
Deepak and Fernández-Baca Algorithms for Molecular Biology 2014, 9:16
http://www.almob.org/content/9/1/16

RESEARCH Open Access

Enumerating all maximal frequent subtrees in
collections of phylogenetic trees
Akshay Deepak1* and David Fernández-Baca2

Abstract

Background: A common problem in phylogenetic analysis is to identify frequent patterns in a collection of
phylogenetic trees. The goal is, roughly, to find a subset of the species (taxa) on which all or some significant subset of
the trees agree. One popular method to do so is through maximum agreement subtrees (MASTs). MASTs are also
used, among other things, as a metric for comparing phylogenetic trees, computing congruence indices and to
identify horizontal gene transfer events.

Results: We give algorithms and experimental results for two approaches to identify common patterns in a
collection of phylogenetic trees, one based on agreement subtrees, called maximal agreement subtrees, the other on
frequent subtrees, called maximal frequent subtrees. These approaches can return subtrees on larger sets of taxa than
MASTs, and can reveal new common phylogenetic relationships not present in either MASTs or the majority rule tree
(a popular consensus method). Our current implementation is available on the web at https://code.google.com/p/
mfst-miner/.

Conclusions: Our computational results confirm that maximal agreement subtrees and all maximal frequent
subtrees can reveal a more complete phylogenetic picture of the common patterns in collections of phylogenetic
trees than maximum agreement subtrees; they are also often more resolved than the majority rule tree. Further, our
experiments show that enumerating maximal frequent subtrees is considerably more practical than enumerating
ordinary (not necessarily maximal) frequent subtrees.

Keywords: Phylogenetic trees, Evolutionary trees, Maximum agreement subtree, Frequent subtrees, Maximal
frequent subtrees, Reverse search

Background
A phylogenetic tree is an unordered rooted tree whose
leaves are in one-to-one correspondence with a set of
species (also referred to as taxa); its topology represents
the hypothetical evolutionary relationships among these
species.
An agreement subtree (AST) for a collection of phylo-

genetic trees on a common leaf set is a minimal subtree
connecting a fixed set of leaves that is homeomorphically
included in all of the input trees. A maximal agreement
subtree (MXST) is an agreement subtree that is not a
subtree of any other agreement subtree. An MXST is a
maximum agreement subtree (MAST) if it has the largest

*Correspondence: akshayd@iastate.edu
1Department of Electrical and Computer Engineering, Iowa State University,
Ames, Iowa, USA
Full list of author information is available at the end of the article

number of leaves [1]. MASTs are used, among other
things, as a metric for comparing phylogenetic trees [2-4],
computing their congruence index [5,6], to identify hori-
zontal gene transfer events [7], for resolving ambiguity in
terraces in phylogenetic tree space [8], and as a consensus
approach [9].
An MXST can reveal shared phylogenetic information

not displayed by any of the MASTs (see Figure 1). We can
uncover even more common substructure by relaxing the
requirement that the subtree returned must be supported
by all the input trees. Let f be a number in the interval(1
2 , 1

]
. An f -frequent subtree, or a frequent subtree (FST)

for short, in a collection of m leaf-labeled trees on a com-
mon leaf set, is a minimal subtree connecting a fixed set of
leaves that is homeomorphically included in at least f · m
of the input trees. Amaximal FST (MFST) is an FST that
is not a subtree of any other FST. We choose f greater

© 2014 Deepak and Fernández-Baca; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly credited.

https://code.google.com/p/mfst-miner/
https://code.google.com/p/mfst-miner/
mailto:akshayd@iastate.edu
http://creativecommons.org/licenses/by/2.0

Deepak and Fernández-Baca Algorithms for Molecular Biology 2014, 9:16 Page 2 of 30
http://www.almob.org/content/9/1/16

Figure 1Motivating example 1. (a) A collection of two trees and their (b)MAST. (c) An MXST that has fewer leaves than the MAST but is not
displayed by it.

than 1
2 , because (i) it conveys confidence that a majority of

the input trees support the f -frequent subtree, and (ii) it
ensures uniqueness: on a given set of leaves, there can be
at most one f -frequent subtree. Observe that an MXST is
an MFST with f = 1.
The set of all MFSTs is a compact non-redundant sum-

mary of the set of all FSTs: every FST is a subtree of
one or more MFSTs but every MFST is a subtree of only
itself. Thus, every MFST reveals some unique phyloge-
netic information that is not displayed by any other MFST
(or FST).
Also, since there can be exponentially more FSTs than

MFSTs, mining MFSTs can be much faster than mining
all FSTs, and the result set produced is much smaller and
easier to analyze.
A well-supported MFST can have more leaves and be

more resolved than a MAST (see “Results and discussion”
on page 14), and thus can reveal phylogenetic information
not displayed by any of the MASTs. In the more general
setting where there is little overlap among the leaf sets of
the input trees, the gap between the size of an MFST and
the size of a MAST can be even wider. Indeed, in this case
any agreement tree would tend to be quite small — see
Figure 2.
Despite its potential utility, however, the enumeration of

all MFSTs in collections of phylogenetic trees has not, to
our knowledge, been studied before.
Here we introduce MFSTMINER, an algorithm for enu-

merating MXSTs and MFSTs. MFSTMINER enumerates

MFSTs over partially overlapping leaf sets as well. We
compareMFSTMINER with EVOMINER [10], an algorithm
for enumerating all FSTs, and show that enumerating
MFSTs can be orders of magnitude faster than enumer-
ating all FSTs. Our current implementation of MFST-
MINER, which works for up to 250 leaves and 10000
trees, can be downloaded from https://code.google.com/
p/mfst-miner/.

Related work
The MAST problem was first studied by Finden and
Gordon [1]. Since then, due its utility and inherent com-
plexity, the problem has attracted computational biolo-
gists and mathematicians alike. The MAST of two trees
can be found in polynomial time; indeed, over the years
researchers have developed progressively faster algo-
rithms for the problem [11-13]. Finding the MAST of
more than two trees is NP-hard in general [11], but is
solvable in polynomial time for trees of bounded degree
[14,15].
Although maximal subgraph mining [16,17] and, in par-

ticular, maximal subtree mining [18-20] have received
much attention in the data mining literature, a different
approach is needed for mining phylogenetic trees. This is
because phylogenetic trees possess a special structure —
only leaves are labeled and the non-leaf nodes must be of
degree two or more — that affects the very definition of a
subtree [10,21]. We defer the formal definitions of phylo-
genetic trees and subtrees to thePreliminaries, on page 4.

Figure 2Motivating example 2. (a) A collection of three trees and (b) an MFST with f = 2
3 . MAST or MRT cannot be applied, as the common

overlap consists of only two leaves.

https://code.google.com/p/mfst-miner/
https://code.google.com/p/mfst-miner/

Deepak and Fernández-Baca Algorithms for Molecular Biology 2014, 9:16 Page 3 of 30
http://www.almob.org/content/9/1/16

Zhang et al. [21] where the first to study frequent phy-
logenetic subtree mining. They proposed an algorithm,
Phylominer, to mine all frequent subtrees in a collection
of phylogenetic trees in time quadratic in the size of the
output set. In [10] we proposed a new algorithm EVOM-
INER for the same task that achieves speed-ups of up
to 100 times or more over Phylominer. Both Phylominer
and EVOMINER follow an Apriori-like framework [22].
EVOMINER’s increased speed is the result of an efficient
phylogenetic tree-specific constant-time candidate gener-
ation scheme in the candidate generation step, and a novel
fingerprinting based scheme for the downward-closure
operation in the frequency counting step.
Ramu et al. [23] proposed a heuristic for enumerating a

subset of all MFSTs called maximum frequent subtrees. A
maximum frequent subtree is an FST that has the max-
imum number of leaves among all FSTs. Their method
scales well for large phylogenetic datasets, but does not
guarantee the enumeration of all MFSTs. To our knowl-
edge, our work is the first to deal with the problem of
mining all MFSTs for phylogenetic trees.
Consensus methods are an oft-used alternative to fre-

quent or agreement subtree methods, for summarizing
the common information in collections of phylogenetic
trees. Among the most popular consensus methods is the
majority-rule tree (MRT) [24], defined as follows.
A cluster in a tree is the set of all leaf descendants of

some node in the tree. The MRT of a collection of trees
is the tree that exhibits all clusters present in the major-
ity —i.e., strictly more than 50%— of the input trees.
(Note the parallels between the use of majority clusters
and the choice of f ∈ (1

2 , 1
]
for MFSTs.) The MRT,

though linear-time computable, is very sensitive to the
presence of “rogue” taxa; that is, taxa whose positions
vary widely within the input collection [25,26]. MFSTs are
less sensitive to this phenomenon, because the MRT by
definition must contain the entire leaf set (including the
rogue taxa), whereas MFSTs have no such restriction (see
Figure 3). The fact that MASTs are less sensitive to rogue

taxa thanMRTs has been well-acknowledged in the litera-
ture [25,27,28]. MFSTs, which include MASTs as a special
case, are even more likely to reveal informative common
substructures in the presence of rogue taxa.
Phylogenetic networks represent evolutionary relation-

ships among taxa via directed graphs. In addition to tree
nodes —nodes with only one parent—, they allow hybrid
nodes —nodes with two parents. Thus, phylogenetic net-
works aremore expressive than phylogenetic trees [29,30].
In the same way that agreement trees and majority rule
trees extract consensus information in phylogenetic trees,
consensus networks [31] represent frequent patterns in
phylogenetic networks [32].

Preliminaries
A phylogenetic tree (or, for brevity, simply a tree) is an
unordered rooted leaf-labeled tree. Leaf labels represent
the taxonomic units (species or taxa) under study. An iso-
morphism between phylogenetic trees includes the labels
of the leaves. Phylogenetic trees can also be unrooted
[33], but here we deal exclusively with rooted phylogenetic
trees. A node is internal if it is not a leaf node. Each inter-
nal node must have at least two children. Let LT denote
the leaf label set of tree T, and ψT denote the bijection
that maps the leaf nodes to their unique labels. For conve-
nience, we refer to the set of leaf nodes by their labels in
LT . From this point forward, unless the context requires
making a distinction, we will drop the subscripts in LT
and ψT , and write L and ψ respectively. For the rest of the
paper, we assume without loss of generality that the leaf
label setL consists of distinct integers in the range [1, |L|];
thus, the labels are ordered. We denote the fact that two
trees T1 and T2 are isomorphic by writing T1 ≡ T2.
Let T be a tree. Suppose u is an internal non-root node

in T, such that u has only one child v. Then, suppressing u
means contracting the edge (u, v); i.e., deleting u and the
two edges incident on it, and then adding an edge from the
parent of u to v. For example, in Figure 4(a), to suppress u,
it is deleted and an edge is added from t to v. To prune a

Figure 3Motivating example 3. (a) Three input trees. (b) Their MAST, which is star-like. (c) The majority rule tree, which is also star-like. (d) Two
MFSTs with f = 2

3 , each highly resolved and larger than the MAST.

Deepak and Fernández-Baca Algorithms for Molecular Biology 2014, 9:16 Page 4 of 30
http://www.almob.org/content/9/1/16

Figure 4 Pruning in phylogenetic trees. (a) Suppressing a node. (b) Pruning with node suppression. textbf(c) Pruning a leaf attached to a
degree-two root. (d) Pruning without node suppression. (e) Grafting on a non-root node. (f) Grafting on root. (g) Grafting on an edge.

leaf �, we first delete it. Let u be �’s parent. If u is not the
root, and the deletion of � makes u a degree-two node, we
suppress u (see Figure 4(b)). If u is the root and deleting �

makes it a degree one node, u is deleted and its remaining
child becomes the new root (see Figure 4(c)). Otherwise,
u remains as it is (see Figure 4(d)). Grafting is the reverse
of pruning a leaf. Consider a leaf � /∈ LT . To graft � in
T, we first select a node or an edge in T. If the selection
is a non-root node u, we make � a child of u in T (see
Figure 4(e)). We call this grafting of � on node u. If the
selection is root node r, we have two options: (i) graft � on
r as if r is a non-root node, or (ii) create a new node r’ and
make r and l as children of r’. In case (ii), r’ becomes the
new root in T (see Figure 4(f)); we call this grafting � on
top of root node r. If the selection is an edge (u, v), where u
is the parent of v, we delete edge (u, v), create a new node
u’, make u’ a child of u, and, � and v children of u’ (see
Figure 4(g)). We call this grafting of � on edge (u, v). Let
T ’ denote the resulting tree. Then, clearly, in each of the
cases, T can be obtained by pruning � in T ’.
Consider a tree T and a set L′ ⊆ LT . The restriction of

T to L′, denoted by T |L′ , is the minimal homeomorphic
subtree of T connecting the leaves with labels in L′ (that
is, we start with the minimal subtree of T connecting L′,
and repeatedly suppress non-root nodes with at most one
child until no such nodes remain). A tree T ′ is a subtree
of T if LT ′ ⊆ LT and T ′ ≡ T |LT ′ . Tree T displays T ’ if T ’
is a subtree of T.
The depth of a node u in a tree T, denoted depthT (u), is

the number of edges from the root to that node; thus the
root node is at depth 0. We denote the lowest common
ancestor (LCA) of two nodes u and v in T by LCAT (u, v).

When the tree T is clear from the context, we drop the
superscripts. A k-leaf tree is a tree with k leaves. A triplet
is a 3-leaf tree.

Algorithmic framework
We first discuss the algorithm for ASTs/MXSTs because it
is simpler (since f = 1).We then extend it to FSTs/MFSTs.
We enumerate all MXSTs from the solution space of all

ASTs. We show that any k-leaf AST can be enumerated
by combining two unique (k − 1)-leaf ASTs with certain
properties.We call the k-leaf tree a join on the two smaller
(k − 1)-leaf trees. To ensure that the enumeration is effi-
cient, we must address three issues. The first is avoiding
redundancy — that is, each MXST should be generated
only once.
The second is support estimation. While a k-leaf AST is

enumerated by joining two unique (k − 1)-leaf ASTs, the
converse is not true, i.e., these two (k − 1)-leaf ASTs can
potentially combine into more than one topology over k
leaves. The only way to know if a k-leaf AST exists as a
result of joining these two (k − 1)-leaf ASTs is to have a
mechanism to test if only one topology is supported across
all input trees. The third issue is limiting combinatorial
explosion. The total number of ASTs can be exponentially
larger than the total number of MXSTs. Thus, we need a
way to prune the search space of ASTs during enumera-
tion of MXSTs. We describe how we address these issues
next.

Non-redundant enumeration
To avoid generating multiple isomorphic copies of the
same tree, we enumerate subtrees in “canonical form”

Deepak and Fernández-Baca Algorithms for Molecular Biology 2014, 9:16 Page 5 of 30
http://www.almob.org/content/9/1/16

[21] (an ordered representation for phylogenetic trees). To
enumerate every canonical representation once, we define
a parent-child relationship over the space of all ASTs.
This induces an enumeration tree over the solution space,
where each node represents a collection of ASTs grouped
together via an equivalence relation. Leaf nodes represent
potential MXSTs and each MXST belongs to a unique
leaf node. This scheme is motivated by the reverse search
technique for enumeration [34].

Canonical form
The virtual label of an internal node v is the mini-
mum label among all leaf descendants of v. Consider a
left-to-right order on the children of an internal node
based on the sequence in which they are encountered
in an inorder depth-first traversal (IDFT), the leftmost
child being encountered first. Then, a tree T is in canon-
ical form [21] if, for every internal node, its children
are ordered from left to right by their virtual labels. It
can be seen that two trees are isomorphic if and only
if they have the same canonical forms. By generating all
trees in canonical form, it is straightforward to test if
two trees are isomorphic and prevent duplicate enumer-
ation. MFSTMINER relies on this property to ensure that
each FST is enumerated exactly once. Henceforth, we
assume all trees to be in canonical form unless mentioned
otherwise.

Enumeration tree
The key notion for defining the enumeration tree is that
of an equivalence class; to explain it, we first need some
definitions. The rightmost leaf of tree T is the last leaf
encountered in the IDFT of T. The subtree that results
from pruning the rightmost leaf is called the prefix tree
or prefix for short. It is so called because the IDFT of the
prefix tree is the largest prefix of the IDFT of the original
tree that is not the original tree. A useful property of the
canonical form is that pruning either the last or second-
to-last leaf encountered in the IDFT of a tree results in
a canonical tree [21]. The heaviest subtree [21] is the

subtree rooted at the parent of the rightmost leaf. Figure 5
illustrates the defined concepts.
An equivalence class is a set E of canonical trees that

share a common prefix. We call this common prefix tree
the core tree of E and denote it by Ec. Note that an equiv-
alence class of k-leaf trees has a (k − 1)-leaf core tree.
For an AST T, ET denotes the equivalence class that has
T as its core tree. Any two trees in an equivalence class
differ only with respect to their rightmost leaf; therefore,
topologically, their difference is restricted to their heavi-
est subtrees. The equivalence relation “sharing a common
prefix” partitions any set of canonical trees into disjoint
subsets. Each such subset is an equivalence class identified
by its unique core tree.
Figure 6 gives an example of an enumeration tree. Each

node in the enumeration tree represents a unique equiva-
lence class. An equivalence class E is the parent of equiv-
alence class F if Fc ∈ E. Clearly each node has a unique
parent. Note that as we traverse from an internal node
towards a leaf, the core tree of each node in the path corre-
sponds to a new leaf being added as a suffix to the IDFT of
the core tree of its parent node. Thus, if equivalence class
E is an ancestor of equivalence class F, the IDFT of Ec is a
prefix of the IDFT of Fc.
A node in the enumeration tree is a leaf if its core

tree is not a prefix to any other AST. Thus, its cor-
responding equivalence class is empty. Note that every
MXST is the core tree of some leaf node. The con-
verse is not true, because a (k − 1)-leaf tree may not
be the prefix of a given k-leaf tree, yet can be a sub-
tree of it. The root of the enumeration tree is an empty
node that has all the equivalence classes containing 3-
leaf ASTs as its children. This is because three is the
minimum number of leaves on which phylogenetic infer-
ence can be meaningful. For an equivalence class E, the
branch at E represents the subtree induced in the enu-
meration tree by all the leaf descendants of E, or simply
E if it is a leaf. ASTs X and Y are considered to be
of a common descent if neither is a descendant of the
other.

(a) (b)

Figure 5 Equivalence class. (a) Two trees belonging to the same equivalence class. The common prefix tree (shown separately in (b)) is encircled by
the dotted lines; the respective rightmost leaves are the ones outside the dotted lines. The shaded part represents the respective heaviest subtrees.

Deepak and Fernández-Baca Algorithms for Molecular Biology 2014, 9:16 Page 6 of 30
http://www.almob.org/content/9/1/16

Figure 6 Enumeration Tree example. Each node in the tree represents an equivalence class. Trees in an equivalence class differ only with respect
to their rightmost leaves (circled in bold for each tree). The bubble at the top of a node contains the core tree of the corresponding equivalence
class. An equivalence class contains all ASTs that have its core tree as their common prefix. The core tree of an equivalence class belongs to its
parent equivalence class. For example, the core tree of equivalence class B is a, which belongs to A— the parent of B. All 3-leaf ASTs have been
partitioned into equivalence classes A, G and J (children of the root node). The leaf nodes (indicated by shaded ellipses) are empty equivalence
classes and their core trees represent potential MXSTs. Here, d and e, the respective core trees of leaf nodes C and D, are the only MXSTs. They also
happen to be the MASTs for the input trees.

Pairwise join
The canonical form has the property that pruning either
the last leaf or the second-to-last leaf encountered in the
IDFT yields a subtree that is also canonical [21]. Thus,
every k-leaf AST T corresponds to a unique ordered pair
(Tx,Ty) of (k−1)-leaf ASTs where Tx and Ty are obtained
by pruning the last leaf and the second-to-last leaf respec-
tively in the IDFT of T. Note that Tx and Ty share a
common prefix. Conversely, T can be obtained by “join-
ing” this unique pair (Tx,Ty). Based on this, we define tree
T to be a join on an ordered pair (Tx,Ty) of (k − 1)-leaf
ASTs such that Tx and Ty share a common prefix, if:

T is in canonical form, has Tx as its prefix, and
has Ty as its subtree.

(1)

Our scheme exploits condition (1) heavily. Consider
equivalence classes E and F, where E is the parent of F and
E consists of (k − 1)-leaf ASTs. We claim that any k-leaf
tree T ∈ F is the result of joining two (k − 1)-leaf trees in
E. Specifically, T is the result of joining a unique ordered
pair of trees (Tx,Ty) in E such that condition (1) is satis-
fied. Observe that for any ordered pair (Tx,Ty) satisfying
condition (1) with respect to T, Tx is the core tree of F and
belongs to E. Further, Tx and Ty share a common prefix;
thus, Ty also belongs to E. The claim follows.
While every tree in F can be obtained by joining a

unique ordered pair (Tx,Ty) of trees in E, there may

be multiple Ts satisfying condition (1) with respect to
ordered pair (Tx,Ty). The way in which (Tx,Ty) join to
produce T depends on the topology of the subtree dis-
played by an input tree over the leaf setLTx ∪LTy . We next
describe the four possible ways in which an ordered pair
(Tx,Ty) can join as per condition (1). In the subsequent
discussion, let x and y denote the rightmost leaf of Tx and
Ty respectively, and, px and py denote the parents of x and
y respectively. Recall that Ec represents the core tree of
equivalence class E. Note that Ec is also the common pre-
fix of Tx and Ty. Let r denote the rightmost leaf of Ec. For
an internal node u, let numChild(u) denote its number of
children. The rightmost path of a tree is the path from the
root to its rightmost leaf. There are three possibilities for
relative values of depthTy(py) and depthTx(px) giving rise
to different types of joins.
If depthTy(py) = depthTx(px), the following three types

of joins are possible.

Type 1: Figure 7(a) shows the participating trees. Leaves
x and y are attached at the same depth on the
rightmost path of Ec, i.e.,
depthTy(py) = depthTx(px). Figure 7(b) shows
the resulting join. Here, x and y are attached as
siblings to the same parent node in the joined
tree. Thus, for the resulting joined tree to be
canonical, we must have ψ(x) < ψ(y) (recall that
we assume that the labels are distinct numbers).

Deepak and Fernández-Baca Algorithms for Molecular Biology 2014, 9:16 Page 7 of 30
http://www.almob.org/content/9/1/16

Figure 7 Different types of pairwise join. A dotted triangle represents part of the tree that may be empty, while a solid triangle represents a
non-empty part of the tree. � reflects topologies of the heaviest subtrees. ‘c’ denotes the rightmost leaf of the common core tree. (a) Tx and Ty in
type-1 and 2 joins. (b) Result of type-1 join. (c) Result of type-2 join. (d) Sample inputs Tx and Ty in type-1 and 2 joins. (e) Result of type-1 join on
sample inputs. (f) Result of type-2 join on sample inputs. (g) Tx and Ty in type-3 join. (h) Result of type 3 join. (i) Tx and Ty in type-4 join. (j) Result of
type-4 join. (k) Sample inputs Tx and Ty in type-3 join. (l) Result of type 3 join on sample inputs. (m) Sample inputs Tx and Ty in type-4 join. (n) Result
of type-4 join on sample inputs.

Deepak and Fernández-Baca Algorithms for Molecular Biology 2014, 9:16 Page 8 of 30
http://www.almob.org/content/9/1/16

Further, x and y are attached at the same depth
in the joined tree as in Tx and Ty, respectively.
Example: Figure 7(d) shows the input trees and
Figure 7(e) shows the corresponding joined tree.

Type 2: The input trees have the same structure as in a
type 1 join (Figure 7(a)); however, in the joined
tree x and y are attached to the same parent at
one level deeper than their respective depths in
the participating trees. See Figure 7(c).
Example: Figure 7(d) shows the input trees and
Figure 7(f) shows the corresponding joined tree.

Type 3: Figure 7(g) shows the participating trees. Note
that the participating trees are a special case of
type 1 and 2 join; i.e., depthTy(py) = depthTx(px)
holds here as well. However, in the resulting join
py becomes the parent of px as shown in
Figure 7(h). For this to be possible, we must have
numChild(py) = 2 in Ty.
Example: Figure 7(k) shows the input trees and
Figure 7(l) shows the corresponding joined tree.
If depthTy(py) < depthTx(px), the following join
type arises.

Type 4: Figure 7(i) shows the participating trees. Here
depthTy(py) < depthTx(px); i.e., on the rightmost
path of Ec, leaf y is attached at a lesser depth
than leaf x. As a result there is only one way to
join Tx and Ty so as to satisfy condition (1). See
Figure 7(j). Here, py becomes an ancestor of px in
the joined tree.
Example: Figure 7(m) shows the input trees and
Figure 7(n) shows the corresponding joined tree.

Finally, note that if depthTy(py) > depthTx(px), no joins
are possible: Tx and Ty cannot be joined while satisfy-
ing condition (1), because Tx cannot be the prefix of the
joined tree. ASTs from such joins are enumerated when
considering the ordered pair (Ty,Tx).
The above scheme leads to a natural formulation for

generating all members of children of E. For every ordered
pair (Tx,Ty) ∈ E such that the pair joins only in one way
in all the trees in the input collection, add the joined tree
to ETx . The ordering indicates that the joined tree has the
first tree of the ordered pair as its prefix.

Support estimation
An AST is enumerated by combining two smaller ASTs.
However, an AST can arise out of their combination only
if the two ASTs exhibit a common type of join (topology)
in all the input trees. Determining this involves identifying
the types of joins the smaller ASTs exhibit across the input
trees, and if a particular join is supported by all the input
trees. For this we deploy a one-time least common ances-
tor based preprocessing step, after which the join type in
each input tree can be identified in constant time.

Consider an ordered pair of trees (Tx,Ty) in an equiva-
lence class E and let L∪ = LTx ∪ LTy . For an input tree
T, we say the join induced by (Tx,Ty) in T is of type A if
T |L∪ in canonical form corresponds to a type A join with
respect to ordered pair (Tx,Ty). Let Tjoin denote T |L∪
in canonical form. This step classifies Tjoin as one of the
four join types. If a particular join is supported by all the
input trees (i.e. f = 1), the corresponding joined tree is
an AST. A natural way to classify the join type could be
to restrict T to L∪, canonicalize the restriction and iden-
tify the canonicalized tree as one of the four join types.
This can be done in time linear in the size of T using
the algorithm given in reference [35]. Theorem 1, stated
next, improves on this by giving a least common ances-
tor (LCA) based scheme that in constant time identifies
Tjoin as a result of one of the four join types. The LCA
values are computed as a preprocessing step. The mean-
ing of the symbols x, y, pxand py is the same as in Section
“Pairwise join” on page 5. Let r denote the rightmost
leaf of core tree of E. Superscripts indicate the reference
tree.

Theorem 1. The following holds:

1. Tjoin is a result of a type-1 join on ordered pair
(Tx,Ty) if and only if

(a) depth(LCAT (r, x)) = depth(LCAT (r, y)),
(b) depth(LCAT (r, x)) = depth(LCAT (x, y)) and
(c) ψ(x) < ψ(y).

2. Tjoin is a result of a type-2 join on ordered pair
(Tx,Ty) if and only if

(a) depth(LCAT (r, x)) = depth(LCAT (r, y)),
(b) depth(LCAT (r, x)) < depth(LCAT (x, y)) and

(c) ψ(x) < ψ(y).

3. Tjoin is a result of a type-3 join on ordered pair
(Tx,Ty) if and only if

(a) depthTx(px) = depthTy(py) and
(b) depth(LCAT (r, x)) > depth(LCAT (r, y)).

4. Tjoin is a result of a type-4 join on ordered pair
(Tx,Ty) if and only if depthTx(px) > depthTy(py).

Proof. Let us consider each case separately.

1. Clearly if Tjoin is a result of a type-1 join, it
satisfies 11a-11c. To prove the only if part,
let 11a-11c be satisfied. Since Tx and Ty are obtained
by attaching x and y respectively to the rightmost
path of Ec, and each is a subtree of T, 11a implies that
depth(py) = depth(px). Thus, Tjoin is a result of

Deepak and Fernández-Baca Algorithms for Molecular Biology 2014, 9:16 Page 9 of 30
http://www.almob.org/content/9/1/16

either a type 1, 2 or 3 join. A type-3 join requires py
to be the parent of px in Tjoin, which is ruled out
by 11a. Further, 11b and 11c imply that the join must
be of type 1.

2. The proof is similar to that of part 1. Again, Tjoin can
be a result of either a type-1 or 2 join. Conditions 22b
and 22c imply that the join must be of type 2.

3. Condition 33a implies that Tjoin must be a result of a
type-1, 2 or 3 join. Condition 33b rules out joins of
type 1 and 2. Thus the join must be of type 3.

4. Follows from the definition of a type-4 join.

Cases 1– 4 are mutually exclusive and each can be
evaluated in constant time as follows.
We first preprocess the input trees to answer each

LCA-based query in Theorem 1 in constant time (see
Section “Complexity analysis” on page 13 for more
details). Using this, instead of identifying the join type in
all the trees in the input collection individually, we do it
in constant time across all the input trees at once. That is,
in the case of ASTs, for any given ordered pair (Tx,Ty) we
answer in constant time if a join of the pair results in an
AST.

Containing the combinatorial explosion
Although, in principle, we could enumerate all MXSTs
by traversing the complete enumeration tree of ASTs,
the sheer number of ASTs makes this approach, used by
itself, impractical. Tomitigate the impact of combinatorial
explosion, we use a heuristic that, given a node in the enu-
meration tree, determines, without traversing the subtree
below the node, whether any of its leaf descendants con-
tains a MXST. If none of them does, we prune the branch
at the node.

Pruning heuristic
Let X and Y be two equivalence classes. We say that X
prunes the branch of the enumeration tree at Y, or sim-
ply that X prunes Y, if X and Y are of a common descent,
and for every descendantA of Y (including Y), there exists
at least one descendant B of X (which can be X itself)
such that Bc displays Ac. If X prunes Y, none of the leaf
descendants of Y can be an MXST. Thus, the branch at Y
need not be enumerated. For example, in Figure 6, node
A prunes node G because G has 3 descendants —itself,
H and I—, whose respective core trees are displayed by
the respective core trees of nodes B, C and D, which are
descendants of A. If this information is known when G is
first visited, the branch at G can be pruned. Similarly, A
also prunes J because the respective core trees of nodes J,
K and L are displayed by the respective core trees of nodes
B, C and D. Further, among the descendants of A, nodes E
and F are respectively pruned by nodes C and D.

For the next set of results, let E denote an equivalence
class with r as the rightmost leaf of its core tree. Let
X,Y ,Z be children of E in the enumeration tree. Let x, y, z
be the rightmost leaves of Xc,Yc,Zc respectively. Clearly
{Xc,Yc,Zc} ∈ E. We say [i, j, k] is an agreement triplet if
all the input trees display the same topology over the leaf
set {i, j, k}. For an ordered pair of trees (A,B) in an equiv-
alence class, having a and b as their respective rightmost
leaves, we say tree Tab exists if (A,B) join as Tab across
all the input trees. Let I, J and K be three trees belong-
ing to a common equivalence class; let i, j and k be their
respective rightmost leaves. Suppose that Tij and Tik exist.
If the ordered pair (Tij,Tik) exhibits a common join across
all the input trees, we denote the join as Ti−jk . Theorem 2
characterizes pruning among “siblings” and “first cousins”
in the enumeration tree.

Theorem 2.

1. X prunes Y if either of the following holds:

(a) Txy exists and is not of join type 2.
(b) Txy exists as a join of type 2 and for every

child Z of E such that Tyz exists, [x, y, z] is an
agreement triplet.

2. If Txy and Tyz exist, and Txy is of join type 2, then
ETxy prunes ETyz if Tyz is not of join type 2.

Part 1 of Theorem 2 deals with pruning among siblings;
part 2 deals with pruning among first cousins. The proof
of Theorem 2 relies on Lemmas 1, 2, 3 and 4, which we
present next.

Lemma 1. Suppose that Txy and Tyz exist. Then, the
following holds:

1. If Txy is not a result of a type-2 join:

(a) Txz exists and is not a result of a type-2 join.
(b) There exists an AST T on leaf set

LEc ∪ {x, y, z} and ET is a descendant of X.

2. If both Txy and Tyz are results of join type 2, and
[x, y, z] is an agreement triplet:

(a) Txz exists.
(b) There exists an AST T on leaf set

LEc ∪ {x, y, z} and ET is a descendant of X.

3. If Txy is a result of a type-2 join and Tyz is not a result
of a type-2 join:

(a) Txz exists and is not a result of a type-2 join.
(b) There exists an AST T on leaf set

LEc ∪ {x, y, z} and ET is a descendant of ETxy ,
i.e., Txy−z exists.

Deepak and Fernández-Baca Algorithms for Molecular Biology 2014, 9:16 Page 10 of 30
http://www.almob.org/content/9/1/16

Lemma 1 gives conditions under which for a given child
ETyx of Y, X has a descendant (specifically a grandchild)
whose core tree displays Tyx. Intuitively, this is an inter-
mediate step in proving conditions under which X either
prunes Y or ETyx . The specific results of Lemma 1 help in
cascading the effect to further descendants of Y or ETyx .
Each Txy and Tyz can be a result of one of the four types of
join. Thus, considering Txy and Tyz together, there are 16
possibilities. Out of these, the case where each Txy and Tyz
is result of a type-2 join is the only case where there can
be multiple topologies that display both Txy and Tyz. That
is why type-2 joins have a special significance in Lemma 1.
The remaining 15 cases guarantee the existence of a single
topology that displays both Txy and Tyz.

Lemma2. If Txy and Txz exist, and [x, y, z] is an agreement
triplet, either Tx−yz or Tx−zy exists.

Lemma 2 states that for any two children of X with y
and z as the rightmost leaves of their respective core trees,
the existence of agreement triplet [x, y, z] is a sufficient
condition for the children to join in one of the two pos-
sible ways. That is, there exists only one topology that
displays both the children; further, the topology must be a
descendant of X.

Lemma 3. Suppose A and B are two ASTs with a and b
as their respective rightmost leaves such that LA ⊂ LB.
Then, EB is a descendant of EA if and only if for every � ∈
{LB \ LA}, Ta� exists.

Lemma 4. Suppose Txy exists as a result of a type-2 join
and D is descendant of Y . Then, for any {a, b} ∈ {LDc \
LYc}, [x, a, b] is an agreement triplet if [x, y, a] and [x, y, b]
are agreement triplets.

Lemma 4 deals with the special case of type-2 joins for
Txy. Intuitively, it states that for any two children of Y
with a and b as the rightmost leaves of their respective
core trees, agreement triplets [x, y, a] and [x, y, b] together
form a sufficient condition for the existence of a descen-
dant of X whose core tree displays the core trees of both
children of Y. This is a stepping stone in proving that
for every descendant D of Y, there exists a descendant
of X whose core tree displays the core tree of D, thus, X
prunes Y.
The proofs of the above Lemmas are given in Appendix.

We present next the proof of Theorem 2. In the proof,
and in the rest of the paper, we represent trees in
parenthesized Newick format (http://evolution.genetics.
washington.edu/phylip/newicktree.html). E.g., (a, (b, c))
represents the tree with leaf set {a, b, c} where the LCA of
b and c is a proper descendant of the LCA of a, b and c,
and (a, b, c) represents unresolved (star) tree on {a, b, c}.

Proof of Theorem 2.

1. (a) Consider any descendant S of Y . Consider
any {a, b} ∈ {LSc \ LYc}. Since S is a
descendant of Y, Tya ∈ Y and Tyb ∈ Y exist
as per Lemma 3. Further, since Txy is not of
join type 2, as per Lemma 1.1: (i) Txa ∈ X and
Txb ∈ X exist, and each is also not a result of
a type 2-join, and (ii) there exists ASTs on
leaf sets LEc ∪ {x, y, a} and LEc ∪ {x, y, b},
thus, [x, y, a] and [x, y, b] are agreement
triplets. Let A and B denote the children of E
with a and b as their respective rightmost
leaves. Since AST S exists, there exists an
AST on leaf set LEc ∪ {a, b}, i.e., either
Tab ∈ A or Tba ∈ B exists. Without loss of
generality, let Tab exist. Since, Txa exists and
is not a result of a type-2 join, and Tab exists,
as per Lemma 1.1, there exists an AST on leaf
set LEc ∪ {x, a, b}. Thus:

• for every leaf � ∈ {LSc \ LXc}, Tx� exists,
thus, for every pair of leaves {x1, x2} in
Xc, [x1, x2, �] is an agreement triplet.

• for every pair of leaves
{a, b} ∈ {LSc \ LXc}, there exists an AST
on leaf set LEc ∪ {x, a, b}, thus, for every
leaf � in Xc, [�, a, b] is an agreement
triplet.

Thus, there exists an AST T on leaf set
LSc ∪ LXc . Clearly T displays Sc. Further, for
every � ∈ {LSc \ LXc}, Tx� exists. Thus, by
Lemma 3, T is descendant of X. Hence, X
prunes Y, as claimed.

(b) Consider any descendant S of Y . Consider
any {a, b} ∈ {LSc \ LYc}. Since, S is a
descendant of Y, by Lemma 3, Tya and Tyb
exists. Thus, as per the if condition of the
claim to be proved, [x, y, a] and [x, y, b] are
agreement triplets. Since Txy exists as a result
of type-2 join and, [x, y, a] and [x, y, b] are
agreement triplets, by Lemma 4, [x, a, b] is an
agreement triplet, and, by Lemma 1 (part 2
and 3), Txa and Txb exist. Thus, as per
Lemma 2, there exists an AST on leaf set
LEc ∪ {x, a, b}. Thus:

• for every leaf � ∈ {LSc \ LXc}, Tx� exists,
thus, for every pair of leaves {x1, x2} in
Xc, [x1, x2, �] is an agreement triplet.

• for every pair of leaves
{a, b} ∈ {LSc \ LXc} and for every leaf �
in Xc, there exists and AST on leaf set

http://evolution.genetics.washington.edu/phylip/newicktree.html
http://evolution.genetics.washington.edu/phylip/newicktree.html

Deepak and Fernández-Baca Algorithms for Molecular Biology 2014, 9:16 Page 11 of 30
http://www.almob.org/content/9/1/16

LEc ∪ {x, a, b}, thus, [�, a, b] is an
agreement triplet.

Thus, there exists an AST T on leaf set
LSc ∪ LXc . Clearly T displays Sc. Further, for
every � ∈ {LSc \ LXc}, Tx� exists, thus, by
Lemma 3, T is descendant of X. Hence, X
prunes Y, as claimed.

2. Since Tyz is not a result of a type-2 join, by
Lemma 1.3, Txz exists and is not a result of a type-2
join, and Txy−z exists. Consider any descendant S of
ETyz . Consider any � ∈ {LSc \ LTyz}. Since S is a
descendant of Y, by Lemma 3, Ty� exists. We show
that Ty� is not a result of a type-2 join by
contradiction. Let Ty� be a result of a type-2 join with
triplet [r, y, �] of type (r, (y, �)). Since S is a
descendant of ETyz , by Lemma 3, the join
Ty−z� ∈ ETyz on ordered pair (Tyz,Ty�) exists. Let Tyz
be of type 1 join with triplet [r, y, z] of type (r, y, z).
Since Ty−z� displays both (r, (y, �)) and (r, y, z), it
must also display (r, (y, �), z). However, (r, (y, �), z)
cannot exist in Ty−z� because � and z cannot be the
last and second-to-last leaves respectively in the
IDFT. Similarly, for Tyz of join type 3 or type 4, we
can show that � cannot be the rightmost leaf in
Ty−z�. Thus, Ty� is not of join type 2. Thus, by
Lemma 1.3, Tx� exists and is not a result of type 2
join, and Txy−� exists. Consider any
{a, b} ∈ {LSc \ LTxy}. Thus, both Txa and Txb exist
and each is not a result of join type 2. Let A and B
denote the ASTs in E with a and b as their rightmost
leaves. Without loss of generality, let the AST on leaf
set LEc ∪ {a, b} be a result of a join on the order pair
(Ac,Bc), i.e., Tab exists. Thus, by Lemma 1.1, there
exists an AST on leaf set LEc ∪ {x, a, b}. Thus:

• for every � ∈ {LSc \ LTxy}, Txy−� exists, thus, for
every pair of leaves {x1, x2} in Txy, [x1, x2, �] is
an agreement triplet.

• for every {a, b} ∈ {LSc \ LTxy} and for every leaf
� in Txy, there exists an AST on leaf set
LEc ∪ {x, a, b}, thus, [�, a, b] is an agreement
triplet.

Thus, there exists an AST T on leaf set LSc ∪ LTxy .
Clearly T displays Sc. Further, since for every
� ∈ {LSc \ LTxy}, Txy−� exists, by Lemma 3, T is
descendant of ETxy . Hence, ETxy prunes ETxz , as
claimed.

�

Pruner-list. Note that conditions in part (1a) and part
(2) of Theorem 2 can be evaluated in constant time while
testing the condition in part (1b) of Theorem 2 takes time

linear in the size of the tree being pruned. Neither of
these require enumerating the pruned branch at Y. How-
ever, there are cases when Y or a descendant of Y is
pruned by X but it cannot be identified using Theorem 2.
In this case, the branch at Y must be enumerated and
potential pruning by X verified. For this, we maintain a
“pruner-list” for every child of Y. We explain this idea
next.
Let X,Y ,Z be children of an equivalence class E in the

enumeration tree. Let x, y, z be the rightmost leaves of
Xc,Yc,Zc respectively. Let joins Txy,Tyz exist such that
none of the cases of Theorem 2 hold. Then the pruner-list
of ETyz :

contains x if [x,y,z] is an agreement triplet. (2)

inherits members from the intersection of the
pruner lists of ETy and ETz .

(3)

Now, using arguments similar to the proof of
Theorem 2, we can show that:

Theorem 3. Y is pruned by an equivalence class A with a
as the rightmost leaf of Ac if either of the following holds:

1. Y has no children and has a in its pruner-list.
2. All children of Y have a in their pruner-list.

MFSTMINER

Algorithm 1 is a high-level description of MFSTMINER
for the special case of enumerating all MXSTs for a col-
lection C of input trees. MFSTMINER first invokes ENU-
MERATEAST_TRIPLETS (whose details are omitted) to
enumerate all AST triplets and to partition them into
equivalence classes. The set of all such classes is denoted
by EC3. Note that each equivalence class in EC3 is a child
of the root of the enumeration tree. After this, MFST-
MINER invokes subroutine ENUMERATENODE, explained
next, to enumerate the elements of the branch at each
equivalence class in EC3.

Algorithm 1 Enumerating all MXSTs — a high-level
description
MFSTMINER(C)

EC3 ← ENUMERATEAST_TRIPLETS(C)

for all E ∈ EC3 do
ENUMERATENODE(E)

end for

Algorithm 2 shows the details of ENUMERATENODE,
which accepts an equivalence class E as input and enumer-
ates the branch at E in the enumeration tree. In the pseu-
docode, Tx denotes an AST that has x as its rightmost leaf.
Lines 3-5 perform pair-wise joining amongmembers of an

Deepak and Fernández-Baca Algorithms for Molecular Biology 2014, 9:16 Page 12 of 30
http://www.almob.org/content/9/1/16

equivalence class in the enumeration tree. Comments in
braces indicate where the algorithm performs assignment
to pruner-lists, as per conditions (2) and (3), and pruning,
according to the different cases of Theorems 2 and 3. In
line 12, the core tree of an empty equivalence class — rep-
resenting a leaf node— is produced as output if it is found
to be not pruned.

Algorithm 2 Enumerating the branch at E in the
enumeration tree
ENUMERATENODE(E)

1: for all Tx ∈ E do
2: if ETx is not flagged as pruned then {As per

Theorem 2(1a)}
3: for all Ty ∈ {E − Tx} such that join Txy exists do
4: Flag ETy if pruned by ETx {As per

Theorem 2(1a)}
5: Add Txy to ETx
6: Initialize pruner-list of ETxy {As per condition

(3)}
7: end for
8: end if
9: end for

10: for all Tx ∈ E do
11: if ETx has no children then
12: Output Tx if ETx not flagged as pruned and its

pruner-list is empty {As per Theorems 2(1a) and
3(1)}

13: else
14: Remove trees from ETx that can be pruned {As

per Theorem 2(2)}
15: For every T ∈ ETx , update pruner-list of ET {As

per condition (2)}
16: if ETx cannot be pruned then {As per Theo-

rems 2(1b) and 3(2)}
17: ENUMERATENODE(ETx)

18: end if
19: end if
20: end for

In line 17, ENUMERATENODE calls itself recursively to
enumerate the children of a non-empty equivalence class
ETx , provided ETx is found to be not pruned.

The general case of enumeratingMFSTs
We now explain how MFSTMINER handles the general
case of mining MFSTs. The main difference between min-
ing for MXSTs and mining for MFSTs is that the former
is (as we have seen) based on enumerating ASTs, while
the latter is based on enumerating FSTs. While an ASTs
must be supported by all the input trees (i.e., f = 1), an
FSTs need only be supported by some fraction f ∈ (1

2 , 1
)

of the input trees. This difference affects neither the enu-
meration tree nor the pairwise join, but it does affect
support estimation and the pruning strategy. We discuss
these steps next.

Support estimation. Given Tx and Ty in an equivalence
class, a join Txy on ordered pair (Tx,Ty) is an FST if it
is supported by at least a fraction f of the input trees
(i.e., if at least a fraction f of the input trees have Txy as
a subtree). Note that any such Txy is supported only by
those trees that support both Tx and Ty as well. Moti-
vated by this, for each FST Tx we maintain a support
list, denoted by Tx.supList, that contains all trees in the
input collection that support Tx. To estimate if the join on
(Tx,Ty) results in an FST, we apply Theorem 1 only on
trees in Tx.supList ∩ Ty.supList. We store the support list
as a bitmap [36] for efficient memory utilization and fast
computation of intersection of support lists.

Pruning strategy. To verify whether an equivalence class
X prunes an equivalence class Y, we also need to consider
the support lists of Xc and Yc. We say [x, y, z] is a frequent
triplet if at least fraction f of the input trees display the
same triplet over the leaf set {x, y, z}. Let [x, y, z] .supList
denote the support list of such a frequent triplet. Based on
this, we can restate Theorem 2 for the case of enumerating
MFSTs as follows.
Theorem 4.

1. X prunes Y if either

(a) Txy exists, Yc.supList ⊆ Xc.supList and Txy is
not of join type 2, or

(b) Txy exists as a type-2 join,
Yc.supList ⊆ Xc.supList and for every Z ∈ E
such that Tyz exists, [x, y, z] is a frequent
triplet with Yc.supList ⊆[x, y, z] .supList.

2. If Txy and Tyz, exist and Txy is of join type 2, then
ETxy prunes ETyz if Tyz is not of join type 2 and
Tyz.supList ⊆ Txy.supList.

Pruner-list. Pruning cases not identified by Theorem 4
require the use of pruner-list. In the case of MFSTs, along
with leaf label the pruner-list also contains the support
list of the core tree of the equivalence class that is claim-
ing to prune. To explain further, let Tx,Ty,Tz be FSTs in
an equivalence class E with x, y, z as their respective right-
most leaves, such that joins Txy and Tyz exist, and none
of the cases of Theorem 4 hold. For an equivalence class
A, let A.prunerList denote its pruner-list. Then, the next
set of conditions describe pruner-lists for enumerating
MFSTs.
1. ETyz .prunerList contains the entry (x,Txy.supList) if

Txy is not of join type 2 and |Txy.supList∩
Tyz.supList| ≥ f .

Deepak and Fernández-Baca Algorithms for Molecular Biology 2014, 9:16 Page 13 of 30
http://www.almob.org/content/9/1/16

2. ETyz .prunerList contains the entry (x, S∩ =
Txy.supList∩[x, y, z] .supList) if Txy is of join type 2,
[x, y, z] is a frequent triplet and |S∩ ∩Tyz.supList| ≥ f .

3. For every leaf label w such that
(w, Sy∩) ∈ ETy .prunerList and
(w, Sz∩) ∈ ETz .prunerList exist, ETyz .prunerList
contains entry (w, S∩ = Sy∩ ∩ Sz∩) if
|S∩ ∩ Tyz.supList| ≥ f .

Condition 1 and 2 describe addition of new labels to the
pruner-list of ETyz , while condition 3 describes inheritance
of labels from the intersection of the pruner-lists of ETy
and ETz . Now, the corresponding result for Theorem 3 can
be stated as:

Theorem 5. Given an equivalence class A with a as the
rightmost leaf of Ac,

1. ETyz is pruned by A if (i) for every Tyb ∈ ETy ,
ETyb .prunerList contains an entry (a, Sb(a)), and (ii)
for S∩ = ⋂

Tyb∈ETy Sb(a), ETyz .supList = S∩.
2. ETy is pruned by A if (i) ETy is empty and has a in its

pruner list, or (ii) every child ETyb of ETy is pruned by
A as per part 1 of this Theorem.

This completes the description of MFSTMINER for the
general case of mining MFSTs. The overall framework is
the same as the special case of mining all MXSTs. The
difference lies in the finer details of incorporating sup-
port lists in the support estimation and the pruning step.
These details were discussed in this section and are easy
to incorporate in Algorithms 1 and 2.

Complexity analysis
Here we discuss the runtime complexity of the prepro-
cessing step, the data structures used in the algorithm
implementation and the memory requirements in each
step of MFSTMINER algorithm. In the following discus-
sion, let the input collection consist of n trees on a com-
mon leaf set L and let f denote the input fraction for
computing f -frequent subtrees.

Preprocessing. This one-time task involves (1) comput-
ing LCA mappings for all pairs of leaves for all the input
trees and (2) enumerating all frequent triplets. For each
tree T in the input collection, and every pair {u, v} of
leaves of T, step (1) computes LCAT (u, v) and stores it in a
three-dimensional array indexed by triplet (T ,u, v), thus,
requires O(n|L|2) space. In our implementation, these
LCA values are computed in quadratic time and space
per tree by traversing the tree in a depth-first manner
and computing the LCA values of the leaf-descendants

at a node. Thus, for all the input trees, Step 1 takes
O(n|L|2) time and space. In the case of MXSTs only a
two-dimensional array is used (requiring O(|L|2) space)
to store the LCA values because an LCA value is relevant
only if it is the same across all input trees, i.e., f = 1. We
should point out that it is well-known that one can pre-
process a tree in linear time and space to produce a data
structure that can answer any LCA query on that tree in
constant time [37-39]. Such algorithms are quite useful
when the number of LCA queries is limited and the pre-
processing dominates the total time. That is not the case in
our application. Indeed, MFSTMINER queries all possible
LCA values while enumerating all MFSTs on three leaves,
and then does a constant number of LCA queries for
every join operation thereafter. Although both our three-
dimensional array and the specialized LCA data structures
[37-39] offer constant-time access to LCA-values, the for-
mer’s constant factor is smaller than the latter’s, which
makes a significant difference in practice.
Step 2 takes O(n|L|3) time and space, and uses the pre-

computed LCA values from step (1). In the case ofMXSTs,
just as storing of LCA values requires less space (O(|L|2)),
the complexity in step (2) is also reduced: O(|L|3) time
and space.

Join-operation. Every join operation requires a constant
number of LCA queries and depths of certain nodes (see
Theorem 1). However, note that the relative depths are
needed rather than absolute values. In most of the cases of
Theorem 1 the relative depths can be obtained by exam-
ining the type of tree a certain triplet displays. That is,
Theorem 1 can be restated as:

1. Tjoin is a result of a type-1 join on ordered pair
(Tx,Ty) if and only if

(a) the triplet on leaves {r, x, y} is of type (r, x, y)
and

(b) ψ(x) < ψ(y).

2. Tjoin is a result of a type-2 join on ordered pair
(Tx,Ty) if and only if

(a) the triplet on leaves {r, x, y} is of type
(r, (x, y)) and

(b) ψ(x) < ψ(y).

3. Tjoin is the result of a type-3 join on ordered pair
(Tx,Ty) if and only if

(a) depthTx(px) = depthTy(py) and
(b) the triplet on leaves {r, x, y} is of type

((r, x), y).

4. Tjoin is a result of a type-4 join on ordered pair
(Tx,Ty) if and only if

Deepak and Fernández-Baca Algorithms for Molecular Biology 2014, 9:16 Page 14 of 30
http://www.almob.org/content/9/1/16

(a) depthTx(px) > depthTy(py) and
(b) the triplet on leaves {r, x, y} is of type

((r, x), y).

The advantage of reformulating Theorem 1 as above is
that (a) for every tree in the input collection, we need not
store the depth of its nodes, and (b) for every FST enumer-
ated as a result of a join operation, we only need to store
the depth of the parent of its rightmost leaf. Further, the
type of tree a certain triplet displays can be easily known
through a constant number of queries on precomputed
LCA values.

Support-list and Pruner-list. In the case of MXSTs,
there is no support-list and the pruner-list contains leaf
labels. This takesO(|L|) space per enumerated AST that is
currently inmemory. Note thatMFSTMINER uses a depth-
first strategy for traversing the enumeration tree. Thus,
not all enumerated ASTs are held in memory at any given
time. In the case of MFSTs, both support-list and pruner-
list exist. The support-list for an FST contains the list of
input trees that display the FST. This takes O(n/w) space
per enumerated AST that is currently in memory, where
w is the size of the machine word. The ith bit of a support-
list is set to 1 if the corresponding FST is displayed by
the ith tree in the input collection, and 0 otherwise. Our
experiments were run on a w = 64 bit processor, which
is typically the case with any modern computer. An entry
in pruner-list contains a leaf-label and a support-list. This
takes O((n/w) + |L|) space per enumerated AST that
is currently in memory. These are worst-case estimates
and in practice the memory consumption is much less
because pruner-list is required only for cases not captured
by Theorems 2 and 4.
The next result shows that the memory required by

MFSTMINER scales polynomially with the number of
input trees and the size of the common leaf set.

Theorem 6. MFSTMINER requires O(n|L|3) space in the
case of enumerating MFSTs and O(|L|3) space when only
MXSTs are being enumerated.

Proof. The enumeration tree has depth at most |L|. Enu-
merating an FST at this depth will require storing O(|L|)
ancestor equivalences classes, each of which can have at
most |L| FSTs. Thus, the maximum number of FSTs to be
stored is O(|L|2). Storing each such FST requires O(|L|)
space for the subtree, O(n/w) space for the support-list
and O((n/w) + |L|) space for the pruner-list, where w is
the size of the machine word. Thus, the maximum space
required to store all FSTs is O(((n/w) + |L|)|L|2). Adding
to this the space required to store LCA mappings, which
is O(n|L|3), we get the claimed figure. Similarly, it can be
shown that in the case of MXSTs, MFSTMINER requires
O(|L|3) space.

Let |F | be the number of FSTs (not MFSTs) the input
collection displays. Then, the worst-case time complex-
ity of MFSTMINER is O(n|F | + |L||F |), which is the
same as EVOMINER’s [10]. The time complexity is not
polynomial in the number of MFSTs, because we cannot
polynomially bound the number of FSTs thatMFSTMINER
will enumerate to verify the pruning of an equivalence
class. Indeed, it could happen that X prunes Y, but that
this cannot be confirmed by Theorems 2 and 4. If so,
MFSTMINER must enumerate the branch at Y further,
and there is no polynomial bound on the number of FSTs
that would have to be generated to verify the pruning of
Y by X.
Nonetheless, as we will see in the next section, even

though MFSTMINER shares the same worst-case time
complexity with EVOMINER, it can be orders or magni-
tudes faster than EVOMINER in practice.

Results and discussion
To study the effectiveness of MFSTMINER, we conducted
four categories of experiments:

1. Comparison of MFSTs with MASTs.
2. Comparison of MFSTMINER with EVOMINER [10] —

the state-of-the-art algorithm for enumerating all
phylogenetic FSTs.

3. Evaluation of the scalability of MFSTMINER with
respect to the number of trees, the size of the leaf set
and the support value.

4. Comparison with Ramu et al.’s [23] approach that
mines MFSTs having maximum leaves.

Our dataset consists of bootstrapped trees from a pre-
vious study [40] on bootstrapping methods. There are
seventeen sets of trees constructed from a diverse range of
sequences including rbcL genes, mammalian sequences,
bacterial and archaeal sequences, ITS sequences, fun-
gal sequences, and grasses. The number of taxa in these
single-gene and multi-gene DNA sequences vary from
125-2554. The entire dataset is available at http://lcbb.
epfl.ch/BS.tar.bz2. We refer to the seventeen datasets as
A–Q in the increasing order of taxa in the DNA sequences
from which the trees were constructed. A corresponds to
the set of trees with 125 taxa and Q corresponds to the
set of trees with 2554 taxa. To extract datasets with differ-
ent numbers of leaves and trees, we randomly selected the
required number of trees and restricted them on a random
set of leaves of the required size.
The experiments were split over 4 machines:

• Two machines running Windows 7 64-bit with
processor clock-speed of 3.4 GHz, 4 cores and 8
threads.

• One machine running Windows 7 64-bit with
processor clock-speed of 3.16 GHz and 2 cores.

http://lcbb.epfl.ch/BS.tar.bz2
http://lcbb.epfl.ch/BS.tar.bz2

Deepak and Fernández-Baca Algorithms for Molecular Biology 2014, 9:16 Page 15 of 30
http://www.almob.org/content/9/1/16

• One machine running Linux 64-bit with processor
clock-speed of 2.0 GHz, 6 cores and 12 threads.

Each experiment was averaged over 5 runs. For practical
purposes, each run was allowed a maximum of 10000 sec-
onds. Thus, any missing entry in the graphs indicate that
the corresponding experiment took more than this limit.
Initially, we started with all experiments on one machine
and using only one core at a time — the ideal environ-
ment — to allow maximum fairness in comparing results,
however, we soon realized that this would take more than
600 days of runtime. Thus, we split the experiments using
maximum number of cores and threads on each machine.
This did slow down things because of competing memory
and disk requirements, however, the final runtimes should
not be more than a factor of two of the runtimes in the
ideal environment.

MFSTs vs. MASTs. Figure 8(a) compares the size of the
MAST with the size of the largest MFST. This experiment
was conducted on a set of 100 trees on 50 leaves from each
of the datasets. MFSTs were enumerated for f = 0.51. In
some cases the largest MFST is more than twice as big as
the corresponding MAST.
Figure 8(b) compares the number of MASTs with the

number of MFSTs for f = 1. There are significantly
more MFSTs. This is notable, because any MFST that is
not a MAST is also not displayed by any of the MASTs.
Thus, such aMFST reveals unique agreement information
among the input trees. This experiment was conducted
on a set of 100 trees on 100 leaves from each of the
datasets.

Comparison with EVOMINER. This experiment was
conducted on a set of 1000 trees on 40 leaves from
each of the datasets. Figure 9(a) compares MFSTMINER
with EVOMINER [10] for f = .55 with respect to run-
time. Figure 9(b) shows the corresponding number of
MFSTs and FSTs mined by MFSTMINER and EVOMINER
respectively. Figures 9(c)-(d), 9(e)-(f), and 9(g)-(h) show
the corresponding figures for support f = .75, f =
.95 and f = 1.0 respectively. We see that enumerating
MFSTs can very often be orders of magnitude faster than
enumerating all FSTs. The time difference arises due to
the number of subtrees mined. The ratio of the num-
ber of subtrees mined by EVOMINER to the number of
subtrees mined by MFSTMINER is maximum for sup-
port values f = .75 and f = .95, thus, MFSTMINER
is fastest with respect to EVOMINER in these cases. For,
f = 1.0 EVOMINER is often faster than MFSTMINER.
We believe this is because (a) the runtimes are too small
for a fair comparison and thus, the pre-processing time
(enumerating all frequent triplets), which is same for
both EVOMINER and MFSTMINER, dominates the total

time, and (b) some implementation inefficiency in MFST-
MINER is suspected. The missing dataset entries corre-
spond to cases where EVOMINER took more than 10000
seconds.

Scalability of MFSTMINER. We evaluated the scalabil-
ity of MFSTMINER with respect to the number of leaves
(10-250), the number of trees (100-10000) and the support
value (.51-1.0) on datasets having at least 250 leaves, i.e.,
datasets D (354 taxa) — Q (2554 taxa). Presenting results
for all datasets would have been overwhelming, thus, we
discuss results for datasetsD (354 taxa), K (1481 taxa) and
Q (2554 taxa) — the first, the last and a middle one from
datasets D-Q.
Figure 10(a) shows the runtime for 200 trees, with the

number of leaves varying from 10-250, for support values
f = .55, f = .75, f = .95 and f = 1.0 on dataset D.
Figure 10(b) shows the corresponding number of MFSTs
mined. Figures 10(c)-(d) and 10(e)-(f) show the corre-
sponding results for 1000 and 5000 trees respectively. The
results show that for a given number of trees, the number
of subtrees mined increases steadily with the increase in
the number of leaves in the input trees, while the runtime
follows closely the number of subtrees mined.
Figure 11(a) evaluates the variation in runtime for 50

leaves on 100-1000 trees for support values f = .55, f =
.75, f = .95 and f = 1.0 on dataset D. Figure 11(b) shows
the corresponding number of MFSTs mined. Figures 11(c)
and 11(d) show the corresponding values while varying
the number of trees from 2000-10000. Figures 11(e)-(h)
and 11(i)-(l) show the corresponding results for input
trees with 100 and 150 leaves respectively. The results
show that for a given number of leaves, the number of sub-
trees very much remain the same as the number of input
trees is varied, while the runtime increases steadily with
increase in the number of input trees. This is expected
because the support estimation takes loner with more
trees.
Figures 12, 13, 14 and 15 show the corresponding results

for datasets K and Q respectively. The trends are simi-
lar to dataset D except that dataset Q seems to produce
much more MFSTs, thus, the runtimes are larger. Results
from datasetK seem to lie somewhere in the middle of the
range of results from datasets D and K.
The above results also show that MFSTMINER can han-

dle much larger datasets than EVOMINER. Again, the
missing entries are due to the 10000 second time limit.
However, if time is not a constraint, as discussed before,
the memory requirements of MFSTMINER is polynomial
in the size of the input, thus, it can handle large datasets.

Comparison with Ramu et al.’s approach. We com-
pared our approach with Ramu et al.’s [23] heuristic
approach that mines MFSTs with maximum leaves. We

Deepak and Fernández-Baca Algorithms for Molecular Biology 2014, 9:16 Page 16 of 30
http://www.almob.org/content/9/1/16

Figure 8 Utility of MFSTs over MASTs. (a)MFSTs have more leaves than MASTs; thus, they reveal common agreement over a larger set of taxa
than MASTs. (b)MXSTs are more numerous than MASTs; thus, they reveal more agreement agreement information than MASTs.

used the original implementation shared by the authors.
The current implementation mines only one MFST with
maximum leaves, thus, we cannot compare the number
of subtrees mined by our approach with theirs. Further,
the current implementation has major portions written
in Perl, a high-level interpreted programming language,
and involves significant disk usage for storing intermedi-
ate data-structures, whereas, our implementation is writ-
ten in C++, a much lower-level compiled programming
language, and keeps all intermediate data-structures in
memory. Thus, we did not compare the runtime because
our implementation has much advantage with respect to
the speed of execution. We compare the size of the MFST
with maximum leaves mined by Ramu et al.’s [23] imple-
mentation with ours. We did this comparison on a set of
100 trees with 20 leaves from each of the datasets for sup-
port values f = .55 and f = .75. In 25 out of 34 cases, the
size of theMFST with maximum leaves returned by Ramu
et al.’s [23] approach was at least as good as ours. Only in 9
cases it returned anMFST with one leaf less than ours. So,
if the goal is to get anMFST with most leaves, Ramu et al.’s
[23] approach seems near-perfect. As mentioned in their
paper [23], it also seems to be capable of handling large
datasets in terms of the number of trees and the number
of leaves. However, if the goal is to mine all MFSTs with
maximum leaves or simply all MFSTs, then our approach
serves better. This can be very useful because there can
be a lot of MFSTs (either with maximum leaves or all of
them), and everyMFST returned by our approach conveys
some unique agreement information not conveyed by any
of remaining returned MFSTs.

Conclusions
Although we have restricted our attention to enumerat-
ing MFSTs for f ∈ (1

2 , 1
]
, we can extend MFSTMINER to

enumerate all MFSTs for f ∈ (
0, 12

]
, with small modifi-

cations in the pruning strategy. Note, however, that when
f ∈ (

0, 12
]
there can potentially be different MFSTs with

the same leaf set.
As a future work, we intend to do a thorough com-

parison of MFSTs against MASTs, in the settings where
MAST is currently used [2,5,7]. Since the time to enumer-
ate MFSTs for larger leaf sets can be prohibitive, we also
intend to develop schemes to sample at random from the
set of all MFSTs.
An intriguing open problem is to devise methods to

find common patterns in collections of phylogenetic net-
works [41-44]. Although techniques from maximal sub-
graph mining [16,17] may prove useful here, the special
characteristics of phylogenetic networks add interesting
twists to the problem. We also intend to extend our work
for mining frequent sub-structures in multi-labeled trees
[45-48].
The current implementation of MFSTMINER, which

works for up to 250 leaves and 10000 trees, is available at
https://code.google.com/p/mfst-miner/.

Appendix: Proofs
Proof of Lemma 1.

1. Suppose Txy is a result of a type-1 join. Thus,
ψ(x) < ψ(y) and agreement triplet [r, x, y] is of type
(r, x, y). We have four possibilities to consider.

https://code.google.com/p/mfst-miner/

Deepak and Fernández-Baca Algorithms for Molecular Biology 2014, 9:16 Page 17 of 30
http://www.almob.org/content/9/1/16

Figure 9 Comparison with EVOMINER. (a) Runtime comparison for f = .55. (b) Number of subtrees enumerated for f = .55. (c) Runtime
comparison for f = .75. (d) Number of subtrees enumerated for f = .75. (e) Runtime comparison for f = .95. (f) Number of subtrees enumerated
for f = .95. (g) Runtime comparison for f = 1.0. (h) Number of subtrees enumerated for f = 1.0.

Deepak and Fernández-Baca Algorithms for Molecular Biology 2014, 9:16 Page 18 of 30
http://www.almob.org/content/9/1/16

Figure 10 Scalability of MFSTMINER on datasetD (354 taxa) while varying the number of leaves in the input trees. (a) Runtime comparison
on 200 input trees. (b) Number of subtrees enumerated on 200 input trees. (c) Runtime comparison on 1000 input trees. (d) Number of subtrees
enumerated on 1000 input trees. (e) Runtime comparison on 5000 input trees. (f) Number of subtrees enumerated on 5000 input trees.

(a) Tyz is a result of a type-1 join (see
Figure 16(a)). Thus, ψ(y) < ψ(z) and
agreement triplet [r, y, z] is of type (r, y, z).
Potential AST T must be obtained by
grafting z in Txy. Since T must display
(r, y, z), there is only one possibility of
grafting z in Txy: z should be grafted on the
common parent of x and y. Thus, AST T

exists. Further, since, ψ(x) < ψ(y) < ψ(z),
there is only one possible canonical topology
for potential AST T: see Figure 16(a). Since T
has x, y, z, as the third-to-last, second-to-last
and last leaf respectively in the IDFT, pruning
y will result in a tree that is (a) canonical, (b)
has z as the last leaf in the IDFT, and (c) has
x as the second-to-last leaf in the IDFT. By

Deepak and Fernández-Baca Algorithms for Molecular Biology 2014, 9:16 Page 19 of 30
http://www.almob.org/content/9/1/16

Figure 11 Scalability of MFSTMINER on dataset D (354 taxa) while varying the number of input trees. (a) Runtime comparison with 50 leaves
in the input trees while varying the number of input trees from 100 to 1000. (b) Number of subtrees enumerated with 50 leaves in the input trees
while varying the number of input trees from 100 to 1000. (c) Runtime comparison with 50 leaves in the input trees while varying the number of
input trees from 2000 to 10000. (d) Number of subtrees enumerated with 50 leaves in the input trees while varying the number of input trees from
2000 to 10000. (e) Runtime comparison with 100 leaves in the input trees while varying the number of input trees from 100 to 1000. (f) Number of
subtrees enumerated with 100 leaves in the input trees while varying the number of input trees from 100 to 1000. (g) Runtime comparison with 100
leaves in the input trees while varying the number of input trees from 2000 to 10000. (h) Number of subtrees enumerated with 100 leaves in the
input trees while varying the number of input trees from 2000 to 10000. (i) Runtime comparison with 150 leaves in the input trees while varying the
number of input trees from 100 to 1000. (j) Number of subtrees enumerated with 150 leaves in the input trees while varying the number of input
trees from 100 to 1000. (k) Runtime comparison with 150 leaves in the input trees while varying the number of input trees from 2000 to 10000. (l)
Number of subtrees enumerated with 150 leaves in the input trees while varying the number of input trees from 2000 to 10000.

definition, the resulting tree is Txz (see
Figure 16(a)). Thus, Txz exists. Further, the
topology of Txz implies that Txz is a result of
type 1 join. Similarly, pruning the last leaf,
i.e., z, in T will result in Txy. Thus, ET is a a
child of ETxy , thus, a descendant of X.

(b) Tyz is a result of a type-2 join (see
Figure 16(b)). Thus, ψ(y) < ψ(z) and
agreement triplet [r, y, z] is of type (r, (y, z)).
Potential AST T must be obtained by
grafting z in Txy. Since T must display
(r, (y, z)), there is only one possibility of
grafting z in Txy: z should be grafted on the

edge (py, y). Thus, AST T exists. Further,
since, ψ(x) < ψ(y) < ψ(z), there is only one
possible canonical topology for potential AST
T; see Figure 16(b). Since T has x, y, z as the
third-to-last, second-to-last and last leaf
respectively in the IDFT, pruning y will result
in a tree that is (a) canonical, (b) has z as the
last leaf in the IDFT, and (c) has x as the
second-to-last leaf in the IDFT. By definition,
the resulting tree is Txz (see Figure 16(b)).
Thus, Txz exists. Further, the topology of Txz
implies that Txz is a result of a type-1 join.
Similarly, pruning the last leaf, i.e., z, in T will

Deepak and Fernández-Baca Algorithms for Molecular Biology 2014, 9:16 Page 20 of 30
http://www.almob.org/content/9/1/16

Figure 12 Scalability of MFSTMINER on dataset K (1481 taxa) while varying the number of leaves in the input trees. (a) Runtime comparison
on 200 input trees. (b) Number of subtrees enumerated on 200 input trees. (c) Runtime comparison on 1000 input trees. (d) Number of subtrees
enumerated on 1000 input trees. (e) Runtime comparison on 5000 input trees. (f) Number of subtrees enumerated on 5000 input trees.

result in Txy. Thus, ET is a a child of ETxy ,
thus, a descendant of X.

(c) Tyz is a result of a type-3 join
(see Figure 16(c)). Potential AST T must be
obtained by grafting x in Tyz. Since T must
display (r, x, y), there is only one possibility of
grafting x in Tyz: x should be grafted on the

parent of y. Thus, AST T exists. Further,
since, ψ(x) < ψ(y), there is only one possible
canonical topology for potential AST T; see
Figure 16(c). Since T has x, y, z as the
third-to-last, second-to-last and last leaf
respectively in the IDFT, pruning y will result
in a tree that is (a) canonical, (b) has z as the

Deepak and Fernández-Baca Algorithms for Molecular Biology 2014, 9:16 Page 21 of 30
http://www.almob.org/content/9/1/16

Figure 13 Scalability of MFSTMINER on dataset K (1481 taxa) while varying the number of input trees. (a) Runtime comparison with 50
leaves in the input trees while varying the number of input trees from 100 to 1000. (b) Number of subtrees enumerated with 50 leaves in the input
trees while varying the number of input trees from 100 to 1000. (c) Runtime comparison with 50 leaves in the input trees while varying the number
of input trees from 2000 to 10000. (d) Number of subtrees enumerated with 50 leaves in the input trees while varying the number of input trees
from 2000 to 10000. (e) Runtime comparison with 100 leaves in the input trees while varying the number of input trees from 100 to 1000. (f)
Number of subtrees enumerated with 100 leaves in the input trees while varying the number of input trees from 100 to 1000. (g) Runtime
comparison with 100 leaves in the input trees while varying the number of input trees from 2000 to 10000. (h) Number of subtrees enumerated
with 100 leaves in the input trees while varying the number of input trees from 2000 to 10000. (i) Runtime comparison with 150 leaves in the input
trees while varying the number of input trees from 100 to 1000. (j) Number of subtrees enumerated with 150 leaves in the input trees while varying
the number of input trees from 100 to 1000. (k) Runtime comparison with 150 leaves in the input trees while varying the number of input trees from
2000 to 10000. (l) Number of subtrees enumerated with 150 leaves in the input trees while varying the number of input trees from 2000 to 10000.

last leaf in the IDFT, and (c) has x as the
second-to-last leaf in the IDFT. By definition,
the resulting tree is Txz (see Figure 16(c)).
Thus, Txz exists. Further, the topology of Txz
implies that Txz is a result of a type-3 join.
Similarly, pruning the last leaf, i.e., z, in T will
result in Txy. Thus, ET is a a child of ETxy ,
thus, a descendant of X.

(d) Tyz is a result of a type-4 join
(see Figure 16(d)). Potential AST T must be
obtained by grafting x in Tyz. Since T must
display (r, x, y), there is only one possibility of

grafting x in Tyz: x should be grafted on the
parent of y. Thus, AST T exists. Further,
since, ψ(x) < ψ(y), there is only one possible
canonical topology for potential AST T; see
Figure 16(d). Since T has x, y, z as the
third-to-last, second-to-last and last leaf
respectively in the IDFT, pruning y will result
in a tree that is (a) canonical, (b) has z as the
last leaf in the IDFT, and (c) has x as the
second-to-last leaf in the IDFT. By definition,
the resulting tree is Txz (see Figure 16(d)).
Thus, Txz exists. Further, the topology of Txz

Deepak and Fernández-Baca Algorithms for Molecular Biology 2014, 9:16 Page 22 of 30
http://www.almob.org/content/9/1/16

Figure 14 Scalability of MFSTMINER on datasetQ (2554 taxa) while varying the number of leaves in the input trees. (a) Runtime comparison
on 200 input trees. (b) Number of subtrees enumerated on 200 input trees. (c) Runtime comparison on 1000 input trees. (d) Number of subtrees
enumerated on 1000 input trees. (e) Runtime comparison on 5000 input trees. (f) Number of subtrees enumerated on 5000 input trees.

implies that Txz is a result of a type-4 join.
Similarly, pruning the last leaf (i.e., z) in T
will result in Txy. Thus, ET is a a child of ETxy ,
thus, a descendant of X.

Similarly, one can show that if Txy is a result of a join
of type 3 or 4, irrespective of the type of join Tyz is a

result of, ASTs T and Txz exist, Txz is not a result of a
type-2 join, and ET is a descendant of X.

2. Suppose each of Txy and Tyz is a result of a type-2 join
(see Figure 17(a)). Thus, agreement triplet [r, y, z] is
of type (r, (y, z)) and ψ(y) < ψ(z). Potential AST T
must be obtained by grafting z in Txy. Since T must
display (r, (y, z)) and ψ(x) < ψ(y) < ψ(z), there are

Deepak and Fernández-Baca Algorithms for Molecular Biology 2014, 9:16 Page 23 of 30
http://www.almob.org/content/9/1/16

Figure 15 Scalability of MFSTMINER on datasetQ (2554 taxa) while varying the number of input trees. (a) Runtime comparison with 50
leaves in the input trees while varying the number of input trees from 100 to 1000. (b) Number of subtrees enumerated with 50 leaves in the input
trees while varying the number of input trees from 100 to 1000. (c) Runtime comparison with 50 leaves in the input trees while varying the number
of input trees from 2000 to 10000. (d) Number of subtrees enumerated with 50 leaves in the input trees while varying the number of input trees
from 2000 to 10000. (e) Runtime comparison with 100 leaves in the input trees while varying the number of input trees from 100 to 1000. (f)
Number of subtrees enumerated with 100 leaves in the input trees while varying the number of input trees from 100 to 1000. (g) Runtime
comparison with 100 leaves in the input trees while varying the number of input trees from 2000 to 10000. (h) Number of subtrees enumerated
with 100 leaves in the input trees while varying the number of input trees from 2000 to 10000. (i) Runtime comparison with 150 leaves in the input
trees while varying the number of input trees from 100 to 1000. (j) Number of subtrees enumerated with 150 leaves in the input trees while varying
the number of input trees from 100 to 1000. (k) Runtime comparison with 150 leaves in the input trees while varying the number of input trees from
2000 to 10000. (l) Number of subtrees enumerated with 150 leaves in the input trees while varying the number of input trees from 2000 to 10000.

four possible canonical topologies for potential AST
T: see Figures 17(b)– 17(e). However, since [x, y, z] is
an agreement triplet, only one of the four topologies
exists across all input trees. Thus, AST T exists.
Further, in all the cases discussed above, the last two
leaves in the IDFT of T are y and z (either y comes
before z or vice-versa), while x is the third-to-last
leaf. Thus, pruning y in T will result in a canonical
tree where x and z are the second-to-last and last
leaves in the IDFT. By definition, the resulting tree is
Txz. Thus, Txz exists. Further, pruning the last leaf in
T will result in either Txy (if z is the last leaf in T) or

Txz (if y is the last leaf in T). In either case, ET is a
descendant of X, as claimed.

3. Suppose Txy is a result of a type-2 join. Thus,
ψ(x) < ψ(y). Consider the following possibilities:

(a) Tyz is a result of a type-1 join (see
Figure 17(f)). Thus, ψ(y) < ψ(z). Potential
AST T must be obtained by grafting x in Tyz.
Since T must display (r, (x, y)), there is only
one possibility of grafting x in Tyz: x should
be grafted on the edge (py, y). Thus, AST T
exists. Further, since, ψ(x) < ψ(y) < ψ(z),

Deepak and Fernández-Baca Algorithms for Molecular Biology 2014, 9:16 Page 24 of 30
http://www.almob.org/content/9/1/16

Figure 16 Supportive illustrations for the proof of Lemma 1, part 1. Txy is a result of type-1 join in all the cases. (a) Tyz is a result of type-1 join.
(b) Tyz is a result of type-2 join. (c) Tyz is a result of type-3 join. (d) Tyz is a result of type-4 join.

there is only one possible canonical topology
for potential AST T: see Figure 17(f). Since T
has x, y, z as the third-to-last, second-to-last
and last leaf respectively in the IDFT, pruning
y will result in a tree that is (a) canonical, (b)
has z as the last leaf in the IDFT, and (c) has
x as the second-to-last leaf in the IDFT. By
definition, the resulting tree is Txz (see
Figure 17(f)). Further, the topology of Txz
implies that Txz results from a type-1 join.

(b) Tyz is a result of a type-3 join (see
Figure 17(g)). Potential AST T must be
obtained by grafting x in Tyz. Since T must
display (r, (x, y)), there is only one possibility
of grafting x in Tyz: x should be grafted on
the edge (py, y). Thus, AST T exists. Further,
since, ψ(x) < ψ(y), there is only one possible
canonical topology for potential AST T: see
Figure 17(g). Since T has x, y, z as the
third-to-last, second-to-last and last leaf

Deepak and Fernández-Baca Algorithms for Molecular Biology 2014, 9:16 Page 25 of 30
http://www.almob.org/content/9/1/16

respectively in the IDFT, pruning y will result
in a tree that is (a) canonical, (b) has z as the
last leaf in the IDFT, and (c) has x as the
second-to-last leaf in the IDFT. By definition,
the resulting tree is Txz (see Figure 17(g)).
Further, the topology of Txz implies that Txz
results from a type-3 join.

(c) Tyz is a result of a type-4 join (see
Figure 17(h)). Potential AST T must be
obtained by grafting x in Tyz. Since T must
display (r, (x, y)), there is only one possibility
of grafting x in Tyz: x should be grafted on
the edge (py, y). Thus, AST T exists. Further,
since, ψ(x) < ψ(y), there is only one possible
canonical topology for potential AST T: see
Figure 17(h). Since T has x, y, z as the
third-to-last, second-to-last and last leaf
respectively in the IDFT, pruning y will result
in a tree that is (a) canonical, (b) has z as the
last leaf in the IDFT, and (c) has x as the
second-to-last leaf in the IDFT. By definition,
the resulting tree is Txz (see Figure 17(h)).
Further, the topology of Txz implies that Txz
results from a type-4 join.

Further, in all the above cases, y and z are the
second-to-last and the last leaves in T. Thus, pruning
z — the rightmost leaf — in T will result in a tree
that is (a) canonical, (b) has y as the last leaf in the
IDFT, and (c) has x as the second-to-last leaf in the
IDFT. By definition, the resulting tree is Txy. Hence,
ET is a descendant of ETxy , as claimed.

�

Proof of Lemma 2. Without loss of generality, let ψ(y) <

ψ(z). Let px, py and pz denote the parent of x, y and z
respectively. Consider the following cases:

1. depthTxy(py) > depthTxz(pz): As per Theorem 1,
Tx−yz exists as a result of a type-4 join .

2. depthTxz(pz) > depthTxy(py): As per Theorem 1,
Tx−zy exists as a result of a type-4 join.

3. depthTxy(py) = depthTxz(pz): Consider the following
sub-cases:

(a) Agreement triplet [x, y, z] is of type (x, y, z).
Thus, depth(LCA(x, y)) =
depth(LCA(y, z)) = depth(LCA(x, z)) across
all input trees. Thus, as per Theorem 1, Tx−yz
exists as a result of a type-1 join.

(b) Agreement triplet [x, y, z] is of type (x, (y, z)).
Thus, depth(LCA(x, y)) = depth(LCA(x, z))
and depth(LCA(x, y)) < depth(LCA(y, z))

across all input trees. Thus, as per Theorem 1,
Tx−yz exist as a result of a type-2 join.

(c) Agreement triplet [x, y, z] is of type ((x, y), z).
Thus, depth(LCA(x, y)) > depth(LCA(x, z))
across all input trees. Thus, as per Theorem 1,
Tx−yz exists as a result of a type-3 join.

(d) Agreement triplet [x, y, z] is of type ((x, z), y).
Thus, depth(LCA(x, z)) > depth(LCA(x, y))
across all input trees. Thus, as per Theorem 1,
Tx−zy exists as a result of a type-3 join.

Thus, in each of the above cases, either Tx−yz or Tx−zy
exists, as claimed. �

Proof of Lemma 3. (Only If) An AST is enumerated by
joining joining two trees in an equivalence class. Thus, the
union of leaf sets of trees in an equivalence class is a subset
of the union of leaf sets of trees in the parent equivalence
class. Extending this reasoning, the union of leaf sets of
trees in an equivalence class is a subset of the union of
leaf sets of trees in any ancestor equivalence class. Thus,
if EB is a descendant of EA, LB is subset of the union of
leaf sets of trees in EA. Further, every tree in EA has A
as its prefix. Thus, for every � ∈ {LB \ LA}, Ta� must
exist.
(If) For every {i, j} ∈ {LB \ LA}, Tai and Taj exist (if

condition of the claim), and [a, i, j] is an agreement triplet
(because {a, i, j} ∈ LB). Thus, as per Lemma 2, either Ta−ij
or Ta−ji exists. We show that there exists an � ∈ {LB \LA}
such that for every i ∈ {LB \ {LA ∪ �}}, Ta−�i exists.
If this is not the case, there exists a sequence of leaves
(�0, �1, . . . �n) ∈ {LB \ LA} such that Ta−�0�1 , Ta−�1�2 ,
. . ., Ta−ln−1ln , Ta−lnl0 exist. Since Ta−l0l1 and Ta−l1l2 exist,
and [l0, l1, l2] is an agreement triplet (because {l0, l1, l2} ∈
LB), as per Lemma 1, AST Ta−l0,l2 exists. Extending this
reasoning, it can be shown that Ta−l0ln exists — a contra-
diction because Tx−lnl0 already exists. Thus, there exists
an � ∈ {LB \ LA} such that for every i ∈ {LB \ {LA ∪ �}},
Ta−�i exists. By definition, each such Ta−li belongs to
ETal , and ETal is a child of A. Extending the same reason-
ing, it can be shown that there exists a sequence of ASTs
(T1,T2...), where T1 = A, such that ETi+1 is a child of Ei
and LTi+1 \ LTi is a leaf in {LA \ LB}. By definition, the
last AST in the sequence is B. Thus, EB is a descendant
of EA. �

Proof of Lemma 4. Since Txy is a result of a type-2 join,
agreement triplet [r, x, y] is of type (r, (x, y)) and ψ(x) <

ψ(y). Consider any � ∈ {LDc \ LYc} such that [x, y, �]
is an agreement triplet. Since D is a descendant of Y ,
by Lemma 3, Ty� exists. Since, [x, y, �] is an agreement
triplet, by Lemma 1, there exists an AST T on the leaf
set LEc ∪ {x, y, �} that displays both Txy and Ty�, and ET
is a descendant of X. Consider the possible topologies for

Deepak and Fernández-Baca Algorithms for Molecular Biology 2014, 9:16 Page 26 of 30
http://www.almob.org/content/9/1/16

Figure 17 Supportive illustrations for the proof of Lemma 1, parts 2 and 3. Txy is a result of type-2 join in all the cases. (a) Tyz is a result of
type-2 join. There are four possibilities for a topology that can display both Txy and Tyz : (b)—(e). (f) Tyz is a result of type-1 join. (g) Tyz is a result of
type-3 join. (h) Tyz is a result of type-4 join.

T. (Note that we have already iterated through the possi-
ble topologies for such a T during the proof of Lemma 1,
parts 2 and 3, but we enumerate them again for ease of

reference.) Since Txy is a result of a type-2 join, the topol-
ogy of T depends on the type of join Ty� is a result of.
Consider the following cases.

Deepak and Fernández-Baca Algorithms for Molecular Biology 2014, 9:16 Page 27 of 30
http://www.almob.org/content/9/1/16

1. Ty� is a result of a type-1 join. There exists only one
possible canonical topology for T: the one
corresponding to Figure 17(f) (replace z with � in
tree T).

2. Ty� is a result of a type-2 join. There exists four
possible canonical topologies for T: the ones
corresponding to Figure 17(b)—17(e) (replace z with
� in tree T).

3. Ty� is a result of a type-3 join. There exists only one
possible canonical topology for T: the one
corresponding to Figure 17(g) (replace z with � in
tree T).

4. Ty� is a result of a type-4 join. There exists only one
possible canonical topology for T: the one
corresponding to Figure 17(h) (replace z with � in
tree T).

Note that out of the possible topologies for T, only one
has � as the second-to-last leaf in the IDFT: the one cor-
responding to Figure 17(e) (replace z with � in tree T).
Thus, this topology belongs to belongs to ETx� ; the rest
have y as the second-to-last leaf in the IDFT, thus belong
to ETxy . Consider any {a, b} ∈ {LDc \LYc} such that [x, y, a]
and [x, y, b] are agreement triplets. Thus, by our earlier

Figure 18 Supportive illustrations for the proof of Lemma 4. Ta corresponds to the topology in Figure 17(e) (replace z with a in tree T) in all the
cases. (a) Tb corresponds to the topology in Figure 17(f) (replace z with b in tree T). (b) Tb corresponds to the topology in Figure 17(b) (replace z
with b in tree T). (c) Tb corresponds to the topology in Figure 17(c) (replace z with b in tree T). (d) Tb corresponds to the topology in Figure 17(d)
(replace z with b in tree T).

Deepak and Fernández-Baca Algorithms for Molecular Biology 2014, 9:16 Page 28 of 30
http://www.almob.org/content/9/1/16

discussion in this proof, there exist ASTs Ta on leaf set
LEc ∪ {x, y, a} and Tb on leaf set LEc ∪ {x, y, b}, and, both
ETa and ETb are descendants of X. Consider the following
cases:

1. Both Ta and Tb belong to ETxy . Since [y, a, b] is an
agreement triplet, by Lemma 2, there exists an AST
on leaf set LTxy ∪ {a, b}. Thus, [x, a, b] is an
agreement triplet.

2. Both Ta and Tb do not belong to ETxy . Without loss
of generality, let Ta belong to ETxa , i.e., it
corresponds to the topology in Figure 17(e) (replace z
with a in tree T). Thus, agreement triplet [x, y, a] is
of type ((x, a), y) and ψ(x) < ψ(a). Consider

potential AST T’ on leaf set LTxy ∪ {a, b} that
displays both Ta and Tb. Since, the topology Ta is
known, the topology of T ’ depends on the topology
of Tb. Consider the following cases. In the
subsequent discussion, let px, py, pa and pb denote
the parent of x, y, a and b respectively.

(a) Tb corresponds to the topology in
Figure 17(f) (replace z with b in tree T).
Potential AST T’ must be obtained by
grafting a in Tb. Since T’ must display
((x, a), y), there is only one possibility of
grafting a in Tb: a should be grafted on the
edge (px, x). Thus, T ’ exists. Considering

Figure 19More supportive illustrations for the proof of Lemma 4. Ta corresponds to the topology in Figure 17(e) (replace z with a in tree T) in
all the cases. (a) Tb corresponds to the topology in Figure 17(e) (replace z with b in tree T). (b) Tb corresponds to the topology in Figure 17(g)
(replace z with b in tree T). (c) Tb corresponds to the topology in Figure 17(h) (replace z with b in tree T).

Deepak and Fernández-Baca Algorithms for Molecular Biology 2014, 9:16 Page 29 of 30
http://www.almob.org/content/9/1/16

ψ(x) < ψ(a), the canonical topology for
AST T’ is shown in Figure 18(a).

(b) Tb corresponds to the topology in
Figure 17(b) (replace z with b in tree T).
Potential AST T’ must be obtained by
grafting a in Tb. Since T’ must display
((x, a), y), there is only one possibility of
grafting a in Tb: a should be grafted on the
edge (px, x). Thus, T ’ exists. Considering
ψ(x) < ψ(a), the canonical topology for
AST T’ is shown in Figure 18(b).

(c) Tb corresponds to the topology in
Figure 17(c) (replace z with b in tree T).
Potential AST T’ must be obtained by
grafting a in Tb. Since T’ must display
((x, a), y), there is only one possibility of
grafting a in Tb: a should be grafted on the
edge (px, x). Thus, T ’ exists. Considering
ψ(x) < ψ(a), the canonical topology for
AST T’ is shown in Figure 18(c).

(d) Tb corresponds to the topology in
Figure 17(d) (replace z with b in tree T).
Potential AST T’ must be obtained by
grafting a in Tb. Since T’ must display
((x, a), y), there is only one possibility of
grafting a in Tb: a should be grafted on the
edge (px, x). Thus, T ’ exists. Considering
ψ(x) < ψ(a), the canonical topology for
AST T’ is shown in Figure 18(d).

(e) Tb corresponds to the topology in
Figure 17(e) (replace z with b in tree T).
Thus, ψ(x) < ψ(b). Since, both Ta and Tb

correspond to the topology in Figure 17(e),
without loss of generality, let ψ(a) < ψ(b).
Potential AST T’ must be obtained by
grafting a in Tb and must display ((x, a), y).
Since ψ(x) < ψ(a) < ψ(b), there are four
possible canonical topologies for T ’; see
Figure 19(a). However, [y, a, b] is an
agreement triplet, thus, only one of the four
possible topologies exits across all input trees
Thus, T ’ exists.

(f) Tb corresponds to the topology in
Figure 17(g) (replace z with b in tree T).
Potential AST T’ must be obtained by
grafting a in Tb. Since T’ must display
((x, a), y), there is only one possibility of
grafting a in Tb: a should be grafted on the
edge (px, x). Thus, T ’ exists. Considering
ψ(x) < ψ(a), the canonical topology for
AST T’ is shown in Figure 19(b).

(g) Tb corresponds to the topology in
Figure 17(h) (replace z with b in tree T).
Potential AST T’ must be obtained by

grafting a in Tb. Since T’ must display
((x, a), y), there is only one possibility of
grafting a in Tb: a should be grafted on the
edge (px, x). Thus, T ’ exists. Considering
ψ(x) < ψ(x), the canonical topology for AST
T’ is shown in Figure 19(c).

Thus, in each of the above cases T ’ exists. Thus,
[x, a, b] is an agreement triplet.

This completes the proof.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
AD and DFB conceived the problem, designed the experiments and drafted
the manuscript. AD designed and implemented the algorithms, and
implemented the experiments. DFB coordinated the project. All authors read
and approved the final manuscript.

Acknowledgments
This work was supported in part by National Science Foundation grant
DEB-0829674. The authors thank Dr. Nicholas D. Pattengale for sharing the set
of bootstrapped trees. They also thank Dr. Tamer Kahveci and Avinash Ramu
for sharing their implementation that mines MFSTs with maximum leaves and
for discussions on their work.

Author details
1Department of Electrical and Computer Engineering, Iowa State University,
Ames, Iowa, USA. 2Department of Computer Science, Iowa State University,
Ames, Iowa, USA.

Received: 30 July 2013 Accepted: 2 June 2014
Published: 18 June 2014

References
1. Finden C, Gordon A: Obtaining common pruned trees. J Classif 1985,

2:255–276.
2. Goddard W, Kubicka E, Kubicki G, McMorris F: The agreement metric for

labeled binary trees.Math Biosci 1994, 123(2):215–226.
3. Dong S, Kraemer E: Calculation, visualization, andmanipulation of,

MASTs (Maximum Agreement Subtrees). In Proceedings of IEEE
Computational Systems Bioinformatics Conference: IEEE; 2004:405–414.

4. Farach M, Thorup M: Fast comparison of evolutionary trees. In
Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms.
Philadelphia, PA, USA: Society for Industrial and Applied Mathematics;
1994:481–488.

5. De Vienne D, Giraud T, Martin O: A congruence index for testing
topological similarity between trees. Bioinformatics 2007,
23(23):3119–3124.

6. Lapointe F, Rissler L: Congruence, consensus, and the comparative
phylogeography of codistributed species in California. AmNat 2005,
166(2):290–299.

7. Daubin V, Gouy M, Perrière G: A phylogenomic approach to bacterial
phylogeny: evidence of a core of genes sharing a common history.
Genome Res 2002, 12(7):1080–1090.

8. Sanderson M, McMahon M, Steel M: Terraces in phylogenetic tree
space. Science 2011, 333(6041):448.

9. Bryant D: A classification of consensus methods for phylogenetics. In
Bioconsensus: DIMACSWorking GroupMeetings on Bioconsensus: Amer
Mathematical Society; 2003:163.

10. Deepak A, Fernández-Baca D, Tirthapura S, Sanderson M, McMahon M:
EvoMiner: frequent subtree mining in phylogenetic databases.
Knowl Inform Syst 2013:1–32. [http://link.springer.com/article/10.1007
%2Fs10115-013-0676-0]

11. Amir A, Keselman D:Maximum agreement subtree in a set of
evolutionary trees. SIAM J Comput 1994, 26:758–769.

http://link.springer.com/article/10.1007%2Fs10115-013-0676-0
http://link.springer.com/article/10.1007%2Fs10115-013-0676-0

Deepak and Fernández-Baca Algorithms for Molecular Biology 2014, 9:16 Page 30 of 30
http://www.almob.org/content/9/1/16

12. Steel M, Warnow T: Kaikoura tree theorems: computing the
maximum agreement subtree. Inform Process Lett 1993, 48(2):77–82.

13. Kao M, Lam T, Sung W, Ting H: An even faster andmore unifying
algorithm for comparing trees via unbalanced bipartite matchings.
J Algorithms 2001, 40(2):212–233.

14. Farach M, Przytycka T, Thorup M: On the agreement of many trees.
Inform Process Lett 1995, 55(6):297–301.

15. Bryant D: Building trees, hunting for trees and comparing trees. PhD
thesis. Univ. of Canterbury, New Zealand, 1997.

16. Huan J, Wang W, Prins J, Yang J: Spin: miningmaximal frequent
subgraphs from graph databases. In Proceedings of the tenth ACM
SIGKDD international conference on Knowledge discovery and datamining.
New York, NY, USA: ACM; 2004:581–586.

17. Thomas L, Valluri S, Karlapalem K:Margin: maximal frequent subgraph
mining. In Proceedings of the IEEE International Conference on DataMining:
IEEE; 2006:1097–1101.

18. Wang K, Liu H: Discovering typical structures of documents: a road
map approach. In Proceedings of the 21st annual international ACM SIGIR
conference on Research and development in information retrieval. New York,
NY, USA: ACM; 1998:146–154.

19. Xiao Y, Yao J: Efficient data mining for maximal frequent subtrees. In
Proceedings of IEEE International Conference on DataMining: IEEE;
2003:379–386.

20. Chi Y, Xia Y, Yang Y, Muntz R:Mining closed andmaximal frequent
subtrees from databases of labeled rooted trees. IEEE Trans Knowl
Data Eng 2005, 17:190–202.

21. Zhang S, Wang J: Discovering frequent agreement subtrees from
phylogenetic data. IEEE Trans Knowl Data Eng 2008, 20:68–82.

22. Agrawal R, Mannila H, Srikant R, Toivonen H, Verkamo A: Fast discovery
of association rules. Adv Knowl Discov DataMin 1996, 12:307–328.

23. Ramu A, Kahveci T, Burleigh JG: A scalable method for identifying
frequent subtrees in sets of large phylogenetic trees. BMC
Bioinformatics 2012, 13:256.

24. Margush T, McMorris F: Consensus n-trees. Bull Math Biol 1981,
43:239–244.

25. Swenson K, Chen E, Pattengale N, Sankoff D: The kernel of maximum
agreement subtrees. In Proceedings of International Symposium on
Bioinformatics Research and Applications: Springer; 2011:123–135.

26. Pattengale N, Aberer A, Swenson K, Stamatakis A, Moret B: Uncovering
hidden phylogenetic consensus in large datasets. IEEE/ACM Trans
Comput Biol Bioinform 2011, 8-4(99):1.

27. Guillemot S, Berry V: Fixed-parameter tractability of the maximum
agreement supertree problem. IEEE/ACM Trans Comput Biol Bioinform
2010, 7(2):342–353.

28. Ganapathysaravanabavan G, Warnow T: Finding a maximum
compatible tree for a bounded number of trees with bounded
degree is solvable in polynomial time. In Algorithms in Bioinformatics,
Volume 2149 of Lecture Notes in Computer Science. Edited by Gascuel O,
Moret B. Berlin Heidelberg: Springer; 2001:156–163.

29. Holland B, Benthin S, Lockhart P, Moulton V, Huber K: Using
supernetworks to distinguish hybridization from lineage-sorting.
BMC Evol Biol 2008, 8:202.

30. Lott M, Spillner A, Huber KT, Moulton V: PADRE: a package for
analyzing and displaying reticulate evolution. Bioinformatics 2009,
25(9):1199–1200.

31. Holland BR, Delsuc F, Moulton V, Baker A: Visualizing conflicting
evolutionary hypotheses in large collections of trees: using
consensus networks to study the origins of placentals and
hexapods. Syst Biol 2005, 54:66–76.

32. Huber KT, Moulton V: Network analyses for exploring evolutionary
relationships. In The phylogenetic handbook: a practical approach to
phylogenetic analysis and hypothesis testing. Cambridge: Cambridge
University Press:2009.

33. Felsenstein J: Phylogenetics. Sunderland, Massachusetts: Sinauer
Associates; 2004.

34. Avis D, Fukuda K: Reverse search for enumeration. Discrete Appl Math
1996, 65:21–46.

35. Wang J, Shan H, Shasha D, Piel W: Fast structural search in
phylogenetic databases. Evol BioinformOnline 2005, 1:37–46.

36. Ayres J, Flannick J, Gehrke J, Yiu T: Sequential pattern mining using a
bitmap representation. In Proceedings of the eighth ACM SIGKDD

international conference on Knowledge discovery and datamining. New
York NY, USA: ACM; 2002:429–435.

37. Harel D, Tarjan R: Fast algorithms for finding nearest common
ancestors. SIAM J Comput 1984, 13:338–355.

38. Schieber B, Vishkin U: On finding lowest common ancestors:
simplification and parallelization. SIAM J Comput 1988, 17:1253–1262.

39. Bender M, Farach-Colton M: The LCA problem revisited. In Proceedings
of the 4th Latin American Symposium on Theoretical Informatics. Berlin,
Heidelberg: Springer; 2000:88–94.

40. Pattengale N, Alipour M, Bininda-Emonds O, Moret B, Stamatakis A: How
many bootstrap replicates are necessary? In Research in
Computational Molecular Biology, Volume 5541 of Lecture Notes in Computer
Science. Edited by Batzoglou S. Berlin Heidelberg: Springer; 2009:184–200.

41. Balvociute M, Spillner A, Moulton V: FlatNJ: A novel network-based
approach to visualize evolutionary and biogeographical
relationships. Syst Biol 2014, 63(3):383–96.

42. Huber K, Moulton V: Encoding and constructing 1-nested
phylogenetic networks with trinets. Algorithmica 2013, 66(3):714–738.

43. Grunewald S, Spillner A, Bastkowski S, Bogershausen A, Moulton V:
SuperQ: computing supernetworks from quartets. IEEE/ACM Trans
Comput Biol Bioinform 2013, 10:151–160.

44. Spillner A, Nguyen B, Moulton V: Constructing and drawing regular
planar split networks. IEEE/ACM Trans Comput Biol Bioinform 2012,
9(2):395–407.

45. Huber KT, Lott M, Moulton V, Spillner A: The complexity of deriving
multi-labeled trees from bipartitions. J Comput Biol 2008,
15(6):639–651.

46. Lott M, Spillner A, Huber K, Petri A, Oxelman B, Moulton V: Inferring
polyploid phylogenies frommultiply-labeled gene trees. BMC Evol
Biol 2009, 9:216.

47. Huber KT, Moulton V, Spillner A, Storandt S: Computing a consensus of
multilabeled trees. In Proceedings of the 14thWorkshop on Algorithm
Engineering and Experiments. Philadelphia, USA: SIAM; 2012:84–92.

48. Czabarka ı, Erdos PL, Johnson V, Moulton V: Generating functions for
multi-labeled trees. Discrete Appl Math 2013, 161(1-2):107–117.

doi:10.1186/1748-7188-9-16
Cite this article as: Deepak and Fernández-Baca: Enumerating all maximal
frequent subtrees in collections of phylogenetic trees. Algorithms for
Molecular Biology 2014 9:16.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Related work
	Preliminaries

	Algorithmic framework
	Non-redundant enumeration
	Canonical form
	Enumeration tree
	Pairwise join

	Support estimation
	Containing the combinatorial explosion
	Pruning heuristic
	Pruner-list.

	MfstMiner
	The general case of enumerating MFSTs
	Support estimation.
	Pruning strategy.
	Pruner-list.

	Complexity analysis
	Preprocessing.
	Join-operation.
	Support-list and Pruner-list.

	Results and discussion
	MFSTs vs. MASTs.
	Comparison with EvoMiner.
	Scalability of MfstMiner.
	Comparison with Ramu et al.'s approach.

	Conclusions
	Appendix
	Competing interests
	Authors' contributions
	Acknowledgments
	Author details
	References

