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Abstract

Background: In Bayesian phylogenetic inference we are interested in distributions over a space of trees. The number
of trees in a tree space is an important characteristic of the space and is useful for specifying prior distributions. When
all samples come from the same time point and no prior information available on divergence times, the tree counting

problem is easy. However, when fossil evidence is used in the inference to constrain the tree or data are sampled
serially, new tree spaces arise and counting the number of trees is more difficult.

Results: We describe an algorithm that is polynomial in the number of sampled individuals for counting of resolutions
of a constraint tree assuming that the number of constraints is fixed. We generalise this algorithm to counting
resolutions of a fully ranked constraint tree. We describe a quadratic algorithm for counting the number of possible
fully ranked trees on n sampled individuals. We introduce a new type of tree, called a fully ranked tree with sampled
ancestors, and describe a cubic time algorithm for counting the number of such trees on n sampled individuals.

Conclusions: These algorithms should be employed for Bayesian Markov chain Monte Carlo inference when fossil

data are included or data are serially sampled.

Keywords: Ranked tree, Constraint tree, Resolution, Counting trees, Dynamic algorithms, Bayesian tree prior,

Phylogenetics

Background

A phylogenetic tree is the common object of interest in
many areas of biological science. The tree represents the
ancestral relationships between a group of individuals.
Given molecular sequence data sampled from a group of
organisms it is possible to infer the historical relation-
ships between these organisms using a statistical model of
molecular evolution. At present, Bayesian Markov chain
Monte Carlo (MCMC) methods are the dominant infer-
ential tool for inferring molecular phylogenies [1].

It is a recent trend to include fossil evidence into the
inference to obtain absolute estimates of divergence times
[2,3]. Fossils may restrict the age of the most resent com-
mon ancestor of a subgroup of individuals. This imposes a
constraint on the tree topology (the discrete component of
a genealogy) and therefore reduces the space of allowable
genealogies.
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Another trend in phylogenetic analyses is serial (or
heterochronous) sampling in which molecular data is
obtained from significantly different time points and anal-
ysed together. This type of data arises most frequently
with ancient DNA and rapidly evolving pathogens [4-6].
In this case tip dates become a part of the genealogy.

Including serially sampled or fossil data modifies or
restricts the shape of a phylogenetic tree. Little has been
done to describe and classify these modified trees. In this
paper, we aim to explore the new spaces formed by these
trees.

A genealogy consists of discrete and continuous compo-
nents — the tree topology and the divergence times. The
tree topologies form a finite tree space when the num-
ber of tips is bounded. An important characteristic of this
space is the number of trees in it and we aim to find an
efficient way to calculate this number.

In the case that fossil data restricts the tree topology,
counting the number of trees that satisfy the imposed
constraints reveals how much the constraints reduce the
tree space.
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The number of trees arises as a constant in tree prior
distributions. Typically we model the distribution of tree
topologies as independent of the distribution of diver-
gence times. The density function of the distribution of
genealogies is then a product of the density function for
the divergence times and the distribution function for tree
topologies. A common prior on tree topologies is uniform
over all allowable topologies so the distribution function
is a constant that is equal to one over the number of tree
topologies. When inferring tree topologies using Bayesian
MCMC methods, we do not usually need to know this
constant but in some cases, as described below, the abso-
lute value of the prior distribution is of interest and the
constant has to be calculated.

When fossils are used to restrict the age of inter-
nal nodes, the tree prior should accurately account for
this fact. Heled and Drummond [3] introduced a natu-
ral approach for tree prior specification when fossil evi-
dence is employed in the inference. Their method requires
counting of ranked phylogenetic trees that obey a num-
ber of constraints that arise from including the fossil
evidence. The construction requires calculation of the
marginal density for the time of the calibration node, the
node representing the most recent common ancestor of
a clade which may or may not be monophyletic. For a
particular location of the calibration node, or particu-
lar constraints on the tree topology, the marginal density
function is the marginal density function for the diver-
gence times weighted by the number of trees satisfying
the constraints. In this case, the weight constants do not
cancel in the MCMC scheme and therefore have to be
calculated.

Tree counting has a long history. For phylogenetic trees,
the counting problem is to find the number of all possi-
ble trees on # leaves. For some types of phylogenetic tree,
there are known closed form solutions to this problem. For
other types, only recursive equations have been derived.
In this paper, we consider only rooted trees.

A survey of results on counting different types of rooted
trees is presented in [7] where trees with different com-
binations of the following properties are considered: trees
are either labeled (only leaves are labeled) or unlabeled,
ranked or non-ranked, and bifurcating or multifurcating.
The results presented in the survey can also be found in
6,8,9].

In [10], Griffiths considered unlabeled, non-ranked
rooted trees such that interior nodes can have one child
or more and the root has at least two children. Using
generating functions, he derived recursive equations for
counting the number of all possible such trees on
leaves with s interior nodes. In [11], Felsenstein consid-
ered partially labeled trees, i.e., a tree in which all the
leaves are labeled and some interior nodes also may be
labeled. He derived the recursive equations for counting
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the number of rooted, non-ranked, partially labeled trees
with 7 labeled nodes.

In this paper, we consider a number of counting prob-
lems for different classes of phylogenetic trees. First, we
describe an effective way of counting the number of all
possible fully ranked trees on # leaves, that is, trees on n
leaves in which all internal and leaf nodes are ranked.

Second, we find the number of bifurcating trees that
resolve a given multifurcating tree with n leaves. We give
a solution to this problem for rooted, ranked, labeled trees
and generalise the algorithm to count resolutions to fully
ranked trees.

Finally, we introduce and formally describe a new type of
phylogenetic tree and describe an algorithm for counting
the number of all such trees on 7 leaves. This type of tree
is important when we have a serial sample and sampled
individuals can be direct ancestors of later sampled indi-
viduals. When the population size is small or the fraction
of individuals sampled from the population is large, this
type of tree should be included in the inference [12,13].

Serial sampling

We mainly follow the terminology from [9] for the defi-
nitions of phylogenetic trees. A tree is a finite connected
undirected graph with no cycles. A rooted tree is a tree
with a single node p designated as a root. Every rooted
tree T = (V,E, p) imposes a partial order on V that is
defined as follows: v; <7 v if a unique simple path from
the root to v, passes through v;. So the root is the small-
est element. If v; <7 vy then we say that v; is an ancestor
of v and vy is a descendant of v1. A node in a rooted tree
is called interior if it has descendants and a leaf if it has
no descendants. The root is considered interior. Denote
V the set of interior nodes of T. A node u is a parent of
a node v and v is a child of u if v <7 u and there is no
w € V such that v <7 w <7 u. A rooted tree is called
binary if every interior node has exactly two children. It
is called weakly binary if every interior node has at most
two children. We have chosen this terminology to fit with
the usage of “binary” in the phylogenetics literature which
may not agree with that in other literatures.

Let X be a finite non-empty set of labels. A phylogenetic
X-tree is a pair T = (T, ¢), where T is a tree and ¢ is
a bijection from X onto the set of leaves of T (we may
omit X and say “tree” instead of “X-tree” if the set of labels
is not specified). The tree T is called an underlying tree
or a shape of the phylogenetic tree 7 and ¢ is a labeling
function. If the underlying tree of 7 is rooted then 7T is
called a rooted phylogenetic tree. In what follows, we con-
sider only rooted trees unless explicitly stated otherwise.
A phylogenetic tree is binary (weak binary) if its under-
lying tree is binary (weak binary). A ranked phylogenetic
tree is a pair (7, i), where T is a rooted phylogenetic tree
and /% is an injective function (ranking function) from the
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set V into the set {1,..., |\o/|} such that vi <7 v, implies
h(v1) < h(vy) for every vy, vy € V. In other words, there is
a linear order on the interior nodes of T that is consistent
with the partial order of 7.

Definition 1. A ranked X-tree is a binary ranked phy-
logenetic X-tree.

An example of a ranked tree is given in Figure 1.

In biology, a phylogenetic tree represents the evolution-
ary history of a collection of sampled individuals. The
collection of individuals is represented by the set X. The
root of the tree is the most recent common ancestor of
X and interior nodes are bifurcation events. The rank-
ing function represents the time order of the bifurcation
events. A general problem in evolutionary biology is how
to reconstruct the phylogenetic tree from sequence data
obtained from sampled individuals. Tackling this prob-
lem in a Bayesian framework may require counting the
number of all possible histories on a sample of individuals.

When all individuals are sampled at the same time (as in
Figure 1) counting tree problem has a simple solution.

Let X be a fixed label set such that | X| = n. The number
of all ranked X -trees up to isomorphism is

This formula has been derived by many authors. Proofs
can be found in [6,7], or [9]. The letter R in the equation
comes from the word “ranked”.

A B C D E

Figure 1 Ranked tree. Ranked X-tree, X = {A,B,C,D, E}. The
numbers on the right are values of the ranking function.
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The situation is different when individuals are sampled
at different times (serially sampled). In this case, we need
to define another kind of phylogenetic tree in which leaves
are also ranked.

Definition 2. A fully ranked (FR) X-tree is a pair
(T, h), where T is a binary rooted phylogenetic X-tree and
h:V — {1,...,1} with |\0/| < | < |V| is a surjective
function such that

e v, <7 vy implies h(v1) < h(v3) and
® h(v1) = h(vy) impliesvy = vy orvy,va € V' \ v.

An example of a fully ranked X-tree is given in Figure 2.

Before the tree is reconstructed we observe only leaves
(sampled individuals) of the tree that are grouped (pre-
ranked) according to the times they were sampled. For the
tree shown in Figure 2, we have two sampling times and
hence two groups: A, B, and C form the first group; D and
E form the second group.

Let T = (T, h) be a fully ranked X-tree with &z : V —
{L,...,0}. Let m = [|h(¢(X))|, that is, the number
of sampling times. Define a pre-ranking function h
from X onto {1,...,m} for tree T such that for all
x1,% € X

© 7($(x1)) < hig(x2)) implies i(x1) < () and
o M@ () = (@) iff hx1) = hxo).

D E 6

Figure 2 Fully ranked tree. Fully ranked X-tree. X = {A,B,C, D, E}.
The numbers on the right are values of the ranking function.
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For the tree given in Figure 1, #(A) = h(B) = h(C) = 1
and h(D) = h(E) = 2.

Let X and  : X — {1,...,m]} be fixed. We are inter-
ested in the number of all fully ranked X-trees that have /
as a pre-ranking function. Note that this number depends
l{x|h(x) = i}|, the number of
individuals sampled at the ith time point, not on X and h
directly. We denote this quantity by F(ny, . . ., ny,), where
F stands for “fully ranked” Then

only on the numbers n; =

<& R(mm) .
F(nl,...,nm)—; G F(ny,...,nmp+9 (1)

and F(n) = R(n).

Proof. Consider a continuous process of bifurcation in
which lineages may bifurcate in time or be cut and labeled
(sampled). The process finishes when all lineages are cut
producing a tree. The discrete structure of the tree pro-
duced by this process is a fully ranked X-tree. It is easy
to see that every fully ranked X-tree can be obtained as
a result of this process. To count the required number
we can count the number of different trees which can be
produced by the process if we know that after it finishes
there are n; sampled individuals (i.e., cut and labeled lin-
eages) at the ith time point, i.e., we have the sequence
(n1,..., 1)

Suppose that at the (m — 1)th time point there are
i lineages that are ancestral to 7, individuals sampled
at time m. When we look at this process backwards in
time the bifurcation events become coalescence events.
The number of different ways these n,, lineages coalesce
to i lineages is RI({(’S’). This is the number of all possi-
ble ranked X-trees on n,, individuals but since we are
not interested in the structure of the coalescent after we
reach i lineages, it is divided by the number of ways
in which the remaining i lineages can coalesce. Note
that if coalescence patterns are different between the
(m — 1)th and mth time points then the trees are also
different.

Further, for each of these coalescence patterns, we need
to count the number of different ways these i lineages and
other ny,...,n,—1 lineages can coalesce. This is where
we can apply the recursion. We can consider that we
also cut these i lineages at time m — 1 and label them
with the ranked subtrees descendant from these lineages.
Then, at time m — 1, we have n,,_; sampled individ-
uals and another i sampled individuals and it remains
to count the number of trees on the sequence (n3,...,
M—1 + 0).

Note that two trees are different if they have different
numbers of lineages at time m — 1. The number of addi-
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tional i lineages can be between 1 and n,, and we need to
sum over all possible i to complete the recursion. O

We introduce a third type of tree in which sampled
individuals may be direct ancestors of later sampled indi-
viduals. We call it a tree with sampled ancestors. This
type of tree is not usually considered in phylogenetics
since the probability of sampling a direct ancestor is often
negligible. In small populations or when a large portion
of the population is sampled, however, this can not be
ignored.

Let T = (V,E, p) be a weak binary tree. Define a set 1%4
as follows:

V={ve V\deg(v) =1 or [deg(v) = 2 and v is not the root]}

A rooted S-phylogenetic X-tree is a pair T = (T,¢),
where T is a weak binary tree and ¢ : X — Visa
bijection.

Definition 3. A fully ranked X-tree with sampled
ancestors (FRS X-tree) is a pair (T, h), where T is a rooted
S-phylogenetic X-treeand h : V- — {1,...,1} is a surjective
function such that

e v, <7 vy implies h(vy) < h(vp) and
® /i(v1) = h(vy) impliesvy = vy orvy,vp € V;

(see Figure 3).

The definition of a pre-ranking function remains the
same for FRS trees. Let S(ny,...,n,) (with S standing
for ‘sampled ancestors’) denote the number of all FRS X-
trees that have the same pre-ranking function iz, where
n; = |{x | h(x) = i}|. Then

ny min{i,ng—1} .
w-EE ()

i=1 j=0
R(nm)
X
RG)

S(Vll, e
2)

S(nly---ynm—l +l_])

and S(n) = R(n).

Proof. Consider the same process as before with only
change of sampling events. Now, at some points of time,
some lineages are cut and labeled and others are only
labeled but not cut.

Then this equation can be obtained as follows. We have
ny, individuals that are sampled at the mth time point.
At time m — 1, there are between 1 and #,, ancestral lin-
eages of those 7, individuals, depending on the number
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E 6

Figure 3 FRS tree. FRS X-tree with the labeled 1-degree root.
X = {A B, C,D,E}. The numbers on the right are values of the ranking

function.

of coalescence between times m and m — 1. Let i denote
the number of these lineages. Then there are RI({(’S’) dif-
ferent possible coalescent patterns that can lead to this
situation. Some of these i ancestral lineages may be among
the individuals sampled at time m — 1, i.e. lineages that
are labeled but not cut at time m — 1. Let j be the num-
ber of those ancestral lineages that are sampled at time

m — 1. There are (1’) ways to chose these j lineages out

of i and there are (””}*1) possible ways to chose j sam-
pled at time m — 1 individuals that are not cut at time
m—1.

Further, at time m — 1, there are n,,_1 sampled lineages
and i — j ancestral lineages that are not sampled and it
remains to count the number of FRS trees on the sequence

(n1,...,0pm—1+i—)).

Finally, we sum over all possible i and j to complete the
recursion. O
Dynamic counting

Calculating the recursions (1) and (2) directly is ineffi-
cient and impractical. Here we describe a more efficient
algorithm for counting fully ranked trees using these
recursions. Rewrite equation (1) as

N F (L, ey M1+ 0)
F(nly'nynm) =R(nm) o
; R()
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Then instead of calculating F(nj, ...
{1,....m—1}and o € {0,...

1 + a) for j €
»Mjt1 + ... + 1y} we can

calculate
. F(n,...,n+ @)
A) = 3
(@ R )
using recurrence equations:
1
A(0) =R(n) Y A'(i) and (4)

i=1

nj+a)(nj+a+1)
a(a+1)

R(nj+a+1)
R+ 1)

A +1) = A(a)

Al mi+a+1D. (5

This leads to Algorithm 1 to calculate F(ny, ..., n,,). Let

m
n be the number of sampled individuals, i.e, n = ) n;.
i=1
Calculation of al} the R(i) takes O(n) steps and calcula-
tion of all the A/ takes at most O(n) steps. In total, the
algorithm takes O(mn) steps.

Algorithm 1 Calculating the number of fully ranked trees

fori=1— ndo
calculate R(i) using R(i) = R(i — 1) 51
end for
fori=1—>m+...+n, do
calculate A! (i) using equation (3) and equality F(x) =
R(x)
end for
forj=2—> m—1do
fora«. =0— njy1+... +ny do
calculate A/ («) using equations (4) and (5)
end for
end for

compute F(ny,...,n,) = A™(0)

A similar approach leads to an O(mn?)-time algorithm
for counting FRS trees. The description of this algorithm
is in Appendix 1.

Constraints

In phylogenetic analysis, it is common to have some lim-
ited information about the ancestors of sampled individ-
uals. We consider two types of such information. First,
we may know that a subgroup of sampled individuals is
monophyletic. That means that the most recent common
ancestor of the subgroup is not an ancestor of any other
individual that does not belong to the subgroup. Second,
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we may know the relative ages of the most recent com-
mon ancestors of monophyletic subgroups. This known
information imposes constraints on the space of possible
phylogenetic trees representing the evolutionary history
of sampled individuals. The question is how many phylo-
genetic trees satisfy the constraints on a group of sampled
individuals?

The number of resolutions of a constraint tree

We first describe a problem for contemporaneous sam-
pling in terms of constraint trees. We call a rooted tree
multifurcated if each interior node has at least 2 chil-
dren. Note that in contrast to the common terminology
we assume that a binary tree is also multifurcated. If we
replace the word “binar” with “multifurcated” in the defi-
nition of a ranked tree we obtain a more general class of
trees.

Definition 4. A constraint X-tree is a multifurcated
ranked phylogenetic X-tree.

An example of a constraint tree is given in Figure 4. A
constraint tree represents prior information about clades
and ranking. Each interior node constrains a subgroup

Figure 4 Constraint tree. Constraint tree, labels are omitted.
Subtree 2 is coloured green. It has two child nodes that are leaves,
therefore, n, = 2. The ancestor function for this tree is defined as
f(2) = f(3) = 1 and f(4) = 2. A compact notation for this constraint
treeis (ny,. .., nk, ) =1(0,2,3,2,{(2,1),3, 1), 42}.
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of individuals, leaves that are descendant from this node,
to by monophyletic. The most recent common ancestor
of the whole group of individuals, the root node, is also
regarded as a constraint. The ranking function constrains
the ages of the most recent common ancestors of the
monophyletic subgroups to have a specified order.

We say that a ranked X-tree 1 = (71, h1) resolves a
constraint X-tree Ty = (T, hy) if there is an isomorphic
embedding of ¥; into ¥y, i.e., there is an injective mapping
f: Vo — Vj such that

® ¢1(x) = f(pa(x)) for each x € X;

o v <r, uifff(v) <7, f(u) for each u,v € Vo; and

® /i5(v) < hy(u) implies i1 (f(v)) < hi(f(w)) for each
u,v e 10/2.

We wish to calculate the number of ranked trees that
resolve a given constraint tree T = (T, ¢, h). It is easy to
see that this number depends only on the underlying tree
T and ranking function /4, but does not depend on the
labeling function ¢ or the label set X.

We now introduce some notation in order to define
recursive equations. We label interior nodes according to
their ranks such that node i is a node v such that #(v) = i.
A subtree induced by node i and its children is called sub-
tree i. Child nodes in a subtree may be leaves in the initial
tree. Let n; > 0 denote the number of such child nodes
in subtree i. Let f : {2,...,k} — {1,...k — 1} be the
parent function on interior nodes, i.e., f(i) = j when-
ever j is a parent to i. When k = 1, i.e, there is only
one interior node, f = . See Figure 4 for an example
of introduced notation. Note that a tuple (#1,...,ng,f)
completely defines a pair (T, /).

Let R'(ny,...,ngf) be the number of ranked
trees resolving a constraint tree defined by the tuple
(n1,...,nx,.f). The superscript r stands for “resolution”.
Then the following equations hold.

Rr(zy Q,) =1, (6)
”
Rni,.. .1, 2,f) :Z(Z’)R’(nl, coolti—=1, e, 2,)
ieC
+ R (1, ..., 0509 +1,. .., m_1,flg2,. k—1)) and
(7)
.
R(m,...,mf) =) ( Z)R’(ng,...,ni —1,..,100)
L\ 2
ieC
if ng > 2,
(8)

where C is the collection of nodes that have more than 2
children and at least 2 of them are leaves, i.e,, C = {i <
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k|n; > 2 and n; + «; > 2} and o; = |{a|f(a) = i}|. Note
that #; + «; is the number of children of node i.

Proof. When a constraint tree has 2 leaves, it is unique
and is resolution of itself. So Equation (6) is trivial. To
explain the main sum in Equation (7) and (8) we consider
the constraint tree which is defined by (3,3, {(2,1)}) and
shown in Figure 5, left. The last interior node of a resolv-
ing tree (that is, the interior node with the highest rank or
the furthest node from the root) is either a parent to leaves
in subtree 1 or leaves in subtree 2. Suppose it is the first
case (see Figure 5, centre). Since leaves have distinct labels
from X, there are (g) ways to chose two leaves that are chil-
dren of that last node. We can partition all the resolving
trees for which the last node is in subtree 1 in @) groups.
The number of trees in each group is the number of trees
that resolve a constraint tree defined by (2, 3, {(2,1)}) and
shown on the right of Figure 5. A similar argument holds
if the last node in a resolving tree is a parent to nodes from
subtree 2.

So in the general case, there are k subtrees and if the
last node is in subtree i we have ('3‘) ways to choose two
lineages that coalesce and then we should count the num-
ber of trees resolving the tree defined by (ny,...,n; — 1,

. > ng, f). Note that in the example above, we consider
the tree with more than 2 leaves in each subtree. How-
ever, the last interior node of a resolving tree can not be
in subtree i for i < k if there is not enough leaves in
this subtree. This can happen either if there are less than
2 leaves in subtree i or if there are 2 leaves in subtree i
and node i has only these two leaves as its children. Both
cases imply that any parent to leaves of subtree i in a
resolving tree has a lesser rank than the rank of node k.
This explains why we sum only over the elements of the
set C.

Finally, we should consider one more case which
explains why there is one more summand in equation (7).
If the last node in a constraint tree has only two chil-
dren, i.e., there are 2 leaves in subtree k, then there is
one more group of resolving trees, the group that con-
sists of resolving trees that have this node as the last
node. O

Dynamic counting

We will calculate R"(n3, ..., 1, f) for the corresponding
constraint tree. In order to find R"(n1,...,ng, f), at each
step s, we will calculate numbers R (x1, ..., %, f|t_,) with

> xi=st_1 ={2,...,t},and ¢ < k. Note that we do not
i<t
have to calculate all such numbers. To determine which
numbers are required we define two upper triangular
matrices m and M of size k X k.

Suppose we draw a horizontal line which is strictly
below the line that passes through node j and strictly
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above the line that passes through node j + 1 (or all the
leaves if j = k). Then m;; is the minimal possible number
of intersections of this line with branches of subtree i in a
resolving tree and M;; is the maximal possible number. An
example is given in Figure 6.

Leta;; = |{x <j | f&) = i}/ fori < j Soayis
the number of children of node i with ranks at most j.
Then

M;jj = n + o; — aij and

2 if aij = 0,

m;j = 1 1ifa;; > 0 and M;; > 0,
0 otherwise.
Let t < k and x1,...,2; € N. We call a tuple

(®1,. .., %, fe_,) eligible if m;; <a; <M forl <i<t.

We now turn to Algorithm 2 to count resolutions. At
each step s < n, we construct a set Ss. A unique element of
Snis R'(ny, ..., ng,f) and calculating elements of S; only
requires elements of S;_;.

Algorithm 2 Calculating the number of resolutions of a
constraint tree
S = {R"(2,0)}
fors=3—>n—1do
while there is a new element R (x1, ...
the set S;_1 do
if t < k and eligible (xy,...
2’f|t_1) then
calculate R"(xq,...
and add it to S;
end if
fori=1— tdo
if eligible(x,, . . .
R’(xl, .
to S
end if
end for
end while
end for

1xtrf|t71) in
,xf(t_H) - 1,... » Xty
,xf(t+1) - 1, e ,xt,2)f|t71)

x4+ 1,
, % + 1, ...

%, fe_,) then
x6f1e_,) and add it

Proposition 1. When k is fixed Algorithm 2 does at most
O(nk ) steps.

Proof. The algorithm does O(k) steps for each eligible
tuple and, since we assume £ is a constant, it is O(1). For
given j there are

J
H(Mi,j —mi+1)

i=1
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Figure 5 Recursive approach. The last interior node in a resolving tree locates in subtree 2.

eligible tuples of size j. Since M;; —m;; + 1 < m; +a; — 1,
for the total number of eligible tuples we have

k

] k
ZH(Mi_j—ml',j-i—l) < Z(Vll +a1—1)-...

j=1i=1 i=1
k(n+k—1)- ... (m+k—1) §k(%+k—1)k=0(nk)

c(mi+a; — 1)<

O

The number of resolutions of a fully ranked constraint tree
We can generalise the results of the previous section to
fully ranked trees. Now we replace the word “binary” with
“multifurcated” in the definition of a fully ranked tree to
get

Definition 5. A fully ranked constraint X-tree is a
pair (T, h), where T is a multifurcated rooted phylogenetic
X-tree and h is a function such thath : V. — {1,...,1},
where |10/| <[ =<|V|, and

e v <7 vy implies h(v1) < h(vy);
L4 h(Vl) = h(Vz) imp]ies vi=vyorvy,vp e V\V.

We say that a fully ranked X-tree Ty = (71, h1) resolves
a fully ranked constraint X-tree Ty = (7, k) if there is
an isomorphic embedding of ¥; into ¥, i.e., there is an
injective mapping f : Vo — Vi such that

® ¢1(x) = f(¢2(x)) foreachx € X;

o v <7, uifff(v) <7, f(u) for each u,v € V;

® /i5(v) < hy(u) implies i1 (f(v)) < i (f(w)) for each
u,v € Vp; and

o /ip(v) = ha(w) iff i (f(v)) = hi1(f (w)) for each
u,v e V.

The problem is to count the number of fully ranked
resolutions of a fully ranked constraint tree.

Let ¥ = (7,h) be a fully ranked constraint tree with
h:V — {1,...,0} and |\O/| = k. Again we label interior
nodes with numbers from {1, ..., k}. However, labels and
ranks of interior nodes do not necessary coincide now. Let
r:{1,...,k} = h(\o/) be an injective increasing function
which maps the kth interior node to its rank. Note that
r(1) is always equal to 1 because the root node always has
rank 1 and that r(k) < [ because only leaves can have
rank /. Now, node i is the node that has rank r(i) and sub-

\ A

Figure 6 Defining matrices m and M. Two trees that resolve a constraint tree from Figure 4 (only resolutions of subtree 2 are shown) and three
ways to draw a horizontal line. The yellow lines correspond to the minimal number of intersections and the red line, to maximal. Thus, mp, = 2 and
M, = 3.We can also note thatm;, = Mo = 1.
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tree i is the subtree which is induced by node i and its
children. Since leaves in subtrees are now ranked, we need
more parameters to encode the tree. Let n ={[n;;] be a
matrix of size k x I, where #;; is the number of leaves of
rank j in subtree i or the number of children of node i
with rank j. Note that if node i is a parent of node j then
niy(jy = 1and n;, = 0 forx # r(j) and this means that the
parent function is uniquely defined by the matrix n and
function r and the number of resolutions of T depends
only on (n, 7).

If a constraint tree has only 2 leaves then there is only 1
tree resolving it:

F'((2),r0) = F'((1,1),70) = 1

with ry mapping 1 to 1.

For the main recursion we need to determine the loca-
tion of the last interior node in a resolving tree. As before,
this node can be a parent to leaves in different subtrees.
Also, since leaves now may have different ranks, the last
interior node in a resolving tree may be ranked in different
ways with respect to ranks of the leaves. Let N, denote
the number of children of node ¢ with ranks at least x, that

/
is, N = D ncj. Foreachp € {r(k)+1,...,1}, we define a
J=x
set C? of candidate subtrees in which the last node can be
placed at level p, i.e. between the (p — 1)th and pth time
points.

Cr = {c| Nc,p > 2 and Nc,r(c)+1 > 2}

See Figure 7 for an example of subtree where the last
node can be placed between the (p — 1)th and pth time
points.

For each p and ¢ such that ¢ € CP, there is a dis-
tinct group of resolving trees. The quantity of trees in this
group is equal to the number of resolutions of a constraint
tree which is defined by matrix n“” = [nff] of size k x p
such that

Zf:n,',jforlfifkandj<p;

op .
- 1/1?g =N¢p—1;
nif = Njpfori <kandi#c.

- n

If node k has only 2 children then, as before, there is one
more group of resolving trees. This group consists of the
resolving trees in which the last interior node coincides
with node k. Letn’ = [n;,j] be a matrix of size (k—1) x r(k)
such that

- n; =n;jforl <i<kandj < r(k),

]
n;,r(k) = Ni,r(k) forl<i<k-1.
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Figure 7 Location of a new node between the (p — 1)-th and
p-th time points. A new node can be placed in subtree ¢ between
the (p — 1)-th and p-th time points if the number of green branches
is greater or equal to 2 and the number of all branches in subtree c is
greater than 2.

This matrix defines a constraint tree for which the num-
ber of resolutions is equal to the number of trees in the
last group.

Then the main recursion is as follows:

l
Fn= Y > (N;"’>F’<n°p,r> ©)

p=r(k)+1 ceCP
+ F (0, rlqa, k—1y) if Nirgo+1 = 25

l
N,
F'(n,r) = Z Z < ;’p )F’ (n“P,r) otherwise;

p=r(k)+1 ceCP
(10)

Using these equations, we can calculate F"(n,r) for
O(m*n*) steps, where m is the number of sampling points,
i.e., m = [ — k. The calculation is described in Appendix 2.

Conclusions

In Table 1, we summarised the complexity (upper bounds)
of the counting algorithms. We can see that counting
fully ranked and ERS trees is reasonably fast, particularly
when the number of sampling points is small. Counting
of resolutions of a constraint tree is an expensive proce-
dure but for small k it remains possible. In practice, k is
typically small so this algorithm will be of practical use.
Counting resolutions of an FRS constraint tree, using the
same methods, has a greater cost and is less elegant, but
its practicality and bounds on its complexity remain to
be assessed.
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Table 1 The complexity of algorithms

No constraints k constraints

(k=1)

Contemporaneous

sampling O(n) o(n*)

(m=1)

Serial sampling

with no sampled O(mn) o(m?ny

ancestors

Serial sampling
with sampled o(mn?) -

ancestors

The table summaries the complexity of the counting algorithms, where n is the
sample size, k is the number of constraints, and m is the number of sampling
time-points. We assume that k is fixed.

These algorithms can be implemented in software for
phylogenetic analysis that involves serial sampling scheme
or limited prior knowledge about ancestors of particular
clades for calculating tree prior distributions.

Appendix 1: Algorithm for counting FRS trees
Rewrite equation (2) as follows:

Nim
SOty s ) = D Al g1, o) S(1L, o 1 +)
i=0
min{a,b—i} Rb) /i
where A(i,a,b) = Y. 3 (i&l) (H};x) (4). Then we can
x=0
calculate S(ny, . . ., ny,) recursively using Algorithm 3. We
m

use the notation N; = Z n;.
i=j

Algorithm 3 Calculating the number of FRS trees
fori=1— Njdo
calculate R(i) using R(i) = R(i — 1) 52
end for
forj =2 — mdo
calculate A(0, nj_1,#)),. .., A(nj, nj_1,n)
calculate S(ny, . . ., 1)
fora =1 — Nj;; do

calculate A(0,nj_1,n; + @),...,A(n; + o,n_1,
nj + o)
calculate S(ny, ..., 1 + a)
end for
end for
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At each step j > 1 of the algorithm, we calculate
S(n1,...,nj+a)for0 < a < Nj1. Weskipstepj = 1
and do not calculate S(n; + «) for 0 < o < Nj because
S(x) = R(x) and we have already calculated all the neces-
sary R(x). Further, for calculating each S(uy,...,n + ),
we need to calculate the coefficients A and this is the most
expensive part of the algorithm. So, at each stepj > 1, we
need to calculate A(i, nj_1,n; + ) for 0 < i < nj +a and
0 <a =< Nj.

First, we calculate these values for « = 0. Denote

R ]
B(i,a,b,x)= ,( )_(ix) (4 JdJorx<aandi+x<b
R(i+x) \ x X
then
min{a,b—i}
AG,a,b)= Y B(,abx)
x=0
where 0 < i < b,a = nj1, and b = nj. When

i is fixed, calculation of A(i,nj_1,n;) requires values of
B(i,nj_1,mj,x) for 0 < x < min{nj_1,n; — i}. Rewrite
this as B(n; — B,nj_1,m,%) for 0 < x < min{n;_1, B}
with 8 = n; — i. Now we can calculate these values for
0 < B < mjand, hence, for 0 < i < #5; using recursive
equations:

B(}’l,‘, nj_1, j, 0)=1

B(V[] - (ﬁ + 1)’”[—17 Vl],x)
(nj — (B + 1) +x)(nj — B)B(n; — B, nj—1, nj, x)

2
(11)

B(nj — (B +1),nj-1,n;, (B + 1))
_ W= B -1 — HBH; — B, nj—1,1, B) (12)

(B+1)?

We use equation (11) for 0 < x < wmin{ni_1,B}.
If min{n; 1, + 1} # min{nj_1,B} and therefore
min{nj_1,B + 1} = min{nj_1,B} +1 = B + 1 then we
also use equation (12). The cost of this calculation is domi-
nated by the number of the summands B(#;— 8, n;_1, j, %)
for 0 < x < min{n; 1, B} and 0 < B < n;. This number is
O(n]?).

Now we need to calculate A(0, 1, nj+a), ..., A(nj+a,
nj_1,nj +a) for 1 < a < Njy1. Having A0, nj_1, n; + a),
...,A(nj + a,nj_1,n; + a) calculated (note that we have
already calculated these values for o = 0), we can calculate
A0, nj—1, nj+(@+1)),...,Amj+(a+1),nj—1, nj+(a+1))
using equations
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b+ 1)b

714(!, a, b) +

AG,a,b+1) =
b+ Db

5 A(i,a,b)

<b_{,—1)< 4 > ifb—i<a,
i b+1—i
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(13)

ifa<b-—iand

Ab+1l,ab+1)=1

where 0 <i < b,a=mn;_1,and b = n; + a.

Moreover, for each «, we can optimize calculation of the
second summands in the first case of equation (13) using
recursion

(r0) Gy o laen)
i+1 n+a—(G+1)

_ (nj—i-(x—i)2 nj+o nj—1
(Do —mj—a+i+1) i nj+o—i

(14)

To apply this recursion we need an initial value. This
value depends on #;_1, nj, and « and, since only the first
case of equation (13) contains the second summand, it is
not necessary the value of this summand for i = 0. There
are 3 cases for calculation of all the initial values that are
necessary at step j.

Case 1: N; < n;_1. That means that we use the first case
of equation (13) for all «. In this case, for all ¢,
the initial value for recursion (14) is the value of
the second summand in (13) when i = 0. So we

need to calculate (" 3'“) (n]i’;:_O) for

1 < a < Nj;1 and those are

i1 nj—1 i ,
(n/+1)’ R (n;+1\1;+1)’ This takes O(N)) steps.

Case 2: nj + ap = nj_1 for some ag € {0,...,Njy1}. If

o > 0 then, for all & < «g, we use the first case
of (13) and therefore we need to calculate

nj—1 nj—1 :
(n;+1)’ . (njg_ao), this takes O(«yg) steps. For
all @ > g, we use the second case first and,
starting from i = o — ap, we use only the first
case. So we need to calculate

(Z’_‘Z‘Z) (n,+arjzolz—ao)) fora € {ag +1,...,Njp1},

which are (""’iﬂ), e (n/’é;ilzj’ji(T)QO)). This
j

takes O(N;11 — ap) steps. In total, we have
O(Njy1) steps.

Case 3: nj_1 < nj. That means that, for all @, we use the
second case first and, starting from
i = nj + o — nj_1, we use only the first case.
Calculate (Z’:l ) (”’;“j]i[/l“) for

O(nj—1 + Nj11) steps.

Each case costs at most O(N;). Provided that the ini-
tial values are calculated, the cost of the rest calculation
at step j is dominated by the number of the coefficients

A(i,nj_1,nj+a)for0 <i<m+aandl <o < Njand
itis O(N?). Summing up O(17), O(Nj—1), and O(N}) gives
us the cost of each step j, which is O(sz). Sincel <j<m
and calculation of R(i) for 0 < i < N7 = n takes O(n), the
algorithm does O(mn?) steps in total.

Appendix 2: Algorithm for counting fully ranked
resolutions of a fully ranked constraint tree
The algorithm for counting resolutions of a constraint
tree requires a few changes to count resolutions of a fully
ranked constraint tree. Recall that, at each step s, we
calculated the set S; which consists of the numbers of res-
olutions of intermediate trees with s leaves. To construct
Ss, for each element of S;_;, we proposed a collection of
tuples that may define intermediate trees with s leaves.
To accept eligible tuples we defined two matrices m and
M. The general scheme for counting resolutions of a fully
ranked constraint tree is the same. However, we need to
define matrices m and M for a fully ranked constraint tree
and describe the procedure of proposing new tuples. The
procedure becomes more technical because of additional
ranking.

We will calculate S"(n,r) for the corresponding fully
ranked constraint tree T. Let

a;j = |{x | node iis a parent of node x and r(x) < j}|

forl1 <i<kandr(i) <j<I[-1,ie,a;; is the number
of interior nodes that are children of node i and have rank
at most j. Define two matrices m and M of size k x (I — 1)
such that

2if(li,/'=0;

M;j =Njjy1 and m;; =4 1ifa;; > 0and M;; > 0;

0 otherwise.

As before, if we consider a horizontal line that is strictly
between the horizontal line that passes through the nodes
of rank j and the horizontal line that passes through the
nodes of rank (j + 1) then these matrices determine the
minimal and maximal possible numbers of intersections
of this line with branches of subtree i.

Let x = [x;;] be a matrix of size £ x g, where ¢ < k and
g <lLandt={1,...,t}. Atuple (x,r|) is eligible if

- xjj=mjjforl <i<tandl <j<gq,and
- Mjg—1 = x; <My, 1forl<i<t
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Having an intermediate tree with s — 1 leaves, we need
to consider all the possible ways to transform this tree to a
tree with s leaves. First we need to add a new leaf to some
subtree. We give the highest rank to this leaf. After that
we may add new time points below the last time point.
If we add new time points, we should rerank the leaves
with the highest rank such that the new tree has enough
leaves at each time point. Let x =[x;;] be a matrix of
size t x q for t < k and g < [. This matrix represents
an intermediate tree with s — 1 leaves. Suppose we add
a new leaf to subtree iy, where 1 < iy < f. Let go be
the number of time points in a new tree and, therefore,
q=<qo=<rt+1)(orqg < qo <lift = k). Define a func-
tion addone((x, r|t), io, o) which returns a tuple (X, r¢),
where x' = [xg,j] is a matrix of size t x gg such that

- x;o,qo = Xipg — Z;qul ni i+ 1,

- x;,qo = Xigq — Zlqi;l nj;j for i 75 io,

- x;=mjforl <i<tandj<gq,and

- x;] =mnjjforl <i<tandq <j < qo.

If this tuple is eligible then it represents a new interme-
diate tree with s leaves.

At each step s of the algorithm, for each tuple (x,r|¢)
such that F'(x,r|) € Ss—1, we need to propose a col-
lection of new tuples. The first part of this procedure is
Algorithm 4. To stop the procedure, when we recognise
that a new tree can not have x time points, we use a pred-
icate ext(x) which is true if we can extend the number of
time points in a new tree to x. The number of time points
in a new tree can not always be extended to any arbitrary
number because there may not be enough leaves of the
highest rank to rerank them in such a way that there will
be n;; leaves of each new rank j. So ext(q) is always true
because the tree to which we add a new leaf already has ¢
time points.

Algorithm 4 Working with a tuple (x,r|¢) such that
F'(x,rlo) € Sy_1 (part 1)
qo =49
while go < r(¢ + 1) (or go < lift = k) and ext(gqp) do
fori=1— tdo
(X', rle) = addone((x, rlt), i, q0)
if eligible((x/, r|¢)) then
calculate F"(x/, r|¢) and add it to S
end if
if all the proposed tuples were not eligible then
ext(qo + 1) = false
end if
qo =4qo+1
end for
end while
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If t < k then the proposing procedure contains the sec-
ond part. In this case, we also can increase the number
of leaves in an intermediate tree by adding a new subtree.
That means that one of the leaves of the tree becomes a
parent to two new leaves. Again we may add new time
points. Let go be the number of time points in a new tree
and, therefore, r(t +1) < go < r(t+2) (orr(t +1) <
qo < lwhent+ 1 = k). We define another function
addconstraint((x, r|t), qo) which returns a tuple (X, 7|¢+1),
where X' = [x;-’j] is a matrix of size (¢ + 1) x go such that

/ 9 _ go—1 X
T Ferlg = 2 Zj=r(t+1)+1 A4,
forl <j < qo,

/o N0 .
Xigo = Kiq j=q Hijforl <i=<t,
’o_ s ,

_ xi,j_xi,jforlfzftand]<q,and
ro_
ij =

’ o
Ke41j = Moy,

- x ng,jforlgiftandq§j<qo.

This tuple defines a new tree if it is eligible. The second
part of the procedure is Algorithm 5. The values of g and
ext(qo) are as after running Algorithm 4.

Algorithm 5 Working with a tuple (x,r|¢) such that
Fr(x,r|¢) € Ss—1 (part 2)
while g9 < (¢t +2) (or go < [whent+ 1 = k) and
ext(qo) do
(X, rlts1) = addconstraint((x, r|t), qo)
if eligible(X, r|¢+1) then
calculate F"(x/, r|¢+1) and add it to S;
else
ext(qo + 1) = false
end if
qo =qo+1
end while

Finally, as before, the main algorithm calculates sets S,
recursively for 0 < s < n, where # is the number of
leaves in a constraint tree ¥, and a unique element of S, is
S"(n, r).

Let m be a number of sampling points, i.e, m = [ — k.

Proposition 2. If k is fixed then the algorithm does at
most O(m) steps for each eligible tuple.

Proof. Let (x, r|¢) be an eligible tuple. First, having all the
necessary summands for equations (9) and (10), we need
to calculate F”(x, r|¢). This takes at most O(¢x[r(t + 1) —
r(t)]) steps. Since we assume k is a constant and since
t<kandr(t+1)—r(t) < m,itis O(m). Second, we need
to perform the procedure of proposing new tuples for this
tuple. The most expensive part here is calculation of the
last columns of matrices x’ because it involves calculation
of the sums Zfiq_l n;j. Note that, storing the values of
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Kig — Z@_l n;jfor 1 < i <t at each step go, we can opti-

j=q
mise these calculations. Then it takes O(¢t x (g — r(¢ + 2))
steps and it is O(m) again. O

Proposition 3. If k is fixed then the algorithm has
O(m*nX) time complexity.

Proof. Let iy be such a number that r(iy) < x < r(ix+1).
Then the number of eligible tuples is

-1 i

Z H(Mi,j —mi; +1)

j=1 i=1

Note that
Mijj—mj+1<Njj+1<Nyp1+1=5b+1

where b1 + ...+ by =n+k — 1. Then

-1 4
YTt —mij+ 1) <= D1+ 1)... (b +1)

j=1 i=1

<(- 1)(%% = O(mnt)

From this and Proposition 2, it follows that the algo-
rithm does at most O(m2n*) steps. O
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