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Abstract

Background: Supertree methods combine trees on subsets of the full taxon set together to produce a tree on the
entire set of taxa. Of the many supertree methods, the most popular is MRP (Matrix Representation with
Parsimony), a method that operates by first encoding the input set of source trees by a large matrix (the “MRP
matrix”) over {0,1, 7}, and then running maximum parsimony heuristics on the MRP matrix. Experimental studies

evaluating MRP in comparison to other supertree methods have established that for large datasets, MRP generally
produces trees of equal or greater accuracy than other methods, and can run on larger datasets. A recent
development in supertree methods is SuperFine+MRP, a method that combines MRP with a divide-and-conquer
approach, and produces more accurate trees in less time than MRP. In this paper we consider a new approach for
supertree estimation, called MRL (Matrix Representation with Likelihood). MRL begins with the same MRP matrix,

but then analyzes the MRP matrix using heuristics (such as RAxML) for 2-state Maximum Likelihood.

Results: We compared MRP and SuperFine+MRP with MRL and SuperFine+MRL on simulated and biological
datasets. We examined the MRP and MRL scores of each method on a wide range of datasets, as well as the
resulting topological accuracy of the trees. Our experimental results show that MRL, coupled with a very good ML
heuristic such as RAXML, produced more accurate trees than MRP, and MRL scores were more strongly correlated

with topological accuracy than MRP scores.

Conclusions: SuperfFine+MRP, when based upon a good MP heuristic, such as TNT, produces among the best
scores for both MRP and MRL, and is generally faster and more topologically accurate than other supertree

methods we tested.
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Background

Because estimation of large trees is computationally
challenging [1-3] and topological error tends to increase
with the number of taxa [4-7], supertree methods
(which estimate trees on full sets of taxa from sets of
smaller trees) may be key to accurate estimations of the
Tree of Life. Many supertree methods have been pro-
posed: see [8] for an overview of early methods, and
also [9-17]. Some of these (e.g., the Robinson-Foulds
supertree approach in [9]) operate only on rooted
source trees, while others (e.g., the Maximum Likelihood
Supertree Method in [15]) are only theoretical (i.e., have
not yet been implemented). Of the various methods that
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are implemented, MRP (Matrix Representation with Par-
simony) [18,19] is by far the most frequently used.
Furthermore, studies have shown that of these methods,
only MRP produces highly accurate supertrees on data-
sets of unrooted source trees with large numbers of taxa
[17,20].

MRP operates in two steps. Given a set T of source
trees with set S of taxa, the first step produces a large
matrix, called the MRP matrix, with one row for every
taxon in S and one column for every edge of every tree
in 7. For a given edge e in a given source tree ¢, the
column in the MRP matrix has entries over {0,1, ?}, with
0 given for the taxa that are on one side of the edge ¢, 1
for the taxa on the other side, and ? for all the remain-
ing taxa (i.e., the ones that do not appear in the tree £).
This way of encoding each source tree is called the
“Baum-Ragan” coding; however, when the source trees
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are rooted, other techniques (e.g., the Purvis coding) can
be used (see a comparison between these coding meth-
ods in [20]). The second step then uses the maximum
parsimony criterion to produce a tree on the MRP
matrix. The MRP approach thus depends on whether
substitutions from 0 to 1 have the same cost as substitu-
tions from 1 to 0, and hence also depends on how the
states 0 and 1 are assigned to the leaves in each source
tree, for each given edge. In particular, the MRP matrix
definition depends upon whether the trees in 7 are
rooted or unrooted. The simplest version of MRP (and
the one we study in this paper) treats all input trees as
unrooted and uses the standard maximum parsimony
criterion in which all substitutions have equal cost (this
is called “reversible Fitch parsimony”). For this very sim-
ple version of MRP (i.e., Baum-Ragan encoding, fol-
lowed by reversible Fitch parsimony), the choice of state
(i.e., 0 or 1) for each side of each edge has no impact on
the output, and so can be made arbitrarily. Methods for
MRP are based upon techniques for the NP-hard maxi-
mum parsimony problem [21]. The most popular MRP
heuristics therefore use good heuristics for maximum
parsimony (MP), such as PAUP* [22] and TNT [23].

Recently, Swenson et al. [24] introduced a new super-
tree method, SuperFine+MRP, that operates in two
steps: in the first step, an incompletely resolved tree
called the “strict consensus merger” (SCM) tree is com-
puted, and in the second step MRP heuristics are used
to refine each high degree node (polytomy) in the SCM
tree. Their study showed that SuperFine+MRP produced
topologically more accurate trees than MRP (both meth-
ods based upon the same MP heuristics in PAUP* [22])
and also ran in much less time. However, in some cases
(in particular on very large supertree datasets), the SCM
tree contained very large polytomies, so that refining the
large polytomies could require a substantial time effort,
thus reducing the running time advantage of SuperFine
+MRP over MRP. Speeding up the analysis through a
parallelization of SuperFine’s refinement step is also
hampered by the fact that refinement of very large poly-
tomies using MRP is the most computationally intensive
part of the SuperFine analysis [25].

Our objective was therefore to find an alternative to
MRP for the refinement step within SuperFine. In this
paper we examine supertrees estimated by analyzing the
MRP matrix using RAXML'’s [26] fast heuristics for max-
imum likelihood under the symmetric 2-state model (so
that the change from 0 to 1 is as likely as the change
from 1 to 0) with CAT distribution of rates across sites,
and we refer to this as the S2+CAT model. We call the
optimization problem in this approach to supertree esti-
mation “matrix representation with likelihood”, or MRL.
Thus, MRL is the counterpart to MRP, and uses S2
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+CAT maximum likelihood instead of maximum parsi-
mony as a criterion for estimating a supertree from the
MRP matrix.

We report on a simulation study we performed to
compare MRP to MRL (using fast heuristics for both) as
supertree methods, and also to refine the SCM tree
computed by SuperFine. Our study shows that using
RAxML for MRL produces topologically more accurate
trees than the MRP heuristics (PAUP* and TNT [23])
we studied, and that MRL scores (under GTR+gamma,
see discussion below) correlate very well with tree accu-
racy (and in general better than MRP scores). These
results suggest that MRL may be a useful optimality cri-
terion for supertree estimation. Second, we show that
SuperFine can be used to obtain better scores for MRP
and good scores for MRL, and faster than the standard
heuristics for these problems.

Methods and Materials

Datasets

Simulated datasets

We used 500- and 1000-taxon datasets used in previous
studies [17,28]. These supertree datasets consist of pro-
files of source trees, with each source tree computed by
running RAxML [29] on DNA sequence alignments pro-
duced in simulation. These simulated datasets have rea-
listic patterns of missing data, reflecting both biological
processes and taxon sampling strategies used by sys-
tematists in phylogenetic studies. Two types of source
trees were generated on the model trees: “clade-based
source trees (each tree being a dense sample within a
specific clade of the model tree), and “scaffold” source
trees (a random sampling of a proportion of the taxa
throughout the model tree). The proportion of taxa
from the model tree that is sampled in the scaffold tree
is called the “scaffold density”. Supertrees are generally
more accurate when estimated from dense rather than
sparse scaffold trees. These simulated datasets have scaf-
fold trees with four densities, 20%, 50%, 75% and 100%.
Each supertree dataset consists of a number of clade-
based source trees and one scaffold-based source tree,
but the number of clade-based source trees depended
upon the number of taxa (15 for the 500-taxon datasets
and 25 for the 1000-taxon datasets). For each scaffold
density, there are 30 replicates with 500 taxa and 10
replicates with 1000 taxa. However, for scaffolds with
low densities, a few of the datasets did not have suffi-
cient taxonomic overlap to perform an accurate super-
tree analysis and were excluded from the results. In
total, 4 of the 40 1000-taxon datasets (3 from the 20%
scaffold density and 1 from the 50% scaffold density)
and 6 of the 120 500-taxon datasets (all from the 20%
scaffold density) were excluded from analysis.
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Biological datasets

We examined the performance of the supertree methods
on six biological datasets shown in Table 1. The number
of source trees and taxa in each dataset varied from a
dataset with a small number of taxa but many source
trees (115 taxa and 726 source trees) to a dataset with a
large number of taxa but fewer source trees (2,228 taxa
and 39 source trees). The details for the generation of the
seabirds, placental mammals, marsupial, and THPL
source trees can be found in the references mentioned in
Table 1. The comprehensive papilionoid legumes (CPL)
dataset was originally studied in [30] as a combined ana-
lyses of 39 markers and consisted of 2228 taxa and
33,168 sites in the alignment; for this dataset, we used
source trees that were estimated by Swenson et al. [17].

Supertree methods

Since earlier studies [17,28] established that the simplest
version of MRP (unrooted source trees, all substitutions
have equal cost) outperformed other base supertree
methods, we used MRP as a benchmark.

MRP

For the MP heuristic used within MRP analyses, we ran
PAUP* using the parsimony ratchet implementation,
identically as in [17,28]. We also ran TNT [23], using a
combination of sectorial search, tree drifting, and fusing
(i.e., techniques within TNT that are effective for large-
scale parsimony analysis). We refer to these two ways to
run MRP as MRP(PAUP*) and MRP(TNT). At the end
of each MRP analysis, we had a collection of equally
good MRP solutions, from which we produced a greedy
consensus tree (also known as an extended majority
consensus). Scripts used to generate the PAUP* and
TNT runs are available upon request.

MRL

For the ML heuristic used within the MRL analyses, we
used RAXML [29]. RAXML is potentially the most accu-
rate ML heuristic for large datasets, and when used with
its BINCAT model it can work directly with the MRP
matrices. We refer to this way of running MRL by MRL
(RAxML). Note that any ML package that supports the
symmetric 2-state model can be used instead of RAxML
for the MRL analysis.

Table 1 Statistics for biological datasets
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SuperFine

We briefly describe SuperFine [24]. SuperFine uses a
two-step technique, where the first step produces a typi-
cally unresolved tree called the “Strict Consensus Mer-
ger” (SCM) tree, and the second step then refines this
tree. The SCM tree is obtained by merging two trees at
a time until all the trees are combined. Each of these
pairwise mergers contracts edges on which the two trees
either disagree or which have “collisions”. At the end of
the process, the final tree contains all the taxa, but may
be only partially resolved. The order in which the trees
are merged can impact the accuracy (and resolution) of
the final tree, as observed in [31]; therefore, we use the
same rule for determining the ordering on pairwise mer-
gers as used in [24], which considers the size of the
overlap in taxon sets when picking the pair of trees to
merge.

The second step of SuperFine resolves the SCM tree,
one node at a time. The resolution of a single high
degree node (described below) depends only on the par-
tition of the taxa into subsets, as defined by the node,
and the topologies of the source trees; therefore, these
resolutions are independent of each other and so the
order does not matter.

To resolve a single high degree node v (i.e., polytomy)
in the SCM tree, SuperFine first labels the neighbors of
v by 1..d, where the SCM tree has d subtrees off of v (i.
e., d = deg(v)). Next every leaf in each of d subtrees is
relabeled by the label (from 1...d) assigned to the root of
its subtree. At this point, SuperFine creates a new set of
source trees, by modifying each of the input source
trees so that each contains at most d leaves, as follows:
If x is an internal node in a source tree that is adjacent
to two leaves, each of which has the same label /, then
we remove its neighboring leaves and relabel x by /. In
[24], it was proven that this modification produces
source trees that have at most one leaf with each label.
SuperFine then applies its base supertree method (such
as MRP) to compute a supertree on the modified source
trees, each of which has at most d leaves. Since d may
be much smaller than the number of taxa, this supertree
estimation can be very fast. Finally, the resultant super-
tree produced for this polytomy is used to define the

Dataset Number Taxa Number Source trees Scaffold density Resolution of SCM tree Reference
Placental 116 726 1.00 0.01 [35]
Seabirds 121 7 074 0.57 [36]
Marsupials 267 158 1.00 0.10 [37]
THPL 558 19 025 0.57 [38]
CPL 2,228 39 074 0.52 [30]

We show the number of source trees, total taxa, resolution of the strict consensus merger tree, and the source of the original data for each of the biological
datasets. The scaffold density is the proportion of the total taxa present in the largest source tree.
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refinement at that node. Note, therefore, that the refine-
ment at that node depends only on the base supertree
method and the modified source trees, and that the
modified source trees are defined by the source trees
and the partition of the taxa defined by the node.
Because the source trees and the partition of the taxa
defined by a node v does not depend upon whether
other polytomies are processed before or after v, the
order in which the polytomies are processed has no
impact on the output.

We use the terminology “SuperFine+MRP” to refer to
SuperFine used with MRP to perform the refinement
step, but SuperFine can be used with other base super-
tree methods. Thus, we use the terminology “SuperFine
+MRL” to refer to SuperFine used with MRL to perform
the refinement step. We ran SuperFine+MRP based
upon PAUP* (using the same parsimony ratchet imple-
mentation as MRP(PAUP*)) and TNT (using the same
combination of sectorial search, tree drifting, and fusing
as MRP(TNT)), and refer to these two different versions
by SuperFine+ MRP(PAUP*) and SuperFine+ MRP(TNT).
We note that this way of running SuperFine+ MRP
(PAUP*) is identical to that reported in [24]. We ran
SuperFine+MRL based upon RAxML (using the same
RAXxML commands as MRL(RAxML)), and refer to this
as SuperFine+MRL(RAXML).

The software used in this study is available in open-
source form by request from the authors; the datasets
are available online at http://www.cs.utexas.edu/users/
phylo/datasets/supertrees.html.

Measurements

We compared the trees produced by the supertree
methods (MRP, MRL, SuperFine+MRP, and SuperFine
+MRL) to the true supertree (known because the data
are simulated). We report two error rates: the missing
branch rate (i.e., the percent of the internal edges in the
true supertree missing in the estimated supertree, and
also known as the false negative (FN) rate) and the false
positive rate (i.e., the percentage of the internal edges in
the estimated supertree that do not appear in the true
supertree). For those estimated supertrees that are fully
resolved, these two error rates will be equal. However,
the false positive error will always be at most that of the
false negative error rate, since the true supertree is
always binary.

We computed the MRP scores of the estimated super-
trees (i.e., the MP scores of the trees with respect to the
MRP matrix). We report ML scores under S2+I" (the
symmetric 2-state model with gamma distribution of
rates across sites) instead of under the S2+CAT model.
This is motivated by the observation that RAxML’s
search under S2+I" is computationally more intensive
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than its search under S2+CAT, and that both searches
return trees of comparable topological accuracy. How-
ever, the preferred models for phylogeny estimation
have used gamma-distributed rates instead of CAT-dis-
tributed rates. For these two reasons, we report ML
scores under gamma-distributed rates for trees found
using the S2+CAT model, and we call these the “MRL
scores”. Finally, since MRP methods return a set of
most parsimonious trees, we report the false positive
rates, false negative rates, and MRL scores with respect
to the greedy consensus of the set of trees. For the MRP
scores, we report the best MP score found during the
heuristic search.

For the biological datasets, since the true supertrees
are not known, we computed the Sum-FN [17] distance
to the source trees, which is the percent of the internal
edges in the source trees missing in the estimated super-
tree. Note that Sum-FN is identical to Sum-RF (the sum
of the RF distances) when the source trees and the esti-
mated supertree are binary. We also computed the MRP
and MRL scores of the estimated supertrees.

Finally, we also report average running times for each
method on each model condition as well as on the bio-
logical datasets.

Correlation Analyses

For each simulated dataset, we examined how well each
of the scores (MRP score, MRL score, and Sum-FN) cor-
relate with missing branch rates. Since we only have six
estimated supertrees per dataset, we generated more
trees for each dataset to run our correlation analyses,
using p-edge-contract-and-refine (p-ECR) [32] moves as
follows. A p-ECR move operates by randomly contracting
p edges in a tree and then randomly refining the resultant
unresolved tree. For each dataset in each model condi-
tion, the six estimated supertrees were used to generate a
set of p-ECR neighboring trees, with p drawn between 0
and 25% of the internal edges. This was repeated 100
times per supertree, resulting in a total of 600 trees. We
then compute the MRL, MRP, Sum-EN, and missing
branch rates for each of the 606 trees (600 p-ECR trees
plus 6 supertrees). In other words, the results we report
are for 114 different 500-taxon supertree datasets (24
from the 20% scaffold density and 30 from the remaining
three model conditions) and 36 different 1000-taxon
datasets (7 from the 20% scaffold density, 9 from the 50%
scaffold density, and 10 from the remaining two model
conditions). We compute the Spearman’s rank correla-
tion between the MRL, MRP, and Sum-FN scores and
the missing branch rates. We then averaged the Spear-
man’s rank correlation coefficient across replicates and
report the average Spearman’s rank correlation as a func-
tion of the model condition.
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Results

Simulated Datasets

We begin our discussion of results by examining the
results for the simulated datasets. We focus primarily on
the average missing branch rates for each model condi-
tion (as defined by the scaffold density), but also note
the false positive rate (which can differ from the missing
branch rate when the supertrees are not fully resolved).
In addition, we note the MRP and MRL scores; this
allows us to consider whether using better heuristics
(for the optimization problems) result in improved topo-
logical accuracy. Finally, we also examine running times.
Topological error rates

We begin with a discussion of the missing branch rate for
the estimated supertrees (Figure 1 and Table 2 for 1000-
taxon datasets, and Table 3 for 500-taxon datasets). Note
that the supertree methods had very close error rates
when the scaffold tree contains all the taxa (i.e., the scaf-
fold density is 100%), that all methods improved in accu-
racy as the scaffold density increases, and that the
difference in error rates between methods decreased with
the increase of scaffold density (trends already observed
for SuperFine+MRP and other supertree methods in
[17,28]). Since biological supertree datasets often do not
contain scaffold trees containing all the taxa (and fre-
quently contain only sparsely sampled scaffold trees), we
focus our attention on performance on the sparse scaf-
fold trees, with 20% or 50% scaffold densities.

The next observation is that where there was any
noticeable difference between supertree methods, MRP
(TNT) and MRP(PAUP*) gave the highest missing
branch rates, and that MRL(RAxXxML) and all versions of
SuperFine gave the most accurate trees. Also, the differ-
ence between the error rates was greatest on the 20%
scaffold density conditions, and decreased as the density
of the scaffold tree increased, as expected.
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Table 2 Missing branch rates for 1000-taxon model
conditions

Scaffold Density

Method 20 50 75 100  Average
MRP(PAUP¥) 20.7 17.7 16.2 1.7 162 (0.7)
(1.1 (0.8) (0.8) (0.9)
MRP(TNT) 279 19.1 149 1.7 176 (1.1)
(1.6) (13) (1.1) (0.8)
MRL(RAXML) 15.7 14.1 13.8 119 13.7
(0.7) (0.6) (1.0 (0.8) (0.5)
SCM 226 22.7 21.0 190 21.2(04)
(0.7) 07) (0.7) (0.6)
SuperFine+MRP 15.7 14.7 13.7 11.6 13.7
(PAUP¥) (0.7) 07) (0.9) (0.8) (0.5)
SuperFine+MRP 15.7 14.5 13.6 118 13.7
(TNT) (0.8) 07) (0.9) (0.8) (0.5)
SuperFine+MRL 16.1 15.0 139 119 140 (0.5)
(RAXML) 0.8) (05) (0.9) 0.8)

We show the average missing branch rates (reported as %) on the 1000-taxon
datasets. Missing branch rate is calculated as total number of FN edges in the
model tree divided by the total number of internal edges in the model tree.
Each simulated dataset has 25 clade-based source trees and 1 scaffold tree.
The scaffold density is the percentage of the full taxon set that is present in
the scaffold tree. The standard error is shown in parenthesis. n = 7 for the
20% scaffold density, n = 9 for the 50% scaffold density, and n = 10 for the
remaining scaffold densities. n = 36 for the average. The lowest missing
branch rate for each scaffold density is shown in bold.

An important observation is that although there were
some statistically significant differences, the error rates
of the various versions of SuperFine never differed by
more than 1%. To some extent this is expected, since
the majority of the SuperFine tree topology is produced
by its first step, when it computes the SCM tree, and
the second step (here performed using MRL or MRP) is
limited to refining the SCM tree.

We now discuss the false positive rates; Table 4 gives
these rates for 1000-taxon datasets and Table 5 gives
rates for 500-taxon datasets. We note that the false

~+MRP(PALUP*)

MRP(TNT)
-4 MRL{RAXML)
~—SuperFine+MRP(PAUP")
& SuperFine+MRP{TNT}
-*SuperFine+MBL(RAxML)

Iissing branch rate

75 100

50
Scaffold density

scaffold density, and n = 9 for 50% scaffold density.

Figure 1 Average missing branch rates and running times for 1000-taxon model conditions. The average missing branch rates and
running times (in minutes) for the supertree methods for the 1000-taxon model conditions as a function of scaffold density. The standard error
is shown for the missing branch rates, and the standard deviation is shown for the running times. Averages are computed only on replicates
where there is sufficient taxonomic overlap to perform an accurate supertree analysis. n = 10 for all scaffold densities except n = 7 for the 20%

Running time {min)

%20 50 75 100
Scaffold density
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Table 3 Missing branch rates for 500-taxon model
conditions
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Table 5 False positive rates for 500-taxon model
conditions

Scaffold Density

Scaffold Density

Method 20 50 75 100 Average Method 20 50 75 100 Average
MRP(PAUP¥) 221 188 147 111 164 MRP(PAUPY) 221 188 14.7 1.1 164
(1.0 06) ©7)  (0.4) 0.5) 10 08 07 (04 (05)
MRP(TNT) 294 184 14.] 1.2 177 MRP(TNT) 204 184 141 1.2 17.7
1.7) (0.9) 06) 04) 08) a7 09 08 (04 038)
MRL(RAXML) 159 140 129 12 134 MRLRAXML) 159 14.0 129 1.2 134
(0.6) (0.5) (0.5) (04) 0.3) (0.6) (0.5) (0.5) (04) 03)
SCM 23 216 206 186 207 SCM 6.3(0.5) 5.9(0.4) 4.7(0.3) 4.0(0.3) 5.2(0.2)
06 05 09 06 03 g arinesmre 139 126 115 111 122
Superfine+MRP 152 14.0 125 114 131 (PAUPY) 05 (04 04 (04 ©0.2)
(PAUP) 035 04 04 04 03 superFine+MRPTNT) 138 125 114 112 121
Superfine+MRP 150 139 124 1.2 130 ©06) (04 04 (04 ©0.2)
(TND) (06) (04 (04 04) 03) superFine+MRL 142 128 121 13 125
Superfine+MRL 154 14.2 13.1 13 134 (RAXML) ©05 (04 04 04 ©0.2)
(RAXML) 05) (04) (04) (04) 0.3)

We present average missing branch rates (reported as %) on the 500-taxon
datasets. Missing branch rate is calculated as total number of FN edges in the
model tree divided by the total number of internal edges in the model tree.
Each simulated dataset has 15 clade-based source trees and 1 scaffold tree.
The scaffold density is the percentage of the full taxon set that is present in
the scaffold tree. The standard error is shown in parenthesis. n = 24 for the
20% scaffold density, and n = 30 for the remaining scaffold densities. n = 114
for the average. The lowest missing branch rate for each scaffold density is
shown in bold.

positive and missing branch rates were nearly identical
for the MRP and MRL trees, indicating that these trees
were fully resolved. By contrast, the SuperFine trees
were not always fully resolved, and hence had lower
false positive rates than their missing branch rates.

Table 4 False positive rates for 1000-taxon model
conditions

Scaffold Density

Method 20 50 75 100 Average
MRP(PAUP¥) 20.7 17.7 16.1 11.7 16.2

(1.1) (0.8) (0.8) (0.9 (0.7)
MRP(TNT) 279 19.1 149 11.7 176

(1.6) (1.3) (1. (0.8) (1.1)
MRL(RAXML) 15.7 14.1 138 11.9 13.7

(0.7) (0.6) (1.0 (0.8) (0.5)
SCM 5.9(0.5) 5.4(0.4) 4.9(0.6) 4.4(0.6) 5.1(0.3)
SuperFine+MRP 144 132 127 16 128
(PAUP¥) (0.6) (0.6) (0.8) (0.8) (04)
SuperFine+MRP(TNT) 144 130 126 11.8 12.8

(0.7) (0.6) (0.8) (0.8) (04)
SuperFine+MRL 14.8 135 129 11.9 13.1
(RAXML) (0.7) (0.5) (0.8) (0.8) (04)

We show average false positive rates (reported as %) on the 1000-taxon
datasets. False positive rate is calculated as total number of FP edges in the
estimated tree divided by the total number of internal edges in the internal
tree. Each simulated dataset has 25 clade-based source trees and 1 scaffold
tree. The scaffold density is the percentage of the full taxon set that is
present in the scaffold tree. The standard error is shown in parenthesis. n = 7
for the 20% scaffold density, n = 9 for the 50% scaffold density, and n = 10
for the remaining scaffold densities. n = 36 for the average. The lowest false
positive rate for each scaffold density is shown in bold.

We present the average false positive rates (reported as %) on the 500-taxon
datasets. False positive rate is calculated as total number of FP edges in the
estimated tree divided by the total number of internal edges in the internal
tree. Each simulated dataset has 15 clade-based source trees and 1 scaffold
tree. The scaffold density is the percentage of the full taxon set that is
present in the scaffold tree. The standard error is shown in parenthesis. n =
24 for the 20% scaffold density, and n = 30 for the remaining scaffold
densities. n = 114 for the average. The lowest false positive rate for each
scaffold density is shown in bold.

Finally, we discuss the SCM tree. We note that the
missing branch rates (Tables 2 and 3) were quite high,
and that the false positive rates (Tables 4 and 5) were
quite low (although not equal to zero). The high false
negative rate means that the SCM tree is not a good
point estimate of the true tree, an observation also
established in [24]. On the other hand, its low false posi-
tive rate means that most of its edges are likely to be
true of the true tree, and makes it a good constraint
tree (which is how it is used within SuperFine).

Which methods give good MRL and MRP scores?

With respect to MRL scores, not surprisingly, MRL
(RAxML) gave the best MRL scores (Tables 6 and 7).
The next best methods were SuperFine+MRP(TNT) and
SuperFine+ MRP(PAUP*). MRP(PAUP*) typically gave
the least accurate MRL scores.

With respect to MRP scores (Tables 8 and 9), we find
that SuperFine+MRP(TNT) and SuperFine+MRP
(PAUP*) had nearly identical performance and the best
scores of all methods for scaffold densities of 20% and
50%. For denser scaffolds, MRP(TNT), SuperFine+ MRP
(TNT), and SuperFine+MRP(PAUP*) had the best
scores. At 100% scaffold density, MRP(PAUP*) also pro-
duced the best scores. Thus, although MRP(PAUP*) and
MRP(TNT) directly try to optimize MRP scores, Super-
Fine+ MRP(PAUP*) and SuperFine+MRP(TNT) gave
better MRP scores, and hence were more effective heur-
istics for MRP, especially for sparse scaffolds.

These results together suggest that the best MRP
heuristics are SuperFine+ MRP(PAUP*) and SuperFine
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Table 6 MRL scores for 1000-taxon model conditions
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Scaffold Density

Method 20 50 75 100 Average
MRP(PAUP¥) -16632 (1870) -19844 (1988) -21742 (2879) -24325 (2896) -20991 (3684)
MRP(TNT) -16584 (1861) -19764 (1983) -21645 (2837) -24332 (2896) -20937 (3687)
MRL(RAXML) -16347 (1868) -19700 (1996) -21594 (2850) -24288 (2898) -20848 (3738)
SuperFine+MRP(PAUP¥) -16368 (1869) -19714 (1995) -21625 (2844) -24329 (2891) -20876 (3742)
SuperFine+MRP(TNT) -16366 (1870) -19718 (1998) -21630 (2845) -24326 (2892) -20878 (3742)
SuperFine+MRL(RAXML) -16389 (1872) -19749 (1996) -21648 (2859) -24336 (2894) -20897 (3741)
True Tree -16852 (1929) -20246 (2024) -22147 (2770) -24820 (2783) -21385 (3714)

We present the average MRL scores (ML scores under the symmetric two-state model with gamma-distributed rates across sites) with respect to the MRP matrix,
given as log likelihood scores) for the 1000-taxon supertrees. Thus, numbers with smaller magnitude represent improvements. The scaffold density is the
percentage of the full taxon set that is present in the scaffold tree. The standard deviation is shown in parenthesis. All scores are rounded to the nearest integer.

The lowest MRL score (in magnitude) for each scaffold density is shown in bold.

+MRP(TNT) (followed by MRP(TNT)), while the
method that generally produces the best MRL scores is
MRL(RAxML), followed closely by SuperFine+MRP
(PAUP*) and SuperFine+ MRP(TNT).
Running Time
In many ways, the different variants of SuperFine are
extremely close, producing trees of almost identical
topological accuracy (among the most accurate across
all scaffold densities), and producing good heuristics for
MRP and MRL. However, how do they perform in
terms of running time? We focus here on the results for
the 1000-taxon datasets, shown in Figure 1 and Table
10 (see Table 11 for 500-taxon datasets). All versions of
the SuperFine methods were fast, finishing in all the
simulated datasets in just a few minutes (on average,
about eight (8) minutes on the 1000-taxon datasets).
MRP(TNT) was also fast (finishing in under 5 minutes
on all these datasets), but the remaining methods were
much slower: MRL(RAxML) often took more than 1.5
hours and MRP(PAUP*) took close to an hour on the
1000-taxon datasets.

The tradeoffs between the different methods can be
seen more clearly on the sparse scaffold conditions. Fig-
ure 2 shows that MRL(RAxML) was slow but very

Table 7 MRL scores for 500-taxon model conditions

accurate, MRP(TNT) was very fast but inaccurate, MRP
(PAUP*) fell in between both of these methods, and all
SuperFine methods were both accurate and fast.

Correlation of MRL, MRP, and Sum-FN with tree error

We also consider the question of how well the MRL,
MRP, and Sum-FN scores correlate with tree error (as
measured by FN rate). In other words, is it helpful to
find a supertree that optimizes MRL, MRP, or Sum-
FN?

Some trends are immediately obvious from the corre-
lation analysis (Tables 12 and 13). First, all three scores
were statistically correlated with tree error according to
Spearman’s rank correlation test and after Bonferroni
correction for multiple hypothesis testing (p-values not
shown). Second, Sum-FN and MRP scores had roughly
the same correlation coefficient across the scaffold den-
sities. Focusing on low scaffold densities, MRL had a
much larger correlation coefficient than MRP and Sum-
EN. In general, MRL and tree error were more strongly
correlated at all scaffold densities, except at 100% scaf-
fold densities, where all scores correlated strongly with
tree error. We also note that all pairwise correlations
became stronger as the scaffold density increased.

Scaffold Density

Method 20 50 75 100 Average
MRP(PAUP*) -7815 (2419) -9089 (2377) -10242 (2360) -11425 (2349) -9739 (2709)
MRP(TNT) -7799 (2417) -9039 (2373) -10218 (2370) -11426 (2349) -9716 (2715)
MRL(RAXML) -7711 (2444) -9013 (2376) -10198 (2369) -11408 (2347) -9681 (2731)
SuperFine+MRP(PAUP¥) -7721 (2449) -9021 (2380) -10209 (2374) -11424 (2349) -9692 (2736)
SuperFine+MRP(TNT) -7722 (2449) -9022 (2380) -10209 (2373) -11426 (2351) -9693 (2736)
SuperFine+MRL(RAXML) -7731 (2449) -9035 (2390) -10221 (2377) -11433 (23571) -9704 (2740)
True Tree -7901 (2454) -9216 (2377) -10390 (2376) -11607 (2346) -9877 (2736)

We present the average MRL scores (ML scores with respect to the MRP matrix, given as log likelihoods) for the 500-taxon supertrees. Thus, numbers with
smaller magnitude represent improvements. The scaffold density is the percentage of the full taxon set that is present in the scaffold tree. The standard
deviation is shown in parenthesis. All scores are rounded to the nearest integer. The lowest MRL score (in magnitude) for each scaffold density is shown in bold.
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Table 8 MRP scores for 1000-taxon model conditions
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Scaffold Density

Method 20 50 75 100 Average
MRP(PAUP¥) 2653 (276) 2981 (290) 3141.30 (428) 3390 (423) 3075 (449)
MRP(TNT) 2625 (268) 2962 (292) 3120 (421) 3390 (423) 3059 (452)
MRL(RAXML) 2618 (275) 2969 (293) 3143 (417) 3424 (429) 3075 (463)
SuperFine+MRP(PAUP¥) 2612 (275) 2960 (294) 3120 (421) 3390 (423) 3056 (456)
SuperFine+MRP(TNT) 2614 (276) 2960 (294) 3120 (421) 3390 (423) 3056 (456)
SuperFine+MRL(RAXML) 2628 (277) 2980 (294) 3141 (421) 3407 (425) 3075 (457)
True Tree 2788 (294) 3144 (307) 3308 (411) 3578 (405) 3241 (456)

We present the average MRP scores (MP scores with respect to the MRP matrix) for the 1000-taxon supertrees. The scaffold density is the percentage of the full
taxon set that is present in the scaffold tree. The standard deviation is shown in parenthesis. All scores are rounded to the nearest integer. The lowest MRP score

for each scaffold density is shown in bold.

This preliminary study showing a relatively strong cor-
relation between MRL scores and tree error suggests
that methods for optimizing MRL scores may have
some inherent value, especially for the low scaffold den-
sity conditions where the correlation between MRP
scores and tree error is much lower.

Biological datasets

Because we do not have a reliable “true species tree” for
the biological datasets, we compare estimated supertrees
in terms of Sum-FN, MRP, and MRL scores. While we
have shown the correlation of these scores to topological
error for the simulated datasets, the extent of correlation
for each empirical dataset is not known. Nevertheless,
these scores, when considered together, enable a frame-
work, albeit an imperfect one, for evaluating estimated
supertrees. Table 1 shows the reference for each biologi-
cal dataset and various empirical statistics (number of
source trees, number of taxa, the scaffold density, degree
of resolution for the SCM tree). We show Sum-FN scores
in Table 14, MRP scores in Table 15, MRL scores in
Table 16, and running time in Table 17.

Placental dataset

All methods resulted in identical Sum-FN scores on this
dataset. Unsurprisingly, MRP and SuperFine+MRP

Table 9 MRP scores for 500-taxon model conditions

methods resulted in the best MRP scores, and MRL
(RAxML) and SuperFine+ MRL(RAxML) in the best
MRL scores. The fastest method was MRP(TNT) (less
than a minute) followed closely by SuperFine+MRP
(TNT) (less than two minutes), and only the methods
that use RAXML took more than five minutes. Due to
the large number of source trees, many of which had
incompatible edges, the SCM tree was almost comple-
tely unresolved. For this dataset, therefore, the Super-
Fine trees were almost identical to trees obtained using
their base supertree methods.

Seabirds dataset

SuperFine+ MRP and MRP(TNT) had the best MRP
scores and the best Sum-FN scores. MRL(RAXxML) had
the best MRL score, followed by SuperFine+ MRP(TNT).
All methods completed in under a minute for this
dataset.

Marsupials dataset

On this dataset, all methods had close Sum-FN scores.
MRP and SuperFine+MRP again had the best MRP
scores, and MRL(RAxML) had the best MRL score fol-
lowed by SuperFine+MRP(TNT). Both MRP(TNT) and
SuperFine+ MRP(TNT) completed in under a minute,
while MRL(RAxML) (the slowest method) completed in
under eight minutes.

Scaffold Density

Method 20 50 75 100 Average
MRP(PAUP¥) 1283 (330) 1434 (334) 1563 (332) 1694 (336) 1504 (364)
MRP(TNT) 1273 (331) 1422 (334) 1556 (335) 1694 (336) 1497 (367)
MRL(RAXML) 1276 (338) 1431 (336) 1570 (336) 1707 (339) 1508 (372)
SuperFine+MRP(PAUP¥) 1268 (334) 1422 (334) 1557 (335) 1694 (336) 1496 (369)
SuperFine+MRP(TNT) 1268 (334) 1421 (334) 1556 (335) 1694 (337) 1496 (369)
SuperFine+MRL(RAXML) 1277 (337) 1431 (341) 1568 (340) 1704 (340) 1507 (373)
True Tree 1347 (341) 1502 (337) 1634 (340) 1773 (339) 1575 (372)

We show the average MRP scores (MP scores with respect to the MRP matrix) for the 500-taxon supertrees. The scaffold density is the percentage of the full
taxon set that is present in the scaffold tree. The standard deviation is shown in parenthesis. All scores are rounded to the nearest integer. The lowest MRP score

for each scaffold density is shown in bold.
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Table 10 Running times for 1000-taxon model conditions

Scaffold Density

Method 20 50 75 100 Average
MRP(PAUP¥) 76.14 (15.45) 55.53 (19.99) 43.87 (7.72) 54.56 (10.24) 56.03 (17.67)
MRP(TNT) 2.01 (0.64) 295 (1.31) 3.27 (0.59) 433 (0.75) 324 (1.19
MRL(RAXML) 99.86 (28.15) 11.57 (48.06) 81.57 (28.87) 87.33 (11.59) 94.22 (33.76)
SuperFine+MRP(PAUP¥) 7.14 (1.10) 6.16 (1.28) 8.13 (1.27) 5.56 (1.09) 6.73 (1.57)
SuperFine+MRP(TNT) 0.54 (0.11) 0.80 (0.09) 0.84 (0.16) 1.07 (0.17) 0.83 (0.23)
SuperFine+MRL(RAXML) 1.00 (0.14) 1.56 (0.94) 132 (0.71) 127 (0.23) 1.30 (0.64)

We show the average running times, in minutes, to calculate the 1000-taxon supertrees estimated from 25 clade-based source trees and 1 scaffold tree. The
standard deviation is shown in parenthesis. The lowest running time for each scaffold factor is shown in bold.

THPL dataset

For this dataset, SuperFine methods and MRL(RAxML)
resulted in much better Sum-FN scores compared to
the other methods. SuperFine+ MRP(TNT) resulted in
the best MRP score, followed closely by MRL(RAXxML).
An interesting observation is that MRP methods had, by
far, the worse MRP scores. MRL(RAxML) once again
resulted in the best MRL score, followed by SuperFine
+MRL(RAXxML) and SuperFine+MRP(TNT). All Super-
Fine methods and MRP(TNT) completed in under a
minute, but MRL(RAxML) and MRP(PAUP*) were
much slower (25 and 32 minutes, respectively).

CPL dataset

All methods resulted in similar Sum-FN scores. The
best MRP scores were obtained by SuperFine+MRP
(TNT) and MRP(TNT). The best MRL score was
obtained by MRL(RAxXxML), followed by SuperFine+MRL
(RAxML). This dataset is the largest dataset we exam-
ined, with 2,228 taxa and 39 source trees, and the six
supertree methods differed substantially in terms of
their running times. MRL(RAxML) and MRP(PAUP*)
were the slowest, finishing in 461 minutes (i.e., more
than 7.5 hours) and 675 minutes (i.e., more than 11
hours), respectively. MRP(TNT) and SuperFine+MRL
(RAXML) were the next slowest, finishing in 30 minutes
and 29 minutes, respectively. By comparison, SuperFine
+MRP(TNT) completed in less than 4 minutes. Thus,
only SuperFine+MRP(TNT) was fast on this dataset.

Table 11 Running times for 500-taxon model conditions

Summary

Several key observations are noted. First, SuperFine
+TNT gave the best results for Sum-FN, but other than
on the seabirds and THPL datasets, all methods pro-
duced trees with similar Sum-FN scores. MRL(RAxML)
typically resulted in the best MRL scores, and SuperFine
+MRP(TNT) often produced trees with the second best
MRL scores. SuperFine+ MRP(TNT) also resulted in the
best MRP scores for all datasets. SuperFine+ MRP(TNT)
was among the fastest methods, and on the largest data-
set it was substantially faster than any other method.
Thus, although we cannot evaluate the topological accu-
racy of any of these estimated supertrees, SuperFine
+MRP(TNT) had a good overall performance for all cri-
teria we evaluate (MRP, MRL, Sum-FN, and running
time).

Discussion and Conclusion

Supertree estimation methods need to be both highly
accurate and also reasonably fast, as otherwise they will
not be useful in estimating large phylogenies. Our dis-
cussion thus addresses both running time and topologi-
cal accuracy.

The results for the simulated datasets show clearly
that all the methods produce trees with about the same
accuracy on datasets with very dense scaffolds, but differ
substantially in terms of accuracy on the datasets with
sparser scaffolds. Since sparser scaffolds are common

Scaffold Density

Method 20 50 75 100 Average
MRP(PAUP¥) 8.98 (1.66) 8.96 (1 43) 9.58 (2.28) 8.12 (1.63) 891 (1.86)
MRP(TNT) 0.32 (0.15) 042 (0.12) 045 (0.11) 0.53 (0.10) 043 (0.14)
MRL(RAXML) 18.99 (6.88) 19.24 (4.72) 20.35 (5.96) 18.35 (4.84) 19.24 (5.65)
SuperFine+MRP(PAUP¥) 4.75 (1.46) 430 (1.23) 324 (1.89) 5.87 (1.53) 4.53 (1.82)
SuperFine+MRP(TNT) 0.22 (0.09) 0.27 (0.08) 0.31 (0.07) 0.41 (0.23) 0.30 (0.15)
SuperFine+MRL(RAXML) 040 (0.13) 049 (0.12) 0.58 (0.13) 0.55 (0.31) 0.51 (0.20)

We give the average running times, in minutes, to calculate the 500-taxon supertrees estimated from 15 clade-based source trees and 1 scaffold tree. The
standard deviation is shown in parenthesis. The lowest running time for each scaffold factor is shown in bold.
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Figure 2 Scatterplot of average missing branch rates versus running times for 1000-taxon 50% scaffold density model conditions. The
average missing branch rate versus running times (in minutes) for the supertree methods for 9 replicates of the 1000-taxon 50% scaffold density

for biological supertree inputs, the differences in accu-
racy on sparse scaffolds is important.

In general we found that all the SuperFine variants we
studied (whether using MRL or MRP to refine poly-
tomies in the SCM tree) produced very accurate trees,
and that differences between them were largely in terms
of running time, or with respect to MRL, MRP, or Sum-
EN score. With respect to running time, SuperFine
+MRP(TNT) was the fastest of all the methods we

Table 12 Correlation analyses for 1000-taxon model
conditions

studied, finishing in at most 4 minutes on all the data-
sets (including the largest one with 2228 taxa and 39
source trees). Furthermore, SuperFine+ MRP(TNT) pro-
duced very good MRP and MRL scores, outperforming
TNT and PAUP* with respect to MRP score optimiza-
tion. On the biological datasets, we also observed similar
results, including that SuperFine+ MRP(TNT) generally
produced very good Sum-FN scores. Thus, although
SuperFine+MRP(TNT) was not designed to be a

Table 13 Correlation analyses for 500-taxon model
conditions

Scaffold Density

Scaffold Density

Statistic 20 50 75 100 Statistic 20 50 75 100
MRP Score 0.770 0.908 0.968 0.991 MRP Score 0.690 0.879 0.947 0.984
MRL Score 0.871 0.935 0.976 0.988 MRL Score 0.825 0.913 0.957 0.980
Sum-FN 0.762 0.907 0.966 0.992 Sum-FN 0.689 0.879 0.948 0.985

We show the average Spearman’s rank correlation coefficient between
different statistics and the FN error rates of trees generated around each of
the six estimated supertrees for the 1000-taxon model conditions. For each of
the estimated six supertrees, 100 trees were generated using a p-ECR move,
for a total of 606 trees (600 p-ECR trees plus 6 supertrees) per replicate. MRP
score is the MP score of the estimated tree with respect to the MRP matrix.
MRL score is the negative log-likelihood score of the estimated tree with
respect to the MRP matrix. Sum-FN is the sum of the bipartitions in the
source trees not present in the estimated tree divided by the total number
bipartitions in the source trees. Coefficients with larger magnitude represent
stronger correlation between the test statistic and FN error rates. The largest
correlation coefficient for each scaffold density is shown in bold.

We show the average Spearman’s rank correlation coefficient between
different statistics and the FN error rates of trees generated around each of
the six estimated supertrees for the 500-taxon model conditions. For each of
the six estimated supertrees, 100 trees were generated using a p-ECR move,
for a total of 606 trees (600 p-ECR trees plus 6 supertrees) per replicate. MRP
score is the MP score of the estimated tree with respect to the MRP matrix.
MRL score is the negative log-likelihood score of the estimated tree with
respect to the MRP matrix. Sum-FN is the sum of the bipartitions in the
source trees not present in the estimated tree divided by the total number
bipartitions in the source trees. Coefficients with larger magnitude represent
stronger correlation between the test statistic and FN error rates. The largest
correlation coefficient for each scaffold density is shown in bold.
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Table 14 Sum-FN rates for the biological supertrees

Biological Dataset

Method Placental Seabirds Marsupials THPL ~ CPL
MRP(PAUP¥) 35.8 16.0 260 251 333
MRP(TNT) 35.8 138 260 213 332
MRL(RAXML) 36.3 210 262 162 351
SuperFine+MRP(PAUP¥) 35.8 138 260 167 3341
SuperFine+MRP(TNT) 35.8 12.7 258 15.8 334
SuperFine+MRL(RAXML) 36.3 16.0 268 189 342

The lowest Sum-FN for each dataset is shown in bold.

heuristic for any of these criteria, it has excellent perfor-
mance across the board.

It is worth discussing in greater depth the results we
showed for Sum-FN scores. Our study shows that
neither MRP nor Sum-FN scores have the best correla-
tion with tree error, except when the scaffold factor is
very dense. This result suggests that optimizing MRP or
Sum-FN may not be the best strategy (except with
dense scaffolds), and that evaluating supertree methods
with respect to Sum-FN may not be the best way of dis-
tinguishing methods (except for dense scaffold datasets,
perhaps). These observations were made earlier in [24],
but are worth repeating here, because of the increased
interest in an approach to supertree estimation proposed
by Steel and Rodrigo [15], called “maximum likelihood
supertrees”. This method is based upon an exponential
error model, and can be based upon different ways of
measuring distances between trees and weights on the
input trees. However, in the simplest case, where the
weights on trees are all the same and the distance
between trees is the RF distance, finding the ML super-
tree is identical to optimizing Sum-RF (minimizing the
total topological distance, using Robinson-Foulds scores,
to the input trees), a criterion that is almost identical to
Sum-FN. Indeed, when the input estimated trees are
binary, these criteria are exactly the same. Since our
simulation study estimated supertrees from binary
source trees, our correlation analysis also shows that
optimizing Sum-RF is not likely to be the best strategy,

Table 15 The MRP scores (MP scores with respect to the
MRP matrix) for the biological supertrees

Biological Dataset

Method Placental Seabirds Marsupials THPL ~ CPL
MRP(PAUP*) 9486 217 2273 974 5488
MRP(TNT) 9486 213 2273 931 5477
MRL(RAXML) 9508 230 2286 890 5738
SuperFine+MRP(PAUP¥) 9486 214 2273 902 5481
SuperFine+MRP(TNT) 9486 213 2273 881 5475
SuperFine+MRL(RAXML) 9508 220 2295 911 5671

Page 11 of 13

Table 16 The MRL scores (ML scores with respect to the
MRP matrix, given as log likelihoods) for the biological
supertrees

Biological Dataset

Method Placental Seabirds Marsupials  THPL CPL
MRP(PAUP¥) -41544 -1137 -10977 -5182  -41003
MRP(TNT) -41544 -1124 -10974  -5043 -41053
MRL(RAXML) -41483  -1113  -10959 -4749 -40080
SuperFine+MRP -41543 -1124 -10974  -4845 -40890
(PAUP¥)

SuperFine+MRP(TNT) -41546 -1120 -10968 -4800 -40923
SuperFine+MRL -41483 -1128 -10980 -4799 -40533
(RAXML)

Numbers with smaller magnitude represent improvements. All scores are
rounded to the nearest integer. The lowest MRL score (in magnitude) for each
dataset is shown in bold.

except for dense scaffold datasets, and thus suggests
that the use of RF distance metric within the ML super-
tree approach proposed by Steel and Rodrigo may not
be appropriate. We note here a potential shortcoming of
the ML supertree approach in general: it seems likely
that the probability of a particular estimated tree will
not depend only on the topological distance it has to
the true tree, but rather also on the parameters of the
true tree (especially the branch lengths), since very short
branches are more likely to fail to be recovered in a
phylogenetic estimation than longer branches.

A fundamental observation in this study is that
searching for supertrees that optimize the maximum
likelihood score under the S2+CAT model improved
tree accuracy, a trend that we found quite surprising.
The MRP matrix is a collection of partial binary charac-
ters defined by the input source trees. When these trees
are compatible, the MRP matrix will exhibit no homo-
plasy at all, a condition under which the MRP solution
will yield the true tree. Therefore, when there is no
homoplasy, the ML solution under a no-common-
mechanism model [33] (in which every combination of
edge and site has its own rate parameter) will also pro-
duce the true tree, since then ML and MP produce the

Table 17 Running times, in minutes, for the biological
supertrees

Biological Dataset

Method Placental Seabirds Marsupials THPL CPL
MRP(PAUP*) 3.57 022 3.87 3197 675.00
MRP(TNT) 0.13 0.02 0.18 038 2982
MRL(RAXML) 747 045 720 2537 46182
SuperFine+MRP (PAUP 4.00 0.20 260 072 2197
*)

SuperFine+MRP(TNT) 130 0.07 067 0.15 3.48
SuperFine+MRL(RAXML) 9.23 0.05 500 047 2902

The lowest MRP score for each dataset is shown in bold.

The lowest running time for each dataset is shown in bold.
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same trees. However, standard ML models (including
the model used in this study) assume i.i.d. rates across
sites, which does not yield the same result. Thus, we do
not have a theoretical explanation for why optimizing
likelihood under S2+CAT should lead to good super-
trees. All we can say is that the data suggest that there
may be some value (even if only approximate, and per-
haps only under some conditions, not yet understood)
in using maximum likelihood under this model as an
optimization criterion for estimating supertrees. Future
work should investigate whether optimizing the MRL
score continues to return good solutions when the
source trees are estimated from sequences that evolve
under more realistic conditions, including indels, hetero-
tachy, and non-stationarity.

As has been noted in [34], supertree analyses are not
always able to completely identify the true tree, because
the conditions required for such identification include
correct source trees and overlap properties that may not
be true of any given set of source trees. However, alter-
natives - such as combined analyses, in which a phylo-
geny estimation method is applied to a concatenation of
the gene sequence alignments - also have only limited
guarantees. From a practical standpoint, the evidence
suggests that while combined analyses can yield more
accurate trees [20,24] than supertree methods, there are
conditions in which combined analysis methods cannot
be used (e.g., heterogeneous data, including morphology,
gene orders, or different types of molecular data), or are
simply too computationally intensive. In these cases,
improved supertree methods can be important tools in
the phylogenetics toolkit.

In summary, this study introduces a new set of super-
tree methods based upon combining the divide-and-
conquer strategy within SuperFine with fast supertree
methods. In particular, the combination of SuperFine
with TNT is extremely fast and produces very accurate
supertrees, even on the largest datasets we studied. Ear-
lier work [24] showed that SuperFine (based upon MRP,
and using PAUP*) came very close to the accuracy of
combined analysis based upon maximum likelihood.
Future work should investigate statistical approaches to
supertree estimation (along the lines of maximum likeli-
hood supertrees, but taking branch lengths or support
into account). The combination of SuperFine with such
statistically-based supertree methods might close the
gap between combined analysis and supertree methods.
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