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Abstract

Background: The large majority of optimization problems related to the inference of distance-based trees used in
phylogenetic analysis and classification is known to be intractable. One noted exception is found within the realm of
ultrametric distances. The introduction of ultrametric trees in phylogeny was inspired by a model of evolution driven
by the postulate of a molecular clock, now dismissed, whereby phylogeny could be represented by a weighted tree in
which the sum of the weights of the edges separating any given leaf from the root is the same for all leaves. Both,
molecular clocks and rooted ultrametric trees, fell out of fashion as credible representations of evolutionary change. At
the same time, ultrametric dendrograms have shown good potential for purposes of classification in so far as they
have proven to provide good approximations for additive trees. Most of these approximations are still intractable, but
the problem of finding the nearest ultrametric distance matrix to a given distance matrix with respect to the L∞
distance has been long known to be solvable in polynomial time, the solution being incarnated in any minimum
spanning tree for the weighted graph subtending to the matrix.

Results: This paper expands this subdominant ultrametric perspective by studying ultrametric networks, consisting of
the collection of all edges involved in some minimum spanning tree. It is shown that, for a graph with n vertices, the
construction of such a network can be carried out by a simple algorithm in optimal time O(n2) which is faster by a
factor of n than the direct adaptation of the classical O(n3) paradigm by Warshall for computing the transitive closure
of a graph. This algorithm, called UltraNet, will be shown to be easily adapted to compute relaxed networks and to
support the introduction of artificial points to reduce the maximum distance between vertices in a pair. Finally, a few
experiments will be discussed to demonstrate the applicability of subdominant ultrametric networks.

Availability: http://www.dei.unipd.it/~ciompin/main/Ultranet/Ultranet.html
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Background
As is well known, most optimization problems related
to the inference of distance-based trees used in phy-
logenetic analysis and classification are intractable (see
[1,2] for a pertinent discussion). One notable exception
is found within the realm of ultrametric distances (cf.
[3]). The introduction of such distances in phylogeny
was inspired by a model of evolution, now largely aban-
doned, driven by the postulate of a molecular clock
whereby the amount of phylogenetic change observable
between any two extant species is directly related to the
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amount of time that elapsed since their last common
ancestor roamed this planet, implying that phylogenetic
distances could simply be represented by a weighted
tree in which the sum of the weights of the edges sep-
arating any given leaf from the root is the same for
all leaves.
Both molecular clocks and rooted ultrametric trees

fell out of fashion as credible representations of evolu-
tionary change. At the same time, a rooted dated tree
is still the “object of desire” in taxonomy and Tree-of-
Life research, and ultrametric dendrograms have shown
good potential for purposes of classification in so far as
they have proven to provide good approximations for
additive trees. While finding the “best” such approxi-
mation is, in most cases, still intractable, the problem
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of finding an ultrametric distance matrix that is clos-
est to a given distance matrix with respect to the L∞
distance has long been known to be solvable in polyno-
mial time, its solution being incarnated in any minimum
spanning tree for the weighted graph subtending to the
matrix.
Applications of minimum spanning trees in connection

with problems of population classification and genetics
are as old as any other of their numerous applications.
An application to taxonomic problems related to species
interrelationship dates back to [4]. And as early as 1964,
Edwards and Cavalli Sforza [5] used MSTs to approxi-
mate evolutionary trees reconstructed from gene frequen-
cies in blood groups from fifteen contemporary human
populations.
Most approximation problems arising in this context fall

within the framework of the following
Closest Metric Problem: Given a set M of metrics C

defined on a set V, an |V |×|V |−matrix M, and a distance
function D : (M′,M′′) → R≥0 defined on the set R|V |×|V |
of all |V | × |V | − matrices, find a metric C ∈ M with
minimum distance to M relative to D.
The basic facts are summarized in Table 1.
Subdominant ultrametrics have been traditionally

applied to many problems of physics and optimization
theory [9-12]. More recently, implications of this theory
in the analysis of financial markets, stock exchange, and
evolutionary biology have attracted new interest in the
topic.
Phylogenetic networks are increasingly featured in

modeling of molecular evolution, as evidence of reticu-
late events such as hybridization, horizontal gene transfer
and recombination becomes more prominent. Tradition-
ally, the use of binary data and, in particular, the notion
of splits gave rise to a number of alternative models. In
the literature, several definitions of networks have been
proposed to model parallel events. Popular examples are
consensus networks [13], reticulate networks, recombi-
nation networks, median networks [14], Neighbour Nets
[15], QNets [16] etc. In order to control the degree of
connectivity of a network, eachmodel optimizes an objec-
tive function; examples are Bayesian methods, maximum
likelihood methods, and maximum parsimony [17,18],
calculated that the number of equally parsimonious trees
for a data set of just 56 haplotypes exceeded one billion.

Table 1 Basic facts for the closestmetric problem

C \ DM L1 L2 L∞
Additive NP-Hard+ NP-Hard NP-Hard*

Ultrametric NP-Hard+ NP-Hard P§

+no approximation is known;
*a 3-approximation exists, due to Agarwal et al. [1];
§due to Gower and Ross [3] (see also ([6], p.158), ([7], p.134), [2,8]).

This estimate was computed through resort of the notion
of Minimum Spanning Network. In a different context,
they proposed a counting procedure based on the Prim’s
algorithm that is analogous to the work presented in this
paper.
Anther popular framework is the statistical par-

simony analysis [19]. Hart and Sunday [20] found
empirically that subnetworks, as implemented in
the TCS program [21], coincided significantly with
taxonomy names. The TCS program calculates the
maximum number of mutational steps constituting
a parsimonious connection between two haplotypes
with the probability of 95%. Although Hart and Sun-
day’s [20] results suggest that statistical parsimony
analysis could be used in practice to differenti-
ate species, this methodology is not mathematically
well-founded.
In this paper, we extend the approach based on

the construction of subdominant ultrametric trees by
studying ultrametric networks, consisting of the col-
lection of all edges involved in some minimum span-
ning tree. This can be viewed as a network of kinship
between the extant sequences that embodies the least-
resistant paths in terms of bottlenecks, where a bot-
tleneck is simply the worst possible transition between
two intermediate states. We show that, for a graph
with n vertices, the construction of such a network
can be carried out by a simple algorithm in opti-
mal time O(n2), which is faster by a factor of n
than the more straightforward O(n3) closure performed
by the classical Floyd-Warshall paradigm. We show
that our algorithm can easily be adapted to compute
relaxed networks and to support the introduction of
artificial points when it is desirable to reduce max-
imum distance between vertices. Finally, we discuss
a few experiments demonstrating the applicability of
this method.

The ultrametric network
We study the following, rather abstract, conceptual frame
work: We start with a finite set V representing the
sequences and an arbitrary weighting

W :
(
V
2

)
→ R>0 : {v, u} → W (v, u)

that associates a positive weight W (v, u) to every 2-
subset {v, u} ∈ (V

2
)
of V that we imagine to be deduced,

in one way or the other, from the given sequences, and to
represent, for every {v, u} ∈ (V

2
)
, the observed degree of

dissimilarity between u and v.
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It is well known (cf. [3]) and easy to see (cf. [8] for
a review) that there exists a unique largest ultrametric
defined on V and denoted by, say, W∗ that is dominated
by W, i.e., the (necessarily unique and symmetric) largest
map from V × V into R for which

(i) W∗(v, v) = 0 andW∗(v, u) ≤
max (W∗(v,w),W∗(u,w)) holds for all u, v,w in V,
and

(ii) W∗(v, u) ≤ W (v, u) for all u, v ∈ V .

Actually, as the supremum

supD : V × V → R : (u, v) 	→ sup(D(u, v) : D ∈ D)

of any collection D of ultrametrics defined on V that
is bounded from above, is an ultrametric, too, and
W∗ is just the supremum of the set, D(W ) := {D :
Dis an ultrametric onV that is bounded from above byW },
W∗ must indeed be an ultrametric, called the subdomi-

nant ultrametric forW.
In this paper, we will study the ultrametric network

G(V |W ) associated with W, i.e. the graph G(V |W ) :=
(V , E(V |W )) with vertex set V and edge set E(V |W ) :={
{u, v} ∈ (V

2
)
: W (u, v) = W∗(u, v)

}
.

It is easy to see that E(V |W ) is actually the union of the
edge sets of all minimum spanning trees with vertex set V
relative to W, considered as a weighting of the complete
graph G(V ) = (V , E(V )) with vertex set V and edge set
E(V ) := (V

2
)
.

Indeed, continuing with the notations and assumptions
introduced above, W∗ can be constructed as follows: Put
|e| := W (u, v) for every e = {u, v} ∈ E(V ) and, given any
path P = v0v1...vk in G(V ), define the support supp(P) of
P by

supp(P) := {{vi−1, vi} : i = 1, 2, . . . , k} ,

and the bottleneck B(P) = B(P|W ) of P (with respect to
W ) by

B(P) = B(v0v1...vk) := max
i=1...k

{|e| : e ∈ supp(P)}.

Then, given any two vertices u, v ∈ V , W∗(u, v) coin-
cides with the least-resistance bottleneck between v and u,
i.e., we have

W∗(u, v) = min
all paths P in G(V ) fromu to v

B(P).

Any path for which this minimum is attained represents
aminimum-bottleneck path (for u and v). Clearly,W ∗(u, v)
is the lowest weight possible for the highest weight in
any path leading from u to v. It can be computed by a

straightforward adaptation of the Floyd-Warshall algo-
rithm in O(|V |3) time.
Remarkably, E ⊆ E(V |W ) holds for every subset E of

E(V ) for which the graph (V , E) is connected and mini-
mizes the sum |E| := ∑

e∈E |e|, that is, for the edge set
of any minimum spanning tree T = (X, E) for W. This
follows from a result generally credited to [3], that we
formalize as follows:

Theorem 1. With V and W as above, the edge set
of every minimum spanning tree for W is contained in
E(V |W ) while, conversely, there exists, for any edge e ∈
E(V |W ), a minimum spanning tree for W whose edge set
contains e. In particular, the network G(V |W ) is always
connected.

Proof. Indeed, given any such subset E ⊆ E(V ) and
any edge e = {u, v} ∈ E, we may denote by �(e) =
�E(e) the bi-partition of V given by the (vertex sets of
the) two connected components of the graph (V , E −
{e}), and by A(w) = AE(w), for any w ∈ V , the
unique component A(w) ∈ �(e) with w ∈ A(e).
Clearly, we have �(e) = {A(u),A(v)} for every edge
e = {u, v} ∈ E.
Now, assume that there exists some e = {u, v} ∈ E

with e �∈ E(V |W ). Then, we could find some P =
v0v1...vk−1vk from v0 := u to vk := v in G(V ) with
B(P) < |e|. Furthermore, as A(v0) = A(u) �= A(v) =
A(vk) must hold, there must be some i ∈ {1, . . . , k} with
A(vi−1) �= A(vi), eg the smallest i in {1, . . . , k}withA(u) �=
A(vi). Consequently, exchanging the edge e with the edge
ei := {vi−1, vi} in E would also give rise to a spanning
tree for G(V ), and we would have |E′| = |E| + |ei| −
|e| < |E| in view of |ei| ≤ B(P) < |e|, thus contra-
dicting our choice of E. So, E ⊆ E(V |W ) must hold,
as claimed.
To establish the converse, assume that e = {u, v} ∈

E(V |W ) is not contained in any minimum spanning tree.
Then, given any such tree, let P = v0v1...vk−1vk denote
the unique path from v0 := u to vk := v in that tree.
Then, exchanging any edge e′ in the support of P with
the edge e will produce a spanning tree for G(V ) of larger
weight, implying that |e′| < |e| must hold for every
such edge e′ implying that also B(P) < |e| must hold.
This, however, would clearly contradict our assumption
e ∈ E(V |W ).

Optimal computation of the ultrametric network
Clearly, given V andW as above, the ultrametric network
can be produced in time O(|V |3) by a straightforward
adaptation of the Floyd-Warshall all-pairs shortest-path
algorithm [22]. In view of Theorem 1, this network could
be produced in time O(|V |3) also by first computing one
MST by, say, Prim’s algorithm, and then computing W∗
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using the paths in this tree. We present here an algorithm
to compute the entire network in time O(|V |2). This is
optimal since any algorithmmust produce�(|V |2) values
at the outset.
Themain idea is that the computation can be cast within

a control structure that is strongly reminiscent of Prim’s
MST - or Dijkstra’s single-source shortest-path algorithm
(refer to, e.g., [22]): starting with an arbitrary vertex r, a
subset V̄ of V is progressively expanded by annexing, at
each step, the one vertex u in V − V̄ that is connected to
V̄ by an edge (v, u) that minimizes cost. As is well known,
in Prim’s MST the cost to be minimized is the weight of
the partial tree over the vertices in V̄ , whence the edge to
be chosen is one of minimum weight. In Dijkstra’s algo-
rithm, the cost to be minimized is the sum of weights on
the arcs connecting u to r, whence the edge to be chosen is
the oneminimizing this sum. Note that in both cases there

can bemore than one vertex thatminimizes the cost, how-
ever they will all produce the same global minimum. One
important point of our algorithm is that (see Theorem 1)
choosing (v, u) as in Prim’sMST computes the ultrametric
distance not only between u and r but between u and any
other vertex in V̄ . Moreover, it can be seen that the pair-
wise ultrametric distances between any pair of vertices in
V̄ are not affected by the introduction of u in this set.
This last circumstance yields the speedup fromO(|V |3) to
O(|V |2).
The algorithm starts with the original weights W (u, v),

computes the ultrametric W∗ and identifies the subset of
edges that form the ultrametric network Ē. In the follow-
ing pseudo-code, d(u, v) is initialized to ∞ and then used
to store consecutively refined estimates of the value of
W∗(u, v), for any pair u and v of vertices. It will be seen
that at the end d(u, v) = W∗(u, v).

ULTRAMETRIC-NETWORK(G,W , r)
INITIALIZATION
for every pair (u, v) of vertices in V do

d(u, v) = ∞ [ initial estimate ofW∗ ]
end for
V̄ = {r} [ Invariant: V̄ is the subset of V with pairwise bottlenecks already computed]
Q = V̄ − {r} [ Invariant:Q is the subset of V not yet processed]
Ē = ∅ [ Invariant: Ē contains the edges {u, v} ∈ (V̄

2
)
with d(u, v) = W (u, v)]

for every u ∈ Q do
prec[ u]= r; key[ u]= W (u, r) [ Invariant: key[ u]= W (prec[ u] , u) is the minimal weight

of an edge {v, u} connecting u to some vertex v in V̄ ,
and prec[ u]= r is that vertex in V̄ which is contained in this edge]

end for
BODY
while Q �= ∅ [ there are still vertices disconnected from V̄ ] do

ANNEX THE “CLOSEST” VERTEX
u = argmin(key[ u] : u ∈ Q)

v = prec[ u] ; Ē = Ē ∪ {u, v}; d(u, v) = W (u, v)
COMPUTE THE BOTTLENECK BETWEEN u AND EACH v′ ∈ V̄
for every v′ ∈ V̄ do

d(v′, u) = max
(
d(v′, v),W (v, u)

)
if d(v′, u) = W (v′, u) [ more edges from u to V̄ of weightW∗(v′, u) ?] then

Ē = Ē ∪ {v′, u} [W∗(v′, u) = max
(
W∗(v′, v),W (u, v)

)
, henceW∗(v′, u) = W (v′, u) ]

end if
end for
V̄ = V̄ ∪ {u} [ Vertex u is added to V̄ ]
Q = Q \ {u} [ Vertex u is subtracted fromQ]
UPDATING key VALUES OF VERTICES IN Q
for every v′ ∈ Q do

if key[ v′]> W (u, v′) then
key[ v′]= W (u, v′)
prec[ v′]= u

end if
end for

end while
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Figure 1 Illustrating the construction of the ultrametric network.

Lemma 1. At each iteration, d coincides with (W |V̄ )∗,
the subdominant ultrametric of the restriction W |V̄ of W
to V̄ , where the edge {v′, v′′} ∈ Ē if and only if:

• d(v′, v′′) = W (v′, v′′) and
d(v′, v′′) ≤ max(W (v′, u),W (v′′, u)) holds for any
two vertices v′, v′′ in V̄ and all u ∈ Q,

• key[ u]= W (prec[ u] , u) = min(W (u, v) : v ∈ V̄ )

holds for every u ∈ Q = V − V̄ .

The proof follows easily from observing that V̄ contains,
at each recursive step, a connected subgraph that is part of
a MST for V. Figure 1 shows the generic step of the algo-
rithm. It is easy to check that the set Ē contains all edges of
the ultrametric network.We now prove that the algorithm
is also optimal.

Lemma 2. The algorithm constructs the subdominant
ultrametric and its associated ultrametric network in opti-
mal time O(|V |2).

Proof. All the initialization steps, inclusive of the inser-
tion of (|V | − 1) initial values in the queue Q take time
O(|V |2). Following this, each of the (|V | − 1) iterations
of the while loop contains two cascaded for cycles of
O(|V |) elementary steps each. The first for computes the
ultrametric network for the vertices in V̄ , whereas the sec-
ond one updates the queue Q, which stores all vertices
v /∈ V̄ according to the index key[ v]. All the operations
in each for take trivially constant time, except for the
queue updates. If the queue is implemented as a Fibonacci
heap, we can extract the minimum element in amortized
O(log |V |) and update the queue in amortized O(1), when
key[ v] is decreased. There are (|V | − 1) extractmin (at

Figure 2 The creation of a new artificial vertex.

the beginning of every iteration of the while), which thus
charge O(|V | log |V |) overall. There are O(|V |2) constant-
time updates throughout all the executions of the second
for loop. Hence the total cost of the algorithm is O(|V |2).
The subdominant ultrametric requires �(|V |2) entries,
and an ultrametric network contains at most |V |2 edges,
so that O(|V |2) time is optimal.

Ultrametric network relaxations
The algorithm of the preceding section lends itself natu-
rally to variants that accommodate some tolerance in the
ultrametric distance and relax the notion of ultrametric
network. We outline here these two variants, respectively
leading to�-ultrametric networks and to the introduction
of new artificial vertices.

�-Ultrametric extension
We define the � -ultrametric network in which edges are
inserted if their weights do not deviate more that a given
threshold� from the corresponding ultrametric distance.
Formally the � -ultrametric network consists of the

graph G�(V |W ) =
(
V , E�(V |W )

)
with vertex set V

and edge set E�(V |W ) := {{u, v} ∈ (V
2
)
: W (u, v) ≤

W∗(u, v) + �
}
, where W∗(u, v) is the standard ultra-

metric distance. Intuitively, the �-ultrametric network
is thus a relaxation of the ultrametric network, result-
ing in increased connectivity. More precisely the graph
G�(V |W ) coincides with the map min(W ,W∗ + �).
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Figure 3 Ultrametric network of 54 individuals from different populations all over the world.� = 0 and δ = 0. The labels represent: H =
Han, G = German, T = Turk, J = Japanese, Ov = Ovambo, W = Western Pygmy, A = Australian Aboriginal, P = Papuan, B = San (Bushman), and M=
Mongolian. A Rough classification is: J+H+M=East Asian, G+T= Caucasoid, A+P=Australian, B+W+Ov= Africans. Nodes filled with gray represent
Caucasoid, the ones filled with blue represent Africans, bold nodes are Asians, and the remaining ones are from Australia.

The �-ultrametric network can be computed as a post-
processing by adding all such edges E�(V |W ) to the
exact ultrametric network. In summary at first we run
the algorithm on the original weights W (u, v) to com-
puteW∗. Then, we apply the postprocess that includes all
edges (u, v) with weight W (u, v) that deviates at most �

from the corresponding ultrametric value W∗(u, v). Sim-
ilarly to the main algorithm, this postprocess takes opti-
mal O(|V |2) time. Other alternatives relaxations can be
explored, like the subdominant �-ultrametrics for which
analogous results can be established. The subdominant
�-ultrametrics relaxation will be addressed in a future
paper.

Artificial vertices
In applications such as phylogeny on biological data of
extant species/individuals, the topology must account for
missing data points. In other words, there is a need to
reduce the distance between a pair of vertices by introduc-
ing a new artificial vertex in the network.
In the phylogeny construction problem, the given data

points are the terminals and the artificial vertices corre-
spond to missing (or ancestral) data points. The tradi-
tional Steiner tree problem [23] involves the minimization

of the sum of the lengths of all edges used after intro-
ducing artificial vertices, as opposed to the sum of the
pairwise distances of all the terminals. For different met-
rics the Steiner tree problem is known to be NP-Hard
[24]. Thus in our context, given the graph induced by the
ultrametricW∗, the problem of introducing new artificial
vertices that minimize the sum of the weights of all edges
is still NP-Hard.
In our case the input graph G is not just any graph, but

it can be characterized as follow. Suppose we are given a
(big) metric space R = (V ,D) (could be the metric space
consisting of the vertex set R of a connected weighted
graph G with the “induced" metric, i.e., the largest metric
D on V with D(u, v) ≤ w(u, v) for all edges u, v in G), and
a finite subset R of V.
The solution to the Steiner tree problem is to find a

connected graph G(R|V ) with a vertex set containing
R and contained in V and edge set E(R|V ) such that∑

{u,v}∈E(R|V ) D(u, v) is minimized. In case you just have a
metricD onV, in our caseW∗, the most natural choice for
(V ,D) is the tight span

T(D) := {f ∈ RV : f (v) = sup(D(u, v)− f (u)) : u ∈ V }
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Figure 4 Ultrametric network of 41 new world natives. A rough classification is: North America (Navajo, Zuni, Sioux) in blue, Central (Maya) in
grey, South (Ticuna, Wichi, Toba, Chorote, Tehuelche), (Susque, Humahuaquen) in white.

of (V ,D). It is natural in this case as any Steiner tree for
V can be mapped into T(D) by a non-expanding map that
preserves the distances between the points in V [25]. We
don’t know how to efficiently search for the best Steiner
tree within T(D), also known as the optimal realiza-
tion, without an exhaustive enumeration [26,27]. Instead

starting from a given graph GW∗ over R we look at the
“neighborhood" of this seed inT(D). The input graphGW∗
over R is the ultrametric network computed in the previ-
ous section and we are interested in the “neighborhood" of
this network such that the sum of all edges is smaller and
that the pairwise distances in R are preserved.
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Figure 5 Ultrametric network of 54 individuals from different populations all over the world (same as in Figure 3) for a few values of
parameters� and δ.

For every edge {y,w} in GW∗ we search in its neigh-
borhood by looking at the vertices directly connected to
y and w. If there is some vertex u that is connected to y
and w we explore the possibility to insert a new node x as
the median of y, w and u. Clearly if we add the artificial
vertex x and replace the edges that create a cycle (u,w),
(u, y) and (w, y), with the edges (u, x), (w, x) and (y, x)
(see Figure 2) this new configuration does not increase
the contributions of the distances involving the three
nodes.
To control the number of artificial vertices, the new ver-

tex x is created only if the sum of pairwise distances of
the triangle among u, w and y exceeds the threshold δ.
Note that if two triangles share an edge we need to select
where to insert the new artificial vertex. A canonical order
can be established by ranking all candidate triangles by
the sum of pairwise distances. This ensures that, at least

generically, the introduction of new artificial vertices is
unique and does not depend on the input order.

Experimental results
To conclude our presentation, we report two examples
of inference of Human Y-chromosome phylogeny from
Short Tandem Repeats. This can be based on the study of
Human migration and the associated relationships among
different populations. In typical experiments, we are inter-
ested in constructing a network from the STRs informa-
tion of various individuals and in comparing the results
with known paths of migrations. An interesting example
of such a phylogeny reconstruction can be found in [28],
which discusses the significance of STRs data as markers
for human evolution, but also highlights the difficulties
that the analysis of this data derives from the lack of an
appropriate methodology.
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Using the same data of [28,29], we study migration
histories within two different scenarios. In the first exper-
iment, we analyze a very broad spectrum of popula-
tions: Africans, Europeans, Asians and Australians. In
the second, we concentrate on Native Americans span-
ning North America (Navajo, Zuni, Sioux), Central Amer-
ica (Maya), and South America (Ticuna, Wichi, Toba,
Chorote, Tehuelche, Susque, Humahuaqueño).
For both experiments the data available include a num-

ber of different STRs, specifically, 12 in the first experi-
ment and 7 in second. The first step is to establish for all
STRs a weighting scheme reflecting the different mutation
rates. To this end, we use the three weights 1,2 and 4, and
assign to each STR a weight proportional to its mutation
rate.
Figure 3 shows the ultrametric network computed from

the first dataset. The labels associated with each node are
reported in the figure’s caption, and new nodes are tagged
with the letter “N”. The pairwise distances between nodes
are reported as attributes of the edges. In Figure 3, the
populations are grouped by continent; the nodes filled
with gray represent Caucasoid, the ones filled with blue
represent Africans, bold nodes are Asians and the remain-
ing ones are from Australia.
We can observe that, in general, all different conti-

nents are well separated, and that most of the individuals
belonging to the same population are clustered together:
Japanese, Han, Turkish, Australian, and so on. More-
over, the known paths of migration support the view
that Han are close relatives of Africans and that Japanese
evolved from Central Asian populations. Also, Germans
appear to be related to Northern Africans and Turks,
the latter are also connected with Han, thus supporting
the idea that Turks are partially Asians. The only pop-
ulation slightly misplaced are Papuans probably because
the STRs examined do not resolve for this population,
a problem already observed in [28]. Figure 4 shows the
ultrametric network of Native Americans, using the same
data as in [29]. This experiment is a particularly difficult
test, due to the high level of homoplasy and the small
number of STRs available. Nevertheless the network still
exposes the structural diversity between North American
Natives (blue), Central (gray) and South Americans
(white).
As discussed, the connectivity of the inferred network

can be fine-tuned by setting the two control parameters δ

and �. The first one is used to filter out the feeblest edges:
with δ = 0, all links are selected. The value assigned to the
second parameter sets the tolerance within which edges
are included in the �-ultrametric network. Thus, large
values of δ reduce the number of artificial points intro-
duced, large values of � increase the connectivity of the
network. Space limitation prevents a thorough analysis
of these variants. As an illustration, Figure 5 displays the

networks obtained in correspondence with a few different
settings.

Conclusions
In conclusion, this paper expands the subdominant ultra-
metric perspective by studying ultrametric networks. We
shown that, for a graph with n vertices, the construc-
tion of such a network can be carried out by a simple
algorithm in optimal time O(n2). This algorithm can be
easily adapted to compute relaxed networks, such as �-
ultrametric networks and to support the introduction of
artificial points to reduce the maximum distance between
vertices in a pair. Finally, we discussed a few experi-
ments to demonstrate the applicability of subdominant
ultrametric networks.
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