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Abstract

Background: The search for distant homologs has become an import issue in genome annotation. A particular
difficulty is posed by divergent homologs that have lost recognizable sequence similarity. This same problem also
arises in the recognition of novel members of large classes of RNAs such as snoRNAs or microRNAs that consist of
families unrelated by common descent. Current homology search tools for structured RNAs are either based entirely
on sequence similarity (such as blast or hmmer) or combine sequence and secondary structure. The most prominent
example of the latter class of tools is Infernal. Alternatives are descriptor-based methods. In most practical applications
published to-date, however, the information contained in covariance models or manually prescribed search patterns
is dominated by sequence information. Here we ask two related questions: (1) Is secondary structure alone
informative for homology search and the detection of novel members of RNA classes? (2) To what extent is the
thermodynamic propensity of the target sequence to fold into the correct secondary structure helpful for this task?

Results: Sequence-structure alignment can be used as an alternative search strategy. In this scenario, the query
consists of a base pairing probability matrix, which can be derived either from a single sequence or from a multiple
alignment representing a set of known representatives. Sequence information can be optionally added to the query.
The target sequence is pre-processed to obtain local base pairing probabilities. As a search engine we devised a
semi-global scanning variant of LocARNA's algorithm for sequence-structure alignment. The LocARNAscan tool is
optimized for speed and low memory consumption. In benchmarking experiments on artificial data we observe that
the inclusion of thermodynamic stability is helpful, albeit only in a regime of extremely low sequence information in
the query. We observe, furthermore, that the sensitivity is bounded in particular by the limited accuracy of the
predicted local structures of the target sequence.

Conclusions: Although we demonstrate that a purely structure-based homology search is feasible in principle, it is
unlikely to outperform tools such as Infernal in most application scenarios, where a substantial amount of sequence
information is typically available. The LocARNAscan approach will profit, however, from high throughput methods to
determine RNA secondary structure. In transcriptome-wide applications, such methods will provide accurate structure
annotations on the target side.

Availability: Source code of the free software LocARNAscan 1.0 and supplementary data are available at
http://www.bioinf.uni-leipzig.de/Software/LocARNAscan.
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Background

Over the last decade, a series of large-scale transcriptome
projects has profoundly changed our perception of the
transcriptome. Reviewed e.g. in [1], pervasive transcrip-
tion is widespread and plays a crucial role in controlling
gene expression and genomic plasticity. Gene prediction
and gene annotation of non-protein coding entities have
remained non-trivial problems, nevertheless. In part, this
is due to our incomplete understanding of the diversity of
ncRNAs, of which novel types and subtypes keep being
discovered at a rapid pace. An important confounding
factor, however, is the rapid evolution of many ncRNA
sequences [2-4], which intrinsically limits the applicability
of homology search methods [5,6] and hence hide distant
homologs.

The three-dimensional structure is important for the
functionality and/or the proper processing of a large
and important subgroup of ncRNAs. The most promi-
nent representatives are ribosomal RNAs (rRNAs), trans-
fer RNAs (tRNAs), spliceosomal RNAs (snRNAs), small
nucleolar RNAs (snoRNAs), and microRNAs (miRNAs).
While rRNAs and tRNAs are among the best-conserved
sequences also at sequence level, other classes such as
C/D box and H/ACA box snoRNAs exhibit sometimes
very large substitution rates. The conservation of spa-
tial structure implies that secondary structure, i.e., base
pairing patterns, are also under stabilizing selection. In
many cases, the structure evolves much slower than the
sequence, see [7] for a recent detailed analysis of this phe-
nomenon. Thus, several computational tools have been
devised to utilize secondary structure alongside with
sequence information for homology search. The same
effect is exploited by tools such as RNAz [8], Evofold
[9], or SISSIz [10] that detect selection pressure on RNA
secondary structure in multiple sequence alignments.

Structural similarity is either inherited from a common
ancestor or arises by convergent evolution as the result
of similar selective constraints. Operationally, we distin-
guish RNA families and RNA classes. The members of
RNA families share a sufficiently high level of sequence
similarity to establish the existence of a common ancestor,
which in practice translates to the possibility of repre-
senting them as structure-annotated multiple sequence
alignment. The Rfam database [11] serves as a compre-
hensive repository for this type of data. Representatives
of RNA classes share secondary structures (e.g. as a con-
sequence of a common processing pathway in the case of
microRNA precursors) or a combination of sequence and
structure features (e.g. as a consequence of being incor-
porated into analogous ribonucleoproteins in the case of
snoRNAs).

Homology search programs are geared towards
detecting novel members of known RNA families,
reviewed e.g. in [12]. The most commonly used tool

Page 2 of 11

Infernal [13] uses covariance models (CMs), i.e., the
stochastic context free grammar analogue of profile hid-
den Markov models. Similar to search heuristics such
as Erpin [14], the CMs are trained from sequence align-
ments that are annotated by a consensus secondary
structure. When a lack of known examples precludes
the construction of consensus models, tools such as
RSEARCH [15] and BlastR [16] allow single structure-
annotated or even unstructured RNAs as queries. A
common feature of all these methods is that they heavily
(or even exclusively) rely on the sequence information
contained in the query model, and that they evaluate
whether a piece of the target sequence can be folded to
match a prescribed query structure. Consistency with
the query structure, however, does not necessarily imply
that a putative homolog is thermodynamically predis-
posed to actually fold into this structure. Whether the
query structure is close to the target’s groundstate or
whether it is an unfavourable high energy structure,
therefore can provide additional information to improve
specificity.

The members of RNA classes, on the other hand,
share structural features and some sequence motifs deriv-
ing from common binding partners and functions. The
term RNA clan [17] has been proposed for RNAs that
derive from a common ancestor but have diverged far
enough to either be difficult to align or have distinct
functions, or both. As the distinction between clans and
classes requires detailed knowledge of their evolution-
ary histories, we will not distinguish between clans and
classes in this contributions. Examples of RNA classes
are animal microRNAs (featuring a characteristic pre-
cursor hairpin and processing pattern) or the two dis-
tinct classes small nucleolar RNAs (snoRNAs) defined by
the C/D and H/ACA “boxes” (short common sequence
motifs) and very different characteristic secondary struc-
tures. These three paradigmatic RNA classes each com-
prise large numbers of families. Computational surveys
[18-21], furthermore, gathered convincing evidence for
large numbers of conserved RNA structures; subjecting
these data sets to structure-based clustering suggested the
existence of additional, so far undescribed RNA classes
[22].

There are mainly two approaches for the search for
novel members of RNA classes. One class consists of
descriptor-based methods [23-25] or with the help of
class-specific tools that combine an efficient filtering step
with elaborate, often machine-learning based, evaluation
procedure that ensure the required specificity [26]. In
either case an in-depth knowledge of the RNA class under
consideration is required. The other class does not require
in-depth information on the RNA-class and its charac-
teristic patterns of conservation. Instead it exploits infor-
mation on sequential and structural similarity directly
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by using sequence-structure alignment. The first prac-
tical approaches for multiple structural alignment, such
as RNAforester [27] and MARNA [28], depend on pre-
dicted or known secondary structures. In practice, how-
ever, these approaches are limited by the low accuracy
of non-comparative structure prediction. For this reason,
several derivatives of the Sankoff-based approach [29]
of simultaneous alignment and folding have been intro-
duced. In approaches such as FoldAlign [30,31], Dynalign
[32], and Stemloc-AMA [33] a full energy model for RNA
is implemented that is evaluated during the alignment
computation. However, in its full form, these approaches
suffer from a high worst case computational complex-
ity of O(#°) time and O(n*) space. In contrast, PMcomp
[34] and LocARNA [22] use a full-featured energy model
in a precomputation step to determine a reduced repre-
sentation of the structure ensemble in form of base pair
probability matrices [35]. During the alignment process,
base pair probabilities are used to assess the similarity
of the secondary structures. Using additional computa-
tional optimizations, the complexity of LocARNA could
be reduced to quartic time and quadratic memory con-
sumption, making it currently one of the most efficient
versions of the Sankoff algorithm. Several improvements
and extensions of LOcCARNA have been discussed before:
to additionally reduce LocARNA’s runtime, ExpaRNA-P
[36,37] utilizes a fast structural filtering method based
on local structural motifs [38,39]; REAPR [40] intro-
duces a multiple alignment-based banding method to
realign eukaryotic whole genome alignments based on
RNA structure; recently, [41] introduces the very effi-
cient LocARNA descendant SPARSE; and LocARNA-P [42]
extends LocARNA by computing reliabilities, thus enabling
new applications of Sankoff-style alignment. None of
these approaches, however, addressed efficient scanning.

In practice, homology search relies predominantly on
the sequence information in the query. Even in the
CMs representing the heavily structured Rfam align-
ments sequence information by far outweighs the addi-
tional bit score contributed by the consensus secondary
structure ([43], Figure one point nine). Indeed, for most
Rfam families, the structural information is well below
the 20 bits that would be required to push the E-
value below 1 in a small, 1M bacterial genome in a
structure-based search that completely ignored sequence
conservation.

CM methods ask how well the target sequence matches
the query’s sequence and structure model that is derived
from the input alignment and its provided consensus
structure. However, they do not take into account the
thermodynamic stability of the target sequence fold-
ing into the consensus structure. This could provide
an additional source of information on the structural
concordance of query and target.
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In principle, this information is accessible in two quite
different ways. Following the philosophy of Thermody-
namic Matchers [25] and of the structure conservation
index [44], one can interpret the consensus structure as
constraint and evaluate the energy difference between
constrained and unconstrained folding. The alternative is
to predict structures also for the target.

A pilot study [45] provided first indications that struc-
tural alignments could be used for genome-wide homol-
ogy search in a regime where sequence information is
scarce. In an approach to find class-members, a model
specified as base pairing probability matrix, possibly aug-
mented with some additional sequence information, is
searched against a target for which local base pairing
probabilities are provided. To this end, base pairing prob-
ability matrices were computed with McCaskill’s partition
function folding algorithm [35]. These were then aligned
locally with LocARNA [22]. Here we describe and eval-
uate an optimized semi-global scanning variant of the
LocARNA algorithm that can be employed in genome-wide
applications.

The LocARNAscan algorithm

LocARNA is a computationally light-weight and very effi-
cient variant of the Sankoff algorithm [29]. It improves the
CPU and memory requirements each by a quadratic fac-
tor over the original algorithm. For this purpose, LocARNA
allows for matches of base pairs that occur with a given
minimum probability in the structure ensembles of the
single input sequences.

Here we devise a scanning variant of LocARNA, called
LocARNAscan, that computes alignments of a query RNA
with a much longer target sequence based on sequence
and structure similarity. In our discussion, we require such
alignments to be semi-global; in such an alignment the
entire query is compared to a subsequence of the target.
We achieve this by allowing free end gaps, i.e. arbitrary
long deletions at both ends of the target. This semi-global
scenario is designed for the common case of known motif
boundaries in the query. Nevertheless, our method can be
adapted to align locally with respect to both target and
query as long as the locality is of biological origin. Techni-
cal locality, which was introduced in the trCYK algorithm
[46] as a means of dealing with partial sequences from
RNA-seq data, cannot easily be integrated, however.

We provide a generic description of the algorithm,
where the target is a single sequence and, in general, the
query is a multiple alignment. Furthermore, both, query
and target are annotated with a base pair probability
matrix, which works similarly to a weighted contact map.
In general, such matrices can be computed by McCaskill’s
algorithm [35]. In the common case of known query struc-
ture, we generate an appropriate base pair probability
matrix by setting the probabilities of the query structure
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base pairs to 1 (and all others to 0). For the target, we sug-
gest to compute local base pair probabilities by RNAplfold
[45,47], which limits the span (j — i) of base pairs (i, ).
Thus, we assume a maximum span L << 7 of target base
pairs that we consider for the comparison to the query.
This restriction of the base pair span serves two pur-
poses. First, the restriction allows predicting the base pair
probabilities much more efficiently. Second, RNA struc-
ture prediction methods generally tend to mispredict large
base pairs. As a consequence, the accuracy is usually even
increased by limiting the size of base pairs (cf. [48].)

Notation and scoring model

Both, target T" and query Q are sequences of nucleotides
or, in the case of multiple alignment, alignment columns
with lengths n and m, respectively. The sequences are
annotated with respective substochastic matrices PT ¢
[0,1]" and PR € [0,1]"". We write (i,j) € PX as
shorthand for PX(i,j) > pun(X € {T,Q}), where pu, is
a fixed cutoff probability. Note that for each fixed i, the
number of j satisfying (i,/) € P¥ is constantly bounded,
since ZjPX(i,j) < 1 (cf. LocARNA [22]).

An alignment A of T and Q is a set of pairs (i,j) of
indices i of T and j of Q, where all pairs (i, ), (/,j) € A
satisfy (i < i'iffj < j')and (i = i iff j = f').

A secondary structure of length n is a set R of base pairs
(i,j) with 1 < i < j < n, where base pairs do not cross, i.e.
no two base pairs (i,j) € Rand (i/,j') € Rsatisfyi < i <
j<jori<i <j<j.

Together with an alignment A of target and query, we
are going to predict a consensus structure S. A consensus
structure is a set of pairs of base pairs ((i,)), (k, [)), where
the set of the respective first and second components are
secondary structures of T and Q; it is consistent with an
alignment Aiff for all ((i,)), (k, 1)), (i, k) € Aand (5, ) € A.

The score of a consistent pair (A, S), which represents a
sequence-structure alignment, is of the form

T Q .
Z [‘I’a’,/) + Wi + (T Tj Qo Qz)]
(i), (k,1)eS

+ Y o(Ti Q) + ¥ Ngap. (1)
(i,k)e As

Here, A°® denotes the set of single-stranded alignment
edges A\{(;, k), G, D) | ((G,)), (k, D)) € S}, i.e. the alignment
A without all edges that match base pairs in S. Further-
more, y < 0 is the gap penalty and Ng,p, counts the scored
gaps in A. Recall that for semi-global alignment, we allow
free, non-scored, deletions at both ends of the target; thus,
for the semi-global score

Ngap = max{i | (i,k) € A}
—min{i | (k) € A} +1+m—2|A|; 2)
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the global score is of the same form of Equation (1), where
Ngap = n + m — 2|A|. The functions o (T}, Q) and
(T}, Tj; Qk, Qp) vield sequence-based similarities between
elements of target and query in the unpaired and paired
part of the consensus structure, respectively. We are going
to discuss their instantiations later. The explicit depen-
dence of T on the aligned base pairs can be used to
include contributions based on covariation or substitu-
tion. Finally, W1 + \IJ;2 scores the structural contribution
of the consensus base pair (4,b) € S. As in LocARNA, \Ilff
(X € {Q, T}) is derived as log odd from the base pair prob-
ability PX (a), where we set ¥X () := —o0 if PX(a) < pmin
to rule out base pairs with very low probability in (finitely
scoring) consensus structures.

For simplicity, we present this score for linear (non-
affine) and position independent gap cost, since the exten-
sions of the presented method are straightforward.

Finally, we define the subscore for i...j and k...l
(denoting respective subsequences of T and Q) to be of
the form of Equation (1), but — unlike the total score —
valid only for alignments A C {i,...,j} x {k,..., [}, where
furthermore N,y is defined as

j—i+1+ I—k+1 — 24|

such that the subscore penalizes deletions at both ends of
the target subsequence .. .j.

Finally, we define the analogous subscore with free left
end deletions by defining N, as

j—min{i | k) € A} +1 + [—k+1 — 2| Al

Dynamic programming recursions

For maximizing the semi-global score of (A, S), we start
by introducing dynamic programming matrices S and
D in analogy to the dynamic programming matrices of
LocARNA [22] and PMcomp [34]. Thus, we define the
entry S; it as the best subscore for i...jand k.. ./ Fur-
thermore, let D; ;i be the best subscore for i...j and
k...l of an alignment and consensus structure S subject
to the constraint that S contains ((i, ), (k, 0)).

Equivalently, we redefine S and D recursively by

Si+1jkt T Vs

Sijk+11+ Vs

Si+1jk+1,1 + 0 (Tiy Qp), (3)
max_ (Dijr + Sj41j+11)

(i)ePT

(kI epP?

Sijik,) = max

Dijki = Sis1j-vir1i-1+ ¥
+ WG+ (T Tj Qo Q) )
with appropriate initializations
Siv1jkt =y U —k)and S; 10 =y (G — i) (5)

forl<i<j<mandl<k<Il<m.
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Since these equations are left reducing variants of the
otherwise well known recursions of PMcomp [34], one
computes all entries in D in O(n?>m?) time and O (nm)
space by applying the evaluation strategy of LOcARNA,
which takes advantage of filtering base pairs by probabil-
ity pmin. However, note that the dependency on the target
size n is still unacceptable for our purpose (of scanning
genome-sized targets); therefore, we are going to improve
on these complexities later.

The matrices S and D are defined to compute global sub-
scores (i.e., without free end gaps). Since we finally need
alignments with free end gaps, we have to introduce an
additional DP matrix S*. Furthermore, since we need the
semi-global alignment score only for the entire target and
query, it suffices to define the matrix only for scores of tar-
get and query prefixes. Thus, define S]f , non-recursively as
the best subscore for 1...j and 1.../ with free left end
deletions. This is equivalent to the recursion

Sf—l;l +vy,
S]tl—l tv
S To (T Qo (6)

* —
j;l = max
(S?:—l,k’—l Di’:i;k’,l)’

max

@ j)eP’

k' ,hepP?

where the free end gaps are achieved purely by the specific
initialization

Sio=0 So; = v! (7)

for0<j<mand0<[<m.

Efficient evaluation of the recursion equations

As mentioned before, the computational demands of the
straightforward evaluation of these recursions are unac-
ceptable for scanning. This holds even when applying the
evaluation strategy of LocARNA, which never stores more
than O(nm) S entries at each time. Although, as suggested
before, we generally limit the maximum base pair span to
L, this leaves us with prohibitive linear space dependency
on the target size, since O(nm) entries of D have to be
kept in memory before the $* recursion can be evaluated.
Furthermore, storing the entire matrix S* requires O(nm)
space.

Therefore, we rearrange the evaluation interleaving the
computation of entries in D and S*. This allows us to com-
pute all S* entries in one pass over the target sequence,
while successively materializing required matrix entries
and in turn removing “old” entries that are not accessed
anymore (Algorithm 1, cf. Figure 1).

Computing and storing the D entries in lines 3-5
requires to compute and store the subset of S entries that
allows to derive D(i,j, k,0) efficiently from S(i + 1,j —
1,k + 1,/ — 1). Formulating recursion (3) recursing only
to entries with the same fixed right ends j and [/ enables
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Algorithm 1: LocARNAscan algorithm

1 forj:=1tondo

2 for/:=1tomdo

3 foreach (i,j) € PT, (k,1) € PR do
4 ‘ compute and store D(i, J, k, [);
5 end

6 compute and store $*(j, [);

7 ifj > L then

8 forget D(j — L,j/,1,1') for all ', l;
9 forget S*(j — L, 1);
10 end
1 end
12 end

an important optimization: for each j and /, we compute
a matrix slice of entries in S that have right ends j — 1
and / — 1 and then derive all D(i, j, k, ) from this matrix
slice. Note that we need to compute and store at most
min(j — 1,L) x (I — 1) such entries, but potentially less
depending on the actual base pairs (i,j) € PT and (k1) €
PR, After the D entries are derived, these S entries are not
accessed anymore and their space can be reused.

In lines 8 and 9, we free the space of all D and S* entries
that cannot be accessed by subsequent algorithm steps
anymore. This is guaranteed for all entries with target left
end i < j — L, since no base pair spans more than L
positions. Consequently, the space requirements of this
algorithm are bounded by the requirement to store Lm
entries in slices of S, Lm entries of S*, and O(Lm) entries
of D, i.e., O(Lm) space in total.

Allocating and freeing entries can be implemented
in constant time by using rotating matrices, commonly
implemented by addressing based on target indices mod-
ulo L. Since D is a sparse matrix, it is conveniently imple-
mented based on a hash. Thus, the time complexity of
this algorithm is bounded by computing all matrix entries,
i.e. mm entries of S*, O(nmL?) entries of S, and O(nm)
entries of D. Note that each entry is computed in constant

Target
o N .%/A
eloe|o]o®
0(0|0|0|0|0O|0O|0O|0O|0O|0O|O ® olol®
> 5|ojojo|e|e|e|e|e|e|e olo[osolo
5 -10/0/0|qe S|||0/6|® ooooﬂ)o_
S 15[o]ololeelolele|e]e
o 20lo[o[o]e|e|elete|e]e S slice
IN-25|0|0|0|0|@|@|0®|®|e|o forj/
30jo[o[o|e[ele[e[e[e] | | | | | '

Figure 1 Schematic view of the computation of $* by
LocARNAscan. The dark green dots in 57‘/ are sufficient to calculate
the current entry 5;‘/, given the set of arcs indicated by red lines.
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time; for S and S* this holds due to considering only a
sparse subset of base pairs. Thus, we derive the total time
complexity O(nmL?).

Sequence score contributions

The sequence contribution of our score is defined via the
two similarity functions o and t. Note that LocARNAscan
was designed to work even without sequence information.
In this special case, we set both functions to constantly
return 0.

In general, LocARNAscan accepts information about the
query sequence in the form of a multiple alignment.
Replacing the Ribosum-like [15] definition of o and t in
LocARNA, we suggest to utilize log-odd scores based on
nucleotide (and nucleotide pair) frequencies in this mul-
tiple alignment. Whereas the original LocARNA score is
tailored for comparing single sequences or constructing
multiple alignments (there used in a sum-of-pairs score),
log-odd based scores, which are similarly utilized by Infer-
nal [13], are more appropriate for scanning applications.

Given two column vectors g and ¢’ of nucleotides and
gaps from the query multiple alignment and given two
nucleotides ¢ and ¢’ from the target, f; () denotes the fre-
quency of ¢ in g; f; 4 (¢, '), the frequency of pairs ¢ and ¢’
in the corresponding rows of g and ¢’. Let b; be the back-
ground frequency of nucleotide t; by, of the nucleotide
pair ¢, ¢’ in canonical base pairs. The similarity in the single
stranded case is then defined by

®
o(t,q) = logfqb—; 8)
t
the similarity in the base paired case, by
fq,q/ @, t/)

©(t,t',q,q") =log )

by

For simplicity, we assume uniform distribution of single
nucleotides and nucleotides in base pairs. That is we use
background frequencies by = 1/4 and b;y = 1/6; the latter
reflects that we consider all six canonical base pairs.

In our implementation, for fast evaluation of the sim-
ilarity functions, we compute the profiles, consisting of
fo, and fqgq, for all query position k < [, prior to
the actual scanning. Furthermore, to handle small query
alignments and smoothen the scoring functions, we add
pseudocounts depending on the query’s mononucleotide
background frequencies.

Reporting optimal and suboptimal occurrences of the
query

An occurrence of Q in T is a subsequence T[i]...T[/]
of T; its score is the best subscore for i...j and 1...m.
The optimal occurrence of Q in T is determined during
the run of Algorithm 1 by recording the j with the best
score S*(j, m). By definition of S*,  is the right end of the
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target subsequence that optimally aligns with the query,
in the case that an arbitrarily long left end of the target
can be deleted for free. Albeit finding the left end requires
extra work (see next subsection), the right end suffices to
specify the occurrence.

For reporting suboptimal occurrences, one can record
all scores s; := S*(j, m) during the run of the algorithm.
However, reporting all occurrences down to a certain
score threshold in this vector is unsatisfactory, since good
scores are usually flanked by only slightly worse scores
that refer to the same occurrence with slightly altered
alignment. For this reason, we report only local maxima
of s;, i.e. j, where s; > max(sj_1, sjy1). Furthermore, we do
not report a local maximum j if it is too close to a reported
local maximum j with a better or equal score. Setting
the distance threshold to one query length (m), we avoid
reporting occurrences with substantial overlap. More for-
mally, for j and j’ where |j—j'| < m, we say that j dominates
J,iffsj > s; or (sj = s; and j < /). We prune all dominated
local maxima and report only the non-dominated ones.

Limiting the memory consumption independent of the
target length is crucial for scanning. In addition, ran-
dom access to data growing linearly with the target
length has to be avoided. Consequently, we devise an
online pruning algorithm with space requirements lin-
early bounded by the query length. While scanning the
target by algorithm 1, we maintain a list of local max-
ima ;" and remember their corresponding scores s;. We
maintain three invariants: 1) list entries are increasing,
2) the distance of successive list entries is smaller than
or equal to m, and 3) scores of list entries are strictly

increasing.
When identifying a new local maximum j (after com-
puting sjy1 = S*(j + 1,m)), we try to resolve as many

domination relations as possible. If j — m is larger than
the last list entry, entries of the list are independent of the
new local maximum and all further local maxima. Thus,
the list is resolved by iteratively reporting the last list entry
and removing all dominated entries. All non-dominated
entries are reported and the list is deleted. Finally, unless j
is dominated by the last j in the list, we push j to the list.
Note that here we push to the empty list or the score s; is
higher than the score of the last list entry. After scanning
the entire target, the list is resolved again.

The correctness follows from preserving the invariants
in all cases. It remains to show that the list length is lin-
early bounded by the query length. This is due to the
discretization of our score (we round all score contribu-
tions to limited precision); being an additive score, the
score is linearly bounded by the query length; conse-
quently, lists satisfying the third invariant have linearly
bounded length. Note that in the average case, lists are
even much shorter than this theoretic worst case bound
suggests.
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To handle large targets without excessive use of main
memory, we implement two reporting strategies. Either
we output all reported occurrences immediately or we
limit the number of reported occurrences a priori to some
K. To output only K best occurrences, we store them in a
priority queue, sorted such that the occurrence with min-
imum score is on top and thus can be removed, whenever
the limit is exceeded. Finally, the contents of the queue
are output. While outputting the occurrences, we keep a
histogram of the locally maximal scores for later use in
determining the significance of an occurrence from the
empirical score distribution. The entire strategy is gener-
ally similar to GotohScan [49] and extended here by the
online pruning procedure.

To determine the significance of an occurrence, we
compared several theoretical distributions to the empiri-
cal score distribution, but none approximated the align-
ment scores well (Figure 2). Hence, we followed the
approach presented in [49]: for the identification of
extreme alignment scores, it suffices to approximate
the right tail of the distribution; the tail can be fit-
ted well by an affine function. This strategy enables to
return only significant occurrences with e-value up to a
given threshold.

Traceback and Bound on Alignment Length

Obtaining the actual alignments corresponding to occur-
rences with right end j and recovering the left end of the
occurrence requires a traceback procedure through the
dynamic programming matrices. This poses the problem
that space limitations forbid storing the entire matrices,
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such that these matrices are not available after running
Algorithm 1.

Therefore, given j, we determine and recompute the rel-
evant part of matrix $* and the corresponding D entries.
Efficiency demands to keep the recomputed relevant part
of §* as small as possible. Given the score s;, we derive a
lower bound i for relevant left ends i’ of the occurrence.
Consequently, since the occurrence score cannot depend
on entries with lower target left ends i’ < i, one initializes
all S*(i — 1, k") with —oo (1 < k' < m), all $*(//,0) with 0
(i—1 <j <j), and recomputes all entries S*(j’, k'), where
i <j <jand1 < k' < m, according to Eq. (6).

Finally, transferring a strategy known from LocARNA, we
free S entries during this first recomputation, such that we
recompute the S entries “on the trace” a second time, when
performing the actual traceback. In this way, the traceback
does not require more space than the score computation.

Analogously to [45], we bound the difference between
the length of query and occurrence by A, where we choose
A := (sj — m max(Gmax, Tmax/2))/y such that

Si<m max(Omax, Tmax/2) + Ay,

and omax and tmax denote the respective maximum single
base match and maximum base pair match contributions
between query and target; notably, the latter similarity
includes sequence contributions due to t and structure
contributions due to W7 and W<,

Whereas [45] suggests to limit the “history” during the
search phase by m 4+ A, we limit this more strongly to L
at the price of recomputation. Making the common case
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fast, this strategy is generally advantageous; it reduces
load in the scanning phase, while only very few entries
close to high scoring occurrences have to be recomputed,
causing largely negligible extra cost. Similarly, one bounds
the number of required entries of D, since the benefit of
matching two base pairs has to justify a potential length
difference of the enclosed subsequences.

LocARNAscan recognizes thermodynamic stability
of occurrences

To study the specific behavior of LocARNAscan, we com-
pared the performance of LocARNAscan and Infernal on
a designed target containing a series of thermodynami-
cally stable and (presumably) unstable occurrences. This
allowed us to measure the difference in sensitivity to both
classes given different training information.

First, we designed two sets of 1000 RNA decoys each.
In the first set, which we call stabilized class, the RNA
decoys were designed, applying inverse folding, to fold
into tRNA structures with high thermodynamic stability.
In the second set, called non-stabilized class, the decoys
were generated with the potential to fold into tRNA struc-
tures forming canonical base pairs, but their stability is
purely by chance. By design, the decoys are not related
on the sequence level to each other or to known RNAs
but share approximately the same mononucleotide fre-
quencies. However, each decoy has the length and struc-
ture of a different randomly selected sequence from the
Rfam tRNA family. From these decoys, we generated one
pseudogenome consisting of an RNA decoy every 200
bases padded with random nucleotides from the same
mononucleotide distribution.

For each class, we selected 100 samples at random to use
them as training sets. Based on the Rfam seed alignment,
we obtained a multiple alignment of the 100 samples
annotated with a consensus structure derived from the
Rfam consensus structure of the entire family. From both
multiple alignments, we generated covariance models for
Infernal. From the model for the non-stabilized class, we
striped off all sequence information, replacing it by a
background model based on the mononucleotide frequen-
cies of the pseudogenome. This procedure resulted in a
stripped model and a stabilized model. For LocARNAscan,
we generated two different queries. The first query con-
sists of a tRNA of median length, where the sequence
was replaced by a string of Ns and PQ was generated
from the Rfam structure of this tRNA; the second, of the
“stabilized” multiple alignment and a matrix PQ that was
generated from its Rfam-derived consensus structure. By
design, the first query contained at most the information
of the stripped model, whereas the second query and the
stabilized model contain exactly the same information.

We emphasize that both, the stripped CM and the all-
N query sequence represent intentionally extreme cases.
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Since stable RNAs favor CG base pairs over AU and GU
base pairs and conversely, A and U in single stranded
regions over C and G, one could usually utilize such
knowledge, even in the absence of sequence informa-
tion. Without doubts, Infernal would profit from this
knowledge; building corresponding models is even sup-
ported via cmbuild’s option eset 0 in Infernal 1.1. As
well, LocARNAscan could be similarly extended to mirror
Infernal’s behavior. Nevertheless, we intentionally study
the extreme scenario to isolate the effect of incorporating
thermodynamic stability.

Finally, we performed four scans of the pseudogenome.
We run LocARNAscan with both designed queries and
Infernal with the stripped model and the stabilized model.
While the former model allowed Infernal to make full
use of its training machinery, the latter tested Infernal’s
performance without sequence information. Per query,
Infernal scanned the genome in 9 minutes (on Intel Q9400
2.66 Ghz), whereas LocARNAscan took only 3:10 minutes.
Using its HMM filter, Infernal improves to roughly 6 min-
utes. LocARNAscan additionally requires to precompute
base pair probabilities by folding the genome once (for
potentially many queries); RNAplfold performed this in 5
minutes.

In Figure 3, we compare the separation of the two
decoy classes by the different runs by their classification
behavior. For each run, we plot the number of occur-
rences that coincide with stabilized decoys vs. the number
with non-stabilized decoys at the same score threshold.
The curves show that Infernal without sequence infor-
mation completely fails to distinguish the two classes;
in contrast, samples of stabilized decoys contain enough
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sequence information to allow Infernal to classify almost
perfectly. Trained without sequence information, LocAR-
NAscan is superior to Infernal in sensing the stability of the
decoys. Given the multiple alignment, LocARNAscan gains
classification strength, but does not match the excellent
performance of Infernal with sequence information.

Discussion and Conclusions

Genome-wide search for homologs of structured RNAs
can benefit from the additional information encoded in
their base pairing patterns. Nevertheless, currently avail-
able tools predominantly utilize the sequence information
contained in query and target. The structural contribu-
tions are incorporated at the level of consistency between
target sequence and query structure. Here we asked
whether it can be worthwhile to include direct structural
information, and thus implicitly evidence for the stability
of secondary structure, also on the side of the target.

This is feasible in practice based on “scanning versions”
of RNA secondary structure prediction tools that com-
pute e.g. probabilities for local base pairs with a limited
span in the target. Homology search on such a structure-
annotated target is naturally performed as a local or
semi-global sequence-structure alignment. With LocAR-
NAscan we devised an efficient implementation of a semi-
global variant of the Sankoff algorithm. For applications of
genome-wide searches, we developed several algorithmic
improvements relative to the global LocARNA approach.
Rethinking the trade-offs between storing and recomput-
ing intermediate data, LocARNAscanrequires only O(Lm)
memory, dependent only on the query size m and the
span L of the precomputed base pairs in the target, but
independent of the size # of the target itself, which is lin-
early read from disc and does not need to be stored in its
entirety.

LocARNAscan’s CPU requirements of O(nmL?) make
genome-wide scanning feasible. In our experiment,
LocARNAscan including the precomputation of base pair
probabilities by RNAplfold, is about as fast as Infernal;
this does not even change much when Infernal is allowed
to use HMM filtering, since the small contribution of
sequence information in our setting limits the effect of fil-
tering. Calibration of the Infernal model, which is usually
required, would have increased its total time requirements
dramatically. The actual scan by LocARNAscan and the
RNAplfold precomputation took almost the same time.
We point out that the theoretical worst case complexi-
ties O(nmL?) of LocARNAscan, O(nL?) of RNAfold, and
O(nm?) of Infernal would suggest a different ordering of
run times. The observed run times are a consequence of
very different constant overheads. While LocARNAscan’s
L? factor is strongly reduced by the filtering of base pairs
by their probability, e.g. RNAplfold’s overhead is much
larger due to the complex energy model and Infernal’s run
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time actually depends on the number of CM states, which
is a multiple of the query length.

Not surprisingly, little can be gained by the extra
expense of the sequence-structure alignment as long
as sufficient sequence information is contained in the
query. We therefore concentrated here on the regime in
which our current homology search tools are effectively
blind, i.e., cases in which sequence conservation is com-
pletely absent. We find that in such an extreme setting
LocARNAscan retains the ability to distinguish between
thermodynamically stable RNA elements and decoys that
admit the same base pairing patterns albeit far away from
their groundstate. In contrast, Infernal is blind to this
difference.

Of course, this is an extreme regime that is of interest
in rare applications since most RNA families also exhibit
an appreciable level of sequence conservation. A further
practical limitation is the accuracy of the predicted base
pairs of the target structure. Several approaches for the
genome-wide measurements of secondary structure (see
[50] and the references therein), however, promise to at
least alleviate this issue in the near future.

Methods

Design of decoy RNAs

Each decoy (in both the stabilized and the non-stabilized
class) is generated from a randomly selected entry in the
Rfam 11.0 seed alignment of the tRNAs. First, we remove
all gap columns and the corresponding symbols in the
dot-bracket consensus structure string. If this deletes only
one parenthesis of a parentheses pair, we replace the other
one by a dot. In this way, we generate the ungapped
tRNA sequence S and the corresponding projection of
Rfam’s tRNA family consensus structure. Then, we fold
the sequence constrained with the consensus structure
projection (using RNAfold). This results in a specific struc-
ture R for the selected tRNA. For the stabilized class, we
apply inverse folding into structure R optimizing the prob-
ability of R in the ensemble of the designed sequence S; for
the inverse folding we apply RNAinverse in partition func-
tion mode. In addition, we configure RNAinverse to stop
at a cutoff corresponding to probability p = 0.75. This
generally results in sequences, where R has only slightly
higher probability.

The tool RNAinverse does not directly allow to stop
the optimization at a probability p. However, RNAinverse
accepts a minimal energy difference between the energy
E(R|S) of R for S and the ensemble free energy F(S) =
—RT/In(}_; E(R|S)) of S. We utilize this feature after
inferring the p-equivalent difference by

AE = —RT/In(p), (10)

where R denotes the gas constant and 7" the temperature.
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We generate the non-stabilized decoys based on the
mononucleotide frequencies of the stabilized ones. For
generating a decoy in the non-stabilized class, given a
structure R and mononucleotide frequencies px(X €
{A, C, G, U}), we draw the unpaired bases and bases at left
base pair ends randomly from this distribution. The right
ends of base pairs are set complementary to the left end
bases (disallowing GU pairs).

Stripping off sequence information of a covariance Model
Similar to profile hidden Markov models (HMMs), Infer-
nal’s covariance models (CMs) are generative models
that describe a probability distribution over sequences.
Designed for RNAs, the CMs contain information about
the RNA secondary structure, such that they can dis-
tinguish between unpaired bases and base pairs. Thus,
like profile HMMs, the CMs contain nucleotide emission
probabilities at different match states, but additionally
contain nucleotide pair emission probabilities at special
base pair match states. Technically, CMs contain log odd
bit scores of the emissions calculated from the emission
probabilities and, in uncalibrated CMs, a simple uni-
form null model. The key to entirely remove sequence
information from a CM is thus to replace all emission
scores of nucleotides and nucleotide pairs according to a
background model.

Given mononucleotide frequencies px (X € {A4,C,
G, U}) , we replace all emission scores for nucleotide X by
logz(%). For base pairs, we take into account a low prob-
ability pnc of emitting a non-canonical nucleotide pair
(pnc = 0.001). The scores for nucleotide pairs (X,Y) €
{A, C, G, U)}? are then replaced by logz((l_p”f/)#m) for

canonical pairs XY € {AU,UA,CG,GC,GU,UG} or

logz(l%fgm) for non-canonical pairs.

Running LocARNAscan and Infernal

First, we performed two scans of the pseudogenome
by LocARNAscan 1.0 ; the tool is available as free
software at http://www.bioinf.uni-leipzig.de/Software/
LocARNAscan. In extension of the presented score
of Equation (1), LocARNAscan 1.0 supports affine gap
cost and weighs the structure against sequence sim-
ilarity. We set the weighting factor to 2.0 (option
struct-weight=200) and the weighting of the sequence
contribution t(T}, Tj; Qk, Q) in the structure score
component to 4.0 (option tau=400). Furthermore,
we set the insertion/deletion score to -1.0 and gap
opening cost to -5.0 (options indel=-100 and indel-
opening=-500). Finally, we activate the introduced log
odd scoring of LocARNAscan (option logoddscores
on). Base pairs in the pseudogenome are predicted
with RNAplfold [47] forbidding lonely base pairs and
setting a folding window size of 200nt and a max-
imal base pair span of 100nt. From the RNAplfold

Page 10 of 11

prediction, we removed all base pairs with probability less
than 0.5.

Second, we performed two corresponding scans by
Infernal 1.0.2. We built Infernal models by cmbuild with
default parameters. Then, we scan the pseudogenome
with cmsearch. To avoid missing decoys we turned off
HMM filtering (option fil-no-hmm). Furthermore, to pro-
duce comparable results, we scan only the forward strand
(cmsearch option top-only) and run Infernal in glocal
mode (option -g); the latter turns on LocARNAscan-like
semi-global behavior.

For both, LocARNAscan and Infernal, we determined
findings of stabilized and non-stabilized decoys and the
corresponding occurrence score. There, we considered
an occurrence, if it overlaps a decoy by at least 10%
nucleotides. In the case of multiple occurrences overlap-
ping the same decoy, we selected the best prediction as
score for this decoy.
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