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Abstract

We propose three algorithms for string edit distance with duplications and contractions. These include an efficient
general algorithm and two improvements which apply under certain constraints on the cost function. The new
algorithms solve a more general problem variant and obtain better time complexities with respect to previous
algorithms. Our general algorithm is based on min-plus multiplication of square matrices and has time and space
complexities of O (|�|MP(n)) and O (|�|n2), respectively, where |�| is the alphabet size, n is the length of the strings,
andMP(n) is the time bound for the computation of min-plus matrix multiplication of two n × nmatrices (currently,

MP(n) = O
(
n3 log3 log n

log2 n

)
due to an algorithm by Chan).

For integer cost functions, the running time is further improved to O
( |�|n3
log2 n

)
. In addition, this variant of the algorithm

is online, in the sense that the input strings may be given letter by letter, and its time complexity bounds the
processing time of the first n given letters. This acceleration is based on our efficient matrix-vector min-plus
multiplication algorithm, intended for matrices and vectors for which differences between adjacent entries are from a

finite integer interval D. Choosing a constant 1
log|D| n < λ < 1, the algorithm preprocesses an n × nmatrix in O

(
n2+λ

|D|
)

time and O

(
n2+λ

|D|λ2 log2|D| n

)
space. Then, it may multiply the matrix with any given n-length vector in O

(
n2

λ2 log2|D| n

)
time. Under some discreteness assumptions, this matrix-vector min-plus multiplication algorithm applies to several
problems from the domains of context-free grammar parsing and RNA folding and, in particular, implies the

asymptotically fastest O
(

n3

log2 n

)
time algorithm for single-strand RNA folding with discrete cost functions.

Finally, assuming a different constraint on the cost function, we present another version of the algorithm that exploits

the run-length encoding of the strings and runs in O
( |�|nMP(ñ)

ñ

)
time and O(|�|nñ) space, where ñ is the length of

the run-length encoding of the strings.
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Background
Comparing strings is a well-studied problem in computer
science as well as in bioinformatics. Traditionally, string
similarity is measured in terms of edit distance, which
reflects the minimum-cost edit of one string to the other,
based on the edit operations of substitutions (including
matches) and deletions/insertions (indels). In this paper,
we address the problem of string edit distance with the
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additional operations of duplication and contraction. The
motivation for this problem originated from the study
of minisatellites and their comparisons in the context of
population genetics [1].

Motivation: minisatellite comparison
Aminisatellite is a section of DNA that consists of tandem
repetitions of short (6–100 nucleotides) sequence motifs
spanning 500 nucleotides to several thousand nucleotides.
The repeated motifs also vary in sequence through base
substitutions and indels. For one minisatellite locus,
both the type and the number of motifs vary between
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individuals in a population. Therefore, pairwise compar-
isons of minisatellites are typically applied in studying the
evolution of populations.
A minisatellite map represents a minisatellite region,

where each motif is encoded by a letter and handled as
one entity (denoted unit). When comparing minisatellite
maps, one has to consider that regions of the map have
arisen as a result of duplication events from the neigh-
boring units. The single copy duplication model, where
only one unit can duplicate at a time, is the most popu-
lar and its biological validation was asserted for the MSY1
minisatellites [1,2]. According to this model, one unit can
mutate to another unit via an indel or a mutation of a
single nucleotide within it. Also, a unit can be dupli-
cated, that is, an additional copy of the unit may appear
next to the original one in the map (tandem repeat).
Thus, when comparing minisatellite maps, two addi-
tional operations are considered: unit duplication and unit
contraction.

The EDDC problem definition
The single copy duplication model of minisatellite maps
gave rise to a new variant of the string edit distance
problem, Edit Distance with Duplications and Contrac-
tions (EDDC), which allows five edit operations: insertion,
deletion, mutation, duplication and contraction.
We start with some string notations. Let s be a string.

Denote by si the i-th letter in s, starting at index 0, and
by si,j the substring sisi+1 . . . sj−1 of s. A substring of the
form si,i is an empty string, which will be denoted by ε. We
use superscripts to denote substrings without an explicit
indication of their start and end positions, and write e.g.
s = sasb to indicate that s is a concatenation of the two
substrings sa and sb.
In the edit distance problem, one is given a source string

s and a target string t over a finite alphabet �. An edit
script from s to t is a series of strings ES = 〈s = u0,
u1,u2, . . . ,ur = t〉, where each intermediate string ui is
obtained by applying a single edit operation to the pre-
ceding string ui−1. In the standard problem definition
[3-5], the allowed edit operations are insertion of a let-
ter at some position in an intermediate string ui, deletion
of a letter in ui, and mutation of a letter in ui to another
letter. The single-copy EDDC problem variant adds two
operations: duplication - inserting into ui a letter in a posi-
tion adjacent to a position that already contains the same
letter, and contraction - deleting from ui one copy of a let-
ter where there are two consecutive copies of this letter.
Denote by ins(α), dup(α) and del(α) costs associated with
the insertion, duplication and deletion operations applied
to a letter α in the alphabet, respectively, by cont(α) the
cost of contracting two consecutive occurrences of α into
a single occurrence, and bymut(α,β) the cost of mutating

α to a letter β . Define the cost of ES to be the summa-
tion of its implied operation costs, and the length |ES| = r
of ES to be the number of operations performed in ES .
Clearly, for every pair of strings s and t, there is some
script transforming s to t, e.g. the script that first deletes
all letters in s and then inserts all letters in t. An opti-
mal edit script from s to t is one which has a minimum
cost. The edit distance from s to t, denoted by ed(s, t),
is the cost of an optimal edit script from s to t. The
goal of the EDDC problem is, given strings s and t, to
compute ed (s, t).
Previous algorithms assume various constraints on

operation costs (see Section “A comparison with previous
works”). In this paper, the only limiting assumption made
is that all operation costs are nonnegative. In addition, we
can make the following assumption without loss of gener-
ality, which will be required by the algorithms presented
in this paper:

Property 1. It may be assumed without loss of generality
that for every α,β ∈ �,

• ins(α) = ed(ε,α), del(α) = ed(α, ε),
• dup(α) = ed(α,αα), cont(α) = ed(αα,α),
• mut(α,β) = ed(α,β).

This assumption can be made, since in case one of
the operation costs violates the assumption, then such an
operation can always be replaced by a series of opera-
tions that would induce the same modification at lower
cost. For example, it cannot be thatmut(α,β) < ed(α,β),
since ed(α,β) is smaller then or equal to the cost of any
script from α to β , among which is the script contain-
ing the single mutation operation of α into β . Moreover,
if mut(α,β) > ed(α,β), then we can always replace
any mutation of α into β by a series of operations that
transform α into β at cost ed(α,β). In this case, we may
simply assume that mut(α,β) = ed(α,β), and inter-
pret any such a mutation appearing in a script as being
implem ented by the corresponding series of operations.
In particular, Property 1 implies that mut(α,α) = 0
(since all operation costs are nonnegative, ed(w,w) = 0
for every string w), dup(α) ≤ ins(α) (since the cost
of the script from α to αα that applies a single inser-
tion of α is ins(α) ≥ ed(α,αα) = dup(α)), cont(α) ≤
del(α), and mut(α,β) ≤ mut(α, γ ) + mut(γ ,β) for every
γ ∈ �.
Insertions and duplications are considered to be

generating operations, increasing by one letter the
length of the string. Similarly, deletions and con-
tractions are considered to be reducing operations,
decreasing by one letter the length of the string. An
edit script containing no reducing operation is called
a non-reducing script, and an edit script contain-
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ing no generating operation is called a non-generating
script.

Previous work
The EDDC problem was first defined by Bérard and
Rivals [2], who suggested an O(n4) time and O(n3) space
algorithm for the problem, where n is the length of the
two input strings (for the sake of simplicity, we assume
that both strings are of the same length). This was fol-
lowed by the work of Behzadi and Steyaert [6], who
gave an O(|�|n3) time and O(|�|n2) space algorithm
for the problem, where |�| is the alphabet size (typi-
cally a few tens of unique units). Behzadi and Steyaert
[7] improved their algorithms’ complexity, based on run-
length encoding, to O(n2 + nñ2 + |�|ñ3 + |�|2ñ2) time
and O
(|�|(n + ñ2) + n2

)
space, where ñ is the length of

the run-length encoding of the input strings. Run-length
encoding was also used by Bérard et al. [8], who pro-
posed an O(n3 + |�|ñ3) time and O(n2 + |�|ñ2) space
algorithm. Abouelhoda et al. [9] gave an algorithm with
an alphabet size independent time and space complexities
of O(n2 + nñ2) and O(n2), respectively. A detailed com-
parison between the different problem models appears in
Section “A comparison with previous works”.

Our contribution
This paper presents several algorithms for EDDC which
are currently the most general and efficient for the
problem.

1. We give an algorithm for EDDC for general non-
negative cost functions that is based on min-plus
square matrix multiplication. This algorithm is an
adaptation of the framework of [10] (see also [11]).
For two input strings over an alphabet � and of
length n each, the time and space complexities of this
algorithm are O(|�|MP(n)) and O(|�|n2), respec-
tively, where MP(n) is the time complexity of a
min-plus multiplication of two n × n matrices. Using
the matrix multiplication algorithm of Chan [12],
this algorithm runs inO

( |�|n3 log3 log n
log2 n

)
time (Section

“Amatrix multiplication based algorithm for EDDC”).
Moreover, our algorithm applies less restrictions on
the cost function with respect to previous algo-
rithms and is currently the only algorithm that
works for the most general problem settings (Section
“A comparison with previous works”).

2. We describe a more efficient algorithm for EDDC
when all operation costs are integers. This algorithm
can also be applied in an online setting, where in
each step a letter is added to one of the input strings.
The time complexity of processing n letters in the
input is O

( |�|n3
log2 n

)
, where the base of the log function

is determined by the range of cost values (Section
“An online algorithm for EDDC using min-plus
matrix-vectormultiplication for discrete cost functions”).
In order to achieve this, we obtained the following
stepping-stone results, which are of interest on their
own.

(a) Let A be an n×m matrix for which differ-
ences between adjacent entries are within
some finite integer interval D. Choosing
a time/space complexity tradeoff para-
meter λ, where 1

log|D|(n+m)
< λ < 1, we de-

scribe a preprocessing algorithm for A that
runs in O

(
nm(n+m)λ

|D|
)

time and requires

O
(

nm(n+m)λ

|D|λ2 log2|D|(n+m)

)
space. This preprocessing

allows later to compute min-plus multipli-
cations between A and m-length vectors
sustaining the same discreteness require-

ment in O
(

nm
λ2 log2|D|(n+m)

)
time (Section “An

efficient D-discrete min-plus matrix-vector
multiplication algorithm”). The algorithm
is an adaptation of Williams’ matrix-vector
multiplication algorithm over a finite semir-
ing [13], with some notions similar to those
in Frid and Gusfield’s RNA folding algorithm
[14].

(b) The manner in which the new matrix-vector
multiplication algorithm is integrated into
the EDDC algorithm can be generalized to
algorithms for a family of related problems,
denoted VMT problems [11], under cer-
tain discreteness assumptions. This family
includes many important problems from the
domains of RNA folding and CFG parsing. An
example of such a problem is the single strand
RNA folding problem [15] under discrete
scoring schemes. Our newmatrix-vectormul-
tiplication algorithm can be integrated into
an algorithm for the latter problem to yield
an O
(

n3
log2 n

)
time algorithm, improving the

best previously known asymptotic time bound
for the problem (see Section “Online VMT
algorithms”).

3. We extend our approach to exploit run-length encod-
ings of the input strings, assuming some restric-
tions on the cost functions. This reduces the
time and space complexities of the algorithm to
O
(
|�|n2 + |�|nMP(ñ)

ñ

)
and O (|�|nñ), respectively,

where ñ is the length of the run-length encoding
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of the input (Section “Additional acceleration using
run-length encoding”).

The rest of the paper is organized as follows. In
Section “A baseline algorithm for the EDDC problem”,
a recursive computation for EDDC and its implemen-
tation using dynamic programming (DP) is presented.
Section “A matrix multiplication based algorithm for
EDDC” shows how to accelerate the algorithm by incorpo-
rating efficient min-plus matrix multiplication subrou-
tines. In Section “An online algorithm for EDDC using
min-plus matrix-vector multiplication for discrete cost
functions”, an efficient min-plus matrix-vector multipli-
cation algorithm is described for matrices and vectors
which differences between adjacent entries are taken from
a finite integer interval. This algorithm can be used for
obtaining an accelerated online version of the EDDC algo-
rithm, as well as for improving time complexities of several
related problems. Section “Additional acceleration using
run-length encoding” describes a variant of the EDDC
algorithm that exploits run-length encoding. Comparison
between this and previous works is given in Section
“A comparison with previous works”, and Section
“Conclusions and discussion” gives a concluding discus-
sion. Additional proofs omitted from themainmanuscript
are given in the Appendix.

A baseline algorithm for the EDDC problem
In this section, we give a simple algorithm for the EDDC
problem. We start by showing some recursive proper-
ties of the problem, and then formulate a straightforward
dynamic programming implementation for the recursive
computation.

The recurrence formula
Our recursive formulas resemble previous formula-
tions [6,9], yet solve a slightly more general variant of
the problem (see discussion in Section “A comparison
with previous works”). Since the proof of correctness
of these recursive formulas is similar to previous ones,
we defer it to Appendix “Correctness of the recursive
computation”.
A (strict) partition of a string w of length at least 2 is a

pair of strings (wa,wb), such that w = wawb and wa,wb �=
ε. Denote by P(w) the set of all partitions of w. For exam-
ple, for w = abac, P(w) = {(a, bac), (ab, ac), (aba, c)}.
For a source string which is either empty or contains

a single letter and a target string t, Equations 1 to 3
(Figure 1) describe a recursive EDDC computation. This
computation interleaves, in a mutually recursive manner,
the computation of an additional special value ed′(α, t),
where ed′(α, t) is defined to be the minimum cost of a

non-reducing edit script from α to t that does not start
with a mutation (t is required to contain at least two
letters).

ed(ε, t) =
{
0, t = ε,

min {ins(α) + ed(α, t) | α ∈ �} , otherwise. (1)

ed(α, t) =

⎧⎪⎨⎪⎩
del(α), t = ε,
mut(α,β), t = β ,

min
{
mut(α,β) + ed′(β , t) | β ∈ �

}
, otherwise.

(2)

ed′(α, t)

= min

⎧⎪⎪⎨⎪⎪⎩
ed (α, ta) + ed

(
ε, tb
)
,

ed (ε, ta) + ed
(
α, tb
)
,

dup(α) + ed (α, ta) + ed
(
α, tb
)
∣∣∣∣∣∣∣∣
(
ta, tb
)

∈ P(t)

⎫⎪⎪⎬⎪⎪⎭
(t is of length ≥ 2)

(3)

Symmetrically, Equations 4 to 6 give the recursive
computation for a source string s and a target string
which is either empty or contains a single letter. Here,
ed′(s,α) is defined as the minimum cost of a non-
generating edit script from s to α which does not end
with a mutation (s is required to contain at least two
letters).

ed(s, ε) =
⎧⎨⎩ 0, s = ε,

min {ed(s,α) + del(α) | α ∈ �} , otherwise.
(4)

ed(s,α) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ins(α), s = ε,

mut(β ,α), s = β ,

min
{
ed′(s,β) + mut(β ,α) | β ∈ �

}
, otherwise.

(5)

ed′(s,α)

= min

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ed (sa,α) + ed

(
sb, ε
)
,

ed (sa, ε) + ed
(
sb,α
)
,

ed (sa,α) + ed
(
sb,α
)+ cont(α)

∣∣∣∣∣∣∣∣∣∣
(
sa, sb
)

∈ P(s)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(s is of length ≥ 2)

(6)
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Figure 1 Edit distance computation for the case where the source string is either empty or contains a single letter. Charts (a), (b) and (c)
exemplify Equations 1, 2 and 3, respectively.

In case both source string s and target string t are of
length at least 2, the following equation can be used for
computing ed(s, t) (Figure 2(a)):

ed(s, t)

= min

⎧⎪⎪⎨⎪⎪⎩
ed(s,α) + ed(α, t),

ed (sa, ta + ed
(
sb,α
)+ ed
(
α, tb
)
∣∣∣∣∣∣∣∣
(
sa , sb
)
∈P(s),(

ta , tb
)
∈P(t),

α∈�

⎫⎪⎪⎬⎪⎪⎭
(s and t are of lengths ≥ 2)

(7)

For allowing efficient computation, Equation 7 can be
replaced by Equations 8 and 9, which are computed in a

mutually recursive manner to yield an equivalent compu-
tation (Figure 2(b) and Figure 2(c), respectively).

ed(s, t) =min

⎧⎨⎩ ed(s,α) + ed(α, t),

edtα (sa, t) + ed
(
sb,α
)
∣∣∣∣∣∣
(
sa, sb
)
∈P(s)

α∈�

⎫⎬⎭
(s and t are of lengths ≥ 2)

(8)

edtα(s, t) =min
{
ed (s, ta) + ed

(
α, tb
) ∣∣∣ (ta, tb) ∈ P(t)

}
(t is of lengths ≥ 2)

(9)

Figure 2 Edit distance computation when both input strings are of length at least 2. Chart (a) illustrates Equation 7, while charts (b) and (c)
illustrate its decomposition into Equations 8 and 9, respectively.
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All base-cases of the above recursive equations are
implied from Property 1 in a straightforward manner.

Theorem 1. EDDC is correctly solved by Equations 1-9.

The proof of Theorem 1 appears in Appendix “Correct-
ness of the recursive computation”.

A baseline dynamic-programming algorithm for EDDC
In this section, we describe a DP algorithm implement-
ing the recursive EDDC computation given by Equations 1
to 9, which is the basis for improvements introduced later
in this paper.
Let s and t be the input source and target strings,

respectively, and for simplicity assume both strings are of
length n. The algorithm maintains the following matrices
for storing solutions to sub-instances of the input which
occur along the recursive computation. All matrices are of
size (n+ 1) × (n+ 1), with row and column indices in the
range 0, 1, 2, . . . , n.

• For every α ∈ �, the algorithm maintains matrices
S′α , Sα , T ′α , and Tα . Entries S′α[k, i], Sα[k, i], T ′α[l, j]
and Tα[l, j] are used for storing the values ed′ (sk,i,α),

ed
(
sk,i,α
)
, ed′ (α, tl,j), and ed

(
α, tl,j
)
,

respectively.
• Two matrices Sε and Tε , whose entries Sε[k, i] and

Tε[l, j] are used for storing values of the forms
ed
(
sk,i, ε
)
and ed

(
ε, tl,j
)
, respectively.

• For every α ∈ �, a matrix EDT α whose entries
EDT α[i, j] are used for storing the values
edtα
(
s0,i, t0,j
)
.

• A matrix ED, whose entries ED[i, j] are used for
storing the values ed

(
s0,i, t0,j
)
.

The algorithm consists of two stages: Stage 1 com-
putes solutions to all sub-instances in which one of the
substrings is either empty or single-lettered, applying
Equations 1 to 6. Stage 2 uses the values computed in
Stage 1 in order to compute all prefix-to-prefix solutions
ed
(
s0,i, t0,j
)
and edtα

(
s0,i, t0,j
)
according to Equations 8

and 9. In particular, Stage 2 computes the edit distance
ed
(
s0,n, t0,n

) = ed(s, t) between the two complete strings.
The entries are traversed in an order which guarantees
that upon computing each entry, all solutions to sub-
instances appearing on the right-hand side of the relevant
equation are already computed and contained in the cor-
responding entries. Algorithm 1 gives the pseudo-code for
this computation.

Algorithm 1: BASELINE-EDDC(s, t)
1 Let n be the length of s and t. Allocate (n + 1) × (n + 1) matrices S′α , Sα , T ′α , Tα , and EDT α for every α ∈ �, and
three (n + 1) × (n + 1) matrices Sε , Tε , and ED.
// Stage 1

2 For every 0 ≤ i < n, set Tε[i, i + 1] to ins(ti), and for every α ∈ � set Tα[i, i + 1] tomut(α, ti).
3 for j = 2, 3, . . . , n do
4 for i = j − 2, j − 3, . . . , 0 do

5 For every α ∈ �, set T ′α[i, j] Eq.3← min

⎧⎨⎩
Tα[i, h]+Tε[h, j] ,
Tε[i, h]+Tα[h, j] ,
dup(α) + Tα[i, h]+Tα[h, j]

∣∣∣∣∣∣ i < h < j

⎫⎬⎭ .
6 For every α ∈ �, set Tα[i, j]

Eq.2← min
{
mut(α,β) + T ′β [i, j] | β ∈ �

}
.

7 Set Tε[i, j]
Eq.1← min

{
ins(α) + Tα[i, j] | α ∈ �

}
.

8 Fill similarly all matrices S′α , Sα , and Sε using Equations 4 to 6.
// Stage 2

9 Set ED[0, 0] to 0. For every 0 < i ≤ n, set ED[0, i] to Tε[0, i], set ED[1, i] to Tα[0, i] for α = s0, set ED[i, 0] to
Sε[0, i], and set ED[i, 1] to Sα[0, i] for α = t0.

10 for j = 2, 3, . . . , n do
11 for i = 2, 3, . . . , n do
12 For every α ∈ �, set EDT α[i, j]

Eq.9← min
{
ED[i, h]+Tα[h, j] | 0 < h < j

}
.

13 Set ED[i, j]
Eq.8← min

{
Sα[0, i]+Tα[0, j] ,
EDT α[h, j]+Sα[h, i]

∣∣∣∣ 0<h<i
α∈�

}
.

14 return ED[n, n].



Pinhas et al. Algorithms for Molecular Biology 2013, 8:27 Page 7 of 28
http://www.almob.org/content/8/1/27

Complexity analysis of Algorithm 1
The running time of Algorithm 1 is dictated by the total
time required to compute all entries in the DP matrices.
Each entry is computed according to one of the recursive
equations, where the number of operations in such a com-
putation depends on the number of expressions examined
on the right-hand side of the corresponding recursive
equation. Note that the value of each examined expres-
sion is obtained in a constant time, by querying previously
computed values stored in the matrices.
The computation of each entry in matrices Tε and Sε

and in matrices of the form Tα and Sα takes O(|�|) time,
due to Equations 1, 4, 2, and 5, respectively. As there
are O(|�|) such matrices and each matrix contains O(n2)
entries, their overall computation time is O(|�|2n2). The
computation of entries in T ′α and S′α take O(n) time,
due to Equations 3 and 6, respectively. There are O(|�|)
such matrices, each of size O(n2), and so the total time
for computing all entries in these matrices is O(|�|n3).
According to Equation 9, computing each entry of the
form EDT α[i, j] takesO(n) time, and as there areO(|�|n2)
such entries the total time for computing all these entries
is O(|�|n3). According to Equation 8, computing each
entry of the form ED[i, j] takes O(|�|n) time, and since
there are O(n2) such entries, the total time for computing
all these entries is again O(|�|n3). Thus, the total run-
ning time of the algorithm is O(|�|n3 + |�|2n2). Under
the assumption that |�| = O(n), the time is O(|�|n3).
The algorithm requires O

(|�|n2) space for maintaining
the DP matrices.

Amatrix multiplication based algorithm for EDDC
In previous work by the authors [11], Vector Multipli-
cation Templates (VMTs) were identified as templates
for computational problems sustaining certain properties,
such that algorithms for solving these problems can be
accelerated using efficient matrix multiplication subrou-
tines (similarly to Valiant’s algorithm for CFG recognition
[10]). Intuitively, standard algorithms for VMT problems
perform computations that can be expressed in terms
of vector multiplications, and these computations can
be computed and combined more efficiently using effi-
cient matrix multiplications. In this section, we show that
EDDC exhibits such VMT properties, and formulate a
new algorithm that incorporates matrix-matrix min-plus
multiplications. This algorithm yields a better running
time than that of the baseline algorithm in the previous
section.

Notations for matrices
For two integers p, q such that p ≤ q, Ip,q denotes the
interval of integers Ip,q =[p, p + 1, . . . , q − 1]. We use
the notation An×m to imply that the matrix A has n rows

and m columns, and say that A has the dimensions n×m
(rows and column indices start at 0). For a subset of row
indices I and a subset of column indices J, denote by I × J
the region which contains all pairs of indices (i, j), such
that i ∈ I and j ∈ J . Define A[I, J] to be the submatrix
of A, which is induced by all entries in the region I × J .
When I contains a single row i or J contains a single col-
umn j, we simplify the notation and write A[i, J] or A[I, j],
respectively.
Define the following operations on matrices. Let tr(·)

denote the transpose operation for matrices. For a set
of matrices A = {

A1,A2, . . . ,Ar} all of the same
dimensions n×m, denote by min {A} the entry-wise min
operation over A, whose result is a matrix Cn×m, such
that C[i, j]= min

{
A[i, j] |A ∈ A

}
. min {A} can be com-

puted in O (|A|nm) time in a straightforward man-
ner. For matrices An×k and Bk×m, the min-plus mul-
tiplication of A and B, denoted A ⊗ B, results in a
matrix Cn×m, where the entries of C are defined by
C[i, j]= min

{
A[i, h]+B[h, j] | 0 ≤ h < k

}
. Naively, A ⊗

B can be computed in O(nkm) operations. Denote the
time complexity of a min-plus multiplication of two
n×n matrices by MP(n). At present, the asymptoti-
cally fastest algorithm for min-plus square matrix mul-
tiplication is that of Chan [12], taking O

(
n3 log3 log n

log2 n

)
time.
In the following observation, we point out how matrix

multiplication can be computed as a composition of two
parts, where each of the items (1-3) in the observation
addresses a partitioning in one of the three dimensions.
This will be later used by our recursive computation which
is based on such partitioning.

Observation 1. Let An×k ,Bk×m and Cn×m be matrices,
such that C = A ⊗ B (see Figure 3).

1. For every 0 ≤ h < m, C[I0,n, I0,h]= A ⊗ B[I0,k , I0,h]
and C[I0,n, Ih,m]= A ⊗ B[I0,k , Ih,m].

2. For every 0 ≤ h < n, C[I0,h, I0,m]= A[I0,h, I0,k]⊗B
and C[Ih,n, I0,m]= A[Ih,n, I0,k]⊗B.

3. For every 0 ≤ h < k,
C = min

{
A[I0,n, I0,h]⊗B[I0,h, I0,m] ,A[I0,n, Ih,k]

⊗B[Ih,k , I0,m]
}
.

EDDC expressed via min-plus vector multiplications
The key observation that enables a further improvement
of the worst-case bounds of EDDC is that Equations
3, 6, 8, and 9 can be expressed in terms of min-plus
vector multiplications. Under the assumption that all
solutions to sub-instances appearing on the right-hand
side of the equations are computed and stored in the
corresponding entries, these equations can be written
as follows:
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Figure 3 Decomposition of a matrix-multiplication. In all three charts, the matrix C is the result of the multiplication A⊗ B. Charts (a), (b), and (c)
illustrate items 1, 2, and 3 of Observation 1, respectively.

ed′ (α, tl,j) Eq.3= min

⎧⎨⎩
Tα[l, h]+Tε[h, j] ,
Tε[l, h]+Tα[h, j] ,
dup(α)+Tα[l, h]+Tα[h, j]

∣∣∣∣∣∣ l<h< j,

⎫⎬⎭
= min

⎧⎨⎩
Tα[l, Il+1,j]⊗Tε[Il+1,j, j] ,
Tε
[
l, Il+1,j
]⊗ Tα[Il+1,j, j] ,

dup(α) + Tα[l, Il+1,j]⊗Tα[Il+1,j, j]

⎫⎬⎭ ,
(10)

ed′ (sk,i,α) Eq.6= min

⎧⎨⎩
Sα[k, h]+Sε[h, i] ,
Sε[k, h]+Sα[h, i] ,
Sα[k, h]+Sα[h, i]+ cont(α)

∣∣∣∣∣∣ k<h< i

⎫⎬⎭
= min

⎧⎨⎩
Sα[k, Ik+1,i]⊗Sε[Ik+1,i, i] ,
Sε[k, Ik+1,i]⊗Sα[Ik+1,i, i] ,
Sα[k, Ik+1,i]⊗Sα[Ik+1,i, i]+ cont(α)

⎫⎬⎭ ,
(11)

ed
(
s0,i, t0,j
) Eq.8= min

{
Sα[0, i]+Tα[0, j] ,
EDT α[k, j]+Sα[k, i]

∣∣∣∣ 0<k<i
α∈�

}
= min

{
Sα[0, i]+Tα[0, j] ,
tr(Sα)[i, I1,i]⊗EDT α[I1,i, j]

∣∣∣∣α ∈ �

}
,

(12)

edtα
(
s0,i, t0,j
) Eq.9= min

{
ED[i, l]+Tα[l, j] | 0 < l < j

}
= ED[i, I1,j]⊗Tα[I1,j, j] .

(13)

The algorithm
The new algorithm has the same two stages as the base-
line algorithm. It can be observed that the computation
of all matrices of the forms S′α , Sα , Sε , T ′α , Tα , and Tε

Figure 4 The tree of recursive calls to COMPUTE-MATRIX. Each call over a region containing more than one entry partitions the region either
vertically or horizontally, and performs two recursive calls over the two sub-regions. After the first call was performed (the left or top sub-region for
vertical or horizontal partition, respectively), a matrix multiplication involving the computed region is computed in order to meet the precondition
required for the computation of the sibling region.
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performed in Stage 1 of the baseline algorithm adhere to
the Inside-VMT requirements as given in Definition 1 in
[11]. The application of the generic Inside-VMT algorithm
[11] to this computation is immediate, and therefore we
focus only on adapting the method to the computation of
matrices of the form EDT α and ED conducted in Stage 2
of the baseline algorithm.
After allocating all dynamic programming matrices and

performing Stage 1 of the algorithm, the COMPUTE-
MATRIX procedure is used for implementing Stage 2

(see Algorithm 2 and Figure 4). This is a divide-and-
conquer recursive procedure that accepts a region I × J
and computes the values in all entries of ED and EDT α

within the region. The procedure partitions the given
region into two parts and performs recursive calls on
each part. In order to maintain a required precondi-
tion, the procedure applies min-plus matrix multiplica-
tion subroutines between recursive calls. The correctness
proof of Algorithm 2 appears in Appendix “Correctness of
Algorithm 2”.

Algorithm 2:MATRIX-EDDC(s, t)
1 Let n be the length of s and t. Allocate (n + 1) × (n + 1) matrices S′α , Sα , T ′α , Tα , and EDT α for every α ∈ �, and
three (n + 1) × (n + 1) matrices Sε , Tε , and ED.
// Stage 1

2 Fill all matrices Tε , Tα , T ′α , Sε , Sα , and S′α applying the generic Inside-VMT algorithm of [11], using
Equations 1, 2, 10, 4, 5, and 11, correspondingly.
// Stage 2

3 Initialize entries in all matrices EDT α and ED which correspond to base-case instances as describe in Algorithm 1.
This includes all entries in the first two rows and first two columns in these matrices.

4 Set EDT α[I2,n+1, I2,n+1]← ED[I2,n+1, 1]⊗Tα[1, I2,n+1] for every α ∈ �, and set
ED[I2,n+1, I2,n+1]← min

{
tr(Sα)[I2,n+1, 1]⊗EDT α[1, I2,n+1] | α ∈ �

}
.

5 Run COMPUTE-MATRIX(I2,n+1, I2,n+1).
6 return ED[n, n].

Procedure: COMPUTE-MATRIX(Ii,k , Ij,l)
Precondition: 2 ≤ i < k, 2 ≤ j < l, and all entries in matrices Sα and Tα , as well as all entries in submatrices

EDT α[I0,i, Ij,l] and ED[Ii,k , I0,j], contain the solutions for the corresponding sub-instances. In
addition, EDT α[Ii,k , Ij,l]= ED[Ii,k , I1,j]⊗Tα[I1,j, Ij,l], and
ED[Ii,k , Ij,l]= min

{
tr(Sα)[Ii,k , I1,i]⊗EDT α[I1,i, Ij,l] | α ∈ �

}
.

Postcondition: All entries in the region Ii,k × Ij,l in matrices EDT α and ED contain the solutions for the
corresponding sub-instances.

1 if k = i + 1 and l = j + 1 then

2 Set ED[i, j]

precondition,
Eq.12← min

{
ED[i, j] , Sα[0, i]+Tα[0, j] | α ∈ �

}
3 else
4 if l − j ≥ k − i then

// vertical partitioning

5 Let h =
⌈
j+l
2

⌉
6 Run COMPUTE-MATRIX(Ii,k , Ij,h)
7 Update EDT α[Ii,k , Ih,l]← min

{
EDT α[Ii,k , Ih,l] ,ED[Ii,k , Ij,h]⊗Tα[Ij,h, Ih,l]

}
for every α ∈ �

8 Run COMPUTE-MATRIX(Ii,k , Ih,l)
9 else

// horizontal partitioning

10 Let h =
⌈
i+k
2

⌉
11 Run COMPUTE-MATRIX(Ii,h, Ij,l)
12 Update ED[Ih,k , Ij,l]← min

{
ED[Ih,k , Ij,l] ,min

{
tr(Sα)[Ih,k , Ii,h]⊗EDT α[Ii,h, Ij,l] |α ∈ �

}}
13 Run COMPUTE-MATRIX(Ih,k , Ij,l)
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Time complexity analysis
The time complexity of Algorithm 2 can be estab-
lished by an identical analysis to that of the Inside-VMT
algorithm of [11] (see Section 3.3.1 of [11]). For com-
pleteness, we repeat this analysis here for Stage 2 of the
computation, where the time complexity of Stage 1 can
be inferred similarly. The complexity is expressed as a
function of the bound MP(n) over the running time of
a min-plus multiplication of two n × n matrices. Note
that MP(n) = �(n2), as the input and output matrices of
the computation contain O(n2) entries. We assume here
that MP(n) = �(n2+δ) for some constant 0 < δ ≤ 1,
which is true for the current best bound overMP(n) [12].
In some of the expressions developed below, we avoid
the “big O” notation and give explicit bounds over the
number of operations, as constant factors that may be
hidden due to this notation cannot be ignored in the
analysis.
The initialization time of Stage 2 is dominated by

the matrix multiplications and entry-wise min opera-
tions performed in line 4 of Algorithm 2. This ini-
tialization performs 2|�| multiplications of matrices of
dimensions (n − 1) × 1 with matrices of dimensions
1×(n−1), which can naively be implemented inO(|�|n2)
time, and an entry-wise min operation over a set contain-
ing |�| matrices of dimensions (n− 1) × (n− 1), which is
also implemented in O(|�|n2) time.
The computation of the remaining entries in ED

and EDT α matrices is done within recursive calls to
the COMPUTE-MATRIX procedure. Observe that when
COMPUTE-MATRIX is called over a region of dimen-
sions r × r for some even integer r ≥ 2, the procedure
applies a vertical partitioning and performs two recursive
calls over regions of dimensions r × r

2 (lines 6 and 8).
For a call over a region of dimensions r × r

2 , the proce-
dure applies a horizontal partitioning and performs two
recursive calls over regions of dimensions r

2 × r
2 (lines 11

and 13). For simplicity, assume that n − 1 = 2p for
some integer p ≥ 0, and thus it follows that the dimen-
sions of all regions occurring as inputs in recursive calls
are either 1 × 1, or of the form r × r or r × r

2 for
some even integer r. Denote by T(x × y) an upper bound
over the number of operations conducted when applying
COMPUTE-MATRIX over a region of dimensions x × y.
From line 2 of the procedure, T(1 × 1) = O(|�|).

Consider a region of dimensions r × r for an even inte-
ger r ≥ 2. For such a region, the code in lines 5-8 of
COMPUTE-MATRIX is executed. In order to implement
line 7 for some α ∈ �, it is necessary to compute first
a min-plus matrix multiplication C = A ⊗ B, where
the matrix A = ED[Ii,k , Ij,h] is of dimensions r × r

2 , the
matrix B = Tα[Ij,h, Ih,l] is of dimensions r

2 × r
2 , and

the resulting matrix C is of dimensions r × r
2 . Due to

Observation 1, it is possible to compute independently

the upper and lower halves of C, where C[I0, r2 , I0, r2 ]=
A[I0, r2 , I0, r2 ]⊗B and C[I r

2 ,r , I0, r2 ]= A[I r
2 ,r , I0, r2 ]⊗B. The

time required to conduct this computation is 2MP( r2 ).
Then, it is required to compute min

{
EDT α[Ii,k , Ih,l] ,C

}
and to update EDT α[Ii,k , Ih,l] to be the result of this opera-
tion, a computation which requires at most cr2 operations
for some constant c. Since line 7 is computed for every
α ∈ �, the total number of applied operations due to
this line is at most |�| (2MP( r2 ) + cr2

)
. Besides line 7, two

recursive calls are made in lines 6 and 8 over regions of
dimensions r × r

2 , and therefore we get

T(r × r) ≤ 2T
(
r × r

2

)
+ |�|
(
2MP
( r
2

)
+ cr2
)
.

When the procedure is called over a region of dimen-
sions r × r

2 , the code in lines 10-13 is executed. Similarly
as above, it can be shown that the computation in line 12
requires at most |�|

(
MP( r2 ) + cr2

4

)
operations, and due

to the two recursive calls in lines 11 and 13 over regions of
dimensions r

2 × r
2 , we get

T
(
r × r

2

)
≤ 2T
( r
2

× r
2

)
+ |�|
(
MP
( r
2

)
+ cr2

4

)
.

Therefore,

T(r × r) ≤ 4T
( r
2

× r
2

)
+ |�|
(
4MP
( r
2

)
+ 3cr2

2

)
.

The explicit form of the above recursive equation can be
established by the Master Theorem (under the assump-
tion that MP(n) = �(n2+δ), see Chapter 4 in [16]), yield-
ing the expressionT(r×r) = O(|�|MP(r)). Thus, the time
complexity of Stage 2 of the algorithm is O(|�|MP(n)).
The time analysis of the Inside-VMT algorithm of [11],
applied to implement Stage 1 of the algorithm yields the
same bound of O(|�|MP(n)), and thus O(|�|MP(n)) is
the time complexity of the entire algorithm. Using the
currently asymptotically fastest algorithm for min-plus
matrix multiplication [12] MP(n) = 


(
n3 log3 log n

log2 n

)
, we

get the currently best explicit time bound for EDDC of
O
( |�|n3 log3 log n

log2 n

)
.

An online algorithm for EDDC usingmin-plus
matrix-vector multiplication for discrete cost
functions
In this section, we present an EDDC algorithm which
is based on the general algorithm (given in Section
“A matrix multiplication based algorithm for EDDC”) and
improves its time complexity by a factor of O(log3 log n).
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This EDDC algorithm is intended for integer cost func-
tions, but can also be applied to rational cost functions
after they are scaled. It is an online algorithm; it can
process the input strings letter by letter with a guaran-
teed low time bound for any prefix of the input. The
EDDC algorithm presented in this section is based on aD-
discrete matrix-vector min-plus multiplication algorithm
we developed, which is generic and may be applied to
other problems as well.

D-discrete matrices and the EDDC problemwith integer
costs
Given a matrix of integers An×m and indices 1 ≤ i < n
and 0 ≤ j < n, call the pair of entries A[i − 1, j] and A[i, j]
adjacent. Let D = Ia,b =[a, a + 1, . . . , b − 1] be an integer
interval for some integers a < b. Say that matrix A is D-
discrete if for every pair of adjacent entries A[i − 1, j] and
A[i, j], their difference A[i − 1, j]−A[i, j] is in D.
Consider the EDDC problem in the case of integer

costs for all edit operations. In Lemma 1, we show
that in this case, all matrix multiplications applied by
Algorithm 2 are between D-discrete metrices, with
respect to a certain integer interval D. This proof is
similar to that of Masek and Paterson for simple edit
distance [17]. This would allow conducting such matrix
multiplications using a faster algorithm, described in
Section “An efficient D-discrete min-plus matrix-vector
multiplication algorithm”.

Lemma 1. Given strings s and t and an integer cost
function for EDDC, all matrix multiplications applied by
Algorithm 2 are over D-discrete matrices, where D =
Ia,b is determined according to the cost function by a =
−max{del(α) | α ∈ �} and b = max{ins(α) | α ∈ �} + 1.

The proof of Lemma 1 appears in Appendix “Proofs
to lemmas corresponding to the EDDC algorithm for
discrete cost functions ’’.

D-discrete matrices and vectors
Here, we present some properties of D-discrete matrices
and vectors that are similar to those previously observed
in [14,17]. The following lemmas show that the set of
D-discrete matrices is closed under the min-plus multi-
plication and entry-wise min operations. In what follows,
let D = Ia,b be some integer interval. The proofs of the
following lemmas appear in Appendix “Proofs to lemmas
corresponding to the EDDC algorithm for discrete cost
functions ’’.

Lemma 2. Let X,Y and Z be matrices, such that X and
Y contain only integer elements and Z = X ⊗ Y . If X is
D-discrete, then Z is D-discrete.

Lemma 3. Let X,Y and Z be matrices, such that X and Y
contain only integer elements and Z = min{X,Y }. If X and
Y are D-discrete, then Z is D-discrete.

The following lemma implies that when the absolute
difference between the first elements of two q-length
D-discrete vectors x and y is sufficiently large, one of
the vectors can be immediately taken as the result of the
min(x, y) operation.

Lemma 4. Let x = (x0, . . . , xq−1) and y = (y0, . . . , yq−1)
be two q-length D-discrete vectors for some q > 0. If y0 −
x0 ≥ q|D|, thenmin(x, y) = x.

In what follows, fix an integer q > 1. Let x =
(x0, x1, . . . , xq−1) be a q-length D-discrete vector. By defi-
nition, for every 0 < i < q, xi−1 − xi is an integer within
D, and so xi−1 − xi − a is an integer within the interval
I0,b−a = I0,|D|. Therefore, the series x0 − x1 − a, x1 − x2 −
a, . . . , xq−2 − xq−1 − a can be thought of as a series of
q−1 digits in a |D|-base representation of an integer�x =∑

0≤i<q−1 |D|i(xi − xi+1 − a), where 0 ≤ �x < |D|q−1.
The �-encoding of x is defined to be the pair of integers
(x0,�x). We write x = (x0,�x) to indicate that (x0,�x) is
the �-encoding of x, where x0 is called the offset of x and
�x is called the canonical index of x. Note that for two q-
length D-discrete vectors x = (x0,�x) and y = (y0,�y),
�x = �y if and only if for every 0 ≤ i < q, xi − yi = c for
some constant c. In particular, x and y share the same �-
encoding if and only if they are identical. Call a D-discrete
vector of the form x = (0,�x) (with an offset x0 = 0) a
canonical vector.
The next observations show that both operations of

entry-wise min and min-plus multiplication, with respect
to D-discrete matrices and vectors, can be expressed via
canonical vectors.

Observation 2. Let x = (x0,�x), y = (y0,�y), and
z = (z0,�z) be q-length D-discrete vectors such that
z = min(x, y). Then, for every number c it holds that
min ((x0 − c,�x) , (y0 − c,�y)) = (z0 − c,�z). In partic-
ular,min ((0,�x) , (y0 − x0,�y)) = (z0 − x0,�z).

Observation 3. Let Bq×q be a D-discrete matrix, x =
(0,�x) a q-length canonical D-discrete vector, and y =
(y0,�y) a q-length D-discrete vector, such that B⊗
x = y. Then, for any number c it holds that B ⊗ (c,�x) =
(y0 + c,�y).

An efficient D-discrete min-plus matrix-vector
multiplication algorithm
Let An×m be a D-discrete matrix, and fix a constant

1
log|D|(n+m)

< λ < 1. We give an algorithm for min-plus
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D-discretematrix-vectormultiplication that, after prepro-

cessing A in O
(
nm(n+m)λ

|D|
)
time and O

(
nm(n+m)λ

|D|λ2 log2|D|(n+m)

)
space, computes A ⊗ x for any m-length D-discrete vec-

tor x in O
(

nm
λ2 log2|D|(n+m)

)
time under the RAM com-

putational model. Our algorithm is an adaptation of
Williams’ algorithm [13] for finite semiring matrix-vector
multiplications, with some notions similar to Frid and
Gusfield’s acceleration technique for RNA folding [14]. It
follows the concept of the Four-Russians Algorithm [18]
(see also [14,17,19]), i.e. preprocessing reoccurring com-
putations, tabulating their results in lookup tables, and
retrieving such results in order to accelerate the general
computation.
Specifically, the algorithm stores preprocessed compu-

tations of two kinds: matrix-vector min-plus multiplica-
tions, and vector entry-wise minima, where vectors and
matrices are of q-length and of q × q dimensions, respec-
tively, for q =

⌊
λ log|D|(n + m)

⌋
. For conducting this

preprocessing, we will assume that |D| ≤ n + m, other-
wise q = 0 and the multiplication cannot be accelerated
using the suggested method. In addition, for simplicity
of the analysis we assume that q3 ≤ min(n,m). If this
does not hold, a multiplication of the form A ⊗ x can be
naively computed in the relatively efficient time complex-
ity ofO

(
max(n,m) log3|D| (n + m)

)
. The space complexity

of the preprocessing phase is higher than theO(nm) space
complexity of the standard multiplication algorithm and
depends on the constant λ, ranging between O(nm|D|)
and O
(

nm(n+m)

log2|D|(n+m)

)
for λ values between 1

log|D|(n+m)
and

1, correspondingly. The lower bound 1
log|D|(n+m)

for λ is

chosen so that the time complexity O
(

nm
λ2 log2|D|(n+m)

)
of

matrix-vector multiplications involving the preprocessed
matrix would be better than the naive time complexity
O(nm).

Preprocessing ofmatrix-vector⊗ computations

Let n′ = q
⌊
n
q

⌋
and m′ = q

⌊
m
q

⌋
, and note that

0 ≤ n − n′ < q and 0 ≤ m − m′ < q. Let
Qk denote the q-length integer interval Qk =[kq, kq +
1, . . . , (k + 1)q − 1]. The sub-matrix A′ = A

[
I0,n′ , I0,m′

]
is decomposed into n′m′

q2 blocks Bi,j = A
[
Qi,Qj
]
where

i = 0, 1, . . . , n′
q − 1 and j = 0, 1, . . . , m′

q − 1. For each
block B, a corresponding lookup table MULB is cre-
ated, which tabulates min-plus multiplications between
B and all canonical q-length D-discrete vectors. For the
canonical vector x = (0,�x), the result y = B ⊗ x is
stored in the entryMULB[�x] by its encoding (y0,�y) (by

Lemma 2, y is also D-discrete and thus can be encoded
accordingly).
The multiplication of a q × q block with a q-length

vector can be done in O(q2) time in a straightforward
manner and the encoding of the resulting q-length vec-
tor requires additional O(q) time. There are n′m′

q2 blocks
in the decomposition of A′, each is multiplied by |D|q−1

canonical vectors, and so the total time required for
computing these multiplications is O

(
q2|D|q−1 nm

q2

)
=

O
(|D|q−1nm

) = O
(
nm(n+m)λ

|D|
)
.

Let (y0,�y) be the �-encoding of some
result y = B ⊗ x computed in the preprocess-
ing of A′ as described above. Note that y0 =
min0≤i<q {B[0, i]+x[i] } ≤ min0≤i<q {2max (B[0, i] , x[i] )}.
Therefore, the number of bits in the binary representation
of y0 is at most one plus the maximum number of bits
required for the representations of B[0, i] and x[i] for some
0 ≤ i < q. Also, note that 0 ≤ �y < |D|q−1 = (n+m)λ

|D| ,
and �y can be represented in O(log(n + m)) bits. Thus,
under the RAM computational model assumptions, each
such encoding (y0,�y) requires O(1) space units and can
be written and read in a constant time, and therefore the
overall space complexity for maintaining all MULB tables

is O
( |D|q−1nm

q2

)
= O
(

nm(n+m)λ

|D|λ2 log2|D|(n+m)

)
. In addition, given

a canonical index �x, it is possible to retrieve the encod-
ing (y0,�y) = B ⊗ (0,�x) stored in the entry MULB[�x]
in a constant time.
Let x = (x0,�x) be some (not necessarily canonical) q-

length D-discrete vector, for which we wish to compute
B ⊗ x. Due to Observation 3, the multiplication result
can be obtained in constant time by retrieving (y0,�y) =
MULB[�x], and returning the encoding (y0 + x0,�y).

Preprocessing of vector entry-wisemin computations
The algorithm constructs a lookup table MIN, storing
entry-wise min calculations between every canonical q-
length D-discrete vector x = (0,�x) and every q-length
D-discrete vector y = (y0,�y) such that abs(y0) <

q|D| (here abs(y0) denotes the absolute value of y0).
For every such x and y, the table entry MIN[�x, y0,�y]
stores the �-encoding (z0,�z) of the vector z =
min(x, y) (due to Lemma 3, z is D-discrete and can
be encoded accordingly). There are O

(
q|D||D|2(q−1)) =

O
(

(n+m)2λλ log|D|(n+m)

|D|
)
entries in the tableMIN, and each

entry can be computed in O(q) = O
(
λ log|D|(n + m)

)
time. Thus, the computation of all entries inMIN requires

O
(

(n+m)2λλ2 log2|D|(n+m)

|D|
)

time, and the table occupies

O
(

(n+m)2λλ log|D|(n+m)

|D|
)
space.



Pinhas et al. Algorithms for Molecular Biology 2013, 8:27 Page 13 of 28
http://www.almob.org/content/8/1/27

Given two encoded q-length D-discrete vectors x =
(x0,�x) and y = (y0,�y), the encoding (z0,�z) of the
vector z = min(x, y) can now be obtained in a constant
time as follows: (z0,�z) = (x0,�x) if y0 − x0 ≥ q|D| or
(z0,�z) = (y0,�y) if x0−y0 ≥ q|D|, due to Lemma 4. Oth-
erwise, |y0 − x0| < q|D|, and for the vectors x′ = (0,�x),
y′ = (y0 − x0,�y), and z′ = (z′0,�z′

) = min(x′, y′),
we have that

(
z′,�z′
) = MIN[�x, y0 − x0,�y]. From

Observation 2, (z0,�z) = (z′0 + x0,�z′
)
.

Computingmatrix-vectormultiplications
Given an m-length D-discrete vector x and assuming the
preprocessing of matrixAn×m was preformed as described
above, we next explain how to efficiently compute the vec-
tor y = A⊗x. Note that y is an n-lengthD-discrete vector,
due to Lemma 2.
Our algorithm computes first the multiplication y′ =

A′ ⊗ x[ I0,m′ ] in parts of length q. First, for every 0 ≤
j < m′

q , the algorithm computes the encoding
(
x j
0,�x j
)

of the sub-vector xj = x
[
Qj
]
of x. These encodings can

be obtained in a total time of O(m). Then, for every
0 ≤ i < n′

q , the encoding
(
yi0,�yi

)
of the sub-vector

yi = A′ [Qi, I0,m′
] ⊗ x
[
I0,m′
]
of y′ is computed inde-

pendently of the other sub-vectors of y′. By definition
(see Figure 5),

Figure 5 The computation of a q-length segment in a
multiplication of a D-discrete matrix with a D-discrete vector.

yi = min
{
A′ [Qi,Qj

]⊗ x
[
Qj
] | 0 ≤ j <

m′

q

}

= min
{
Bi,j ⊗ x j | 0 ≤ j <

m′

q

}
.

The encoded result
(
zi,j0,�zi,j

)
of each multiplica-

tion zi,j = Bi,j ⊗ x j can be obtained in a con-
stant time as explained in Section “Preprocessing of
matrix-vector ⊗ computations”. As there are m′

q such
terms to compute with respect to yi, their total com-
putation time is O

(
m
q

)
. In addition, the entry-wise

min over all these terms can be computed by initial-
izing
(
yi0,�yi

) ←
(
zi,00,�zi,0

)
, and iteratively updat-

ing
(
yi0,�yi

) ← min
((
yi0,�yi

)
,
(
zi,j0,�zi,j

))
for all

0 < j < m′
q . Each such update is computed in a

constant time as described in Section “Preprocessing of
vector entry-wise min computations”, and so the encod-
ing of a single segment yi in y′ is computed in a total
time of O

(
m
q

)
, and the encodings of all O

(
n
q

)
such

segments are computed in O
(
nm
q2

)
time. Decoding all

encoded vectors yi can be done in additional O(n) oper-
ations, obtaining an explicit form of y′ in a total time of
O
(
nm
q2

)
.

Let y′′ = A
[
I0,n′ , Im′,m

] ⊗ x
[
Im′,m
]
, where from Obser-

vation 1, y
[
I0,n′
] = min

(
y′, y′′). The computation of y′′

can be conducted in O(nq) time in a straightforward
manner, and the computation ofmin

(
y′, y′′) requires addi-

tional O(n) time. In addition, y
[
In′,n
] = A
[
In′,n, I0,m

]⊗ x,
where this computation can be done naively in O(mq)
time, and so the overall running time for computing y is

O
(
nm
q2 + nq + mq

)
= O
(
nm
q2

)
= O
(

nm
λ2 log2|D|(n+m)

)
.

The above matrix-vector min-plus multiplication algo-
rithm can be used as a fast square matrix-matrix multi-
plication algorithm in a straightforward manner. For two
D-discrete matrices An×n and Bn×n, the computation of
C = A ⊗ B can be conducted by first preprocessing A
as described in Sections “Preprocessing of matrix-vector
⊗ computations” and “Preprocessing of vector entry-wise

min computations” in O
(
n2+λ

|D|
)
time and O

(
n2+λ

|D|λ2 log2|D| n

)
space, and then computing each column j of C inde-
pendently by multiplying A with the j-th column of

B, in O
(

n2
λ2 log2|D| n

)
time as explained above. The total

computation time of all n columns of C is therefore

O
(

n3
λ2 log2|D| n

)
.
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Online preprocessing of D-discrete matrices
In the previous section, we assumed the settings in which
a D-discrete matrix is given, and that it is preprocessed
once prior to any multiplication operation. Next, we
describe how to maintain the required lookup tables for
the case the input matrix is dynamic, acquiring additional
rows and columns. Consider a streaming computational
model, which begins with an initial empty matrix A0

0×0. In
each step r, the current matrix Ar

nr×mr is obtained from
the previous matrix Ar−1

nr−1×mr−1 by either adding anmr−1-
length vector as the last row or adding an nr−1-length vec-
tor as the last column in the matrix. Note that nr+mr = r,
and therefore the preprocessing block length correspond-
ing to Ar is q =

⌊
λ log|D|(nr + mr)

⌋
=
⌊
λ log|D|(r)

⌋
. For

the purpose of this analysis, we assume that λ ≤ 0.5 (note
that this does not limit the asymptotic upper bounds of
the running time). This assumption implies the following
inequality

|D| 1λ ≥ 22 = 4. (14)

Lookup tables corresponding to intermediate matri-
ces along the series can be maintained as follows. Let
r0 and r1 be the smallest integers such that the block
sizes corresponding to Ar0 and Ar1 are q and q + 1,
respectively. Assume that upon reaching Ar0 in the matrix
sequence, all required lookup tables with respect to Ar0

are already computed. Along the series of steps r0, r0 +
1, . . . , r1, we distribute two kinds of computations: (1)
new MULB tables for accumulated q × q blocks in matri-
ces Ar for r0 ≤ r < r1, and (2) a new MIN table,
as well as new MULB tables, with respect to block
length q + 1.
(1) Computing MULB tables for accumulated q × q

blocks. Assume that for some r0 ≤ r < r1, a column
was added to the matrix at step r so that the number
of columns mr in the intermediate matrix Ar is divisi-
ble by q. Thus, at most nr

q ≤ r
q new q × q complete

blocks are now available for preprocessing. The compu-
tation of lookup tables of the form MULB corresponding
to these new blocks will be equally distributed along
the series of q consecutive steps r, r + 1, . . . , r + q − 1,
during which it is guaranteed that no column addition
would introduce new complete q× q blocks in the matrix.
As shown in Section “Preprocessing of matrix-vector ⊗
computations”, the time required for processing a sin-
gle q × q block is O

(
q2|D|q−1), and so the total time

for processing all O
(
r
q

)
blocks is O

(
qr|D|q−1). Thus, in

each step among the q steps, there is a need to perform
O
(
r|D|q−1) = O

(
r1+λ

|D|
)
operations due to these com-

putations. Symmetrically, computing lookup tables corre-
sponding to new blocks added due to the accumulation

of rows can be performed by conducting O
(
r1+λ

|D|
)
opera-

tions per step r.
(2) Computing a new MIN lookup table and new

MULB tables with respect to block length q + 1. By
the selection of r0 and r1, q − 1 =

⌊
λ log|D|(r0 − 1)

⌋
>

λ log|D|(r0−1)−1, and q+1 =
⌊
λ log|D|(r1)

⌋
≤ λ log|D|(r1).

Therefore, log|D|(r1) > log|D|(r0 − 1) + 1
λ
, and so r1 >

(r0 − 1)|D| 1λ ≥ r0 |D| 1λ
2

Eq. 14≥ 2r0. In particular, r2 = r1
2

satisfies r0 < r2 < r1, and for every r2 ≤ r < r1 we have
thatO(r) = O(r1). The computation of the tableMIN and
tables of the formMULB with respect to block length q+1
is distributed along the series of r1

2 steps r2, r2 + 1, . . . , r1.
The new MIN table is computed independently from

the specific input instance, and its overall computation

time is O
(

r2λ1 λ2 log2|D|(r1)
|D|

)
(see Section “Preprocessing of

vector entry-wise min computations”). By distributing
this computation evenly along all O(r1) steps, the com-
putation time required for each step r2 ≤ r < r1 is

O
(

r2λ−1
1 λ2 log2|D|(r1)

|D|
)

= O
(

r2λ−1λ2 log2|D|(r)
|D|

)
.

TheMULB tables are computed similarly as done in (1),
starting with (q + 1) × (q + 1) blocks already present
in Ar2 , and continuing with blocks accumulated as the
sequence progress. The overall preprocessing time of all

these blocks is O
(

r2+λ
1|D|
)

(see Section “Preprocessing of

matrix-vector ⊗ computations”), and so the computation

time required for each step r2 ≤ r < r1 is O
(

r1+λ
1|D|
)

=
O
(
r1+λ

|D|
)
.

All in all, the time complexity due to computations of (1)
and (2) for each step r0 ≤ r < r1 is O

(
r1+λ

|D|
)
. In particu-

lar, the overall time complexity of preprocessing the n-size
prefixA0,A1, . . . ,An of the streamedmatrices isO

(
n2+λ

|D|
)
.

The EDDC algorithm based on efficient D-discrete min-plus
matrix-vector multiplication
Consider the EDDC problem in cases where all edit
operation costs are integers. As explained in Section
“D-discrete matrices and the EDDC problem with integer
costs”, the EDDC DP tables can be considered D-discrete.
This property allows for efficient min-plus square
D-discrete matrix-vector multiplications, using the
algorithm described in Section “An efficient D-discrete
min-plus matrix-vector multiplication algorithm” to yield
an O
(

|�|n3
log2|D| n

)
running time algorithm for EDDC. We

next describe an online version of the algorithm, in which
the letters of the input strings s and t are received in a
streaming model.
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Assume that some pair of prefixes s0,i and t0,j−1 was
already processed, and all entries in the DP matrices cor-
responding to these prefixes are computed. We explain
how to update the tables in case where the next let-
ter to arrive is the letter tj−1 in t, where the case in
which the arriving letter is from s is symmetric. The DP
matrices are D-discrete, and assume that lookup tables
for efficient min-plus multiplications of these matrices
are maintained as explained in the previous section.
The addition of tj−1 requires updating all matrices of
the forms Tε , Tα , and T ′α , for which the j-th row
and column should be added. In addition, it is required
to add the j-th column to matrices of the form ED
and EDT α .
In the first stage, the algorithm computes rows and

columns j in all matrices of the form T ′α , Tα , and Tε . The
process is similar to the computation of these entries by
the loop in lines 5 to 8 of Algorithm 1, with the following
modification. Let qj =

⌊
λ log|D|(2j)

⌋
, and let j′ = qj

⌊
j
qj

⌋
.

The algorithm first initializes the entries [j − 1, j] in all
these matrices with the corresponding base-case values.
The column is partitioned to intervals of length qj, where
as before Qk denotes the interval Ikqj ,(k+1)qj . Once an
interval Qk is computed (i.e. the loop was executed with
respect to index l = kqj), the �-encoding of the sub-
vector Tα

[
Qk , j
]
is computed and kept for its later usage

as lookup index. In addition, upon starting to compute the
entries within an interval Qk (i.e. when l = (k + 1)qj − 1),
the following multiplications are computed for every
α ∈ �:

yα,k = Tα
[
Qk , Iqj(k+1),j′

]
⊗ Tα
[
Iqj(k+1),j′ , j

]
Obs.1= min

{
Tα
[
Qk ,Qp
]⊗ Tα

[
Qp, j
] | k < p <

j′

qj

}

Observe that all required entries for the computa-
tion of yα,k are already computed and stored in Tα ,
and that similarly as done in Section “Computing matrix-
vector multiplications”, yα,k can be computed by per-
forming O

(
j
qj

)
constant time lookup table queries.

After yα,k is computed, yα,k[x] contains the value
min
{
Tα[kqj + x, h]+Tα[h, j] | (k + 1)qj ≤ h < j′

}
. Given

yα,k[x], the number of expressions that need to be exam-
ined in line 5 of the loop with respect to l = kqj +
x reduces to O(qj) per entry (considering values of the
index h between l and (k + 1)qj, and between j′ and j).
Entries in matrices of the form Tα and Tε are com-
puted exactly as done in lines 6 and 7 of Algorithm 1,
respectively.

In the second stage, column j is computed in matrices
EDT α and ED. This is achieved by extending Equations 13
and 12 to have an entire column on the left-hand side, as
follows:

EDT α
[
I2,i+1, j
] Eq.13← ED

[
I2,i+1, I1,j

]⊗ Tα
[
I1,j, j
] (15)

ED
[
I2,i+1, j
] Eq.12←

min

⎧⎪⎨⎪⎩
Sα
[
0, I2,i+1

]+ Tα[ 0, j] ,

tr(Sα)
[
I2,i+1, I1,i+1

]⊗ EDT α
[
I1,i+1, j
]
∣∣∣∣∣∣∣α ∈ �

⎫⎪⎬⎪⎭
(16)

This completes the update of the DP tables due to the
addition of the letter tj−1.

Complexity analysis
After receiving n letters, the prefixes s0,i and t0,j of
the input strings were preprocessed for some i, j such
that i + j = n. The maintenance of lookup tables
for efficient D-discrete multiplications requires at most
O
( |�|n1+λ

|D|
)
operations per step among the first n steps,

and O
( |�|n2+λ

|D|
)
operations for all first n steps, as shown

in Section “Online preprocessing of D-discrete matrices”.
Adding a letter tj−1 to the instance, the time required for

processing the entries in column j of the T matrices is as
follows. O

( |�|j
qj

)
vectors yα,k need to be computed, each

vector is computed in O
(

j
qj

)
time, and their total com-

putation time is therefore O
(

|�|j2
q2j

)
. In addition, O(|�|j)

entries in tables T ′α are computed in O(qj) time each,
and O(|�|j) entries in tables Tα and Tε are computed in
O(|�|) time each. Therefore, the total time for comput-

ing column j in all these matrices is O
(

|�|j2
q2j

+ |�|2j
)

=

O
(

|�|n2
λ2 log2|D|(n)

+ |�|2n
)
.

Computing column j in matrices EDT α and ED,
the algorithm performs O(|�|) matrix-vector min-plus
multiplications (Equations 15 and 16), each taking

O
(

n2
λ2 log2|D|(n)

)
time using the algorithm in Section

“The EDDC algorithm based on efficient D-discrete min–
plus matrix-vector multiplication”, and computes the
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entry-wise minimum of |�| i-length vectors (Equation 16)
in O(|�|i) time. Hence, the total time complexity of com-

puting column j isO
(

|�|n2
λ2 log2|D|(n)

+ |�|2n
)
. Symmetrically,

this bounds the running time when the n-th letter comes
from the source string s, and so the total running time

over all first n steps is O
(

|�|n3
λ2 log2|D|(n)

+ |�|2n2
)
. The algo-

rithm requires O
(

|�|n2+λ

λ2 log2|D|(n)

)
space for the computed

tables.

Online VMT algorithms
The online algorithm for EDDC presented in the previous
section can be generalized for other problems with sim-
ilar properties. Specifically, VMT problems [11], which
utilize min-plus multiplications and for which it can be
guaranteed that computed DP matrices are D-discrete,
can have their algorithms implemented using the same
framework as we have presented above. Thus, in con-
trast to the general case for VMT problems in which it is
required that the complete input be available at the begin-
ning of the algorithm’s run, in the D-discrete case the
input can be obtained in a streaming model. In addition,
the asymptotic time complexity in such cases is slightly
reduced with respect to the time complexity of the case
of min-plus multiplication of general matrices. A con-
crete example to such a problem is the RNA base-pairing
maximization problem [11,15], in which the difference
between adjacent entries (in the single DPmatrix the algo-
rithm uses) is either 0 or 1. This property was previously
exploited by Frid and Gusfield [14] to obtain an O

(
n3
log n

)
algorithm for the problem. Using the D-discrete min-
plus multiplication algorithm presented here, this imme-
diately implies an algorithm having the improved time
bound of O

(
n3

log2 n

)
. Additional related problems from

the domains of RNA folding and Context Free Grammars
(CFGs) parsing fall under the VMT framework, and it
is likely that D-discreteness can be exploited for accel-
erating the computation of more problems within this
family.

Additional acceleration using run-length encoding
Let w be a string. A maximal substring of w contain-
ing multiple repeats of the same letter is called a run in
w. The Run Length Encoding (RLE) of w is a representa-
tion of the string in which each run is encoded by the
corresponding repeating letter α and its repeat count p
(denoted αp). For example, the string w = aabbbaccc is
a concatenation of the four runs aa, bbb, a, and ccc, and
its RLE is a2b3a1c3. Denote by w̃ the compressed form

of w, which replaces each run in w by a single occur-
rence of the corresponding letter. When n denotes the
length of w, ñ will denote the length of the compressed
form of w. The run index ĩ of a letter wi in w is the index
of the run in which wi participates. It can be asserted that
the compressed form of the substring wi,j of w is the sub-
string w̃ĩ,(j̃−1)+1 of w̃. In the above example, w̃ = abac, and
therefore ñ = 4 (while n = 9). The run indices of all let-
ters in w are given by the sequence [0, 0, 1, 1, 1, 2, 3, 3, 3],
and the compressed form of w3,8 = bbacc is w̃3̃,7̃+1 =
w̃1,4 = bac.
Previous works [7-9] showed how RLE can be exploited

for improving the efficiency of EDDC algorithms. In these
works it was required that the costs of duplications and
contractions be less than the costs of all other opera-
tions (the requirement was implicit in [9], see discussion
in Section “A comparison with previous works”). This
requirement is somewhat unnatural for the application of
minisatellite map comparison, since it assumes that muta-
tions, which are typically common events, should cost
more than the less common events of duplications and
contractions. In this section, we adapt a similar RLE-based
acceleration to our EDDC algorithm. The application of
this acceleration requires the following constraint over
cost functions:

Constraint 1. For every α,β ∈ �, dup(α) ≤ dup(β) +
mut(β ,α) ≤ ins(α), and cont(α) ≤ cont(β)+mut(α,β) ≤
del(α).

The constraint dup(β) + mut(β ,α) ≤ ins(α) implies
that it never costs more to replace an insertion of some
letter α into some nonempty string by the duplication
of a letter β adjacent to the insertion position, and
its consecutive mutation to α. Thus, we may assume
w.l.o.g that optimal edit scripts do not contain inser-
tions (unless applied to empty strings), or in other words,
generation of new letters can only be obtained via dupli-
cations. Such an assumption is relatively reasonable in
the context of minisatellite map comparison, consider-
ing the biological mechanisms that describe generative
modifications.
The constraint dup(α) ≤ dup(β) + mut(β ,α) can

be intuitively understood by the example of generating
a string of the form ααβ from a string of the form
αβ . Due to the constraint, it would cost the same or
less if the string ααβ is obtained by duplicating the
α letter in αβ , rather than by duplicating the β let-
ter and mutating its left copy into α. Again, such an
assumption is relatively reasonable for the minisatel-
lite map application. Symmetric arguments hold with
respect to the constraint over contraction and deletion
costs.



Pinhas et al. Algorithms for Molecular Biology 2013, 8:27 Page 17 of 28
http://www.almob.org/content/8/1/27

Algorithm 3: RL-LETTER-TO-STRING(t)
1 Run Stage 1 of Algorithm 2 over the input string t̃. Denote computed matrices Tα by T̃α .
2 For n the length of t, allocate a vector DC of length (n + 1), and set its two first entries DC[0] and DC[1] to zeros.
3 For j = 2, 3, . . . , n do

4 Set DC[j]
Eq.17←
{
DC[j − 1]+ dup(tj−1), tj−1 = tj−2,
DC[j − 1] , otherwise.

Observation 4. Let s and w be strings. Then, ed(s,wββ) ≤
ed(s,wβ) + dup(β), and ed(s,ββw) ≤ ed(s,βw) + dup(β)

for every β ∈ �.

The correctness of Observation 4 follows from the exis-
tence of a script from s to wββ whose cost is ed(s,wβ) +
dup(β): this script first applies an optimal script to trans-
form s into wβ at cost ed(s,wβ), and then duplicates the
last β in wβ at cost dup(β).

Lemma 5. Let α,β be letters and w �= ε a string. When
Constraint 1 holds, ed(α,βw), ed(α,wβ) ≥ ed(α,w) +
dup(β), and ed(βw,α), ed(wβ ,α) ≥ ed(w,α) + cont(β).

The proof of Lemma 5 appears in Appendix “Proofs
to lemmas corresponding to the run-length encoding
based EDDC algorithm ’’.
Next, we show how to reduce the number of expres-

sions that need to be considered in the EDDC recursive
equations, in case Constraint 1 applies. For a string w of
length at least 2, denote by R(w) ⊆ P(w) the set
of all partitions (wa,wb) of w such the last letter in
wa is different from the first letter in wb. For
example, for w = aabbbcdddd,R(w) = {(aa, bbbcdddd),
(aabbb, cdddd), (aabbbc, dddd)}. Observe that |R(w)| =
ñ − 1.
We start by describing how to improve the computa-

tion efficiency of EDDC for cases in which one of the
input strings contains a single letter. Denote by dupcost(w)

the cost of the edit script from w̃ to w which generates
each run αp in w by applying p − 1 duplication oper-
ations over the corresponding letter α in w̃. Similarly,
denote by contcost(w) the cost of the edit script from w
to w̃ which reduces each run αp in w by applying p − 1
contraction operations over α. For example, for w =
aabbbbaaccc, dupcost(w) = 2dup(a)+3dup(b)+2dup(c)

and contcost(w) = 2cont(a) + 3cont(b) + 2cont(c). Note
that dupcost(w) ≥ ed(w̃,w), and contcost(w) ≥ ed(w, w̃).
It is simple to assert the following recursive relations:
The following lemma shows that when one of the input

strings contains a single letter, the edit distance can be
inferred from the edit distance between this letter and the
compressed form of the second string.

Lemma 6. Let α be a letter and w a string. When Con-
straint 1 holds, ed(α,w) = ed(α, w̃) + dupcost(w), and
ed(w,α) = contcost(w) + ed(w̃,α).

The following lemma shows that given a certain edit
script from string u, its cost is greater than or equal to the
cost of its application on a superstring of u.
For a string s of the form s = sausb and an edit script

ES = 〈u = u0,u1, . . . ,ur = w
〉
from u to w, denote by

ES(s) the edit script ES(s) = 〈s = sausb = sau0 sb, sa u1sb,
. . . , saursb = sawsb

〉
from s = sausb to t = sawsb.

Lemma 7. For s = sausb and ES = 〈u = u0,u1, . . . ,
ur = w〉, cost (ES(s)) ≤ cost(ES).

The proofs of Lemma 6 and Lemma 7 appear in the
Appendix.
Equations 17 and 18 and Lemma 6 support the follow-

ing preprocessing algorithm, Algorithm 3. Given a target
string t, Algorithm 3 generates data structures that enable
retrieving in constant time values of the form ed

(
α, ti,j
)

for every α ∈ � and every substring ti,j of t. The algo-
rithm generates tables of the form T̃α for every α ∈
�, such that entries T̃α[i, j] contain the corresponding
values ed

(
α, t̃i,j
)
. In addition, the algorithm generates a

vector DC, such that entries DC[j] contain the corre-
sponding values dupcost

(
t0,j
)
. Then, queries of the form

ed
(
α, ti,j
)
can be answered in a constant time according to

Equation 19 below.

dupcost(wβ) =
{
dupcost(w) + dup(β), w ends withβ ,

dupcost(w), otherwise.
(17)

dupcost(w) =
{
dupcost(wa) + dupcost(wb), (wa,wb) ∈ R(w),

dupcost(waβ) + dupcost(βwb) + dup(β), (waβ ,βwb) ∈ P(w).
(18)
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ed
(
α, ti,j
) Lem.6

Eq.18= T̃α[ĩ, (˜j − 1) + 1]

+
{
DC[j]−DC[i] , ti−1 �= ti,
DC[j]−DC[i]−dup(ti), otherwise.

(19)

An algorithm which is symmetric to Algorithm 3 can be
described in order to preprocess a string s for queries of
the form ed

(
si,j,α
)
.

We continue to describe the improved computation in
the case where both input strings s and t are of length
at least 2. To do so, we first add some auxiliary nota-
tion. For an interval Ix,y of positions within a string w,
denote by Ĩx,y the subsequence of indices in Ix,y which
are start positions of runs in w. For example, for w =
aabbbaacccc, the interval I1,7 =[1, 2, . . . , 6] contains all
positions of letters within the substring w1,7 = abbbaa,
and Ĩ1,7 =[2, 5] contains the start positions in w of the
runs bbb and aa that are included in I1,7 (the first let-
ter a in w1,7 belongs to a run in w that starts in position
0, and therefore position 1 is not included in Ĩ1,7). This
notation will be used for defining subsequences of rows
and columns in DP matrices maintained by the algorithm,
where some of these intervals are derived from the source
string s, and some from the target string t. We will assume
that the string from which Ĩx,y was derived is clear from
the context, and will not specify it explicitly. For exam-
ple, when Ĩx,y defines rows in matrices ED or EDT α , or
either rows or columns in matrices Sα , then the indices in
Ĩx,y are derived from the source string s. When Ĩx,y defines
columns in matrices ED or EDT α , or either rows or
columns inmatricesTα , then the indices in Ĩx,y are derived
from the target string t. Subsequences Ĩx,y will be used
for defining sparse regions in matrices, i.e. regions con-
taining sets of rows or columns which are not necessarily
adjacent.
Consider the computation of ed(s, t) as expressed in

Equation 8. Assume first the special case where s ends
with a run of length at least 2. In this case, s is of the
form s = wββ for some string w and a letter β . For
every partition (ta, tb) of t, it is possible to combine an
optimal script ES1 from the prefix wβ of s to ta and an
optimal script ES2 from the suffix β of s to tb, and to
obtain a script ES = 〈ES1(wββ), ES2(taβ)

〉
from s to t.

Therefore, ed(wββ , t) ≤ cost(ES) = cost(ES1(wββ))+
cost(ES2(taβ))

Lem.7≤ cost(ES1) + cost(ES2) = ed(wβ , ta)
+ ed(β , tb). In particular, ed(wββ , t) ≤ min

{
ed(wβ , ta) +

ed (β , tb) | (ta, tb) ∈ P(t)
} Eq.9= edtβ(wβ , t). In addition, it

is possible to compose an edit script from wββ to t by
first contracting the last two letters to obtain the string
wβ , and then applying an optimal script from wβ to t. The
cost of such a script is ed(wβ , t) + cont(β), and therefore

we get that ed(wββ , t) ≤ min
{
edtβ(wβ , t), ed(wβ , t) +

cont (β)
}
.

Next, we show that ed(wββ , t) ≥ min
{
edtβ(wβ , t) ,

ed(wβ , t)+cont(β)
}
. FromEquation 8, either ed(wββ , t) =

ed(wββ ,α)+ed(α, t) or ed(wββ , t)=edtα (sa, t)+ed
(
sb,α
)

for some α ∈ � and (sa, sb) ∈ P(wββ). Consider first the
latter case. If (sa, sb) = (wβ ,β), then

ed(wββ , t) = edtα(wβ , t) + ed(β ,α)

Eq.9= min
{
ed
(
wβ , ta
)+ ed
(
α, tb
)

|
(
ta, tb
)

∈ P(t)
}

+ ed(β ,α)

Obs.5≥ min
{
ed
(
wβ , ta
)+ ed
(
β , tb
)

|
(
ta, tb
)

∈ P(t)
}

Eq.9= edtβ(wβ , t).

Else, sb is of length at least 2, and there is some string u
such that sb = uββ andw = sau. In this case, ed(wββ , t) =
edtα (sa, t) + ed(uββ ,α)

Lem.5≥ edtα (sa, t) + ed(uβ ,α) +
cont(β)

Eq.8≥ ed(wβ , t) + cont(β). Similarly, it can be
shown that when ed(wββ , t) = ed(wββ ,α) + ed(α, t) for
some α ∈ �, ed(wββ , t) ≥ ed(wβ , t) + cont(β), and
so ed(wββ , t) ≥ min

{
edtβ(wβ , t), ed(wβ , t) + cont(β)

}
.

Thus,

ed(wββ , t) = min
{
edtβ(wβ , t), ed(wβ , t) + cont(β)

}
(20)

Formulating Equation 20with respect to the data structures
defined in Section “A baseline dynamic-programming
algorithm for EDDC” (under the assumption that all
values appearing at the right-hand side of the equation are
computed and stored in the corresponding entries), we get
the following equation:

ed
(
s0,i, t0,j
) = min

{
EDT si−1 [i − 1, j] ,ED[i − 1, j]

+ cont(si−1)
}
(when si−1 = si−2)

(21)

Now, consider the case where the last run in s is of
length 1 (i.e. s is not of the form wββ). Assume first that
the term that yields the minimum value of the right-hand
side of Equation 8 is of the form edtα (sa, t) + ed

(
sb,α
)

for some partition (sa, sb) ∈ P(s) and a letter α ∈ �.
If (sa, sb) /∈ R(s), then there is some letter β ∈ �

which is both the last letter of sa and the first let-
ter of sb. In this case, we can write sa = wβ and
sb = βu. Note that u �= ε (since s �= wββ by defi-
nition), and so ed(s, t) = edtα(wβ , t) + ed(βu,α)

Eq.9=
min
{
ed (wβ , ta) + ed

(
α, tb
) | (ta, tb) ∈ P(t)

}+ ed(βu,α)
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Lem.5,
Obs.4
≥ min

{
(ed (wββ , ta) − dup(β)) + ed

(
α, tb
) | (ta, tb)

∈ P(t)
} + (ed(u,α) + dup(β)) = min

{
ed (wββ , ta)+

ed(α, tb) | (ta, tb) ∈ P(t)
} + ed(u,α)

Eq.9= edtα(wββ , t) +
ed(u,α). From the optimality of the partition

(
sa, sb
) =

(wβ ,βu), it follows that ed(s, t) = edtα(wββ , t)+ ed(u,α).
If u starts with β this step can be repeated, and
inductively we can apply such partition refinements
until obtaining a partition

(
sa, sb
)

of s such that
ed(s, t) = edtα (sa, t) + ed

(
sb,α
)
and
(
sa, sb
) ∈ R(s). Now,

Equation 8 can be revised as follows:

ed(s, t) = min
{
ed(s,α) + ed(α, t),
edtα (sa, t) + ed

(
sb,α
) ∣∣∣∣
(
sa,sb
)
∈R(s),

α∈�

}
(when s is not of the formwββ)

(22)

Using the DP formulation, we get

ed
(
s0,i, t0,j
) = min

{
Sα[0, i]+Tα[0, j] ,
EDT α[h, j]+Sα[h, i]

∣∣∣∣ h∈Ĩ0,i ,α∈�

}

= min
{
Sα[0, i]+Tα[0, j] ,
tr (Sα) [i, Ĩ0,i]⊗EDT α

[
Ĩ0,i, j
] ∣∣∣∣α ∈ �

}
(when si−1 �= si−2)

(23)

Similarly as shown for the computation of ed(s, t), it
is possible to revise the computation of edtα(s, t) under
Constraint 1 and obtain the following equations:

edtα(s,wββ) = min
{
edtα(s,wβ) + dup(β),
ed(s,wβ) + mut(α,β)

}
(24)

edtα
(
s0,i, t0,j
) = min

{
EDT α[i, j − 1]+dup

(
tj−1
)
,

ED[i, j − 1]+mut
(
α, tj−1
) }

(when tj−1 = tj−2)

(25)

edtα(s, t) = min
{
ed
(
s, ta
)+ ed
(
α, tb
)

|
(
ta, tb
)

∈ R(t)
}

(when t is not of the formwββ)

(26)

edtα
(
s0,i, t0,j
) = min

{
ED[i, h]+Tα[h, j] | h ∈ Ĩ0,j

}
=ED
[
i, Ĩ0,j
]⊗ Tα

[
Ĩ0,j, j
]
(
when tj−1 �= tj−2

)
(27)

Finally, we present Algorithm 4, which is an efficient
version of Algorithm 2. Stage 1 of the new algorithm is
accelerated by using Algorithm 3 to compute for every α ∈
� distances from α all substrings of s and distances from
all substrings of t to α. In Stage 2, we use the equations
developed above in order to accelerate the computation.
The correctness of the algorithm follows from the cor-
rectness of the recursive equations, and can be asserted
similarly as done for Algorithm 2.

Complexity analysis
Assume for simplicity that compressed forms of both
input strings s and t have the same length ñ.

Algorithm 3. The running time of line 1 of the algo-
rithm is O(n) for computing the compressed form of the
input string, and O(|�|MP(ñ)) for running Stage 1 of
Algorithm 2 over this compressed string. Lines 2 and 3
require O(n) time, and so the overall time complexity of
Algorithm 3 is O(n + |�|MP(ñ)). The space complexity
for computing and maintaining all matrices is O(|�|ñ2),
and an additional O(n) space is required for the vector
DC. Hence, the overall space complexity of the algorithm
is O(n + |�|ñ2) (see Section “Time complexity analysis”
for complexity analysis of Stage 1 of Algorithm 2).

Algorithm 4. Time and space complexities of Stage 1
of the algorithm are identical to those of Algorithm 3.
As in Section “The algorithm”, the computations gov-
erning the running time of Stage 2 are those of matrix
multiplications performed within recursive calls to RL-
COMPUTE-MATRIX.
The recursive computation of RL-COMPUTE-

MATRIX can be visualized as a tree (see Figure 4). Each
node in the tree corresponds to a call to RL-COMPUTE-
MATRIX over some regions Ii,k × Ij,l, which is either
a leaf in case that k = i + 1 and l = j + 1, or oth-
erwise an internal node. In the latter case, the node
has exactly two children, corresponding to the two
recursive calls obtained from either a vertical (lines 11
and 13) or a horizontal (lines 16 and 18) partition of the
region. For simplicity, assume that the interval length
ñ = ∣∣Ĩ2,n+1

∣∣ = 2x for some integer x. It can be observed
that the algorithm alternates between vertical and hor-
izontal partitions along paths from the root of the tree,
where regions of two different nodes in the same depth y
are disjoint, and the union of all regions of nodes in depth
y covers the entire initial region I2,n+1 × I2,n+1 of the
root node. For every 0 ≤ y ≤ log(n), there are two series
of intervals Iy,0, Iy,1, . . . , Iy,2y−1 and Jy,0, Jy,1, . . . , Jy,2y−1,
such that the set of regions corresponding to all nodes
in depth 2y is

{
Iy,f × Jy,g | 0 ≤ f < 2y, 0 ≤ g < 2y

}
, and

the set of regions corresponding to all nodes in depth
2y + 1 is

{
Iy,f × Jy+1,g | 0 ≤ f < 2y, 0 ≤ g < 2y+1}. In



Pinhas et al. Algorithms for Molecular Biology 2013, 8:27 Page 20 of 28
http://www.almob.org/content/8/1/27

addition, the corresponding subsequences Ĩy,0, . . . , Ĩy,2y−1

and J̃ y,0, . . . , J̃ y,2y−1 have all the same size 2x−y.
Consider a node of depth 2y whose corresponding

region is Iy,f × Jy,g , and the two regions correspond-
ing to its children Iy,f × Jy+1,2g and Iy,f × Jy+1,2g+1. The
computation time spent on the node is dominated by

the matrix multiplications performed in line 12 of RL-
COMPUTE-MATRIX. This includes |�| matrix multipli-
cations between pairs of matrices such the dimensions of
the first matrix in each pair is

∣∣Iy,f ∣∣ × ∣∣J̃ y+1,2g∣∣ = ∣∣Iy,f ∣∣ ×
2x−y−1, and the dimensions of the second matrix in a pair
is
∣∣J̃ y+1,2g∣∣× ∣∣J̃ y+1,2g+1∣∣ = 2x−y−1 × 2x−y−1. Observe that

Algorithm 4: RL-MATRIX-EDDC(s, t)
// Stage 1

1 Let n denote the lengths of s and t. Run Algorithm 3 to preprocess s and t, and generate (n+ 1) × (n+ 1) matrices Sα and Tα

for every α ∈ � as defined in Section “The algorithm” (applying Equation 19).
// Stage 2

2 Allocate (n + 1) × (n + 1) matrices EDT α for every α ∈ �, and an (n + 1) × (n + 1) matrix ED. Initialize base-case
corresponding entries in all matrices EDT α and ED as describe in Algorithm 1. This includes all entries in the first two rows
and the first two columns in these matrices.

3 Set EDT α[I2,n+1, I2,n+1]← ED[I2,n+1, I0,2]⊗Tα[I0,2, I2,n+1] for every α ∈ �, and set
ED[I2,n+1, I2,n+1]← min

{
tr(Sα)[I2,n+1, I0,2]⊗EDT α[I0,2, I2,n+1] | α ∈ �

}
.

4 Run RL-COMPUTE-MATRIX(I2,n+1, I2,n+1).
5 return ED[n, n].

Procedure: RL-COMPUTE-MATRIX(Ii,k , Ij,l)
Precondition: 2 ≤ i < k, 2 ≤ j < l, and all entries in matrices Sα and Tα , as well as all entries in submatrices EDT α[I0,i, Ij,l]

and ED[Ii,k , I0,j], contain the solutions for the corresponding sub-instances. In addition,
EDT α[Ii,k , Ĩj,l]= ED[Ii,k , Ĩ0,j]⊗Tα[Ĩ0,j, Ĩj,l], and ED[Ĩi,k , Ij,l]= min

{
tr(Sα)[Ĩi,k , Ĩ0,i]⊗EDT α[Ĩ0,i, Ij,l] | α ∈ �

}
.

Postcondition: All entries in the region Ii,k × Ij,l in matrices EDT α and ED contain the solutions for the corresponding
sub-instances.

1 If k = i + 1 and l = j + 1 then
2 If tj−1 = tj−2 then
3 Set EDT α[i, j]

Eq.25← min
{
EDT α[i, j − 1]+dup(ti−1),ED[i, j − 1]+mut(α, ti−1)

}
for every α ∈ �.

4 If si−1 = si−2 then
5 Set ED[i, j]

Eq.21← min
{
EDT si−1 [i − 1, j] ,ED[i − 1, j]+cont(si−1)

}
.

6 Else

7 Set ED[i, j]

precondition,
Eq.23← min

{
ED[i, j] , Sα[0, i]+Tα[0, j] | α ∈ �

}
.

8 Else
9 If

∣∣Ĩj,l∣∣ ≥ ∣∣Ĩi,k∣∣ then
// vertical partitioning

10 Let j < h < l be the smallest index such that h̃ =
⌈
j̃+l̃
2

⌉
.

11 Run RL-COMPUTE-MATRIX(Ii,k , Ij,h).
12 Update EDT α[Ii,k , Ĩh,l]← min

{
EDT α[Ii,k , Ĩh,l] ,ED[Ii,k , Ĩj,h]⊗Tα[Ĩj,h, Ĩh,l]

}
for every α ∈ �.

13 Run RL-COMPUTE-MATRIX(Ii,k , Ih,l).
14 Else

// horizontal partitioning

15 Let i < h < k be the smallest index such that h̃ =
⌈
ĩ+k̃
2

⌉
.

16 Run RL-COMPUTE-MATRIX(Ii,h, Ij,l).
17 Update ED[Ĩh,k , Ij,l]← min

{
ED[Ĩh,k , Ij,l] ,min

{
tr(Sα)[Ĩh,k , Ĩi,h]⊗EDT α[Ĩi,h, Ij,l] |α ∈ �

}}
.

18 Run RL-COMPUTE-MATRIX(Ih,k , Ij,l).
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∣∣Iy,f ∣∣ ≥ 2x−y−1, and such multiplications can be imple-

mented by dividing the interval Iy,f into
∣∣∣Iy,f ∣∣∣
2x−y−1 intervals of

length 2x−y−1 each, and performing
∣∣∣Iy,f ∣∣∣
2x−y−1 multiplications

between square matrices of dimensions 2x−y−1 × 2x−y−1

in a total time of
∣∣∣Iy,f ∣∣∣
2x−y−1MP(2x−y−1). Therefore, the time

required for all matrix multiplications performed within
nodes in depth 2y is

∑
0≤f<2y

∑
0≤g<2y

|�| ∣∣Iy,f ∣∣MP(2x−y−1)

2x−y−1

=
∑

0≤f<2y

2y|�| ∣∣Iy,f ∣∣MP(2x−y−1)

2x−y−1

= 2|�|nMP(2x−y−1)

ñ
.

Similarly, it is possible to show that the total time
required for all matrix multiplications performed within
nodes in depth 2y + 1 is also 2n|�|MP(2x−y−1)

ñ , and so the
total computation time of matrix multiplications through-
out the entire algorithm run is O

( |�|n
ñ
∑

0≤y<x MP(2y)
)
.

As in Section “The algorithm”, using the Master Theorem
[16], this summation evaluates to O

( |�|nMP(ñ)
ñ

)
. In addi-

tion to matrix multiplications, RL-COMPUTE-MATRIX
performs O(|�|n2) operations in base computations
(lines 2-7), and so the total time complexity of the com-
plete algorithm is O

(
|�|n2 + |�|nMP(ñ)

ñ

)
.

A simple implementation of Algorithm 4 can be done
using the same space complexity ofO

(|�|n2), as the space
complexity of Algorithm 2. A more involved implementa-
tion can be applied by observing that in fact the algorithm
only examines and updates entries in matrices of dimen-
sions at most n× ñ or ñ×n when performing matrix mul-
tiplications, and in addition it examines adjacent entries
“to the left” or “above” an entry in a base-case region. This
observation can be used in order to reduce the space com-
plexity of the algorithm to O (|�|nñ), where the complete
details of such an implementation are omitted from this
text.

A comparison with previous works
In this section, we review the previous main algorithms
for EDDC by Behzadi and Steyaert [7], Bérard et al. [8]
and Abouelhoda et al. [9], and point out similarities and
improvements made in our current work.
The main contribution of our work is in obtaining

sub-cubic algorithms for EDDC, whereas all previous
algorithms have cubic time complexities (for |�| the
alphabet size, n the length of the input strings and ñ

the length of their RLE compressed forms, the algo-
rithms of [7], [8], and [9] obtain the time complexi-
ties O
(
n2 + nñ2 + |�|ñ3 + |�|2ñ2), O (n3 + |�|ñ3), and

O(n2 + nñ2), respectively).
Notably, the algorithm of [9] eliminates a |�| factor that

appears in the time complexities of the algorithms given
in [7,8] and here. However, this improvement is confined
to a constrained model of duplication histories. As we do
not assume this model here, we could not use the repre-
sentation of [9] that allows the elimination of the |�| time
complexity factor.
In general, the frameworks of all algorithms in [7-9]

as well as the algorithms presented here are similar.
All these algorithms apply two phases, where the first
phase computes costs corresponding to all substrings of
each one of the input strings separately, and the second
phase uses these precomputed costs in order to com-
pute the edit distance between each pair of prefixes of
the input strings (our online variant described in Section
“An online algorithm for EDDC using min-plus matrix-
vector multiplication for discrete cost functions” inter-
leaves these two phases, yet each operation it conducts
can be conceptually attributed to one of the phases). The
recursive formulas are similar as well, where those for the
first phase can be viewed as special kinds of Weighted
Context Free Grammar derivation rules.
Next, we address the cost function constraints. All algo-

rithms assume that operation costs are nonnegative and
apply additional assumptions similarly to those listed in
our Property 1, which can be made without loss of gener-
ality.
In [8], operation costs were limited so that all dupli-

cations and contractions have the same constant cost
(regardless of the letter over which they are applied),
all deletions and insertions have the same constant cost,
and all mutation costs are symmetric (i.e. mut(α,β) =
mut(β ,α) for every α,β ∈ �). While it was argued that
these restrictions allow edit distance to be a metric, they
limit the generality of the algorithm of [8], where the
rest of the previous algorithms we mentioned can han-
dle scoring schemes that not necessarily abide by these
restrictions.
Both in [7] and in [8], it was required that all dupli-

cation and contraction costs are lower than the costs of
any of the insertion, deletion, or mutation costs. This
restriction is not explicitly stated in [9], yet seems to
be required there as well. For the application of min-
isatellite map comparison, this requirement is somewhat
unnatural since it assumes that mutations, which are typ-
ically common events, should cost more than the less
common events of duplications and contractions. Our
algorithms can be applied even when this restriction
does not hold. However, one of our algorithms, the RLE
variant (Section “Additional acceleration using run-length
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encoding”) adds a new requirement that was absent from
those previous algorithms: it requires that for every α,β ∈
�, dup(α) ≤ dup(β)+mut(β ,α) ≤ ins(α), and cont(α) ≤
cont(β) + mut(α,β) ≤ del(α) (our Constraint 1). On one
hand, our Constraint 1 is more strict than the constraint
of [7] and [8], in the sense that it implies nonnegative
lower bounds over differences of the form ins(α)−dup(α)

and del(α) − cont(α), while in [7] and [8] it was only
required that these differences be nonnegative. On the
other hand, our Constraint 1 does not require that the cost
of mutations be higher than the cost of duplications and
contractions.
We showed that our algorithms are more general with

respect to the assumed constraints. We also claim that our
algorithms are more precise with respect to the formal
problem specification. All previous algorithms (excluding
the first algorithm by Bérard and Rivals [2], which had
an O(n4) running time and assumed a constant cost for
all mutations in addition to the restrictions in [8]) might
output non-optimal solutions in certain cases, as demon-
strated in the following example. Consider the input s =
ab, t = ef , and the cost function in which all duplica-
tions and contractions cost 1, all deletions and insertions
cost 20, and the symmetric mutation costs are as given in
Table 1. It can be shown that all three algorithms in [7],
[8], and [9] would output the value 18 as the edit distance
between the input strings, reflecting one of the edit scripts〈
ab, eb, ef

〉
or
〈
ab, af , ef

〉
. Nevertheless, the correct value

is 17, due to the script
〈
ab, cb, cc, c, d, dd, ed, ef

〉
. Perhaps

it could be possible to specify additional restrictions over
the cost functions in order to guarantee that the algo-
rithms in [7], [8], and [9] return optimal solutions for all
instances.

Conclusions and discussion
This work presents computational techniques for improv-
ing the time complexity of algorithms for the EDDC
problem. We adapt the problem to the VMT frame-
work defined in [11], which incorporates efficient matrix
multiplication subroutines in order to accelerate stan-
dard dynamic programming algorithms. We describe an
efficient algorithm, as well as two variants which are

Table 1 Mutation costs for the instance s= ab, t = ef

a b c d e f

a 0 6 3 6 9 9

b 6 0 3 6 9 9

c 3 3 0 3 6 6

d 6 6 3 0 3 3

e 9 9 6 3 0 6

f 9 9 6 3 6 0

even more efficient, given some restrictions on the cost
functions.
An additional result we give is the currently most

efficient algorithm for the min-plus multiplication of
D-discrete matrices (matrices for which differences
between adjacent entries are integers within an interval of
length D).
We note that the running times of our algorithms

depend on the alphabet size |�|. For the general algo-
rithm, the running time is O (|�| · MP(n)), where MP(n)

is the time complexity of the min-plus multiplication
of two n×n matrices, which is currently upper-bounded
by O
(
n3 log3 log n

log2 n

)
[12]. Some of the previous algo-

rithms obtain alphabet independent time complexities,
for example the algorithms in [9] and [2]. As we dis-
cussed in Section “A comparison with previous works”,
such algorithms do not solve the most general vari-
ant of the problem and require some assumptions on
the cost function. Nevertheless, we believe that the
matrix multiplication-based techniques for improving
the time complexity presented in this paper can also
be incorporated to the algorithm of [9], however the
details of this enhancement are beyond the scope of this
paper.
In contrast to the work of [9], our model assumes that

intermediate strings along edit scripts may contain char-
acters which are absent from both source and target
strings. This implies that the size of the alphabet |�| is
not bounded by the length of the input sequences. In the
context of minisatellite comparison, identifying a feasible
alphabet and cost function for this task is an interesting
problem beyond the scope of this paper.

Appendix
Correctness of the recursive computation
This section proves Theorem 1, thus asserting the cor-
rectness of the recursive computation for the EDDC
problem given in Section “The recurrence formula”. We
start by adding some required notation and showing
how long edit scripts can be decomposed to shorter
partial scripts. Then, we use the observed recursive
properties in order to prove the correctness of the
recurrence.
Let s,w, t be strings, ES1 = 〈s = u1,0,u1,1, . . . ,u1,r1 = w

〉
an edit script from s to w, and ES2 = 〈w = u2,0,
u2,1, . . . ,u2,r2 = t

〉
an edit script from w to t. Denote by

ES = 〈ES0, ES1〉 the concatenated edit script ES =〈
s=u1,0,u1,1, . . . ,u1,r1 = w = u2,0,u2,1, . . . ,u2,r2 = t

〉
from

s to t. Note that cost(ES) = cost
(
ES1) + cost

(
ES2), and

|ES| = ∣∣ES1∣∣ + ∣∣ES2∣∣. This notation extends naturally
to concatenations of more than two scripts. For example,
ES = 〈ES1, ES2, . . . , ESq〉 denotes an edit script from
a string s to a string t obtained by a concatenation of q
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scripts, each script ES i transforms some intermediate
string wi−1 into a string wi, and s = w0 and t = wq.

Observation 5. For every three strings s,w, t, ed(s, t) ≤
ed(s,w) + ed(w, t).

The correctness of the above observation follows from
the fact that for a pair of optimal edit scripts ES1 from
s to w and ES2 from w to t, the script ES = 〈ES1, ES2〉
from s to t satisfies ed(s, t) ≤ cost(ES) = cost(ES1) +
cost(ES2) = ed(s,w) + ed(w, t).

Lemma 7.
For s = sausb and ES = 〈u = u0,u1, . . . ,ur = w

〉
,

cost (ES(s)) ≤ cost(ES).

Proof. Each edit operation transforming sauisb to
saui+1sb in ES(s) corresponds to an operation transform-
ing ui to ui+1 in ES . The only cases where corresponding
operations may have different costs are those of inser-
tions or deletions in ES at the beginning or ending of
ui, which become duplications or contractions in ES(s),
respectively. For example, in case the applied operation
over ui in ES is the deletion of its first letter α, and α

is also the last letter of sa, then the cost of the opera-
tion in ES is del(α) while the cost of the corresponding
operation in ES(s) is cont(α) ≤ del(α). Similar scenar-
ios may occur in case of an insertion of a letter at the
beginning of ui which is identical to the last letter of
sa, as well as in cases of insertions and deletions at the
end of ui of letters identical to the first letter of sb. In
any other case, each pair of corresponding operations
have the same cost. Therefore the cost of each opera-
tion in ES(s) is smaller than or equals to the cost of
its corresponding operation in ES , and cost (ES(s)) ≤
cost(ES).

Lemma 8. Let s and t be two strings, and (sa, sb) ∈ P(s),
(ta, tb) ∈ P(t) partitions of s and t, respectively. Then,
ed(s, t) ≤ ed(sa, ta) + ed(sb, tb).

Proof. Let ESa be an optimal script from sa to ta
and ESb an optimal script from sb to tb. The script
ESa(s) is a script from s = sasb to tasb. Similarly,
ESb(tasb) is a script from tasb to tatb = t. For the
script ES =

〈
ESa(s), ESb(tasb)

〉
from s to t, we have that

ed(s, t) ≤ cost(ES) = cost(ESa(s))+cost(ESb(tasb))
Lem.7≤

cost(ESa) + cost(ESb) = ed (sa, ta) + ed
(
sb, tb
)
.

Let s and t be strings. Call a pair of partitions (sa, sb) ∈
P(s) and (ta, tb) ∈ P(t) an optimal pairwise partition
of s and t if ed(s, t) = ed (sa, ta) + ed

(
sb, tb
)
. Say that

an edit script ES from s to t is a shortest optimal script
from s to t if ES is optimal, and for every other optimal
script ES ′ from s to t, |ES| ≤ ∣∣ES ′∣∣. For a script ES =〈
s = u0,u1, . . . ,ur = t

〉
from s to t and 0 ≤ i ≤ j ≤ r,

denote by ES i,j = 〈ui,ui+1, . . . ,uj
〉
the partial script of ES

from ui to uj.

Observation 6. Let ES = 〈u0,u1, . . . ,ur〉 be a shortest
optimal edit script from u0 to ur. For every 0 ≤ i ≤
j ≤ r, the partial script ES i,j is a shortest optimal edit
script from ui to uj. Moreover, for any shortest optimal
script ES∗i,j from ui to uj within ES , the script ES∗ =〈
ES0,i, ES∗i,j, ES j,r〉 is a shortest optimal script from u0
to ur.

The correctness of the above observation is obtained by
noting that if ES i,j is not a shortest optimal script from
ui to uj, then for some shortest optimal script ES∗i,j from
ui to uj we get that the script ES∗ = 〈ES0,i, ES∗i,j, ES j,r〉
either has a lower cost than ES , or is a shorter script of the
same cost, in contradiction to ES being a shortest optimal
script from u0 to ur .

Lemma 9. Let ES = 〈u0,u1, . . . ,ur〉 be a shortest optimal
edit script from u0 to ur. If there are two indices 0 ≤ i < j ≤
r such that ui and uj are strings of length 1, then j = i + 1.
In addition, for every 0 < k < r, uk �= ε.

Proof. Assume there are two indices 0 ≤ i < j ≤ r
such that ui and uj are strings of length 1, i.e ui = α

and uj = β for some α,β ∈ �. From Observation 6, the
partial script ES i,j = 〈α = ui,ui+1, . . . ,uj = β

〉
is a short-

est optimal script from α to β . Since j > i, it must be
that α �= β (otherwise the script ES ′ = 〈ES0,i, ES j,r〉 is a
shorter script from u0 to ur of no greater cost than ES , in
contradiction to ES being a shortest optimal script from
u0 to ur). From Property 1, ed(α,β) = mut(α,β), and so
the edit script containing the single operation of mutating
α to β is an optimal script from α to β , and it must be that
j = i + 1.
In addition, assume by contradiction there is some index

0 < k < r such that uk = ε. The only edit operation which
may yield an empty string is a deletion from a single-letter
string, and therefore uk−1 = α for some letter α. Simi-
larly, the only edit operation which may be applied over an
empty string is an insertion, therefore uk+1 = β for some
letter β , in contradiction to the fact that two intermediate
strings of length 1 must be consecutive along a shortest
optimal script, as shown above.

Call an edit script ES from a string s to a string t
simple if ES is a shortest optimal script from s to t,
in which no generating operation precedes a reducing
operation. The following lemma generalizes Lemma 2 of



Pinhas et al. Algorithms for Molecular Biology 2013, 8:27 Page 24 of 28
http://www.almob.org/content/8/1/27

[6], by considering also indels in addition to contractions
and duplications.

Lemma 10. For every pair of strings s and t, there exists a
simple edit script from s to t.

Proof. Let s and t be two strings, and r the length of a
shortest optimal script from s to t. When r ≤ 1, any short-
est optimal script from s to t either contains no reducing
operation or contains no generating operation, and in par-
ticular is a simple script. Otherwise, r > 1, and assume
by induction the lemma holds for every pair of strings
such that the length of a shortest optimal script from the
source string to the target string is less than r. Let ES =〈
s = u0,u1, . . . ,ur = t

〉
be a shortest optimal script from s

to t.
Case 1: The first operation in ES is not a gener-

ating operation. From Observation 6, the partial script
ES1,r is a shortest optimal script from u1 to ur , whose
length is r − 1. From the inductive assumption, there
is a simple script ES∗1,r from u1 to ur , and from
Observation 6 the script ES∗ = 〈ES0,1, ES∗1,r〉 is a
shortest optimal script from s to t. As the first oper-
ation in ES∗ is non-generating (being the same first
operation as in ES), ES∗ is simple, and the lemma
follows.
Case 2: The first operation in ES is a generat-

ing operation. Similarly as above, we may assume
w.l.o.g. by applying the inductive assumption that the
partial script ES1,r is simple. If this partial script is
non-reducing, then ES is non-reducing, and in par-
ticular it is simple. Otherwise, let 1 ≤ i < r be the
smallest index such that the transformation of ui to
ui+1 is by a reducing operation. Since neither generat-
ing nor reducing operations may precede this operation
in the partial script ES1,i, it follows that all opera-
tions in the partial script ES1,i (if there are any) are
mutations.
The generating operation transforming u0 to u1 is either

an insertion or a duplication of some letter α in u0. In both
cases, we can write s = u0 = vxw and u1 = vx′w (v, x, x′
and w are strings), where in the former case x = ε and
x′ = α, and in the latter case x = α and x′ = αα. As all
operations in the partial script ES1,i are mutations, each
intermediate string uj, for 1 ≤ j ≤ i, is of the form vjxjwj,
where vj, xj, and wj are string obtained by applying zero or
more mutations over v, x′, and w, respectively. We argue
that the reducing operation transforming ui = vixiwi to
ui+1 cannot be the deletion of a letter or a contraction
involving at least one letter within the substring xi. This
is true, since in such a case it would have been possible
to avoid the first generating operation in ES (transform-
ing x to x′), as well as all mutation operations over a
reduced letter in xi, and the reducing operation from ui

to ui+1. This would yield a script ES∗0,i+1 from u0 to
ui+1 which is shorter and of no higher coast than ES0,i+1,
in contradiction to Observation 6. Hence, the reducing
operation from ui to ui+1 either deletes a letter or con-
tracts two letters within one of the substrings vi or wi

of ui.
Consider first the case where the reducing opera-

tion over ui is applied within its prefix vi. Thus, we
can write ui+1 = vi+1xi+1wi+1, where vi+1 is the
string obtained by applying the corresponding reduc-
ing operation over vi, xi+1 = xi, wi+1 = wi, and
cost
(〈
ui,ui+1〉) = cost

(〈
vi, vi+1〉). The operations in

ES0,i+1 can be assigned into two independent scripts: a
script ESv = 〈v = v′0, v′1, . . . , v′p = vi+1〉 from v to vi+1

obtained by merging each multiple occurrence of con-
secutive identical strings in the series v = v1, v2, . . . , vi+1

into a single occurrence, and similarly a script ESxw =〈
xw = (xw)0, (xw)1 = x′w = x1w1, (xw)2, . . . , (xw)q =xi+1

wi+1 〉 from xw to xi+1wi+1. Each operation in ES0,i+1 cor-
responds to exactly one operation in either ESv or ESxw,
where the costs of corresponding operations are equal,
and therefore cost(ES0,i+1) = cost(ESv) + cost(ESxw)

and |ES0,i+1| = |ESv| + |ESxw|.
Now, the script ESv(u0) = 〈u0 = vxw = v′0xw, v′1 xw, . . . ,

v′p xw = vi+1xw
〉
is a script from u0 to vi+1xw, and sim-

ilarly the script ESxw(vi+1xw) = 〈vi+1xw = vi+1(xw)0,
vi+1(xw)1, . . . , vi+1(xw)q = vi+1xi+1wi+1 = ui+1〉
is a script from vi+1xw to ui+1. Thus, the script
ES∗0,i+1 = 〈ESv(u0), ESxw(vi+1xw)

〉
is a script from

u0 to ui+1. Since ESv contains at least one operation
(the reducing operation from vi to vi+1) and no gener-
ating operation (since besides the reducing operation
ESv may contain only mutations), ES∗0,i+1 starts with a
non-generating operation. In addition, cost(ES∗0,i+1) =
cost(ESv(u0)) + cost(ESxw(vi+1xw))

Lem.7≤ cost(ESv) +
cost(ESxw) = cost(ES0,i+1) and

∣∣ES∗0,i+1∣∣ = ∣∣ESv(u0)
∣∣+∣∣ESxw(vi+1xw)

∣∣ = |ESv| + |ESxw| = ∣∣ES0,i+1∣∣. From
Observation 6, ES0,i+1 is a shortest optimal script from
u0 to ui+1, and so ES∗0,i+1 is a shortest optimal script
from u0 to ui+1. Applying Observation 6 again, the script
ES∗ = 〈ES∗0,i+1ES i+1,r〉 is a shortest optimal script from
s to t. Now, the lemma follows from Case 1 of this proof
and from the fact the first operation in ES∗ is not a
generating operation.

Lemma 11. For every α ∈ � and every nonempty string t,
any simple script from α to t is non-reducing.

Proof. Let ES be a simple script from α to t, and assume
by contradiction ES contains a reducing operation. Since
ES is simple, all reducing operations in ES occur prior
to any generating operation, and in particular the first
reducing operation is applied after applying zero or more
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mutations over α. Such a reducing operation must be a
deletion from a string of length 1, resulting with an empty
intermediate string, in contradiction to Lemma 9.

Lemma 12. Let w and t be strings and β a letter, such
that w �= ε, t is of length at least 2, and there is a non-
reducing simple script from wβ to t. Then, ed(wβ , t) =
min
{
ed (w, ta) + ed

(
β , tb
) | (ta, tb) ∈ P(t)

}
.

Proof. Let ES = 〈wβ = u0,u1, . . . ,ur = t
〉
be a non-

reducing simple script from wβ to t. For every 0 ≤ i ≤
r, construct a partition (ui,a,ui,b) of ui which sustains
that ed

(
wβ ,ui
) ≥ ed

(
w,ui,a
) + ed

(
β ,ui,b
)
, as follows.

For i = 0, set (u0,a,u0,b) = (w,β), where by defini-
tion ed

(
wβ ,u0
) = ed

(
w,u0,a
) + ed

(
β ,u0,b
) = 0. Now,

assume inductively for some 0 < i ≤ r and a partition(
ui−1,a,ui−1,b) of ui−1 that ed

(
wβ ,ui−1) ≥ ed

(
w,ui−1,a)+

ed
(
β ,ui−1,b). If the non-reducing operation transform-

ing ui−1 to ui is a mutation, an insertion, or a duplica-
tion of a letter within the prefix ui−1,a, then set ui,a to
be the string obtained by applying this operation over
ui−1,a, and set ui,b = ui−1,b. Otherwise, the operation
is a mutation, an insertion, or a duplication of a letter
within the suffix ui−1,b, and in this case set ui,b to be the
string obtained by applying this operation over ui−1,b, and
ui,a = ui−1,a. Note that in both cases, cost(ES i−1,i) =
ed
(
ui−1,a,ui,a

) + ed
(
ui−1,b,ui,b

)
, therefore we get from the

inductive assumption that ed
(
wβ ,ui
) Obs.6= cost(ES0,i) =

cost(ES0,i−1)+cost(ES i−1,i)≥(ed (w,ui−1,a)+ed
(
β ,ui−1,b))+(

ed
(
ui−1,a,ui,a

)+ed
(
ui−1,b,ui,b

))Obs.5≥ ed
(
w,ui,a
)+ed
(
β ,ui,b
)
.

The process above generates a partition
(
t∗a, t∗b
) =(

ur,a,ur,b
)
of t = ur , for which ed

(
ui, t
) ≥ ed (w, t∗a)+

ed
(
β , t∗b
)
. In particular, ed(wβ , t) ≥ min

{
ed (w, ta) +

ed
(
β , tb
) | (ta, tb) ∈ P(t)

}
. On the other hand, ed(wβ , t)

Lem.8≤ min
{
ed (w, ta) + ed

(
β , tb
) | (ta, tb) ∈ P(t)

}
, and

the lemma follows.

Based on the above observations and lemmas, we
now turn to prove the recursive computation given
in Section “The recurrence formula”, starting with
Equation 7. Fix henceforth a pair of input strings s and t,
each containing at least two letters. Note that for every
α ∈ � and every partitions (sa, sb) ∈ P(s) and (ta, tb) ∈
P(t), ed(s, t)

Obs.5≤ ed(s,α) + ed(α, t), and ed(s, t)
Lem.8≤

ed(sa, ta)+ed(sb, tb)
Obs.5≤ ed(sa, ta)+ed(sb,α)+ed(α, tb),

therefore

ed(s, t) ≤ min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ed(s,α)+ed(α, t),

ed(sa, ta)+ed(sb,α)+ed(α, tb)

∣∣∣∣∣∣∣∣∣
(sa ,sb)∈P(s),

(ta ,tb)∈P(t),

α∈�

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Thus, to prove the correctness of Equation 7, it remains
to show that

ed(s, t)≥min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ed(s,α) + ed(α, t),

ed(sa, ta) + ed(sb,α) + ed(α, tb)

∣∣∣∣∣∣∣∣∣
(sa ,sb)∈P(s),

(ta ,tb)∈P(t),

α∈�

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
From Lemma 10, there is a simple script ES =〈

s = u0,u1, . . . ,ur = t
〉
from s to t, and in particular, there

is a string ui along ES such that the partial script ES0,i

is non-generating, and the partial script ES i,r is non-
reducing. Recall that ed(s, t) = cost(ES) = cost(ES0,i) +
cost(ES i,r)

Obs.6= ed(s,ui) + ed(ui, t).
If ui = β for some letter β , then ed(s, t) = ed(s,β) +

ed(β , t) ≥ min {ed(s,α) + ed(α, t) | α ∈ �}. Otherwise,
ui contains at least two letters. In this case, we can
write ui = wβ , where β is the last letter in ui and
w is the nonempty prefix of ui containing all letters
except for the last one. From Lemma 12, ed(ui, t) =
ed(wβ , t) = min

{
ed(w, ta) + ed(β , tb) | (ta, tb) ∈ P(t)

}
.

Symmetrically, it is possible to show that ed(s,ui) =
min
{
ed(sa,w) + ed(sb,β) | (sa, sb) ∈ P(s)

}
, and so

ed(s, t) = ed(s,ui)+ed(ui, t)
= min

{
ed(sa,w)+ed(sb,β) | (sa, sb) ∈ P(s)

}+
min
{
ed(w, ta)+ed(β , tb) | (ta, tb) ∈ P(t)

}
Obs.5≥ min

{
ed(sa, ta)+ed(sb,β)+ed(β , tb)|(sa, sb)∈P(s),
(ta, tb) ∈ P(t)

}
≥ min

⎧⎨⎩ed(s,α)+ed(α, t),
ed(sa, ta)+ed(sb,α)+ed(α, tb)

∣∣∣∣∣∣
(sa ,sb)∈P(s),
(ta ,tb)∈P(t),

α∈�

⎫⎬⎭ ,
concluding the proof of Equation 7.
We next continue to develop the recursive computa-

tion, considering the simpler cases where one of the input
strings is either empty or contains a single letter, and the
other string contains at least two letters. Let ES be a sim-
ple script from ε to t whose length is r. ES must start with
an insertion of some letter α, and from Observation 6, the
remainder of the script ES1,r is an optimal script from α to
t, implying the correctness of Equation 1. The correctness
of Equation 4 is shown symmetrically.
Now, consider the computation of ed(α, t), as expressed

in the last term of Equation 2. From Lemma 11, a
simple script from α to t is non-reducing, and so the
first operation in such a script is either the muta-
tion of α, or some generating operation. If there is
such a script in which the first operation is generating,
then ed(α, t) = ed′(α, t) = mut(α,α) + ed′(α, t) ≥
min
{
mut(α,β) + ed′(β , t) | β ∈ �

}
. Else, there is a sim-

ple script from α to t in which the first operation is the
mutation of α into some letter β . Due to Lemma 9, the fol-
lowing operation must be a generating operation, and so
the reminder of the script is an optimal script from β to t
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in which the first operation is generating, implying again
that ed(α, t) ≥ min

{
mut(α,β) + ed′(β , t) | β ∈ �

}
. The

other direction of the inequality is shown similarly as done
above for Equation 7, concluding the correctness proof of
Equation 2.
We now address the correctness of Equation 3. Consider

the minimum cost of a script from α to t which starts with
a generating operation. Let ES be such a script, and let r
denote its length.
For the case where the first operation in ES is an inser-

tion of some letter γ after α, from Observation 6 we get
that ES1,r is a non-reducing optimal script from u1 = αγ

to t, and therefore in this case
ed′(α, t) = cost(ES) = ins(γ ) + ed(αγ , t)

Lem.12= min
{
ins(γ ) + ed(α, ta)

+ed(γ , tb) | (ta, tb) ∈ P(t)
}

Obs.5≥ min
{
ed(α, ta) + ed(ε, tb)| (ta, tb) ∈ P(t)

}
.

The cases where the first operation in ES is the insertion
of some letter before α, or the duplication of α, are solved
similarly and imply that

ed′(α, t)≥min

⎧⎨⎩
ed(α, ta)+ed(ε, tb),
ed(ε, ta)+ed(α, tb),
dup(α)+ed(α, ta)+ed(α, tb)

∣∣∣∣∣∣ (ta, tb) ∈ P(t)

⎫⎬⎭
The other direction of the inequality is shown simi-
larly as shown for Equation 7, concluding the proof for
Equation 3. The correctness of Equations 5 and 6 is shown
symmetrically.

Correctness of Algorithm 2
We next show that when the precondition of COMPUTE-
MATRIX holds with respect to its input region Ii,k ×
Ij,l, executing the procedure derives its postcondition, i.e.
the procedure computes correctly all entries in the input
region within EDT α and ED.
The base case of COMPUTE-MATRIX occurs when

k = i + 1 and l = j + 1. In this case, Ii,k =
i and Ij,l = j, and from the precondition we get

that EDT α[i, j]= ED[i, I1,j]⊗Tα[I1,j, j]
Eq.13= edtα(s0,i, t0,j),

and ED[i, j]= min
{
tr(Sα)[i, I1,i]⊗EDT α[I1,i, j] | α ∈ �

}
.

After running line 2 of the procedure, we have from
Equation 12 that ED[i, j]= ed

(
s0,i, t0,j
)
. Thus, all entries

of the form EDT α[i, j] and the entry ED[i, j] are correctly
computed, and the postcondition holds.
Else, either k > i + 1 or l > j + 1. In the case where

l − j ≥ k − i (lines 5-8), the algorithm partitions ver-
tically the region to be computed into two parts of
approximately equal sizes. Let h =

⌈
j+l
2

⌉
be the value

computed in line 5 of the procedure. Note that from
Item 1 of Observation 1, the fact that EDT α[Ii,k , Ij,l]=
ED[Ii,k , I1,j]⊗Tα[I1,j, Ij,l] implies that EDT α[Ii,k , Ij,h]=
ED[Ii,k , I1,j]⊗Tα[I1,j, Ij,h], and similarly ED[Ii,k , Ij,h]=

min
{
tr(Sα)[Ii,k , I1,i]⊗EDT α[I1,i, Ij,h] | α ∈ �

}
. Thus, all

requirements of the precondition with respect to the
region Ii,k × Ij,h are met, and the procedure is called recur-
sively in line 6 over this region. From the postcondition of
the recursive call, upon arriving to line 7 all entries in the
region Ii,k×Ij,h inmatrices EDT α and ED contain the solu-
tions for the corresponding sub-instances. In particular, it
may be observed that at this point of the run, all require-
ments for the precondition to hold with respect to the
region Ii,k × Ih,l are met, with the exception of the require-
ments regarding entries in the region Ii,k × Ih,l of matrices
EDT α . Again, from the precondition and Observation 1,
at this stage EDT α[Ii,k , Ih,l] = ED[Ii,k , I1,j]⊗Tα[I1,j, Ih,l]
for every α ∈ �. From Item 3 of Observation 1,
min
{
EDT α[ Ii,k , Ih,l ],ED [ Ii,k , Ij,h ]⊗ Tα[ Ij,h, Ih,l]

}=min{
ED [Ii,k , I1,j]⊗Tα [I1,j, Ih,l] ,ED [Ii,k , Ij,h]⊗Tα[Ij,h, Ih,l]

} =
ED[Ii,k , I1,h]⊗Tα[I1,h, Ih,l], and therefore after execut-
ing line 7, the precondition holds with respect to the
region Ii,k × Ih,l. After returning from the recursive
call in line 8, all entries in the region Ii,k × Ij,l are
computed, and the postcondition of the procedure is
met. The correctness of the computation conducted
lines 10-13 in the case where l − j < k − i is shown
similarly.
Note that the initial call to COMPUTE-MATRIX from

line 5 of Algorithm 2 is applied over the complete region
Ii,k × Ij,l = I2,n+1× I2,n+1. It may be observed that after the
initialization in lines 3 and 4 of Algorithm 2, the precon-
dition of COMPUTE-MATRIX is met with respect to this
region. Therefore, it follows from the postcondition that
once the computation terminates all entries in matrices
EDT α and ED contain the solutions for the corresponding
sub-instances. In particular, ED[n, n] holds the solution
ed(s0,n, t0,n) = ed(s, t), and the returned value in line 6 of
Algorithm 2 is correct.

Proofs to lemmas corresponding to the EDDC
algorithm for discrete cost functions

Proof of lemma 1: Matrix multiplications computed
along the run of Algorithm 2 occur in lines 7 and 12 of
Procedure COMPUTE-MATRIX, and additional implicit
such multiplications occur when the Inside-VMT algo-
rithm is used in Stage 1 of the algorithm. Note that
in such computations, all entries in the multiplied sub-
matrices already contain the computed solutions for the
corresponding sub-instances. In addition, matrix multi-
plications conducted by the Inside-VMT algorithm are
applied only over sub-matrices A[Ii1,i2 , Ij1,j2 ] such that i2 ≤
j1 (see [11]), and thus, D-discreteness in matrices com-
puted in Stage 1 need to be shown only with respect to
adjacent entries A[i, j], A[i − 1, j] such that i ≤ j. In what
follows, let 0 < i ≤ n and 0 ≤ j ≤ n be two integers for n
the length of s and t.
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Consider first the pair of adjacent entries ED[i, j] and
ED[i− 1, j], which already contain the corresponding sub-
instance solutions ed(s0,i, t0,j) and ed(s0,i−1, t0,j), respec-
tively. An edit script transforming s0,i−1 to t0,j can be
composed by first inserting the letter si−1 at the end of
s0,i−1 to obtain the string s0,i at cost ins(si−1), and then
transforming s0,i to t0,j by applying an optimal script at
cost ed(s0,i, t0,j). Therefore, ed(s0,i−1, t0,j) ≤ ins(si−1) +
ed(s0,i, t0,j). Also, an edit script transforming s0,i to t0,j
can be composed by first deleting last letter si−1 from s0,i
at cost del(si−1), and then transforming s0,i−1 to t0,j at
cost ed(s0,i−1, t0,j). Therefore, ed(s0,i, t0,j) ≤ del(si−1) +
ed(s0,i−1, t0,j). Thus, a ≤ −del(si−1) ≤ ed(s0,i−1, t0,j) −
ed(s0,i, t0,j) ≤ ins(si−1) < b. Since all operation costs are
integers, the cost of any edit script is an integer. Hence,
after the adjacent entries ED[i− 1, j] and ED[i, j] are com-
puted, ED[i−1, j]−ED[i, j]= ed(s0,i−1, t0,j)−ed(s0,i, t0,j) is
an integer within the intervalD = Ia,b. TheD-discreteness
proofs for computed sub-matrices in all matrices of the
form T ′α ,Tα ,Tε , S′α , Sα , Sε (as well as for the transformed
matrix tr(Sα)) are obtained similarly.
For the matrix EDT α , note that there exists an inte-

ger l∗ such that edtα(s0,i−1, t0,j)
Eq.9= ed(s0,i−1, t0,l∗) +

ed(α, tl∗,j). In addition, in the same manner as above, for

the same l∗ we get that edtα
(
s0,i, t0,j
) Eq.9≤ ed(s0,i, t0,l∗) +

ed(α, tl∗,j) ≤ del(si−1) + ed(s0,i−1, t0,l∗) + ed(α, tl∗,j) =
del(si−1) + edtα(s0,i−1, t0,j). Similarly, it can be shown
that edtα(s0,i−1, t0,j) ≤ ins(si−1) + edtα(s0,i, t0,j), and so
after the entries EDT α[i − 1, j] and EDT α[i, j] are com-
puted, EDT α[i − 1, j]−EDT α[i, j]= edtα(s0,i−1, t0,j) −
edtα(s0,i, t0,j) is an integer within D.
Proof of lemma 2: Consider a pair of adjacent entries
Z[i − 1, j] ,Z[i, j] in Z. Let r1 and r2 be indices, such
that Z[i − 1, j]= X[i − 1, r1]+Y [r1, j] and Z[i, j]=
X[i, r2]+Y [r2, j]. Then:

Z[i − 1, j]−Z[i, j] = X[i − 1, r1]+Y [r1, j]−
(
X[i, r2]+Y [r2, j]

)
≤ X[i − 1, r2]+Y [r2, j]−

(
X[i, r2]+Y [r2, j]

)
= X[i − 1, r2]−X[i, r2]< b.

Similarly, it can be shown that Z[i−1, j]−Z[i, j]≥ a. Since
X and Y contain only integer entries, it follows that Z con-
tains only integer entries, and thus Z[i − 1, j]−Z[i, j] is an
integer within D.

Proof of lemma 3: Consider a pair of adjacent entries
Z[i − 1, j] ,Z[i, j] in Z. Then:

Z[i − 1, j]−Z[i, j] = min{X[i − 1, j] ,Y [i − 1, j] }
− min{X[i, j] ,Y [i, j] }

< min{X[i, j]+b,Y [i, j]+b}
− min{X[i, j] ,Y [i, j] } = b.

Similarly, it can be shown that Z[i−1, j]−Z[i, j]≥ a. Since
X and Y contain only integer entries, it follows that Z con-
tains only integer entries, and thus Z[i − 1, j]−Z[i, j] is an
integer within D.
Proof of lemma 4: Since both x and y are D-discrete, for
every 0 < i < q, xi < x0 + ib and y0 + ia ≤ yi. Hence,
xi < x0 + ib = x0 + ib+ (y0 − y0 + ia− ia) = (y0 + ia) +
i(b − a) − (y0 − x0) < yi + q|D| − (y0 − x0). Therefore,
when y0 − x0 ≥ q|D|, xi < yi for every 0 ≤ i < q.

Proofs to lemmas corresponding to the run-length
encoding based EDDC algorithm

Proof of lemma 5:We show that ed(α,βw) ≥ ed(α,w) +
dup(β), where the other inequalities are proven similarly.
Let r be the length of a simple script from α to βw.

Observe that r ≥ 1, since by definition βw �= α. When
r = 1, the single operation applied over α must be a gen-
erating operation (since w �= ε). As discussed in Section
“Additional acceleration using run-length encoding”,
we may assume this operation is the duplication of α, and
so β = w = α. In this case, ed(α,βw) = dup(α) =
ed(s,w) + dup(β).
When r > 1, assume by induction the lemma holds

for every instance such that the length of a simple script
from the source to the target string is less than r. A simple
script from α to βw is non-reducing (as shown in Section
“Correctness of the recursive computation”). If there is
such a script in which the first operation is a mutation,
then this operation mutates α into some letter γ �= α,
and the remainder of the script is a simple script of length
r − 1 from γ to βw. In this case, the inductive assump-
tion implies that ed(α,βw) = mut(α, γ ) + ed(γ ,βw) ≥
mut(α, γ ) + ed(γ ,w) + dup(β)

Obs.5≥ ed(α,w) + dup(β).
Otherwise, there is a simple script from α to βw which
starts with a generating operation. Again, we may assume
this generating operation is the duplication of α. As shown
in Section “Correctness of the recursive computation”,
this implies that ed(α,βw) = dup(α)+ed(α, ta)+ed(α, tb)
for some partition (ta, tb) ∈ P(βw), where the lengths of
simple scripts from α to ta and to tb are strictly shorter
than r. If ta = β and tb = w, then ed(α,βw) = dup(α) +
ed(α,β)+ed(α,w) = dup(α)+mut(α,β)+ed(α,w)

Const.1≥
ed(α,w) + dup(β). Otherwise, ta is of the form βu and
w = utb for some string u �= ε. From the inductive
assumption, ed(α,βw) = dup(α)+ed(α,βu)+ed(α, tb) ≥
dup(α) + ed(α,u) + dup(β) + ed(α, tb)

Lem.8≥ dup(α) +
ed(αα,w) + dup(β)

Obs.5≥ ed(α,w) + dup(β).

Proof of lemma 6: Note that if w = ε or w = β for
some β ∈ �, then w̃ = w, dupcost(w) = contcost(w) =
0, and the lemma holds in a straightforward manner.
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Otherwise, w is of length at least 2, and we prove the
lemma by induction over the length r of a simple script
between α and w. Assume by induction the lemma holds
for every pair of input strings such that the length of a
simple script from the source to the target string is less
than r. We show that ed(α,w) = ed(α, w̃) + dupcost(w),
where the proof that ed(w,α) = contcost(w) + ed(w̃,α) is
symmetric.

Observe that ed(α,w)
Obs.5≤ ed(α, w̃) + ed(w̃,w) ≤

ed(α, w̃) + dupcost(w), and therefore it remains to show
that ed(α,w) ≥ ed(α, w̃) + dupcost(w). As discussed
in the proof of Lemma 5, there is a simple script from
α to w which either starts with a mutation of α or
its duplication. If the first operation in such a script
is the mutation of α to some letter β ∈ �, then
the remainder of the script is a simple script from β

to w of length r − 1, and from the inductive assump-
tion ed(α,w) = mut(α,β) + ed(β ,w) = mut(α,β) +
ed(β , w̃) + dupcost(w)

Obs.5≥ ed(α, w̃) + dupcost(w).
Otherwise, the first operation is the duplication of α,
and there is some partition (wa,wb) ∈ P(w) such that
ed(α,w) = dup(α) + ed(α,wa) + ed(α,wb) and the sum
of lengths of shortest optimal scripts from α to wa and to
wb is r − 1. From the inductive assumption, ed(α,wa) =
ed(α, w̃a) + dupcost(wa) and ed

(
α,wb) = ed

(
α, w̃b) +

dupcost(wb). If (wa,wb) ∈ R(w), then w̃ = w̃aw̃b and
dupcost(w)

Eq.18= dupcost(wa) + dupcost(wb). In this
case, ed(α,w) = dup(α) + (ed(α, w̃a) + dupcost(wa)

) +(
ed(α, w̃b) + dupcost(wb)

) Lem.8≥ dup(α) + ed(αα, w̃) +
dupcost(w)

Obs.5≥ ed(α, w̃) + dupcost(w). Else, (wa,wb) /∈
R(w), and so there is some letter β ∈ � such that wa ends
with β and wb starts with β . In this case, there are some
strings ua,ub and integers p, q > 0, such that wa = uaβp,
wb = βqub, ua does not end with β , and ub does not
start with β . Moreover, w̃a = ũaβ , w̃b = βũb, and w̃ =
ũaβũb = w̃aũb. Note that ed(α, w̃b) = ed(α,βũb)

Lem.5≥
ed(α, ũb) + dup(β), and therefore ed(α,w) = dup(α) +
ed(α,wa)+ed(α,wb) = dup(α)+(ed(α, w̃a) + dupcost(wa)

)+(
ed(α, w̃b) + dupcost(wb)

) ≥ dup(α) + ed(α, w̃a) + ed(α, ũb)

+ dup(β) + dupcost(wa) + dupcost(wb)
Eq.18= dup(α) +

ed(α, w̃a)+ ed(α, ũb)+dupcost(w)
Lem.8≥ dup(α)+ ed(αα, w̃)+

dupcost(w)
Obs.5≥ ed(α, w̃) + dupcost(w).
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