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Abstract

Background: The phylogenetic Mean Pairwise Distance (MPD) is one of the most popular measures for computing
the phylogenetic distance between a given group of species. More specifically, for a phylogenetic tree T and for a set
of species R represented by a subset of the leaf nodes of T, the MPD of R is equal to the average cost of all possible
simple paths in 7 that connect pairs of nodes in R.

Among other phylogenetic measures, the MPD is used as a tool for deciding if the species of a given group R are closely
related. To do this, it is important to compute not only the value of the MPD for this group but also the expectation,
the variance, and the skewness of this metric. Although efficient algorithms have been developed for computing the
expectation and the variance the MPD, there has been no approach so far for computing the skewness of this measure.

Results: In the present work we describe how to compute the skewness of the MPD on a tree T optimally, in ®(n)
time; here n is the size of the tree 7. So far this is the first result that leads to an exact, let alone efficient, computation
of the skewness for any popular phylogenetic distance measure. Moreover, we show how we can compute in ®(n)
time several interesting quantities in 7, that can be possibly used as building blocks for computing efficiently the
skewness of other phylogenetic measures.

Conclusions: The optimal computation of the skewness of the MPD that is outlined in this work provides one more
tool for studying the phylogenetic relatedness of species in large phylogenetic trees. Until now this has been infeasible,

given that traditional techniques for computing the skewness are inefficient and based on inexact resampling.
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Background

Communities of co-occuring species may be described as
“clustered” if species in the community tend to be close
phylogenetic relatives of one another, or “overdispersed”
if they are distant relatives [1]. To define these terms we
need a function that measures the phylogenetic related-
ness of a set of species, and also a point of reference for
how this function should behave in the absence of ecolog-
ical and evolutionary processes. One such function is the
mean pairwise distance (MPD); given a phylogenetic tree
T and a subset of species R that are represented by leaf
nodes of T, the MPD of the species in R is equal to aver-
age cost of all possible simple paths that connect pairs of
nodes in R.
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To decide if the value of the MPD for a specific set of
species R is large or small, we need to know the average
value (expectation) of the MPD for all sets of species in
T that consist of exactly r = |R| species. To judge how
much larger or smaller is this value from the average, we
also need to know the standard deviation of the MPD for
all possible sets of r species in 7. Putting all these values
together, we get the following index that expresses how
clustered are the species in R [1]:

MPD(T, R) — expecypp(T,7)
sdmpp (T, 1)

where MPD(T,R) is the value of the MPD for R in 7T,
and expec(7T) and sdypp (7, 7) are the expected value and
the standard deviation respectively of the MPD calculated
over all subsets of r species in 7.

In a previous paper we presented optimal algorithms for
computing the expectation and the standard deviation of
the MPD of a phylogenetic tree 7 in O(n) time, where n

NRI =

’
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is the number of the edges of 7 [2]. This enabled exact
computations of these statistical moments of the MPD on
large trees, which were previously infeasible using tradi-
tional slow and inexact resampling techniques. However,
an important problem remained unsolved; quantifying
our degree of confidence that the NRI value observed in
a community reflects non-random ecological and evolu-
tionary processes.

This degree of confidence can be expressed as a statisti-
cal P value, that is the probability that we would observe
an NRI value as extreme or more so if the community
was randomly assembled. Traditionally, estimating P is
accomplished by ranking the observed MPD against the
distribution of randomized MPD values [3]. If the MPD
falls far enough into one of the tails of the distribution
(generally below the 2.5 percentile or above the 97.5 per-
centile, yielding P < 0.05), the community is said to
be significantly overdispersed or significantly clustered.
However, this approach relies on sampling a large number
of random subsets of species in 7 , and recomputing the
MPD for each random subset. Therefore, this method is
slow and imprecise. This problem is exacerbated when it
is necessary to consider multiple trees at once, arising for
example from a Bayesian posterior sample of trees [4,5].
In such cases, sufficient resampling from all trees in the
sample can be computationally limiting.

We can approximate the P value of an observed NRI by
assuming a particular distribution of the possible MPD
values and evaluating its cumulative distribution func-
tion at the observed MPD. Because the NRI measures
the difference between the observed values and expec-
tation in units of standard deviations, this yields a very
simple rule if we assume that possible MPD values are
normally distributed: any NRI value larger than 1.96 or
smaller than —1.96 is significant. Unfortunately, the dis-
tribution of MPD values is often skewed, such that this
simple rule will lead to incorrect P value estimates [6,7].
Of particular concern, this skewness introduces a bias
towards detecting either significant clustering or signifi-
cant overdispersion [8]. If the distribution of MPD values
for a particular tree can be reasonably approximated using
a skew-normal distribution, calculating the skewness ana-
lytically would enable us to remove this bias and improve
the accuracy of P value estimates. In the last part of the
paper, we describe experiments on large randomly gen-
erated trees, supporting this argument. Further, when a
large sample of trees should be considered, the full distri-
bution of MPD values can be considered as a mixture of
skew-normal distributions [9,10], greatly simplifying and
speeding up the process of calculating P values across the
entire set of trees.

However, so far there has been no result in the related
literature that shows how to compute the needed skew-
ness measure efficiently. Hence, given a phylogenetic tree

Page20of 16

T and an integer r there is the need to design an efficient
and exact algorithm that can compute the skewness of the
MPD for r species in 7. This would provide the last criti-
cal piece required for the adoption of a fully analytical and
efficient approach for analysing ecological communities
using the MPD and the NRL

Our results

In the present work we show how we can compute effi-
ciently the skewness of the MPD. More specifically, given
a tree 7 that consists of # edges and a positive integer
r, we prove that we can compute the skewness of of the
MPD over all subsets of r leaf nodes in 7 optimally, in
®(n) time. For the calculation of this skewness value we
consider that every subset of exactly r species in T is
picked uniform with probability out of all possible sub-
sets that have r species. The main contribution of this
paper is a constructive proof that leads straightforwardly
to an algorithm that computes the skewness of the MPD
in ®(n) time. This is clearly optimal, and it outperforms
even the best algorithms that are known so far for comput-
ing lower-order statistics for other phylogenetic measures;
for example the best known algorithm for computing the
variance of the popular Phylogenetic Diversity (PD) runs
in O(12) time [2].

More than that, we prove how we can compute in © ()
time several quantities that are related with groups of
paths in the given tree; these quantities can be possi-
bly used as building blocks for computing efficiently the
skewness (and other statistical moments) of phylogenetic
measures that are similar to the MPD. Such an example
is the measure which is the equivalent of the MPD for
computing the distance between two subsets of species in
T [11].

The rest of this paper is, almost in its entirety, an elab-
orate proof for computing the skewness of the MPD on
a tree 7 in ©(n) time. In the next section we define the
problem that we want to tackle, and we present a group
of quantities that we use as building blocks for computing
the skewness of the MPD. We prove that all of these quan-
tities can be computed in linear time with respect to the
size of the input tree. Then, we provide the main proof of
this paper; there we show how we can express the value of
the skewness of the MPD in terms of the quantities that
we introduced earlier. The proof implies a straightforward
linear time algorithm for the computation of the skew-
ness as well. In the last section we provide experimental
results that indicate that computing the skewness of the
MPD can be a useful tool for improving the estimation
of P values when a skew-normal distibution is assumed.
There we describe experiments that we conducted on
large randomly generated trees to compare two different
methods for estimating P values; one method is based on
random sampling of a large number of tip sets, and the
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other method relies in calculating the mean, variance, and
skewness of the MPD for the given tree.

Description of the problem and basic concepts
Definitions and notation Let 7 be a phylogenetic tree,
and let E be the set of its edges. We denote the number of
the edges in 7 by #, that is n = |E|. For an edge e € E,
we use w, to indicate the weight of this edge. We use S to
denote the set of the leaf nodes of 7. We call these nodes
the tips of the tree, and we use s to denote the number of
these nodes.

Since a phylogenetic tree is a rooted tree, for any edge
e € E we distinguish the two nodes adjacent to e into a
parent node and a child node; among these two, the par-
ent node of e is the one for which the simple path from
this node to the root does not contain e. We use Ch(e) to
indicate the set of edges whose parent node is the child
node of e, which of course implies that e ¢ Ch(e). We indi-
cate the edge whose child node is the parent node of e by
parent(e). For any edge e € E, tree 7 (e) is the subtree of
T whose root is the child node of edge e. We denote the
set of tips that appear in 7 (e) as S(e), and we denote the
number of these tips by s(e).

Given any edge e € E, we partition the edges of 7 into
three subsets. The first subset consists of all the edges that
appear in the subtree of e. We denote this set by Off(e).
The second subset consists of all edges ¢’ € E for which
e appears in the subtree of ¢'. We use Anc(e) to indicate
this subset. For the rest of this paper, we define that e €
Anc(e), and that e ¢ Off(e). The third subset contains all
the tree edges that do not appear neither in Off(e), nor in
Anc(e); we indicate this subset by Ind(e).

For any two tips u, v € S, we use p(u,v) to indicate the
simple path in 7 between these nodes. Of course, the path
p(u,v) is unique since 7 is a tree. We use cost(u,v) to
denote the cost of this path, that is the sum of the weights
of all the edges that appear on the path. Let # be a tip in S
and let e be an edge in E. We use cost(u, e) to represent the
cost of the shortest simple path between u and the child
node of e. Therefore, if # € S(e) this path does not include
e, otherwise it does. For any subset R C S of the tips of
the tree T, we denote the set of all pairs of elements in R,
that is the set of all combinations that consist of two dis-
tinct tips in R, by A(R). Given a phylogenetic tree 7 and a
subset of its tips R C S, we denote the Mean Pairwise Dis-
tance of R in 7 by MPD(T, R). Let r = |R|. This measure
is equal to:

2
r(r—1)

MPD(T,R) =

Z cost(u,v) .

{u,v}e A(R)

Aggregating the costs of paths
Let 7 be a phylogenetic tree that consists of # edges and s
tips, and let r be a positive integer such that r < s. We use
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sk(7,r) to denote the skewness of the MPD on 7 when
we pick a subset of r tips of this tree with uniform proba-
bility. In the rest of this paper we describe in detail how we
can compute sk(7,r) in O(n) time, by scanning 7 only a
constant number of times. Based on the formal definition
of skewness, the value of sk(7, r) is equal to:

_ 3
SK(T,7) = Eresub(s.) [(MPD(T’R) expec(7, 1) ) }

var(7T,r)
_ Epesub(s, [MPD3(T,R)] — 3 - var(T,r)? — expec(T, 1)
- var(7T,r)3 ’
1)

where expec(T,r) and var(T,r) are the expectation and
the variance of the MPD for subsets of exactly r tips in T,
and Epesub(s,r | -] denotes the function of the expectation
over all subsets of exactly r tips in S. In a previous paper,
we showed how we can compute the expectation and the
variance of the MPD on 7T in O(#n) time [2]. Therefore,
in the rest of this work we focus on analysing the value
EResubs,nl MPD3(T, R)] and expressing this quantity in a
way that can be computed efficiently, in linear time with
respect to the size of 7.

To make things more simple, we break the description
of our approach into two parts; in the first part, we define
several quantities that come from adding and multiply-
ing the costs of specific subsets of paths between tips of
the tree. We also present how we can compute all these
quantities in O(#) time in total by scanning 7 a constant
number of times. Then, in the next section, we show how
we can express the skewness of the MPD on 7 based on
these quantities, and hence compute the skewness in O(n)
time as well. Next we provide the quantities that we want
to consider in our analysis; these quantities are described
in Table 1. In this table but also in the rest of this work,
for any tip u € S, we consider that SQ(x#) = SQ(e), and
TC(u) = TC(e), such that e is the edge whose child node
is u.

We provide now the following lemma.

Lemma 1. Given a phylogenetic tree T that consists of n
edges, we can compute all the quantities that are presented
in Table 1 in O(n) time in total.

Proof. Each of the quantities (I)-(X) in Table 1 can be
computed by scanning a constant number of times the
input tree 7, either bottom-up or top-to-bottom. For
computing quantity (XI) we follow a more involved divide-
and-conquer approach.

We showed in a previous paper how we can compute
quantity (I) and the quantities in (III) for all e € E in O(n)
time in total [2].
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Table 1 The quantities that we use for expressing the skewness of the MPD

N TC(T) = Z cost(u, v)

) CB(T) = Z cost>(u, v)

{uvieA(S) {uvleA(S)
Ve e £, TC(e)= Y cost(u,v) MVeek SQe) = Y cost’(uv)
{uvieA(S) {uvieA(S)
eep(u,v) eep(u,v)

V) Ve € £, Mult(e) = Z TC(u) - TC(v)

V) Vu € S, SM(u) = Z cost(u,v) - TC(v)

{uvieA(S) v
eep(u,y)
Vi) Ve € £, TCup(e) = . cost(u,e) Vilh Ve € £, SQuo(e) = ) cost’(ue)
ues(e) ues(e)
IX) Ve € E, PC(e) = Z cost(u,e) X) Ve € E, PSQ(e) = Z cost?(u, )
ues ues
2
X)Vee £, QD) = Y | > costw,v)
ueS(e) \veS(e)\{u}

For an edge e € E, the quantity in (VII) can be written
as:

TCgup(e) = Z cost(u,e) = Z wy-s(l).

ueS(e) 1eOff(e)

We can compute this quantity for every e € E in linear
time as follows; in the first scan we compute for every edge
e the number of leaves s(e) in 7 (e). This can be done in
O(n) time by computing in a bottom-up manner s(e) as
the sum of the numbers of tips s(¢’), V¢’ € Ch(e). Then,
we can compute TCgyp (e) by scanning bottom-up the tree
using the following formula:

TCab(e) = Y wy-s() + TCou(l) .
leCh(e)

For quantity (VIII), for any e € E we have that:
SQqup(e) = Z cost® (u, €)

ueS(e)
= Z wy Z 2wy - s(k) + Z wlz-s(l)
1eOff(e) keOff(l) 1eOff(e)

= Y 2-w TCup() +w}-s(D) .
1eOff(e)

Then SQg,;, (e) can be computed for every edge e € E by
scanning 7 bottom up and evaluating the formula:

SQub(e) = Y 2w TCap (D) +w} - s(1) + SQuup () -
leCh(e)

For every edge e in T, quantity (IV) can be written as:

Z cost*(u,v) = 2 Z wy - wg - NumPath(e, [, k)

{u,v}eA(S) L,keE
eep(u,v)

+ Z wl2 - NumPath(e, /) .
leE
In the last expression, value NumPath(e, /, k) is equal to

the number of simple paths that connect two tips in 7 and
which also contain all three edges e,/ and k. The quantity

NumPath(e, /) is equal to the number of simple paths that
connect two tips in 7 and which also contain both edges
e and [. Therefore, for any e € E we have:

Z cost®(u,v) = 2(s — s(e)) Z wy Z wy - s(k)

{u,v}e A(S) 1eOff(e) keOff(l)
ecp(u,v)

+2 Z wi(s — s() Z wy. - s(k)

leAnc(e) keOff(e)

+2-s(e) Z wi(s — (1)) Z Wi

leAnc(e) keAnc(e)
keOff(l)

+2-s(e) Z wy Z wy - s(k)

lelnd(e)  keOff(])

+2 Z wy - s(l) Z wy - s(k)

lelnd(e) keOff(e)

+2-s(e) Z wy Z wy - s(k)

leAnc(e) kelnd(l)

+ (s —s(e) Z le - 51+ s(e)
1eOff(e)

Z wi - (s — s())+s(e) Z w?-s(l)

leAnc(e) leInd(e)
= (s — s(e)) - SQqup(e)

+ ) wils—s()(2 TCqup(e)+wi-s(e)
leAnc(e)

+2-s(e) Z wi(s—s(l))

>

leAnc(e) keAnc(e)
keOff(l)
+s() > w2 TCqp(D)
lelnd(e)

+wps()+2- TCan(e) Y wy-s(h)
leInd(e)

+2-s(e) Z wy Z wy - s(k) .

leAnc(e) kelnd(l)
2)
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We explain now how we can compute the six quanti-
ties in (2) in O(n) time, assuming that we have already
computed TCqyp(e) and s(e) for every e € E. To make
the description simpler, we show in detail how we can
compute the second and fourth quantities that appear in
the last expression; it is easy to show that the rest of the
quantities in (2) can be calculated in a similar manner.

For any e € E, we denote the second quantity as follows:

SUMi (e) = Z wi(s —s(D)(2 - TCsup(e) + wy - s(e)) .
leAnc(e)
We also define the following quantities:
SUMia(e) = ) wils—s(D),
leAnc(e)
and
SUMig(e) = Y wi(s—s()).
leAnc(e)

We can calculate SUM; (e) for every edge e by travers-
ing the tree top-to-bottom and evaluating the following
expressions:

SUMji4(e) = we(s — s(e)) + SUM 14 (parent(e)) .
SUM;ig(e) = wg(s — s(e)) + SUMjp(parent(e)) .
SUM;j(e) = 2 - TCsup(e) - SUM14(e) + SUM;pg(e) - s(e) .

To compute the fourth quantity in (2), we use the fol-
lowing quantity:

SUMa(e) = Y wi2- TCaup() + w; - s(1)) .
1eOff(e)

This quantity can be evaluated in O(n) time for every e €
E with a bottom-up scan of the tree. We also consider the
following value which we can precompute in O(n) time:

SUMy(T) = ) we(2 - TCaup(e) + we - s(e)) .
ecE
For every edge e € E we calculate in a top-to-bottom
manner the formula:

SUM3(e) = we(2-TCqyp(e)+we-s(e))+SUMgs(parent(e)) .

Then for each tree edge e, the fourth quantity in (2) can be
computed in constant time as follows:

se) Y w2 TCab() +w; - s(1)
leInd(e)

= s(e) - (SUM2(T) — SUM3(e) — SUM3(e)) .
The remaining quantities in (2) can be computed in a

quite similar manner as the two quantities that we already
described.
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Quantity (II) in Table 1 is equal to:
CB(T) = Z cost> (u, v)
{u,v}eA(S)
= Z We Z costz(u, V) = Z we - SQ(e) .
ecE {u,v}e A(S) ecE
ecp(u,v)

We have already presented how to compute SQ(e) for
every edge e in 7 in O(n) time in total, hence we can also
compute CB(7) in O(n) time by simply summing up the
values w, - SQ(e) for every edge e in the tree. For quantity
(V) it holds that:

Mult(e) = Z TC(u) - TC(v)
{u,v}e A(S)
ecp(u,v)
= Z TC(u) Z TC(v)
ueS(e) veS—S(e)
=| > Cw | > TCH) - Y TCw
ueS(e) vesS ueS(e)

Since we have already computed TC(v) for every tip
v € §, we can trivially evaluate ) ¢ TC(v) in O(n) time.
Hence, to compute quantity (V) it remains now to calcu-
late the values SUMgy(e) = Zues(e) TC(u) for every edge
e € E. We can do this in O(n) time as follows: at each
tip u € S we store the value TC() that we have already
computed. Then we scan 7 bottom-up and we calculate
SUM4(e) by summing up the values SUM4(!) for all edges
[ € Ch(e).

Let u beatipin S, and let e be the edge which is adjacent
to u. Then, quantity (VI) is equal to:

SM(u) = Z cost(u,v) - TC(v)

veS\{u}
= Y w Y TCO+ Y w Yy TCH)
leAnc(e) veS\S() leInd(e) veS(l)
= Y w|) TCw - ) TCx)
leAnc(e) ves xeS(l)
+Y w Y TCw— > w Yy TCW).
leE veS(l) leAnc(e) veS(l)

In the last expression, value ) TC(v) can be com-
puted in O(n) time, given that we have already computed
TC(v) for every v € S. Value Y ;. w; ZveS(l) TC(v) and
values } s TC(x) for any / € E can be calculated with
a bottom-up scan of 7 in a similar way as we computed
TCgup(e) for all e € E. The remaining sums that involve
edges in Anc(e) can be computed in linear time for every
edge e with a similar mechanism as with SUM3(e) that
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we described earlier in this proof. For any edge e € E,
quantities PC(e) and PSQ(e) in Table 1 are equal to:

PC(e) = Y cost(u,e) = TCoup(e) + . wy-s(])

uesS leInd(e)
+ Y wils—sb),
leAnc(e)
and:
PSQ(e) = ) _ cost’(u, €) = SQup(e)
ues
+2 > wi- TCaub(®) 4w} - s()
leInd(e)
+2 Z wy Z Wk - Sk
leAnc(e) kelnd(l)

+2 ) wis—s)

leAnc(e)

Z Wi +w12(s—s(l)).

keAnc(e)
keOff(l)

From the two last expressions, and given the description
that we provided for other similar quantities in Table 1,
it easy to conclude that PC(e) can be evaluated for every
edge e in O(n) time by scanning 7 a constant number of
times. Having computed PC(e) for all edges e € E, the
quantity PSQ(e) can be computed in a similar manner.

Next we describe a divide-and-conquer approach for
computing in © (1) time quantity (XI) in Table 1 for every
e € E . Before we start our description, we define one more
quantity that will help us simplify the rest of this proof.
For an edge e € E and a tip u € S(e) we define that TC,(x)
is equal to:

TCe(u) =

Z cost(u,v) .

veS(e)\{u}

For any edge e € E it is easy to show that:

> TCe(wy= Y TC(u) — TC(e) 3)

ueS(e) uesS(e)

Therefore, according to (3) we can compute the sum
> ues(e) LCe(u) for all edges e € E in linear time in total,
given that we have already computed TC(e) for every e €
E, and TC(u) for every u € S.

Next we continue our description for computing QD(e)
using a divide-and-conquer approach. We start with the
base case; for every edge tree e that is adjacent to a leaf
node we have:

QD) =

ueS(e)

2

Z cost(u,v)

veS(e)\{u}

=0.
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For any edge e € E that is not adjacent to a leaf node,
we can calculate QD(e) using the values of the respective
quantities of the edges in Ch(e):

QD) = Y QDO

1eCh(e)

+2 Z Z Z cost(u,v) - TCy(u)

1eCh(e) ueS(l) veS(e)\S()
2

Z cost(u,v) | . (4)

veS(e)\S()

P

leCh(e) ueS()

The first sum in (4) can be computed in ® (|Ch(e)|) time
for each edge e, given that we have already computed the
values QD(/) for every [ € Ch(e). We leave the description
for calculating the second sum in (4) for the end of this
proof. The third sum in this expression is equal to:

2

Z cost(u, v)

veS(e)\S()

2 2

leCh(e) ueS(l)

=2 2

leCh(e) ueS()

= Z Z Z Z cost2(u,l)

leCh(e) ueS(l) veS(e)\S() xeS(e)\S()
+ cost(u,l) - cost(v, 1) + cost(u,l) - cost(x, 1)

Z cost(u, 1) + cost(v, 1)
veSe@\S()

+ cost(v, 1) - cost(x, 1) . (5)

The first term of the sum in (5) can be expressed as:

Z Z Z Z cost® (u, 1)

1€Ch(e) ueS(l) veS(e)\S() xeS(e)\S()

= Z Z (s(e) — s(1))? - cost®(u, )

leCh(e) ueS()

= > (s(e) = s())* - SQup(D) » (6)

leCh(e)

and can be computed in ®(|Ch(e)|) time, given that we
have already computed SQg, (1), VI € Ch(e).
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The next two parts of the sum in (5) are equal to: We left for the end the description of the calculation of
the second sum in (4). We can express this sum as follows:

Z Z Z Z cost(u, 1) - cost(v, ) Z Z Z cost(u,v) - TCy(u)

leCh(e) ueS() veS(e)\S(l) xeS(e)\S())
leCh(e) ueS(l) veS(e)\S()
+ cost(u, 1) - cost(x, 1)
= Z Z Z 2 (s(e) —s(l)) - cost(u,l) - cost(v, ) = Z Z Z (cost(u, ) + cost(v, 1)) - TC;(u)

[Ch(e) ueS() veS@\S() leCh(e) ueS() veS(e)\S()

—2 Y (st —s) Y costun (wms(e)—s(z)) =22 ) costd TG

leChie) west) leCh(e) ueS() veS(e)\S()

+ 2 weest) —wp s + 33 Y cost(v,l) - TCi(w)

keCh(e) leCh(e) ueS(l) veS(e)\S()

+ (— Z TCsub(k)) - TCsub(l)) - Z Z (s(e) — s()) - cost(u, 1) - TC; ()

keChe) IeCh(e) ueS()

=2 ) (s(e)—s(l))-Tcsuba)-(w;(s(e)—s(l)) + 33 Y cost(v D) - TCw) . )

leCh(e) leCh(e) ueS(l) veS(e)\S()

We start with the second sum in (9). For this sum we get:
+ DD wes® | —wiesh+ Y TCan k)
keCh(e) keCh(e) Z Z Z cost(v, 1) - TCy(u)

1eCh(e) ueS(l) veS(e)\S()

— TCouw () | -
) = > > | mG@-—s+| > wis®

(7) lCh(e) ueS(l) keCh(e)
The last expression can be computed in ® (|Ch(e)|) time
as well, if we have already computed the sum ) keChiey Wk —wy-s() + Z TCsub (k) | = TCsup (D) | - TCy(u).
s(k) and the quantity TCqyp (e) for every edge e in the tree. keCh(e)
We can rewrite the remaining term in (5) as: Because of (3), the last expression can be written as:

2. 2 ) D costn])-costis]) >y (Wz(s(e)—s(l)H— > -k — w5l

leCh(e) ueS(l) veS(e)\S(l) xeS(e)\S() leChie) uesl) keChie)

2

=2 2| X costvp + ( > Tcsub(/o) —Tcsuba))-Tcz(u)

leCh(e) ueS(l) \veS(e)\S() keCh(e)

2
= Y s Y costnD =2 (Wl<s(€>—s(l>>+( > Wk'“k))—WrS(l)

ICh(e) veS@\S() leChe) keChe)
_ + | Y TCun®) | =TCan® || Y TCw)—TC(e) |,
= Y s [wise) —sD)+ > wic-s(k) —wy-s(D) (,@Ch(e) ) )(ues@ )
I€Ch(e) keCh(e)
) which takes ®(|Ch(e)|) time to be computed for each
edge e.
+ Z TCoup (k) — TCsup (D) | . (8) To compute the first sum in (9) efficiently, we need to
keCh(e) precompute for every edge [ € E the following quantity:
The last expression can be computed in ®(|Ch(e)|) time Z cost(u,e) - TCe(us) .

in a similar way as the previous terms of the sum in (5). ueS(e)
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To do this, we follow again a divide-and-conquer
approach. We get the base case for this computation for
the edges of 7 that are adjacent to tips. For any such edge
e we have:

Z cost(u,e) - TCp(u) =0.
ueS(e)

For any other edge e € E we can compute this quantity
based on the respective quantities of the edges in Ch(e).
In particular, we have that:

Z cost(u,e) - TCp(u) = Z Z cost(u, 1) - TC;(u)

ueS(e) leCh(e) ueS(l)
+ 2w ) TG+ Y
leCh(e) ueS(l) leCh(e)

Z Z cost(u, e) - cost(u,v)

ueS(l) veS(e)\S()

= Z Zcost(u,l)-Tcl(M)-f' Z

leCh(e) ueS(l) leCh(e)

xw,( > TC(u)—TC(l))—f— >

ueS(l) leCh(e)

Z Z cost(u, e) - cost(u,v) .

ueS(l) veS(e)\S()
(10)

The first two sums in the last expression can be com-
puted in ®(|Ch(e)|) time, given that we have computed
already for every / € Ch(e) the quantity TC(/) and the
sum )y, sy TC(w) (can be done with a single bottom-up
scan of the tree). The last sum in (10) can be expressed
as:

Z Z Z cost(u, e) - cost(u, v)

1eCh(e) ueS(l) veS(e)\S()

= Z wy Z Z cost(u,v)

leCh(e)  ueSWl) veS(e)\S()

+ Z Z Z cost(u, ) - cost(u, v)

1eCh(e) ueS(l) veS(e)\S()

= Z wy Z Z cost(u,v)

leCh(e) ueS(l) veS(e)\S()

+ Z Z Z costz(u,l)

leCh(e) ueS(l) veSe\S()

+ Z Z Z cost(u, 1) - cost(v,1) .

1eCh(e) ueS(l) veS(e)\S()

(11)
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The two last sums in (11) are identical with the quanti-
ties that we analysed in (6) and in (7). Finally, the first sum
in (11) is equal to:

Z wy Z Z cost(u,v)

leCh(e)  ueS(l) veS(e)\S()
= Y wis(e) = s(1)) - TCau (D)
leCh(e)

+ Y wies(D) - (ste) — s()

leCh(e)

+ Y wi s | DD st wie | =) -w
leCh(e) keCh(e)

+ > wesO || D] TCab®) | =TCaun |,
leCh(e) keCh(e)

(12)

which can also be computed in ® (|Ch(e)|) time.

All the sums that we analysed from (4) up to (12) can be
computed in ®(|Ch(e)|) time for every edge e in the tree.
From this we conclude that for every edge e € E we can
evaluate QD(e) in (4) in ©(|Ch(e)|) time from the respec-
tive values of the edges in Ch(e). Since ), |Ch(e)| =
O(|E]), we prove that we can compute QD(e) for all the
edges in 7 in O (n). O

Computing the skewness of the MPD

In the previous section we defined the problem of com-
puting the skewness of the MPD for a given phylogenetic
tree 7. Given a positive integer r < s, we showed that
to solve this problem efficiently it remains to find an effi-
cient algorithm for computing ERegub(S,,)[MPD?’(T, R)];
this is the mean value of the cube of the MPD among
all possible subsets of tips in 7 that consist of exactly r
elements. To compute this efficiently, we introduced in
Table 1 eleven different quantities which we want to use in
order to express this mean value. In Lemma 1 we proved
that these quantities can be computed in O(n) time, where
n is the size of 7.

Next we prove how we can calculate the value for the
mean of the cube of the MPD based on the quantities
in Table 1. In particular, in the proof of the following
lemma we show how the value EResub(g,r)[MPD?’ (T,R)]
can be written analytically as an expression that con-
tains the quantities in Table 1. This expression can then
be straightforwardly evaluated in O(n) time, given that
we have already computed the aforementioned quantities.
Because the full form of this expression is very long (it
consists of a large number of terms), we have chosen not
to include it in the definition of the following lemma. We
chose to do so because we considered that including the
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entire expression would not make this work more read-
able. In any case, the full expression can be easily infered
from the proof of the lemma.

Lemma 2. For any given natural r < s, we can compute
EResub(s,» | MPD3(T, R)] in © (n) time.

Proof. The expectation of the cube of the MPD is equal
to:

EResubs,» [ MPD3(T, R)]

8
= Be_13 EResub(sn Z Z Z

{uvie AR) {x,y}e A(R) {c,d}e A(R)

cost(u,v) - cost(x,y) - cost(c,d)

From the last expression we get:

)IEND IS

{uvie AR) {x,y}eAR) {c,d}eA(R)

EResub(s,r

cost(u,v) - cost(x,y) - cost(c,d)

- Z Z Z cost(u,v) - cost(x, y)

{u,v}e A(S) {xyteA(S) {c,d}e A(S)

- cost(c,d) - Epesubs,n) [APR(u, v, %,9,¢,d)] ,  (13)

where APp(u, v, x, y, ¢, d) is a random variable whose value
is equal to one in the case that &, v, x,y, ¢, d € R, otherwise
it is equal to zero. For any six tips u, v, x,y,¢,d € S, which
may not be all of them distinct, we use 0(u,v,%,y,¢,d) to
denote the number of distinct elements among these tips.
Let ¢ be an integer, and let (¢); denote the k-th falling fac-
torial power of £, which means that () = t(t —1)... (£ —
k + 1). For the expectation of the random variables that
appear in the last expression it holds that:

( )0(14 V,%,9,C,d)

EResub(s,r) [APR(w, v, %,y,¢,d)| = (14)

(9)g (w,vxy,¢,d)

Notice that in (14) we have 2 < 0 (u, v, x,y,¢,d) < 6. The
value of the function 6(-) cannot be smaller than two in
the above case because we have that u # v, x # y, and
¢ # d. Thus, we can rewrite (13) as:

r
S OY Y e
V) EA(S) () eA(S) {ed)eA(S) duryed
- cost(x,y) - cost(c,d) (15)

Hence, our goal now is to compute a sum whose ele-
ments are the product of costs of triples of paths. Recall
that for each of these paths, the end-nodes of the path
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are a pair of distinct tips in the tree. Although the end-
nodes of each path are distinct, in a given triple the paths
may share one or more end-nodes with each other. There-
fore, the distinct tips in any triple of paths may vary from
two up to six tips. Indeed, in (15) we get a sum where the
triples of paths in the sum are partitioned in five groups;
a triple of paths is assigned to a group depending on the
number of distinct tips in this triple. In (15) the sum
for each group of triples is multiplied by the same factor
(Nowvry.ed) ! (8o wuyxycd) hence we have to calculate the
sum for each group of triples separately.

However, when we try to calculate the sum for each of
these groups of triples we see that this calculation is more
involved; some of these groups of triples are divided into
smaller subgroups, depending on which end-nodes of the
paths in each triple are the same. To explain this better, we
can represent a triple of paths schematically as a graph; let
{u, v}, {x, 9}, {c,d} € A(S) be three pairs of tips in 7. As
mentioned already, the tips within each pair are distinct,
but tips between different pairs can be the same.

We represent the similarity between tips of these three
pairs as a graph of six vertices. Each vertex in the graph
corresponds to a tip of these three pairs. Also, there exists
an edge in this graph between two vertices if the corre-
sponding tips are the same. Thus, this graph is tripartite;
no vertices that correspond to tips of the same pair can be
connected to each other with an edge. Hence, we have a
tripartite graph where each partite set of vertices consists
of two vertices—see Figure 1 for an example.

For any triple of pairs of tips {u, v}, {x,5}, {c,d} € A(S)
we denote the tripartite graph that corresponds to this
triple by Glu, v, x,y, ¢, d]. We call this graph the similarity
graph of this triple. Based on the way that similarities may
occur between tips in a triple of paths, we can partition
the five groups of triples in (15) into smaller subgroups.
Each of these subgroups contains triples whose similarity
graphs are isomorphic. For a tripartite graph that con-
sists of three partite sets of two vertices each, there can
be eight different isomorphism classes. Therefore, the five

a * b

O—OO

OO——O
a vy o0 € ¢ 7

Figure 1 Representing triples of paths as graphs. (a) A
phylogenetic tree T~ and (b) an example of the tripartite graph
induced by the triplet of its tip pairs {&, y}, {8, v}, {€, 8}, where
{a,y,68,€} C S.The dashed lines in the graph distinguish the partite
subsets of vertices; the vertices of each partite subset correspond to
tips of the same pair.
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groups of triples in (15) are partitioned into eight sub-
groups. Figure 2 illustrates the eight isomorphism classes
that exist for the specific kind of tripartite graphs that we
consider. Since we refer to isomorphism classes, each of
the graphs in Figure 2 represents the combinatorial struc-
ture of the similarities between three pairs of tips, and it
does not correspond to a particular planar embedding, or
ordering of the tips.

Let X be any isomorphism class that is illustrated in
Figure 2. We denote the set of all triples of pairs in A(S)
whose similarity graphs belong to this class by Bx. More
formally, the set By can be defined as follows :

Bx = {{{u, v}, {x, 3}, (e, d}} : {u, v} (%, 9}, (e, d} € A(S)
and G[ u, v, x,9, ¢, d] belongs to class X in Figure 2} .

We introduce also the following quantity:

2

{{M’V}v{x’y}r{crd}}GBX

TRS(X) = cost(u, v)-cost(x,y)-cost(c,d) .

Hence, we can rewrite (15) as follows:
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every isomorphism class X that is presented in Figure 2.
Next we show in detail how we can do that by expressing
each quantity TRS(X) as a function of the quantities that
appear in Table 1.

For the triples that correspond to the isomorphism class

A we have:
TRS(A) = Y cost®(u,v) = CB(T).
{u,v}eA(S)
For TRS(B) we get:
TRS(B) = Z cost® (u,v) Z cost(u, x)
{u,v}e A(S) xeS\{u}

+ Z cost(v,y) — 2 - cost(u,v)
yeS\{v}

= Z costz(u,v)(TC(u)+TC(v)—2-cost(u,v))
{u,v}eA(S)

= SQ(u) - TC(u) — 2 CB(T).

S
(r)z -TRS(A) +3- @ - TRS(B) +6- % - TRS(C) .ME .
(5)2 ()3 ()3 The quantity TRS(C) is equal to:
1
+6- 4 TRS(D) + 3 - 4 TRS(E) + 6 - s TRS(F) 3 Z Z cost(u, v) Z cost(u,x) - cost(x,v)
(8)a (8)a ()a ues ves\{u) xeS\{u,v)
+6- s - TRS(G) +6- Ws - TRS(H) = Zw Z Z Z cost(u, x) - cost(x, V)
(8)s (8)s - € ’ e
ecE ueS(e) veS—S(e) xeS\{u,v}
(16)
(17)
Notice that some of the terms Er ;’ TRS(X) in (16) are E E we have that:
multiplied with an extra constant factor. This happens oranye € L we have that:
for the following reason; the sum in TRS(X) counts each Z Z Z cost(u, x) - cost(x, v)
triple once for every different combination of three pairs 2 S(e) veS—S(e) xeS\ ()
of tips. However, in the triple sum in (15) some triples
appear more than once. For example, every triple that = Z Z Z cost(u, x) - cost(x, v)
belongs in class B appears three times in (15), hence there ueS(e) veS\{u) xS\ {u,v)
is an extra factor three in front of TRS(B) in (16).
To compute efficiently EREsub(g,,)[MPD3(T, BR)], it -2 Z Z cost(u,x) - cost(x,v) . (18)
remains to compute efficiently each value TRS(X) for {u,v}e A(S(e)) xS\ {u,v}
a b c o—c(a/a 603
-:-: 0—0:0 OOO
e o000 f oo o go—oo h oioio
0—0:0 O: o—o O: o o 0:i0:0
Figure 2 Isomorphism classes. The eight isomorphism classes of a tripartite graph of 3 x 2 vertices that represent schematically the eight possible
cases of similarities between tips that we can have when we consider three paths between pairs of tips in a tree T.
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The first of the two sums in (18) can be written as:

Z Z Z cost(u, x) - cost(x,v)

ueS(e) veS\{u} xeS\{u,v}

= Z Z Z cost(u, v) - cost(x,v)

ueS(e) veS\{u} xeS\{u,v}

= > > (cost(u,v) - TC(v) — cost*(u,))

ueS(e) veS\{u}

= > SM(w) — SQ) .

ueS(e)

(19)

According to Lemma 2, we can compute SM(x) and
SQ(u) for all tips u € S in linear time with respect
to the size of 7. Given these values, we can compute
Zues(e) SM(u) — SQ(u) for every edge e € E in T with a
single bottom-up scan of the tree. For any edge e in E, the
second sum in (18) is equal to:

Z Z cost(u, x) - cost(x,v)

{u,vie A(S(e)) xeS\{u,v}

= 22

{u,vye A(S(e)) xeS(e)\{u,v}

+ Z Z cost(u, x) - cost(x,v) .

{u,v}e A(S(e)) xeS\S(e)

cost(u, x) - cost(x, V)
(20)

We can express the first sum in (20) as

22

{u,v}e A(S(e)) xeS(e)\{u,v}

1
ueS(e)

—% Z Z costz(u,v)

ueS(e) veS(e)\{u}

= %QD(e) — % Z Z cost*(u, v) .

ueS(e) veS(e)\{u}

cost(u, x) - cost(x, V)
2

Z cost(u,v)

veS(e)\{u}

(21)
The last sum in (21) is equal to:

Y SQw) | —sQe) .

ueS(e)

Z Z costz(u, V) =

ueS(e) veS(e)\{u}
(22)

The value of the sum Zues(e) SQ(u) can be computed
for every edge e in ® (n) time in total as follows; for every
tip u € S we store SQ(u) together with this tip, and then
scan bottom-up the tree adding those values that are in
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the subtree of each edge. For the remaining part of (20) we
get:

Z Z cost(u, x) - cost(x, V)

{u,v}e A(S(e)) xeS\S(e)
= Z Z (cost(u, e) + cost(x, e))
{u,v}eA(S(e)) xeS\S(e)
X (cost(v, e) + cost(x,e))

= Z Z cost(u, e) - cost(v, e)

{u,v}e A(S(e)) xeS\S(e)

+ Z Z cost(x, e)- (cost(u, e)+cost(v,e))

{u,v}eA(S(e)) x€S\S(e)

+ Z Z cost® (x,e) .

{u,v}eA(S(e)) xeS\S(e)

(23)

The first sum in (23) is equal to:

Z Z cost(u, e) - cost(v, e)

{u,v}eA(S(e)) x€S\S(e)

1
=5 (=) (TCsub’(e) (24)

- Squb (e)) .
For the second sum in (23) we have:

Z Z cost(x, e) - (cost(u, e) + cost(v,e))
{u,v}eA(S(e)) x€S\S(e)

= (se) = 1) - TCun(e) ) cost(x,e)
xe€S\S(e)

= (s(e) = 1) - TCsup(e) - (PC(e) — TCoup(e)) . (25)

The last sum in (23) can be written as:

Z Z cost? x,e)

{u,v}eA(S(e)) xeS\S(e)

_ s(e)(s(e) — 1

2 ) (PSQ(e) - Squb(e)) . (26)

Combining the analyses that we did from (17) up to (26)
we get:

TRS(C) = Zwe Z SM(x) — QD(e) — SQ(e)

ecE ueS(e)
— (s — 5(€)) (TCsub*(e) — SQqyp(€))
—2(s(e) — 1) - TCqyp(e) - (PC(e) — TCsup(e))

— s(e)(s(e) — 1) - (PSQ(e) — SQgyp(©))
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The value of TRS(D) can be expressed as:

IIEEDD

ueS vxyeS\{u}
vx,yare distinct

cost(u,v) - cost(u,x) - cost(u,y)

= é (Z TC3(u) —2- TRS(A) — 3 - TRS(B))

ues

1 2 1
=< D TCw) + 3 -CB(T) — 3 > SQ(w) - TC(w) .

ues ues

For TRS(E) we get:
Z cost? (u,v) - cost(x,y)

{uvye A(S) {xyte A(S\{u,v})

= Z cost® (u, v)(TC(T) — TC(u) — TC(v) + cost(u, v))
{u,v}e A(S)

= TC(T) Z we - TC(e) — Z (SQ(w) - TC(w)) + CB(T) .

ecE ues

We can rewrite TRS(F) as follows:

Z cost(u, v)

{u,v}e A(S)

xeS\{u,v}

(TC(u) - TC(v) — cost*(u,v) — Z cost(u, x) - cost(x, v))

= Z cost(u,v) - TC(u) - TC(v) — CB(T) — 3- TRS(C)
{u,v}e A(S)

= Z We - Mult(e) — CB(T) — 3 - TRS(C) .
ecE

For the value of TRS(G) we have:

TRS(G):% Z cost(u, v) Z (cost(u, x)

{u,v}e A(S) xeS\{u,v}
+ cost(v,x)) (TC(T) — TC(u) — TC(v)

— TC(x) + cost(u,v) + cost(u,x) + cost(v,x)) .

27)

We now break the sum in (27) into five pieces and

express each piece of this sum in terms of the quantities in
Table 1. The first piece of the sum is equal to:

% Z cost(u, v) Z (cost(u, x)+cost(v,x))- TC(T)

{u,v}eA(S) xeS\{u,v}

— % - TC(T) ZTC2(u) -2 Z costz(u, V)

ues {u.v}eA(S)

- % - TC(T) (Z TCHu) =2+ ) we TC(e)) :

ues ecE
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The second piece that we take from the sum in (27) can
be expressed as:

—% Z cost(u,v) Z (cost(u, x)

{u,v}e A(S) xeS\{u,v}
+ cost(v,x)) (TC(u) + TC(v))
= —l Z cost(u,v) (TC(u) + TC(v)
{uv}eA(S)
— 2 - cost(u,v)) (TC(u) + TC(v))
= _% > cost(u,v) (TC*(u)
{u,v}e A(S)
+ TC?(v) + 2 - TC(u) - TC(v)
— 2-cost(u,v) - (TC(u) + TC(v)))

1

=— ZTCB(M) - Z cost(v,x) - TC(v) - TC(x)
ues {vx}eA(S)

+ Y cost’(,2) (TC(y) + TC(2))

{yzteA(S)
1 3
=-3 D TCw) — > we - Mult(e)
ues ecE
+ ) SQ) - TC(u) .
uesS

(28)

The next piece that we select from (27) is equal to:

—% Z cost(u,v) Z (cost(u, x)

{uvieA(S) xeS\{u,v}
+ cost(v,x)) - TC(x)

=—1 Z cost(u, v)(SM(u)

{u,v}eA(S)
+ SM(v) — cost(u,v) - TC(u) — cost(u,v) - TC(v))

1

=-3 Z SM(x) - TC(x)

uesS

+ 1 Z costz(u, v) (TC(u) 4+ TC(v))

{u,v}e A(S)

=~ 23 SM@w - TC + + 3 5Q) - TCw)
2 ues 2 ues '

(29)
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For the fourth piece of the sum in (27) we get:

% Z cost® (u, v) Z (cost(u,x) + cost(v,x))

{u,v}eA(S) xeS\{u,v}

1 1
=3 TRS(B) = 3 % SQ(u) - TC(u) — CB(T) .

(30)

The last piece of the sum in (27) can be expressed as:

% Z cost(u,v) Z (cost(u,x)—l—cost(v,ac))2

{u,v}eA(S) xeS\{u,v}

= % Z cost(u,v) Z (cost2(u, x)
{u,v}e A(S) xeS\{u,v}
+ cost?(v,%)) + 3 - TRS(C)
— 2 Y cost(u,v)(SQU) + SQW)
{u,v}eA(S)
— 2 cost*(u,v)) + 3 - TRS(C)
= % Z SQ(u) - TC(u) — CB(T) + 3 - TRS(C) . (31)

ues

Combining our analyses from (27) up to (31) we get:

TRS(G) = % TC(T) - Y TC*(u)

uesS

—TC(T) - Y we - TC(e) — % Y TC ()

ecE ues

- Z W, - Mult(e) — % . Z SM(x) - TC(x)

ecE uesS

+ g -y SQu) - TC(w)

ueS

—2-CB(T)+3-TRS(C).
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We can express TRS(H) using the values of the other
isomorphism classes:

1
TRS(H) = -

Z Z Z cost(u,v)

{uv}e A(S) {x,y}eA(S) {c,d}eA(S)
- cost(x,y) - cost(c,d) — TRS(A)
—3-TRS(B) — 6 - TRS(C) — 6 - TRS(D)

— 3. TRS(E) — 6 - TRS(F) — 6 - TRS(G)

_ e L. b
= = TCX(T) - 2 - TRS(A) — ; - TRS(B)

— TRS(C) — TRS(D) — % - TRS(E)

— TRS(F) — TRS(G) .

We get the value of Ercsub(s,n [ MPD?3(T, R)] by plugging
into (16) the values that we got for all eight isomorphism
classes of triples. For any isomorphism class X we showed
that the value TRS(X) can be computed by using the quan-
tities in Table 1. The lemma follows from the fact that each
quantity that appears in this table is used a constant num-
ber of times for computing value TRS(X) for any class X,
and since we showed that we can precompute all these
quantities in ®(#) time in total. O

Theorem 3. Let T be a phylogenetic tree that contains s
tips, and let r be a natural number withr < s. The skewness
of the mean pairwise distance on T among all subsets of
exactly r tips of T can be computed in © (n) time.

Table 2 The sizes of tip samples that we considered for our
experiments, together with the number of sets that we
sampled for each tip size in order to derive the “true”
values

Size of each tip sample Number of sampled sets

10 10°
20 10°
40 5.10%
80 3.10%
160 2.10%
320 10*
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o |
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o
T T T T T T T T T T T T T T T T
0e+00 2e+04 4e+04 6e+04 8e+04 1e+05 0 10000 20000 30000 40000 50000 5000 10000 15000 20000
Sample size
Figure 3 Error in calculating the distribution that is used as point of reference. Error in P value estimation as the number of tree set resamples
increases of tip set sizes of 10,40 and 160. The dotted lines show errors of 0.05 MPD units, illustrating that the number of resamplings used here
were sufficient to estimate percentiles to within 0.05 distance units in each case.

Proof. According to the definition of skewness, as it
is also presented in (1), we need to prove that we can
compute in ©(n) time the expectation and the vari-
ance of the MPD, and the value of the expression
EResub(g,,)[MPD3 (T,R)]. In a previous paper we showed
that the expectation and the variance of the MPD can be
computed in © (n) time. By combining this with Lemma 2
we get the proof of the theorem. O

Experiments: improved P value estimation
incorporating skewness

Earlier in this paper, we mentioned that distributions of
MPD values are often found to be skewed, suggesting that

it is necessary to incorporate this skewness into analyt-
ical P value estimation. However, it is unclear whether
good P value estimates are possible with only the first
three moments of the distribution, or if more detailed
distributional information is required.

We investigate this question here by considering ran-
dom phylogenetic trees produced by a pure birth pro-
cess [12], though results were qualitatively identical when
using trees generated by a combined birth-death process
(and skewness did not vary as a function of the death
rate). We took two approaches for estimating the posi-
tion of the 2.5 and 97.5 percentile of MPD distribution
given a particular tree instance. For any tree 7 that we

w o
S [
o -
S
o | -
5 g w |
& 5 -
o
- <
w
S 7 w
(=}
(=] o
S IS
T T T T T T T T T T T T
10 20 40 80 160 320 10 20 40 80 160 320
Tip set size Tip set size

Figure 4 Comparison of approximation methods. Errors in P value approximation using different resampling replicates (indicated by the
coloured lines), compared to that obtained by assuming a skew-normal distribution of MPD values (indicated as SN). Errors were strongly influenced
by tip set size r, and weakly by tree size; on the left side appear the results for a 500 tip tree, and on the right for a 2000 tip tree). In most cases, P
value approximation based on the skew-normal distribution performed better than the most commonly-used standard of 1000 set resamplings
(blue line), and the relative performance of the skew-normal approach improved with increasing tip set size.
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constructed, we first calculated the distribution of the
MPD values using as a point of reference extensive sam-
pling of sets of tips (much more extensive than is usually
employed in practice). In particular, for specific values of r
we sampled from 7 a large number of sets that consist of
exactly r tips (see Table 2 for the values of r and numbers
of sets that we sampled). We simply calculated the per-
centiles of these distributions, and call these the reference
values, recognizing that they neveretheless contain some
error, being incomplete samples from the tree. Complete
sampling from large trees is computationally infeasible,
but we estimate that the error in the calculated percentiles
was less than 0.05 distance units in all cases (correspond-
ing to an error of approximately 0.01% relative to the mean
MPD-see Figure 3).

The two approaches that we used to estimate the per-
centile positions reflect two alternatives that might be
employed by practising researchers. In the first approach,
for each value r that we considered, we sampled again sev-
eral sets of tips, yet much fewer than the ones we used
to calculate the reference values (100, 500, 1000 or 5000
sets). We then compare the absolute difference between
percentiles estimated in this manner and the reference
values. We refer to this difference as the error between the
estimated percentile values and the reference values. The
second approach uses the mean, variance and skewness of
the MPD distribution to determine the position of the 2.5
and 97.5 percentile of the skew-normal distribution with
these moments [13]. The mean, variance and skewness
were computed in this case based on all the MPD values
that we used to calculate reference percentiles. Although
we have implemented algorithms for computing the exact
values of the mean and variance of the MPD, we have
not implemented so far the algorithm that computes the
skewness of the MPD; that is the algorithm outlined in
the previous sections of this paper. As with the previ-
ous approach, the error of this approximation method
was calculated by taking the absolute difference between
each estimated percentile position and the corresponding
reference value.

The experiment described above was repeated across
100 replicate trees of each of two sizes (500 and 2000
tips), and across a range of tip set sizes (10, 20, 40, 80,
160 and 320). Errors were weakly related to tree size
but decreased strongly with tip set size-see Figure 4.
This decrease was more pronounced for estimates based
on skew-normal approximation than resampling. Notably,
the skew-normal approximation yielded smaller errors
than the most commonly used standard of 1000 resam-
plings for all but the smallest tip set sizes.

Thus, we conclude that the errors introduced by assum-
ing a skew-normal distribution of MPD values appear
to be comparable to or smaller than those introduced
by standard resampling procedures, while also showing
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better scaling with increased tip sample size. Finally, the
computation of P values using skew-normal approxima-
tion is typically faster than with resampling, particularly
in cases involving large samples of trees.

Conclusions

Given a rooted tree 7 and a non-negative integer r, we
proved that we can compute the skewness of the MPD
among all subsets of r leaves in 7 in O(n) time. An
interesting problem for future research would be to imple-
ment the algorithm that is outlined by our proof, and
show its efficiency in practice. Also, it would be interest-
ing to derive a similar result for the so-called Community
Distance measure; this is the equivalent of the MPD when
distances between two sets of species are considered [11].
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