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Abstract

We study a long standing conjecture on the necessary and sufficient conditions for the compatibility of multi-state
characters: There exists a function f (r) such that, for any set C of r-state characters, C is compatible if and only if every
subset of f (r) characters of C is compatible. We show that for every r ≥ 2, there exists an incompatible set C of �(r2)
r-state characters such that every proper subset of C is compatible. This improves the previous lower bound of
f (r) ≥ r given by Meacham (1983), and f (4) ≥ 5 given by Habib and To (2011). For the case when r = 3, Lam, Gusfield
and Sridhar (2011) recently showed that f (3) = 3. We give an independent proof of this result and completely
characterize the sets of pairwise compatible 3-state characters by a single forbidden intersection pattern.
Our lower bound on f (r) is proven via a result on quartet compatibility that may be of independent interest: For every
n ≥ 4, there exists an incompatible set Q of �(n2) quartets over n labels such that every proper subset of Q is
compatible. We show that such a set of quartets can have size at most 3 when n = 5, and at most O(n3) for arbitrary
n. We contrast our results on quartets with the case of rooted triplets: For every n ≥ 3, if R is an incompatible set of
more than n − 1 triplets over n labels, then some proper subset of R is incompatible. We show this bound is tight by
exhibiting, for every n ≥ 3, a set of n− 1 triplets over n taxa such that R is incompatible, but every proper subset of R is
compatible.
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Background
The multi-state character compatibility (or perfect phy-
logeny) problem is a basic question in computational
phylogenetics [1]. Given a set C of characters, we are
asked whether there exists a phylogenetic tree that dis-
plays every character in C; if so, C is said to be compatible,
and incompatible otherwise. The problem is known to be
NP-complete [2,3], but certain special cases are known to
be polynomially-solvable [4-10]. See [11] for more on the
perfect phylogeny problem.
In this paper we study a long standing conjecture on the

necessary and sufficient conditions for the compatibility
of multi-state characters.

Conjecture 1. There exists a function f (r) such that, for
any set C of r-state characters, C is compatible if and only
if every subset of f (r) characters of C is compatible.

If Conjecture 1 is true, it would follow that we can deter-
mine if any set C of r-state characters is compatible by
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testing the compatibility of each subset of f (r) characters
of C, and, in case of incompatibility, output a subset of at
most f (r) characters of C that is incompatible. This would
allow us to reduce the character removal problem (i.e.,
finding a subset of characters to remove from C so that
the remaining characters are compatible) to f (r)-hitting
set which is fixed-parameter tractable [12].
A classic result on binary character compatibility shows

that f (2) = 2; see [1,6,13-15]. In 1975, Fitch [16,17] gave
an example of a set C of three 3-state characters such that
C is incompatible, but every pair of characters inC is com-
patible; showing that f (3) ≥ 3. In 1983, Meacham [15]
generalized this example to r-state characters for every
r ≥ 3 demonstrating a lower bound of f (r) ≥ r for all r; see
also [9]. For the case of r = 3, Lam, Gusfield, and Sridhar
[9] recently established that f (3) = 3.
While the previous results could lead one to conjecture

that f (r) = r for all r, Habib and To [18] recently dis-
proved this possibility by exhibiting a set C of five 4-state
characters such that C is incompatible, but every proper
subset of the characters in C are compatible, showing that
f (4) ≥ 5. They conjectured that f (r) ≥ r + 1 for every
r ≥ 4.
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Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.



Shutters et al. Algorithms for Molecular Biology 2013, 8:11 Page 2 of 10
http://www.almob.org/content/8/1/11

The main result of this paper is to prove the conjec-
ture stated in [18] by giving a quadratic lower bound on
f (r). Formally, we show that for every r ≥ 2, there exists
a set C of r-state characters such that all of the following
conditions hold.

1. C is incompatible.
2. Every proper subset of C is compatible.
3. |C| = ⌊ r

2
⌋ · ⌈ r

2
⌉ + 1.

Therefore, f (r) ≥ ⌊ r
2
⌋ · ⌈ r

2
⌉ + 1 for every r ≥ 2.

Our proof relies on a new result on quartet compatibility
we believe is of independent interest. We show that for
every n ≥ 4, there exists a set Q of quartets over a set of n
labels such that all of the following conditions hold.

1. Q is incompatible.
2. Every proper subset of Q is compatible.
3. |Q| = ⌊n−2

2
⌋ · ⌈n−2

2
⌉ + 1.

This is an improvement over the previous lower bound on
the maximum cardinality of such an incompatible set of
quartets of n − 2 given in [3]. We show that such a set of
quartets can have size at most 3 when n = 5, and at most
O(n3) for arbitrary n. We note here that the construc-
tion given in [18] showing that f (4) ≥ 5 can be viewed
as a special case of the construction given here when
n = 6.
We study the compatibility of three-state characters fur-

ther. The work of [9] completely characterized the sets of
pairwise compatible 3-state characters by the existence of
one of four forbidden intersection patterns. An alternative
characterization of this result was given in [10] and was
partially derived using the results of [9]. In this paper, we
give a proof that f (3) = 3 that is independent of the results
in [9], and we completely characterize the sets of pair-
wise compatible 3-state characters by a single forbidden
intersection pattern.
We contrast our result on quartet compatibility with a

result on the compatibility of rooted triplets: For every
n ≥ 3, if R is an incompatible set of triplets over n labels,
and |R| > n−1, then some proper subset of R is incompat-
ible. We show this bound is tight by exhibiting, for every
n ≥ 3, a set of n − 1 triplets over n labels such that R is
incompatible, but every proper subset of R is compatible.

Preliminaries
Given a graph G, we represent the vertices and edges of
G by V (G) and E(G) respectively. We use the abbreviated
notation uv for an edge {u, v} ∈ E(G). For any e ∈ E(G),
G − e represents the graph obtained from G by deleting
edge e. For an integer i, we use [i] to represent the set
{1, 2, · · · , i}.

Unrooted phylogenetic trees
An unrooted phylogenetic tree (or just tree) is a tree T
whose leaves are in one to one correspondence with a label
set L(T), and has no vertex of degree two. See Figure 1(a)
for an example. For a collection T of trees, the label set of
T , denoted L(T ), is the union of the label sets of the trees
in T . A tree is binary if every internal (non-leaf ) vertex
has degree three. A quartet is a binary tree with exactly
four leaves. A quartet with label set {a, b, c, d} is denoted
ab|cd if the path between the leaves labeled a and b does
not intersect with the path between the leaves labeled c
and d.
For a tree T, and a label set L ⊆ L(T), the restriction

of T to L, denoted by T |L, is the tree obtained from the
minimal subtree of T connecting all the leaves with labels
in L by suppressing vertices of degree two. See Figure 1(b)
for an example. A tree T displays another tree T ′, if T ′ can
be obtained from T |L(T ′) by contracting edges. A tree T
displays a collection of trees T if T displays every tree in
T . If such a tree T exists, then we say that T is compatible;
otherwise, we say that T is incompatible. See Figure 1(a)
for an example. Determining if a collection of unrooted
trees is compatible is NP-complete [3].

Multi-state characters
There is also a notion of compatibility for sets of partitions
of a label set L. A character χ on L is a partition of L; the
parts of χ are called states. If χ has at most r parts, then
χ is an r-state character. Given a tree T with L = L(T)

and a state s of χ , we denote by Ts(χ) the minimal subtree
of T connecting all leaves with labels having state s for χ .
We say that χ is convex on T, or equivalently T displays χ ,
if the subtrees Ti(χ) and Tj(χ) are vertex disjoint for all
states i and j of χ where i �= j. A collection C of charac-
ters is compatible if there exists a tree T on which every
character in C is convex. If no such tree exists, then we
say that C is incompatible. See Figure 1(a) for an example.

a b

Figure 1 A phylogenetic tree and a restricted subtree. (a) shows a
tree T witnessing that the quartets q1 = ab|ce, q2 = cd|bf , and
q3 = ad|ef are compatible; T is also a witness that the characters
χq1 = ab|ce|d|f , χq2 = cd|bf |a|e, and χq3 = ad|ef |b|c are
compatible; (b) shows T|{a, b, c,d, e}.
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The perfect phylogeny problem (or character compatibility
problem) is to determine whether a given set of characters
is compatible.
For a collection C of characters, the intersection graph

of C which we will denote by G(C), is the undirected
graph G = (V ,E) which has a vertex ci for each charac-
ter c ∈ C and each state i of c, and an edge cidj precisely
when there is a taxon having state i for character c and
state j for character d. Note that G(C) cannot have an
edge between vertices associated with different states of
the same character.
A graph G is chordal if there are no induced chordless

cycles of length four or greater in H. In [19], Buneman
established a fundamental connection between the per-
fect phylogeny problem and chordal graphs which we now
describe. For a given set C of characters, suppose we color
each of the vertices of G(C) by assigning a unique color to
each character c ∈ C, and giving each vertex of G(C) cor-
responding to a state of c with the color assigned to the
character c. A proper triangulation of G(C) is a chordal
supergraph of G(C) such that every edge has endpoints
with different colors.

Theorem 1. A set C of characters is compatible if and
only if G(C) has a proper triangulation.

Since there is no proper triangulation for a cycle inG(C)

involving only vertices from two characters, we have the
following corollary.

Corollary 1. Let C be a collection of two characters.
Then C is compatible if and only if G(C) is acyclic.

Quartet rules
We now introduce quartet (closure) ruleswhich were orig-
inally used in the contexts of psychology [20] and linguis-
tics [21]. The idea is that for a collectionQ of quartets, any
tree that displays Q may also necessarily display another
quartet q �∈ Q, and if so we write Q � q.

Example 1. Let Q = {ab|ce, ae|cd}. Then the tree of
Figure 1(b) displays Q, and furthermore, it is easy to see
that it is the only tree that displays Q. Hence, Q � ab|de,
Q � ab|cd, and Q � be|cd.

We use the following quartet rules in this paper:

{ab|cd, ab|ce} � ab|de (R1)

{ab|cd, ac|de} � ab|ce (R2)
For the purposes of this paper, we define the closure of

an arbitrary collection Q of quartets, denoted Q∗, as the
minimal set of quartets that contains Q, and has the prop-
erty that if for some q1, q2 ∈ Q∗, {q1, q2} � q3 using either

(R1) or (R2), then q3 ∈ Q∗. Clearly, any tree that dis-
plays Q must also display Q∗. We will use the following
lemma which follows by repeated application of (R1) and
is formally proven in [22].

Lemma 1. Let Q be an arbitrary set of quartets with
{x, y, z1, . . . , zk} ⊆ L(Q). If

k−1⋃
i=1

{xy|zizi+1} ⊆ Q∗ ,

then xy|z1zk ∈ Q∗.

We refer the reader to [1,23] for more on quartet rules.

Incompatible quartets
For every s, t ≥ 2, we fix a set of labels Ls,t =
{a1, a2, . . . , as, b1, b2, . . . , bt} and define the set

Qs,t = {a1b1|asbt} ∪
s−1⋃
i=1

t−1⋃
j=1

{aiai+1|bjbj+1}

of quartets with L(Qs,t) = Ls,t . We denote the quartet
a1b1|asbt by q0, and a quartet of the form aiai+1|bjbj+1 by
qi,j.

Observation 1. For all s, t≥2, |Qs,t| = (s−1)(t−1) + 1.

Lemma 2. For all s, t ≥ 2, Qs,t is incompatible.

Proof. For each i ∈[ s − 1],
t−1⋃
j=1

{aiai+1|bjbj+1} ⊆ Qs,t ⊆ Q∗
s,t .

Then, by Lemma 1, it follows that for each i ∈[ s − 1],
aiai+1|b1bt ∈ Q∗

s,t . So,
s−1⋃
i=1

{b1bt|aiai+1} ⊆ Q∗
s,t .

Then, again by Lemma 1, it follows that b1bt|a1as ∈ Q∗
s,t .

But then {a1b1|asbt , b1bt|a1as} ⊆ Q∗
s,t . It follows that any

tree that displays Qs,t must display both a1b1|asbt and
b1bt|a1as. However, no such tree exists. Hence, Qs,t is
incompatible.

Lemma 3. For all s, t ≥ 2, every proper subset of Qs,t is
compatible.

Proof. Since every subset of a compatible set of quartets
is compatible, it suffices to show that for every q ∈ Qs,t ,
Qs,t \ {q} is compatible. Let q ∈ Qs,t . Either q = q0 or
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q = qx,y for some 1 ≤ x < s and 1 ≤ y < t. In either case,
we exhibit a tree witnessing that Qs,t \ {q} is compatible.

Case 1. Suppose q = q0. We build the tree T as
follows: There is a node � for each label � ∈ Ls,t and
two additional nodes a and b along with the edge ab.
There is an edge axa for every ax ∈ Ls,t , and an edge
bxb for every bx ∈ Ls,t . There are no other nodes or
edges in T. See Figure 2(a) for an illustration. Now
consider any quartet q ∈ Qs,t \ {q0}. Then
q = aiai+1|bjbj+1 for some 1 ≤ i < s and 1 ≤ j < t.
Then, the minimal subgraph of T connecting leaves
with labels in {ai, ai+1, bj, bj+1} is the quartet q.
Hence T displays q.
Case 2. Suppose q = qx,y for some 1 ≤ x < s and
1 ≤ y < t. We build the tree T as follows: There is a
node � for each label � ∈ Ls,t and six additional nodes
a�, b�, �, h, ah, and bh. There are edges a��, b��, �h,
hah, and hbh. For every ai ∈ Ls,t , there is an edge aia�

if i ≤ x, and an edge aiah if i > x. For every bj ∈ Ls,t
there is an edge bjb� if j ≤ x, and an edge bjbh if j > y.
There are no other nodes or edges in T. See
Figure 2(b). Now consider any quartet
q ∈ Qs,t \ {qx,y}. Either q = q0 or q = qi,j where i �= x
or j �= y. If q = q0, then the minimal subgraph of T
connecting leaves with labels in {a1, b1, as, bt} is the
subtree of T induced by the nodes in
{a1, a�, �, b�, b1, as, ah, h, bh, bt}. Suppressing all
degree two vertices results in a tree that is the same
as q0. So T displays q. So assume that
q = aiai+1|bjbj+1 where i �= x or j �= y. We define
the following subset of the nodes in T:

V =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{ai, ai+1, a�, �, b�, bj, bj+1} if i < x and j < y,
{ai, ai+1, a�, �, by, b�, h, bh, by+1} if i < x and j = y,
{ai, ai+1, a�, �, h, bh, bj, bj+1} if i < x and j > y,
{ax, a�, �, h, ah, ax+1, b�, bj, bj+1} if i = x and j < y,
{ax, a�, �, h, ah, ax+1, bh, bj, bj+1} if i = x and j > y,
{aj, aj+1, ah, h, �, b�, bj, bj+1} if i > x and j < y,
{aj, aj+1, ah, h, by, b�, �, bh, by+1} if i > x and j = y,
{aj, aj+1, ah, h, bh, bj, bj+1} if i > x and j > y.

Now, the subgraph of T induced by the nodes in V is
the minimal subgraph of T connecting leaves with

a b

Figure 2 Illustrating the proof of Lemma 3. (a) Case 1: a tree that
displays Qs,t \ {q0}. (b) Case 2: a tree that displays Qs,t \ {qx,y}.

labels in q. Suppressing all degree two vertices gives
q. Hence, T displays q.

With s = ⌊n
2
⌋
and t = ⌈n

2
⌉
, Observation 1and Lem-

mas 2 and 3 imply the following theorem.

Theorem 2. For every integer n ≥ 4, there exists a set
Q of quartets over n taxa such that all of the following
conditions hold.

1. Q is incompatible.
2. Every proper subset of Q is compatible.
3. |Q| = ⌊n−2

2
⌋ · ⌈n−2

2
⌉ + 1.

Incompatible quartets on five taxa
WhenQ is a set of quartets over five taxa, we show that the
set of quartets given by Theorem 2 is as large as possible.
We hope that the technique used in the proof of the fol-
lowing theorem might be useful in proving tight bounds
for n > 5.

Theorem 3. If Q is an incompatible set of quartets over
five taxa such that every proper subset of Q is compatible,
then |Q| ≤ 3.

Proof. Let Q be an incompatible set of quartets with
L(Q) = {a, b, c, d, e} and q0 = ab|cd ∈ Q. We will show
that Q contains an incompatible subset of at most three
quartets. If Q contains two different quartets on the same
four taxa, then Q must contain an incompatible pair of
quartets. So, we may assume that each quartet is on a
unique subset of four of the five taxa. Hence, every pair of
quartets in Q shares three taxa in common. We have the
following two cases.

Case 1 : Q contains at least one of the quartets ac|be,
ac|de, ad|be, ad|ce, ae|bc, ae|bd, bc|de, or bd|ce.
W.l.o.g. we may assume that Q contains q1 = ac|de,
as all other cases are symmetric. By (R2),
{q0, q1} � ab|ce. Then, by (R1),
{q0, q1, ab|ce} � ab|de. Then, again by (R1),
{q0, q1, ab|ce, ab|de} � bc|de. Now let
Q′ = {q0, q1, ab|ce, ab|de, bc|de}. Now, any quartet in
Q must be either in Q′ or be pairwise incompatible
with a quartet in Q′. Since Q′ is compatible, but by
assumption, Q is incompatible, Q must contain a
quartet q2 that is pairwise incompatible with some
quartet in Q′. Hence, {q0, q1, q2} is an incompatible
subset of Q.
Case 2 : Q contains none of the quartets ac|be, ac|de,
ad|be, ad|ce, ae|bc, ae|bd, bc|de, or bd|ce. Then every
quartet in Q is either of the form ab|xy where
{x, y} �= {c, d}, or cd|xy where {x, y} �= {a, b}. But then
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Q is compatible, contradicting our assumption that
Q is incompatible.

In either case, the theorem holds.

Incompatible quartets on arbitrarily many taxa
We say a set Q of compatible quartets is redundant if for
some q ∈ Q, Q \ {q} � q; otherwise, we say that Q is irre-
dundant. The following lemma establishes a connection
between sets of irredundant quartets and minimal sets of
incompatible quartets.

Lemma 4. If Q is incompatible, but every proper sub-
set of Q is compatible, then every proper subset of Q is
irredundant.

Proof. Suppose that Q is incompatible and every proper
subset of Q is compatible. Furthermore, suppose that
some proper subset Q′ of Q is redundant. Since every
compatible superset of a redundant set of quartets is
also redundant, we may assume w.l.o.g., that there is
a unique quartet q ∈ Q \ Q′ (i.e., |Q| = |Q′| + 1).
Since Q′ is redundant, there exists a q′ ∈ Q′ such that
Q′ \ {q′} � q′. But then (Q′ \ {q′}) ∪ {q} is incom-
patible, contradicting that every proper subset of Q is
compatible.

It follows from Lemma 4 that any upper bound on the
maximum cardinality of an irredundant set of quartets can
be used to place an upper bound on the maximum cardi-
nality of a set of quartets satisfying the first two conditions
of Theorem 2. The theorem follows from [22].

Theorem 4. Let Q be a set of quartets over a set of n
taxa. If Q is irredundant, then Q has cardinality at most
(n − 3)(n − 2)2/3.

Lemma 4 together with Theorem 4 gives the follow-
ing upper bound on the maximum cardinality of a set Q
of quartets over n > 5 taxa that satisfies the first two
conditions of Theorem 2.

Theorem 5. Let Q be a set of incompatible quartets
over a set of n taxa such that every proper subset of Q is
compatible. Then |Q| ≤ (n − 3)(n − 2)2/3 + 1.

Incompatible characters
There is a natural correspondence between quartet
compatibility and character compatibility that we now
describe. Let Q be a set of quartets, n = |L(Q)|, and
r = n − 2. For each q = ab|cd ∈ Q, we define
the r-state character corresponding to q, denoted χq,
as the character where a and b have state 0 for χq; c
and d have state 1 for χq; and, for each � ∈ L(Q) \

{a, b, c, d}, there is a state s of χq such that � is the only
label with state s for character χq (see Example 2). We
define the set of r-state characters corresponding to Q by
CQ = ⋃

q∈Q{χq}.

Example 2. Consider the quartets and characters given
in Figure 1(a): χq1 is the character corresponding to q1,
χq2 is the character corresponding to q2, and χq3 is the
character corresponding to q3.

The following lemma relating quartet compatibility to
character compatibility is well known [24], and its proof is
omitted here.

Lemma 5. A set Q of quartets is compatible if and only
if CQ is compatible.

The next theorem allows us to use our result on quartet
compatibility to establish a lower bound on f (r).

Theorem 6. Let Q be a set of incompatible quartets over
n labels such that every proper subset of Q is compatible,
and let r = n − 2. Then, there exists a set C of |Q| r-state
characters such that C is incompatible, but every proper
subset of C is compatible.

Proof. We claim that CQ is such a set of incompatible r-
state characters. Since for two quartets q1, q2 ∈ Q, χq1 �=
χq2 , it follows that |CQ| = |Q|. Since Q is incompatible,
it follows by Lemma 5 that CQ is incompatible. Let C′ be
any proper subset of C. Then, there is a proper subset Q′
of Q such that C′ = CQ′ . Then, since Q′ is compatible, it
follows by Lemma 5 that C′ is compatible.

Theorem 2 together with Theorem 6 gives the main
theorem of this paper.

Theorem 7. For every integer r ≥ 2, there exists a set C
of r-state characters such that all of the following hold.

1. C is incompatible.
2. Every proper subset of C is compatible.
3. |C| = ⌊ r

2
⌋ · ⌈ r

2
⌉ + 1.

Proof. By Theorem 2 and Observation 1, there exists a
set Q of

⌊ r
2
⌋ · ⌈ r

2
⌉ + 1 quartets over r + 2 labels that

that are incompatible, but every proper subset is com-
patible, namely Q⌊ r+2

2
⌋
,
⌈ r+2

2
⌉. The theorem follows from

Theorem 6.

The quadratic lower bound on f (r) follows from
Theorem 7.

Corollary 2. f (r) ≥ ⌊ r
2
⌋ · ⌈ r

2
⌉ + 1.
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Three-State Characters
In the remainder of this section we focus on the case
when r = 3, and thus, fix C to be an arbitrary set of
3-state characters over a set S of taxa. Lam, Gusfield,
and Sridhar [9] recently established that f (3) = 3, and
they completely characterized the sets of pairwise com-
patible 3-state characters by the existence of one of four
forbidden intersection patterns. We give an independent
proof that f (3) = 3. We then completely character-
ize the sets of pairwise compatible 3-state characters by
a single forbidden intersection pattern. Our proof uses
several structural results from the algorithm for the three-
state perfect phylogeny problem given by Kannan and
Warnow [7].

The Algorithm of Kannan andWarnow
The algorithm of [7] takes a divide and conquer approach
to determining the compatibility of a set of three-state
characters. An instance is reduced to subproblems by
finding a partition S1, S2 of the taxon set S of C with both
of the following properties:

1. 2 ≤ |Si| ≤ n − 2, i = 1, 2.
2. Whenever C is compatible S there is a perfect

phylogeny P that contains an edge e whose removal
breaks P into subtrees P1 and P2 with
L(Pi) = Si, i = 1, 2.

A partition of S satisfying both of these properties is a
legal partition, and the following theorem shows that find-
ing such a partition for a given set of characters is the crux
of the algorithm.

Theorem 8. [7] Given a set C of three state characters,
we can in O(nk) time either find a legal partition of S of
determine that the set of characters is incompatible.

Finding a legal partition
We now discuss the manner in which such a legal parti-
tion is found for a set of three-state characters C. Let T
be a tree witnessing that C is compatible. The canonical
labeling of T is the labeling where, for each internal node
v of T, and each character α ∈ C, if there are leaves x and y
in different components of T − {v} such that α(x) = α(y),
then α(v) = α(x); otherwise α(v) = ∗ where ∗ denotes a
dummy state for C. Note that such a labeling of T always
exists and is unique.We will assume that every compatible
tree for C is canonically labeled.
The tree-structure for a character α in T is formed by

repeatedly contracting edges of T connecting nodes that
have the same state (other than ∗) for α. Note that this tree
does not depend on the sequence of edge-contractions
and is thus well defined. Furthermore, there is exactly
one node for each state (other than the dummy state) of

α, and each node labeled by ∗ has degree at least three.
A tree-structure for α that is formed from some com-
patible tree for C is called a realizable tree-structure for
α. There are four possible realizable tree-structures for a
three-state character α which are shown in Figure 3.
To find a realizable tree structure for a character α,

the algorithm examines the pairwise intersection patterns
of α with every other character β ∈ C, and applies the
following rules to rule out possible tree structures for α.

Rule 1. Let α and β be two characters of C. If, under some
relabeling of the states of α and β , we have that α1 ⊆ β1,
α2 ∩ β2 �= ∅, and α3 ∩ β2 �= ∅, then P1 is not a realizable
tree-structure for α. If this is the case, we say that α and β

match Rule 1 with respect to α1.

Rule 2. aLet α and β be two characters of C. If, under
some relabeling of the states of α and β , we have that α1 ∩
β1 �= ∅, α2 ∩ β1 �= ∅, α2 ∩ β2 �= ∅, and α3 ∩ β2 �= ∅, then
P2 is the only possible realizable tree-structure for α. If this
is the case, we say that α and β match Rule 2 with respect
to α2.

The set QC
α of candidate tree-structures for α are

all of those possible tree-structures for α that are not
ruled out after comparing the intersection pattern of α

with every other character in C and applying Rules 1
and 2.
The following theorem which follows from [7] shows

that a legal partition is found by choosing an arbitrary
α ∈ C for whichQC

α �= ∅. Furthermore, if there is an α ∈ C
for which QC

α = ∅, then C is incompatible.

Theorem 9 ([7]). If QC
α �= ∅, then we can find a legal

partition of S.

Corollary 3. A set C of 3-state characters is compatible
if and only if QC

α �= ∅ for every α ∈ C.

Tight bounds on three-state character compatibility
Weuse Corollary 3 to give upper bounds on themaximum
cardinality of a minimal set of incompatible three-state
characters.

a b

Figure 3 The four possible realizable tree-structures for a
three-state character α. (a) A path Pi for each i∈{1, 2, 3}. (b) A star S∗ .
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Theorem 10. Let C be a set of three-state characters on
species set S. Then C is incompatible if and only if there
exists a character α ∈ C, and two distinct states αi and αj
of α, such that both of the following hold:

1. There is a β ∈ C where the intersection pattern of α
and β matches Rule 2 with respect to αi.

2. There is a γ ∈ C where the intersection pattern of α
and γ matches Rule 2 with respect to αj.

Proof. (⇒) If C is pairwise incompatible, then by
Corollary 1, there is a pair α,β ∈ C whose intersec-
tion graph contains a cycle. Since the intersection graph
is bipartite, this cycle must have length at least four
and contain at least two states of each character. Let αi
and αj be the two states of α on this cycle. Then, the
intersection pattern of α and β matches Rule 2 with
respect to both αi and αj, and so the theorem holds.
So we may assume that C is incompatible but pairwise
compatible.
It follows from Corollary 3 that there exists an α ∈ C

such that QC
α = ∅. Then there must exist a character β ∈

C such that the intersection pattern of α and β matches
Rule 2 with respect to some state αi of α; otherwise S∗ ∈
QC

α . Hence, QC
α ⊆ {Pi}. Then, since QC

α = ∅, there must
be a character γ ∈ C such that the intersection pattern of
α and γ places a constraint on QC

α that prevents QC
α from

containing Pi. There are two possibilities.
Case 1: There is a state αj of α where j �= i and

the intersection pattern of α and γ matches Rule 2 with
respect to αj. In this case the theorem holds.
Case 2: The intersection pattern of α and γ matches

Rule 1 with respect to αi. W.l.o.g., we fix i = 1, and relabel
the states of α, β , and γ so that α1 ∩ β1 �= ∅, α1 ∩ β2 �= ∅,
α2 ∩ β1 �= ∅, α3 ∩ β2 �= ∅, α1 ⊆ γ1, α2 ∩ γ2 �= ∅, and
α3 ∩ γ2 �= ∅. Such a labeling exists since, by assumption,
α and β matches Rule 2 with respect to α1, and α and γ

matches Rule 1 with respect to α1.
If α2 ∩ γ1 �= ∅, then the intersection pattern of α and

γ matches Rule 2 with respect to α2, in which case the
theorem holds. If α3∩γ1 �= ∅, then the intersection pattern
of α and γ matches Rule 2 with respect to α3, in which
case the theorem holds. So we may assume hat α1 = γ1.
Now, since α1∩β1 �= ∅, α1∩β2 �= ∅, and α1 = γ1, we have
that both β1 ∩ γ1 �= ∅ and β2 ∩ γ2 �= ∅.

γ3 must have a nonempty intersection with at least one
state of α, and since α1 = γ1, we have that α1 ∩ γ3 = ∅. So
γ3 has a nonempty intersection with either α2 or α3. Due
to the symmetry of the intersection graph of α and β , we
may assume, w.l.o.g., that α3 ∩ γ3 �= ∅.
By assumption, α2 ∩ γ1 = ∅, and if α2 ∩ γ3 �= ∅, then

the intersection graph of α and β contains a cycle, contra-
dicting our assumption that C is pairwise compatible. So

we may assume that α2 ⊂ γ2. Then, since β1 ∩ α2 �= ∅, we
have that β1 ∩ γ2 �= ∅.
Let s ∈ α3 ∩ β2. Since, by assumption, α3 ∩ γ1 = ∅, we

have that either s ∈ γ2 or s ∈ γ3. However, if s ∈ γ2, then
β2 ∩ γ2 �= ∅ and intersection graph of β and γ contains
a cycle, contradicting our assumption that C is pairwise
compatible. Hence s ∈ γ3 and β2 ∩ γ3 �= ∅.
We have now established all of the edges of the inter-

section graph of α, β , and γ represented by the solid
edges in Figure 4. Now, let s5 ∈ α3 ∩ γ2. Now s5 must
be in some state of β . If s5 ∈ β1, then s5 ∈ β1 ∩ α3
and the intersection graph of β and α contains a cycle,
contradicting our assumption that C is pairwise compat-
ible. If s5 ∈ β2, then s5 ∈ β2 ∩ γ2, and the intersection
graph of β and γ contains a cycle, again contradicting our
assumption that C is pairwise compatible. Hence s5 ∈ β3.
Then, we have that s5 ∈ β3 ∩ α3 and s5 ∈ β3 ∩ γ2,
witnessing the dotted edges in Figure 4. So we have that
the intersection pattern of β and α matches Rule 2 with
β2 as witness, and the intersection pattern of β and γ

matches Rule 2 with β1 as witness. Hence the theorem
holds.

Note that in the statement of Theorem 10, the charac-
ters β and γ are not necessarily distinct. In cases where
they are not distinct, C contains an incompatible pair.

Corollary 4. A set C of 3-state characters is compatible
if and only if every subset of at most three characters of C is
compatible.

In [9], it was also shown that we can determine the
compatibility of a pairwise compatible set C of three-state
characters by testing the intersection patterns of C for the
existence of one of a set of four forbidden patterns. As a
corollary to Theorem 10, we have that a single forbidden
pattern suffices to determine the compatibility of C.

Corollary 5. A pairwise compatible set C of 3-state
characters is compatible if and only if the partition inter-
section graph of C does not contain, up to relabeling of
characters and states, the subgraph of Figure 5.

Figure 4 Illustrating the proof of Theorem 10.
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Note that each edge of the graph of Figure 5 has one
endpoint which is a state in α. It follows that we can find
such a subgraph in the partition intersection graph ofC by
testing the intersection pattern of each pair of characters
in C [10]. Furthermore, all p occurrences of the forbidden
subgraph in the intersection graph of m characters on n
taxa can be found in O(m2n + p) time. Whereas the for-
bidden subgraph given here is witnessed by eight taxa (or
edges), each of the four forbidden subgraphs of [9] are wit-
nessed by five taxa, making them better suited for taxon
removal problems.

Incompatible Triplets
A rooted phylogenetic tree (or just rooted tree) is a tree
whose leaves are in one to one correspondence with a label
set L(T), has a distinguished vertex called the root, and no
vertex other than the root has degree two. See Figure 6(a)
for an example. A rooted tree is binary if the root ver-
tex has degree two, and every other internal (non-leaf )
vertex has degree three. A triplet is a rooted binary tree
with exactly three leaves. A triplet with label set {a, b, c} is
denoted ab|c if the path between the leaves labeled a and
b avoids the path between the leaf labeled c and the root
vertex. For a tree T, and a label set L ⊆ L(T), let T ′ be
the minimal subtree of T connecting all the leaves with
labels in L. The restriction of T to L, denoted by T |L, is the
rooted tree obtained from T ′ by distinguishing the vertex
closest to the root of T as the root of T ′, and suppress-
ing every vertex other than the root having degree two.
A rooted tree T displays another rooted tree T ′ if T ′ can
be obtained from T |L(T ′) by contracting edges. A rooted
tree T displays a collection of rooted trees T if T displays
every tree in T . If such a tree T exists, then we say that
T is compatible; otherwise, we say that T is incompatible.
Given a collection of rooted trees T , it can be determined
in polynomial time if T is compatible [3,25].
The following theorems follow from the connection

between collections of unrooted trees with at least one

Figure 5 The forbidden subgraph for 3-state character
compatibility.

a b

Figure 6 Example of rooted phylogenetic trees. (a) shows a tree T
that is a witness that the triplets ab|c, de|b, ef |c, and ec|b are
compatible; (b) shows the tree T restricted to the label set {a, b, c, e} .

common label across all the trees, and collections of
rooted trees [3].

Theorem 11. Let Q be a collection of quartets where
every quartet in Q shares a common label �. Let R be the
set of triplets such that there exists a triplet ab|c in R if
and only if there exists a quartet ab|c� in Q. Then, Q is
compatible if and only if R is compatible.

Let R be a collection of triplets. For a subset S ⊆ L(R),
we define the graph [R, S] as the graph having a vertex for
each label in S, and an edge {a, b} if and only if ab|c ∈
R for some c ∈ S. The following theorem is from page
439 of [26].

Theorem 12. A collection R of rooted triplets is compat-
ible if and only if [R, S] is not connected for every S ⊆ L(R)

with |S| ≥ 3.

Corollary 6. Let R be a set of rooted triplets such that R
is incompatible but every proper subset of R is compatible.
Then, [R, L(R)] is connected.

We now contrast our result on quartet compatibility
with a result on triplets.

Theorem 13. For every n ≥ 3, if R is an incompatible set
of triplets over n labels, and |R| > n − 1, then some proper
subset of R is incompatible.

Proof. For sake of contradiction, let R be a set of triplets
such that R is incompatible, every proper subset of R is
compatible, |L(R)| = n, and |R| > n − 1. The graph
[R, L(R)] will contain n vertices and at least n edges. Since
each triplet in R is distinct, there will be a cycle C of
length at least three in [R, L(R)]. Since R is incompatible
but every proper subset of R is compatible, by Corollary 6,
[R, L(R)] is connected.
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Consider any edge e in the cycle C. Let t be the triplet
that contributed edge e in [R, L(R)]. Let R′ = R \ t.
Since the graph [R, L(R)]−e is connected, [R′, L(R′)]
is connected. By Theorem 12, R′ is incompatible. But
R′ ⊂ R, contradicting that every proper subset of R is
compatible.

To show the bound is tight, we first prove a more
restricted form of Theorem2.

Theorem 14. For every n ≥ 4, there exists a set of quar-
tets Q with |L(Q)| = n, and a label � ∈ L(Q), such that all
of the following hold.

1. Every q ∈ Q contains a leaf labeled by �.
2. Q is incompatible.
3. Every proper subset of Q is compatible.
4. |Q| = n − 2.

Proof. Consider the set of quartets Q2,n−2. From
Lemmas 2 and 3, Q2,n−2 is incompatible but every proper
subset of Q2,n−2 is compatible. The set Q2,n−2 contains
exactly n − 2 quartets. From the construction, there are
two labels in L which are present in all the quartets in
Q2,n−2. Set one of them to be �.

The following is a consequence of Theorems 14 and 11.

Corollary 7. For every n ≥ 3, there exists a set R of
triplets with |L(R)| = n such that all of the following hold.

1. R is incompatible.
2. Every proper subset of R is compatible.
3. |R| = n − 1.

The generalization of the Fitch-Meacham examples
given in [9] can also be expressed in terms of triplets. For
any r ≥ 2, let L = {a, b1, b2, · · · , br}. Let

Rr = abr|b1 ∪
r−1⋃
i=1

abi|bi+1

Let Q = {ab|c� : ab|c ∈ Rr} for some label � /∈ L. The set
CQ of r-state characters corresponding to the quartet set
Q is exactly the set of characters built for r in [9]. In the
partition intersection graph of CQ, (following the termi-
nology in [9]) labels � and a correspond to the end cliques
and the rest of the r labels {b1, b2, · · · , br} correspond to
the r tower cliques. From Lemma 5 and Theorem 11, Rr is
compatible if and only of Q is compatible.

Conclusion
We have shown that for every r ≥ 2, f (r) ≥ ⌊ r

2
⌋ · ⌈ r

2
⌉ + 1,

by showing that for every n ≥ 4, there exists an incompat-
ible setQ of

⌊n−2
2

⌋·⌈n−2
2

⌉+1 quartets over a set of n labels

such that every proper subset ofQ is compatible. Previous
results [1,6,9,13-15], along with our discussion in Section
Incompatible Characters, show that our lower bound on
f (r) is tight for r = 2 and r = 3. For quartets, our dis-
cussion in Section Incompatible quartets gives an upper
bound on the maximum cardinality of a minimal set of
incompatible quartets. However, this argument does not
extend to multi-state characters. Indeed, an upper bound
on the maximum cardinality of a minimal set of incom-
patible r-state characters remains a central open question.
We give the following conjecture.

Conjecture 2. f (r) ∈ �(r2).

A less ambituous goal would be to narrow the gap
between the upper bound of O(n3) and lower bound of
�(n2) on the maximum cardinality of a minimal incom-
patible set of quartets over n taxa given in Section Incom-
patible Quartets. Note that, due to Theorem 6, a proof of
Conjecture 2 would also show that the number of incom-
patible quartets given in the statement of Theorem 2 is
also as large as possible.

Endnote
aRule 2 was state incorrectly in [7].
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