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Abstract

Background: Positional weight matrix (PWM) remains the most popular for quantification of transcription factor
(TF) binding. PWM supplied with a score threshold defines a set of putative transcription factor binding sites (TFBS),
thus providing a TFBS model.
TF binding DNA fragments obtained by different experimental methods usually give similar but not identical PWMs.
This is also common for different TFs from the same structural family. Thus it is often necessary to measure the
similarity between PWMs. The popular tools compare PWMs directly using matrix elements. Yet, for log-odds PWMs,
negative elements do not contribute to the scores of highly scoring TFBS and thus may be different without
affecting the sets of the best recognized binding sites. Moreover, the two TFBS sets recognized by a given pair of
PWMs can be more or less different depending on the score thresholds.

Results: We propose a practical approach for comparing two TFBS models, each consisting of a PWM and the
respective scoring threshold. The proposed measure is a variant of the Jaccard index between two TFBS sets. The
measure defines a metric space for TFBS models of all finite lengths. The algorithm can compare TFBS models
constructed using substantially different approaches, like PWMs with raw positional counts and log-odds. We present
the efficient software implementation: MACRO-APE (MAtrix CompaRisOn by Approximate P-value Estimation).

Conclusions: MACRO-APE can be effectively used to compute the Jaccard index based similarity for two TFBS models.
A two-pass scanning algorithm is presented to scan a given collection of PWMs for PWMs similar to a given query.

Availability and implementation: MACRO-APE is implemented in ruby 1.9; software including source code and a
manual is freely available at http://autosome.ru/macroape/ and in supplementary materials.

Keywords: Transcription factor binding site, TFBS, Transcription factor binding site model, Binding motif,
Jaccard similarity, Position weight matrix, PWM, P-value, Position specific frequency matrix, PSFM, Macroape
Background
Transcription factors (TFs) with similar structures of
their DNA binding domains often recognize similar
transcription factor binding sites (TFBS). TF binding
DNA segments obtained by different experimental tech-
niques can be systematically different even for the same
TF. Different motif discovery algorithms applied to the
same set of TF binding sequences usually produce
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reproduction in any medium, provided the or
different results [1]. Thus, the problem of comparing
transcription factor binding models arises in different
contexts. The typical representation of a TF-recognized
DNA binding pattern is a positional weight matrix
(PWM, or position specific frequency matrix, PSFM).
When PWM is used to predict TFBS in DNA sequence,
different score cutoffs (thresholds) result in different sets
of tentative TFBS. The complete set of tentative TFBS is
defined by a TFBS model as a combination of a PWM
and its score threshold.
A number of methods have been developed to mea-

sure similarity of two PWMs. The basic approaches were
proposed more than 10 years ago [2,3]. A number of
practical implementations were developed [4-11], with
many of them included in integrated tools [12]. Most of
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these methods rely on comparison of PWM elements
computing, e.g., the correlation between matrix elements
at particular TFBS positions. From a practical stand-
point, it seems more relevant to compare the sets of ten-
tative TFBS recognized by PWMs at given threshold
levels rather than the PWMs per se. Indeed, PWM
thresholds selected in practice are usually high and, thus,
the scores of tentative TFBS are close to the maximal
PWM scores; only the matrix elements with high values
contribute to the score of a putative TFBS. The matrix
elements with low values rarely or almost never contrib-
ute to tentative TFBS scores, but contribute to the
matrix similarity measures on par with PWM elements
having high values, e.g., in case of the Pearson correl-
ation computed for columns of two compared PWMs.
For comparing the matrices with strictly positive values,
e.g., counts of frequencies, this effect may be less im-
portant, but a log-odds PWM can contain negative ele-
ments with rather high absolute values, which would
substantially bias the comparison.
Moreover, when the threshold values are high, two

PWMs can predict the same set of tentative TFBS; but
when score threshold levels are lower, the predicted
TFBS sets may be rather different. Thus, it would be
useful to have a similarity measure based not only on
PWMs but also on threshold values.
The similarity measure for two PWMs, taking into ac-

count their thresholds, was first introduced in MoSta
[13], which computes the correlation between the num-
bers of hits of two PWMs in a random DNA sequence.
MoSta uses non-normalized matrices of integer letter
counts. Still, in practice the PWMs are used along with
different normalization strategies [14], e.g., commonly
used log-odds transformation of counts [15], with result-
ant matrix elements having any real value. In addition, it
seems more intuitive to have a similarity measure dir-
ectly based on the number of binding sites recognized
by both tested TFBS models.
Here we propose a measure based on the Jaccard simi-

larity index to evaluate the similarity of two sets of
possible TFBS defined by two PWMs with respective
threshold values. For two PWMs taken with their thresh-
olds, this measure can be used to obtain the optimal
PWM alignment, i.e., the displacement (shift) of the first
PWM relative to the second, at which they recognize the
most similar sets of TFBS. We show that the suggested
measure defines a metric space on a set of binding models
of TFBS of any finite length, considering TFBS generated
by the Bernoulli (i.i.d.) random model.
The paper is organized as follows: the Algorithm sec-

tion presents a basic introduction into the problem
followed by the formal construction of the proposed
similarity measure; the Results and Discussion section
presents validation of the proposed approach using the
pairs of TFBS models for the same TF; the Conclusions
section contains the final remarks; proofs of lemmas and
a theorem introduced in the paper are given in the
Appendix.

Algorithm
The combination of a PWM and its score threshold
makes up a TFBS model; the model defines some finite
set of TFBS. Let us consider two models, X and Y, defin-
ing two sets of binding sites, X and Y, of the same length
(width) at given threshold levels. One can directly apply
the Jaccard measure to estimate the similarity between
these two models:

J X;Yð Þ ¼ X∩Yj j
X∪Yj j

where |X| is the size of the set X of binding sites defined
by the model X. J is the fraction of words recognized by
both models (i.e. scoring as no less than the corresponding
thresholds for both PWMs) in the larger set of words rec-
ognized by any of the two models. It has already been
shown [16] that this measure defines a metric space on
the sets of words of the same length based on the distance:

D X;Yð Þ ¼ 1−J X;Yð Þ

Technically, |X| and |Y| can be computed using the
existing approach [17] and |X ∪ Y| = |X| + |Y| − |X ∩ Y|,
so the trick is to estimate |X ∩ Y|.
In general binding site lengths and strand orientations

at the DNA heteroduplex may be different. Two TFBS
models can be aligned by PWM shifting and possible re-
verse complement transformation. It is intuitively con-
sistent that, if a longer model is compared with a shorter
model, any symbol may occupy the “hanging positions”
of the longer model. For the large shifts, both models
can have “hanging positions” at the opposite ends. The
similarity between the two models is defined as the max-
imal similarity attained after testing all possible relative
shifts and orientations of the two respective PWMs.
Below we prove that this measure maintains its metric
properties for the TFBS models made up from PWMs and
score thresholds. Moreover, we prove that the suggested
similarity measure is applicable in a more general case of
weighted contribution of different binding sites, e.g., with
probabilistic weights based on an i.i.d. random model.

General remarks
Our algorithm was inspired by the ideas of Touzet and
Varre [17]. Let there be a sequence written in the alpha-
bet A = {A, C, G,T}. Let us consider a PWM, a 4-by-m
matrix M: M = [M(α, i)]4m with DNA positions at col-
umns and DNA alphabet symbols at rows; m is the
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PWM width (the binding site length). M α; ið Þ ∈R repre-
sents a score at i-th position, 1 ≤ i ≤m, for the letter α ∈
A. For each word ω =ω1..ωm in Am, this matrix defines a
score:

S ω;Mð Þ ¼
Xm

i¼1

M ωi; ið Þ

Given a threshold t, the PWM defines a motif occurrence
in the sequence ζ at position n if S(ζn.. ζn +m − 1,M) ≥ t. A
pair of a PWM and a threshold defines the TFBS recogni-
tion model allowing one to explicitly enumerate the set of
all m-mers identified as TFBS:

Ω M; tð Þ ¼ ω∈Am : S ω;Mð Þ ≥ tf g
The P-value(M, t) is the probability P(M, t) that a

background random model would generate a word with
the score of no less than the threshold t:

P‐value M; tð Þ ¼ P M; tð Þ ¼
X

ω∈Ω M;tð Þ
P ωð Þ;

where P(ω) is the probability of the word ω under the
given background model.
Following [17], we define the score distribution Q(M, s)

as the probability that the background model would gen-
erate a word ω with the exact score s. Formally,

Q M; sð Þ ¼
X

ω:S ω;Mð Þ¼s

P ωð Þ:

If s is not an accessible score for the given PWM M,
then Q(M, s) = 0. Knowing the score distribution, one
can easily calculate the P-values:

P M; tð Þ ¼
X

s≥t

Q M; sð Þ

Zero-columns extension of PWM
Lemma 1. Extending a PWM with any number of zero
columns from the left or from the right does not change
the score distribution or any P-value corresponding to
any score threshold.

Reverse complement transformation of PWM
Reverse complement transformation of PWM M is a new
PWM ~M ; for which the following relations are valid for
any column i:

~M A; ið Þ ¼ M T ;m−iþ 1ð Þ; ~M T ; ið Þ ¼ M A;m−iþ 1ð Þ;
~M C; ið Þ ¼ M G;m−iþ 1ð Þ; ~M G; ið Þ ¼ M C;m−iþ 1ð Þ:

Reverse complement transformation of a PWM is a
PWM that locates the same set of TFBS but on the op-
posite strand of a DNA heteroduplex.
Lemma 2. If the words are generated by an i.i.d. ran-
dom model and the background probabilities comply
with the conditions p(A) = p(T), p(C) = p(G), then the re-
verse complement transformation of PWM M does not
change the score distribution and hence the P-values.

Alignment of PWMs of different widths
Suppose there are two PWMs, M1 and M2, of possibly
different widths m1,m2, applied to some sequence ζ
starting from positions j1,j2, respectively. When written
with any relative shift, these two matrices can be appended
with zero columns at all non-aligned (“hanging”) positions.
To be more precise, two matrices can be aligned by
extending M1 with zero columns at all positions overlap-
ping with M2 but not with M1, and by extending M2 with
zero columns at all positions overlapping with M1 but not
with M2. The aligned matrices have the same width m and
define scores for the same dictionary of words.
The respective P-values can be calculated for the two

aligned PWMs M1,M2 with thresholds t1,t2:

P‐value M1; t1ð Þ ¼
X

s≥t1
Q M1; sð Þ ¼ P Ω1 M1; t1ð Þð Þ;

P‐value M2; t2ð Þ ¼
X

s≥t2

Q M2; sð Þ ¼ P Ω2 M2; t2ð Þð Þ;

where Ω1,Ω2 are the word sets defined by the corre-
sponding PWMs M1,M2 with thresholds t1,t2.
The similarity measure of word sets Ω1,Ω2 and thus of the

models defined by M1 and M2 used with the thresholds t1,t2
is computed as the conditional probability that a random
word ω has scores no less than the preselected thresholds
for both matrices, knowing that its score is no less than the
corresponding threshold for at least one of the two matrices:

J1 Ω1;Ω2ð Þ ¼ P ω : ω∈Ω1∩Ω2f gð Þ
P ω : ω∈Ω1∪Ω2f gð Þ :

In case of uniform probability distribution, p(α) = 0.25
for all α ∈A, this measure is simplified to the ratio of the
number of words scoring no less than the thresholds for
both matrices and the number of words scoring no less
than the corresponding threshold for any of the matrices:

J1 Ω1;Ω2ð Þ ¼ Ω1∩Ω2j j
Ω1∪Ω2j j ;

which coincides with the Jaccard similarity measure for
two sets of words.
The distance D1(Ω1,Ω2) = 1 − J1(Ω1,Ω2) is a metric

on the weighted word sets [16]. In our example, the
weights of words are derived as their probabilities to be
generated by an i.i.d. random model.
Lemma 3. Let there be an aligned pair of PWMs M1,

M2 with the corresponding thresholds t1,t2, defining
TFBS recognition models Ω1,Ω2. Extension of both
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PWMs with any number of zero columns does not
change D1(Ω1,Ω2).

Definition of the distance metric for TFBS models
Let us finally define the distance between the two un-
aligned recognition models Ω1,Ω2 represented as PWMs
M1,M2 of possibly different widths m1,m2 with the given
thresholds t1,t2 corresponding to P-values P1 = P(M1, t1),
P2 = P(M2, t2):

Ω1 ¼ Ω M1; t1ð Þ and Ω2 ¼ Ω M2; t2ð Þ:

Close PWMs at close P-values identify similar sets of
DNA words on any of the two strands of DNA hetero-
duplex. Two PWMs can be aligned with any relative
shift. In addition, one of PWMs can undergo reverse
complement transformation. In so doing, the similarity be-
tween two PWMs can be defined as the maximal similarity
attained after testing all possible shifts and orientations:

J2 Ω1;Ω2ð Þ ¼ max
i

max J1i Ω1;Ω2ð Þ; J1i Ω1;Ω̃2
� �� �� �

;

and similarly, the distance is defined as

D2 Ω1;Ω2ð Þ ¼ min
i

min D1i Ω1;Ω2ð Þ;D1i Ω1;Ω̃2
� �� �� �

:

Here, J1i(Ω1,Ω2) is the similarity between TFBS bind-
ing models based on PWMs M1,M2 aligned in such a
way that the 1-st column of the matrix M1 corresponds to
the (1+i)-th column of the matrix M2, 1 −m1 ≤ i ≤m2 − 1,
with the positive values of i corresponding to M1 extended
from the left (andM2 extended from the right) and ~Ω2 be-
ing the TFBS model constructed with the reverse comple-
ment transformation of M2. Note that J2 defines the
optimal alignment and the mutual orientation of the
PWMsM1,M2 at the given thresholds t1,t2.
Theorem: Distance D2(Ω1,Ω2) = 1 − J2(Ω1,Ω2) de-

fines a proper metric in the space of TFBS models repre-
sented as PWMs with thresholds corresponding to the
given P-value levels.
Please see the Appendix for the proof.

Calculating the size and the probability of a word set
recognized by two models
Let us have two PWMs of the same width m with se-
lected thresholds defining word sets Ω1 and Ω2. To
compute J2, we need to estimate |Ω1 ∩Ω2|, |Ω1 ∪Ω2|,
where |Ω1 ∪Ω2| = |Ω1| + |Ω2| − |Ω1 ∩Ω2| (a similar ex-
pression holds for weighted words, e.g., using the prob-
abilities to be generated by an i.i.d. random model). The
size of each of the word sets Ω1 and Ω2 recognized by
the first and the second matrix at the given thresholds,
or the probabilities P({ω : ω ∈Ω1}), P({ω : ω ∈Ω2}) in case
of weighted words, can be calculated using the strategy
described in [17]. So the remaining task is to calculate
|Ω1 ∩Ω2| or P({ω : ω ∈Ω1 ∩Ω2}).
The size of the word set Ω1 ∩Ω2 can be calculated

using a dynamic programming approach in a way similar
to that in [13]. Let S1 and S2 be the PWM scores of some
word prefix of length i ≤m for PWMs M1 and M2, re-
spectively. We maintain a two-dimensional hash H(S1, S2),
where each key is the pair of scores (S1,S2) and each value
is the number of prefixes of a given length having this pair
of scores.
Having the hash Hi for the prefix length i, we can re-

calculate the hash for the (i+1)-th step:

Hiþ1 S1
0; S20ð Þ

¼
X

α∈ A;C;G;Tf g

X

S1:S1þM1 α;iþ1½ �¼S1 0

X

S2:S2þM2 α;iþ1½ �¼S2 0
Hi S1; S2ð Þ:

Having Hm for the full PWM width m, we can now
calculate the size of the set Ω1 ∩Ω2:

Ω1∩Ω2j j ¼
X

S1≥t1;S2≥t2

Hm S1; S2ð Þ:

In case of words generated by an i.i.d. random model,
the following formula can be used to calculate Hi+1

which, in turn, will be storing the probabilities of gener-
ating prefixes with a given pair of scores:

Hiþ1 S1
0; S20ð Þ

¼
X

α∈ A;C;G;Tf g

X

S1:S1þM1 α;iþ1½ �¼S1 0

X

S2:S2þM2 α;iþ1½ �¼S2 0
Hi S1; S2ð Þ⋅pα

where pα, α ∈ {A, C, G,T} are the background probabil-
ities of individual letters.

Results and discussion
PWM based TFBS models are extensively applied in
regulatory genomics. The existing TFBS models are stored
in many different model collections and databases, e.g.,
proprietary TRANSFAC [18], or open access JASPAR
[19], or recently published integrative HOCOMOCO [20].
These collections contain hundreds of PWMs for TFs of
different structural families. PWMs for the same TF stored
in different databases are usually obtained from different
experimental data and/or using different motif discovery
tools. The question of practical interest is to estimate a de-
gree of similarity between the sets of binding sites defined
by different models for the same TF.
To this end, we have selected 85 pairs of PWMs for

TFs with the models present both in JASPAR and
HOCOMOCO. We applied MACRO-APE to estimate
the similarities between the models for a set of P-values
each time specifying the same P-value for both compared
PWMs. It would be logical to specify the same P-value for
both PWMs, because it ensures that the sets of words
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independently recognized by each matrix are comparable
in size.
Figure 1 shows the distributions of similarity for the

pairs of TFBS models for the same TF and for all possible
pairs of models. The models for the same TF are indeed
much more similar than all other non-matched pairs of
models. Moreover, in general the average similarity of
models for the same TF only weakly depends on the
P-value (PWM threshold) selected for testing. The above
confirms the relevance of our metric and indicates that in
practice it is mostly safe to vary the P-value (and thus the
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Figure 1 The cumulative distributions (a) and probability density (b)
models for the same TF are shown by solid lines (data for 85 TFs with the
The similarities for all possible pairs for 170 assessed models are shown by
is notable that the paired models for the same TF are really closer as comp
positive TFBS prediction rate of the model) in a wide
range of values. On the other hand, the absolute similarity
level for a pair of models for the same TF indicates a ra-
ther low number (30-50%) of binding sites being shared.
Thus, two sets of TFBS predicted in DNA sequence by
different models obtained in different public sources can
be really different from each other, which additionally con-
firms that appropriate choice of the model can be of pro-
found importance for real-life genomic studies.
Figure 2 shows the mean and the standard deviation
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same TF depending on the P-value used for both PWMs.
It is notable that the variance of similarity in the region
of medium and high P-values is very stable. In practice,
lower P-values are often selected to minimize false posi-
tive predictions. In this region, the similarity values vary
greatly from one TF to another, which is accompanied
with the decreased mean similarity, thus indicating even
less stable TFBS predictions between different models
for the same TF. Figure 3 shows the results for several
selected pairs of the models with their motif LOGO rep-
resentations. It is notable that even CTCF TFBS models
with almost identical LOGOs and very well defined
TFBS have the Jaccard similarity of only 0.6. It corre-
sponds to 60% of shared sites among those predicted by
any of the two models, or about 80% of predictions of
each single model.
To further illustrate specific features of the Jaccard

similarity we have plotted a series of heatmaps dis-
playing the Jaccard similarity versus the similarity de-
fined by the averaged column-wise Pearson correlation
of two PWMs (for the optimal PWM alignment). The
heatmaps for different P-value levels are given in the
Additional file 1. For a generic pair of PWMs the Jaccard
similarity is typically close to zero, while the Pearson
correlation is positive and can be up to 0.3 – 0.5. For
pairs of PWMs for the same TF the Jaccard similarity
mostly has positive values. Yet there are many cases
showing high Pearson correlation and low Jaccard simi-
larity, meaning that highly correlated matrices may actu-
ally correspond to TFBS models recognizing quite
different word sets (as we hypothesized in the Background
section).
We have also applied MACRO-APE to classify TFBS
models of different TFs. Using the Jaccard similarity we
produced an UPGMA linkage tree [21] for high quality
PWMs of the HOCOMOCO TFBS model collection
[20]. The P-value level of 0.0005 was adopted for all
PWMs. The corresponding pairwise similarity matrix is
provided in the Additional file 2. The clusters were nat-
urally obtained by gathering PWMs on the same branch
while traversing the tree. The algorithm was terminated
when the maximal value of pairwise distance between
the cluster elements became higher than 0.95 (i.e., when
the minimal pairwise similarity between cluster ele-
ments became lower than 0.05, in other words, when
two most dissimilar PWMs in the cluster shared less
than 5% of words among the words recognized by any
of these PWMs). Figure 4 shows the circular tree illus-
trating the hierarchy of PWMs from the HOCOMOCO
collection.
Technical notes
The algorithm running time is proportional to the prod-
uct of the numbers of possible different scores for M1 and
M2, being O 4m1þm2ð Þ in the worst possible case. The algo-
rithm complexity is dramatically decreased by PWM
discretization strategy as in [17]. For the PWM element v
we define discretized v’ as v multiplied by the dis-
cretization level d and rounded up to the nearest integer
value. In contrast to the original Touzet’s approach, we
apply “ceil” operation to each PWM element during
discretization so that to obtain the upper boundary of the
threshold for the given P-value.



Figure 3 The similarities (depending on P-value) and LOGO representations for pairs of TFBS models (HOCOMOCO and JASPAR) for
selected TFs. It is notable that even for extremely similar LOGOs, like those of CTCF, the Jaccard similarity reaches only 0.6, indicating that the
models define the sets of binding sites overlapping only for 60%. The similarity remains comparatively low even at high P-values (e.g. 0.01 where
each 100th word of the dictionary is recognized as the binding site). The same effect is shown for KLF4 (with the exception of similarity 1.0 for
the lowest P-value, where both models recognize only identical consensus sequences). SPI1 models differing in length show very weak
similarities. HIF1A models are surprisingly dissimilar at low P-values (possibly due to shorter model lengths).
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Discretization generally maintains word ranking, but
at lower discretization levels more words receive identi-
cal scores. The effective number of different scores is de-
creased to the value of

max discrete score−min discrete score
¼ O max score−min scoreð Þ⋅d⋅mð Þ:
Thus, the overall complexity of the |Ω1 ∩Ω2| calcula-
tion algorithm would be:

O max score−min scoreð Þ⋅d⋅mð Þ2� �
:

In case of PWMs of different widths and unknown
mutual orientation, all possible alignments are to be
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Figure 4 The circular tree illustrating the hierarchy of high quality models from HOCOMOCO collection. Clusters are shown by alternating
colors. The examples of clustered TFBS models are shown with respective LOGO representations. The tree is drawn using jsPhyloSVG [22].
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checked; hence, the overall complexity is cubic relative
to the PWM width like O(m3). The algorithm can be fur-
ther improved by early discarding the hash elements that
cannot exceed the given threshold even for the best
available suffix [17].
We have implemented the algorithm for the popular

PWM model using P-values estimated for an i.i.d.
random model. The real genomic sequences almost never
comply with an i.i.d. assumption. Nevertheless, PWMs
stored in the existing databases are often constructed
from the binding sites in genomic sequences of very dif-
ferent nucleotide composition (for instance, those
extracted from genomes of different species). Some
in vitro experimental methods, e.g., parallel SELEX [23]
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or protein-binding microarrays [24], provide a huge dic-
tionary of purely synthetic random DNA oligonucleotides
evaluated for their affinity as binding sites to a particular
protein. So, the suggested variant of the Jaccard measure
seems to be useful for practical application even taking into
account the very basic TFBS and background models.
At the same time, the measure seems to be extensible

for more complex models such as the 1st order Markov
chains. The background model also can be generalized
to use Markov model assumption. Unfortunately algo-
rithm complexity grows exponentially as O(4k) with
Markov chain order k so that the construction of the ap-
propriate software tool for large-scale analysis remains a
challenge.

Conclusions
The MACRO-APE software allows computing the
Jaccard similarity measure for a pair of PWMs with
given threshold values. The proposed approach reveals
critical differences in the sets of binding sites defined by
the commonly used TFBS models. The software allows
scanning a given collection of matrices for PWMs simi-
lar to a given query at given score thresholds or P-value
levels. We have implemented a two-pass scanning tool,
which quickly filters out dissimilar entries and then care-
fully processes a smaller set of candidate models. Along
with these tools, MACRO-APE provides basic utilities to
estimate a PWM threshold for a given P-value and vice
versa. Software source code and user manual are pro-
vided as the Additional files 3 and 4.

Availability and requirements
Project name: MACRO-APE (MAtrix СompaRisOn by
Approximate P-value Estimation)
Project home page: http://autosome.ru/macroape/
Operating system(s): Platform independent
Programming language: Ruby
Other requirements: Ruby 1.9.3 or higher
License: MIT License
Appendix: proofs of lemmas and main theorem
Zero-columns extension of PWM
Lemma 1. Extending a PWM with any number of zero
columns from the left or from the right does not change
the score distribution or any P-value corresponding to
any score threshold.
Proof: It is enough to have a proof for a single col-

umn appended from the right. A new extended matrix
[ME]4 * (m + 1) defines the scores for ω ∈Am + 1. For the zero
column, M[α,m + 1] = 0 for all α in A and S(ω,ME) =
S(ω[1..m],M). P-value can be calculated from the score

distribution: P ME; tð Þ ¼
X

s ≥ t
Q ME; sð Þ.
The word set ΩE = {ω ∈Am + 1 : S(ω,ME) ≥ s} can be
obtained from the word set Ω by adding all 1-suffixes
{ω[m + 1]} =A to any word ω[1..m] from Ω. If words are
generated by an i.i.d. random model, their probabilities
are the products of the letter probabilities p(α). So the
probabilities of (m+1)-mers in Ω factorize and the
resulting probability does not change:

Q ME; sð Þ ¼
X

ω∈ΩE

P ωð Þ ¼
X

ω∈ΩE

P ω 1 ::m½ �ð Þp ωmþ1ð Þ ¼
¼

X

ω∈Ω
P ω 1 ::m½ �ð Þ

X

ξ∈A
p ξð Þ ¼

X

ω∈Ω
P ω 1 ::m½ �ð Þ ¼ Q M; sð Þ:

Reverse complement transformation of PWM
Lemma 2. If the words are generated by an i.i.d. random
model and the background probabilities comply with the
conditions p(A) = p(T), p(C) = p(G) then the reverse
complement transformation of PWM M does not
change the score distribution and hence the P-values.
The assertion of this lemma directly follows from the

definition of the score distribution after all substitutions
made. For any word ω having a score s with M there is a
corresponding hit with ~M, which is obtained as ω read
backwards with substitutions A⇔T, G⇔C.

Alignment of PWMs of different widths
Lemma 3. Let there be an aligned pair of PWMs M1,M2

with the corresponding thresholds t1,t2, defining TFBS
recognition models Ω1,Ω2. Extension of both PWMs with
any number of zero columns does not change D1 (Ω1,Ω2).
Proof: Again, it is enough to have a proof for a single

column added from the right. The idea of the proof
is very similar to that for Lemma 1. For the uniform
probability distribution, let us consider the fraction

J1 Ω1E;Ω2Eð Þ ¼ Ω1E∩Ω2Ej j
Ω1E∪Ω2Ej j . Ω1E =Ω(M1E, t1) is obtained by

adding all 1-suffixes to any word from Ω1 =Ω(M1, t1); the
same is true for Ω2E =Ω(M2E, t2). Thus, if a word is in
Ω(M1, t1) ∩Ω(M2, t2) then its four possible extensions are
in Ω(M1E, t1) ∩Ω(M2E, t2) and |Ω1E ∩Ω2E| = 4|Ω1 ∩Ω2|.
All four 1-suffixes become added when transiting from

(Ω1,Ω2) to (Ω1E,Ω2E). Thus any (m+1)-mer from Ω1E or
Ω2E has a single corresponding m-mer in Ω1 ∪Ω2 and
for each m-mer in Ω1 ∪Ω2 there are four (m+1)-mers in
Ω1E ∪Ω2E. Thus |Ω1E ∪Ω2E| = 4|Ω1 ∪Ω2|.
Reducing the fraction by 4 proves the lemma. In case

of non-uniform background distribution of probabilities
pα, it is important that the probability of an extended
random word falling into Ω1E ∩Ω2E is the same as for
non-extended random word falling into Ω1 ∩Ω2. The
proof of the above is very similar to that of Lemma 1.
The similar equation is true for the denominator, which
proves the lemma.

http://autosome.ru/macroape/
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Definition of the distance metric for TFBS models
Theorem: Distance D2(Ω1,Ω2) = 1 − J2(Ω1,Ω2) defines
a proper metric in the space of TFBS models repre-
sented as PWMs with thresholds corresponding to the
given P-value levels.
Proof: To prove the theorem, one needs to demon-

strate that D2 complies with the following metric
properties:

1. D2(Ω1,Ω2) = 0 if and only if Ω1 = Ω2

2. D2(Ω1,Ω2) =D2(Ω2,Ω1)
3. D2(Ω1,Ω2) ≤D2(Ω1,Ω3) +D2(Ω2,Ω3)

The second property is clear from the D2 definition
and the first property follows from the observation that
X ∩ Y = X ∪ Y only in the case when X=Y and the prob-
ability of a word set increases with the number of words.
It only remains to prove the triangle inequality.

Proof of the triangle inequality. Note that the matri-
ces become extended with zero-columns if necessary
while the optimal shift and orientation are selected. This
can be safely done according to Lemma 3. Thus, we
omit the E index for matrices and models for simplicity.
Let us use the Ω1|3 notation for the model defined by M1

optimally aligned versus M3. We start from separate align-
ments of M1 and M2 with M3 as a reference. Thus we obtain
two optimal alignmentsM1 vs M3 andM2 vs M3; the inherited
alignment of M1 vs M2 is not necessary optimal but condi-
tioned by the respective optimal alignments with M3.
Nevertheless, all three matrices M1,M2,M3 become

aligned, and for this alignment the triangle inequality is
valid [16]:

D1ðΩ1j3;Ω2j3Þ≤D1ðΩ1j3;Ω3Þ þ D1ðΩ2j3;Ω3Þ

By construction, D1(Ω1|3,Ω3) = D2(Ω1,Ω3), and
it is possible to rewrite the latter equation as
D1(Ω1|3,Ω2|3) ≤ D2(Ω1,Ω3) + D2(Ω2,Ω3). Finally, by
definition:

D2 Ω1;Ω2ð Þ ¼ min
i

min D1i Ω1;Ω2ð Þ;D1i Ω1; ~Ω2
� �� �� �

≤D1ðΩ1j3;Ω2j3Þ

and, hence, D2(Ω1,Ω2) ≤ D2(Ω1,Ω3) + D2(Ω2,Ω3).

Additional files

Additional file 1: Density plots (heatmaps) of Pearson vs Jaccard
similarity for generic PWM pairs and pairs of PWMs for the same TF.

Additional file 2: Pairwise similarity matrix for high quality TFBS
models of the HOCOMOCO collection.

Additional file 3: MACRO-APE source code (ruby 1.9).

Additional file 4: MACRO-APE user manual.
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PWM: Position weight matrix; TF: Transcription factor; TFBS: Transcription
factor binding site(s); UPGMA: Unweighted pair group method with
arithmetic mean.
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