single weighted leaf
from each expanded leaf of Wexp that was not removed
by MAST, is a solution to WMAST. Further, since we
add at most a constant number of genes per leaf, we will
affect the running time of MAST by at most a constant
factor.

Empirical results
We test the optimality of Algorithm Correct-Tree in the
case of a gene tree satisfying Property AD-above-NAD (i.e.
containing at least one AD vertex above a NAD vertex).
Indeed, the algorithm is guaranteed to give the opti-
mal solution otherwise (i.e. for trees satisfying the con-
straints of Section “Uniquely leaf-labelled gene trees” or
Section “No AD above NAD”). We compared the number
N of leaf-removals obtained by Algorithm Correct-Tree
with the number Nopt obtained by the exact algorithm
that tries all possible leaf-subset removals. More pre-
cisely, if the minimum number of leaf-removals output by
Algorithm Correct-Tree is r, we try all subsets of r − 1,
r−2, . . . , r− i leaf removals, and stop as soon as a tree that
is MD-consistent with S is obtained. As the naive algo-
rithm has clearly an exponential-time complexity, tests are
performed on trees of limited size.
We considered a genome set of fixed size 5, and gene

trees with 6 to 24 leaves. For each size s (from 6 to 24, with
steps of 2), we generated 500 random gene trees of s leaves,
and kept only those satisfying Property AD-above-NAD.
The left diagram of Figure 4 shows that AlgorithmCorrect-
Tree gives an exact solution for more than 65% of the trees
(among all of those satisfying Property AD-above-NAD).
Moreover, when Nopt differs from Nopt , in most cases the
difference is 1. The right diagram of Figure 4 is obtained
by averaging, for each size s, the results obtained for all
the gene trees of that size. We can see that the error-
rate, computed as (N − Nopt/N , is independent from the
size of the tree, and did not exceed 0.15, based on our
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simulation parameters. After testing other dependency
factors (non-shown results), it appears that the error-rate
only depends on the number of times the loop 9–13 of
Algorithm Correct-Tree is executed, which is not directly
related to the number of NADs or ADs in the tree.
Finally, we tested the ability of the approach to identify

misplaced genes. To do so, we considered a genome set of
fixed size 10, and gene trees of size s varying from 10 to
100 (with a step of 10). For a random species tree S and
a random tree T of size s that is MD-consistent with S,
we incorporate randomly NbAdded = s/10 leaves with
randomly chosen labels. We then test how many “mis-
placed” leaves our method is able to detect. For each size
s, results are averaged over 100 trees. Figure 5 shows the
detection percentage of ALGORITHM CORRECT-TREE,
which is computed as (N/NbAdded)×100. This detection
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Figure 5 Percentage of misplaced leaf detection, computed as
(N/NbAdded) × 100, where NbAdded is the number of
randomly added leaves, and N is the number of leaf removals
obtained by ALGORITHM CORRECT-TREE (see text for more details).

percentage decreases with increasing size of the gene tree.
This is mainly due to the fact that as an MD-consistent
tree needs no leaf removal, its detection percentage is
always 100%, and that the more leaves we add (1 for a
gene tree of size 10, but 10 for a gene tree of size 100)
the less chance we have to end up with an MD-consistent
tree. Removing the cases of MD-consistent trees lead to a
detection percentage around 40%.

Conclusion
Based on observations pointing to NAD vertices of a
gene tree as indicating potentially misplaced genes, we
developed a polynomial-time algorithm for inferring the
minimum number of leaf-removals required to transform
a gene tree into an MD-tree, i.e. a tree with no NAD ver-
tices. The algorithm is exact in the case of a uniquely
leaf-labelled gene tree, or in the case of a gene tree that
does not contain any AD vertex above a NAD vertex.
In the general case, our algorithm exhibited near-optimal
results under our simulation parameters. Unfortunately,
NAD vertices can only reveal a subset of misplaced genes,
as a randomly placed gene does not necessarily lead to
a NAD vertex. Our experiments show that, on average,
we are able to infer 40% of misplaced genes. However,
the additional damage caused by a misplaced leaf leading
to a NAD is an excessive increase of the real mutation-
cost of the tree. Therefore, removing NADs can be seen
as a preprocessing of the gene tree preceding a reconcil-
iation approach, in order to obtain a better view of the
duplication-loss history of the gene family.
Another use of our method would be to choose, among

a set of equally supported gene trees output by a given
phylogenetic method, the one that can be transformed
to an MD-consistent tree by a minimum number of leaf
removals.
A limitation of our approach is that a NAD resulting

from a wrong bipartition {a, b; c} can be, a priori, solved
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by removing any gene from this bipartition. Our present
approach is able to detect a number of misplaced genes
but, in general, it is insufficient to detect precisely the
genes that have been erroneously added in the tree. An
extension would be to infer all optimal subsets of leaf
removals, and to use bootstrapping values on the edges of
the tree for a judicious choice of the genes to be removed.
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