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Abstract

Background: RNA-RNA interaction plays an important role in the regulation of gene expression and cell
development. In this process, an RNA molecule prohibits the translation of another RNA molecule by establishing
stable interactions with it. In the RNA-RNA interaction prediction problem, two RNA sequences are given as inputs
and the goal is to find the optimal secondary structure of two RNAs and between them. Some different algorithms
have been proposed to predict RNA-RNA interaction structure. However, most of them suffer from high
computational time.

Results: In this paper, we introduce a novel genetic algorithm called GRNAs to predict the RNA-RNA interaction. The
proposed algorithm is performed on some standard datasets with appropriate accuracy and lower time complexity in
comparison to the other state-of-the-art algorithms. In the proposed algorithm, each individual is a secondary structure
of two interacting RNAs. The minimum free energy is considered as a fitness function for each individual. In each
generation, the algorithm is converged to find the optimal secondary structure (minimum free energy structure) of two
interacting RNAs by using crossover and mutation operations.

Conclusions: This algorithm is properly employed for joint secondary structure prediction. The results achieved on a
set of known interacting RNA pairs are compared with the other related algorithms and the effectiveness and validity
of the proposed algorithm have been demonstrated. It has been shown that time complexity of the algorithm in each
iteration is as efficient as the other approaches.
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Background
Major successes have been achieved in the treatment
of some cancers, including colon, breast and pancre-
atic by suppressing the gene expression involved in
the development of these diseases using RNA-RNA in-
teraction. The interaction between two RNAs is known
as the newest and the most efficient method for gene
silencing. It has been shown that the small interfering
RNAs (siRNAs) can be used for silencing their target
mRNAs [1]. Furthermore, small RNAs (sRNAs) play an
important role in the regulation of gene expression.
They usually bind to their target mRNAs to prevent
their translation [2].
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In RNA-RNA Interaction Prediction (RRIP) problem,
two RNA sequences are given as inputs and the goal
is to find the minimum free energy Secondary Struc-
ture of Interacting RNAs (SSIR). To tackle this prob-
lem, some algorithms have been proposed by research
groups. Andronescu et al. [3] proposed a method based
on dynamic programming in which two RNA sequences
are concatenated as a single sequence and its secondary
structure is calculated [3]. Another approach calculates
the partition function of a secondary structure complex of
multiple interacting RNAs [4]. This method rigorously
extends those models of secondary structure to the multi-
stranded case. The tools such as RNAhybrid [5], UNAFold
[6] and RNAduplex from ViennaRNA package [7] reduce
computational time complexity by ignoring all the internal
base pairings in both RNAs. RNAup [8,9] extends the
standard partition function approach to RNA secondary
structures and employs the single (unpaired) regions on
each RNA to find the interaction between them. RNAplex
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ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly credited.
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[10,11] finds the possible hybridization sites for RNA in
the large RNA databases based on a slight simplification
of the energy model. In this model, the loop energy is
assumed to be a function of the loop size.
Recently, a novel algorithm based on the multiple con-

text free grammars was introduced in [12]. Accordingly,
two real values called transition and emission probabil-
ities are specified for each rule of the grammar. Then, a
derivation tree is constructed for the grammar based on
the rules with high probability.
In heuristic based approaches, inRNAs [13] firstly

predicts the loop regions in the native structure of each
sequence, and then finds the optimal non-conflicting
interaction between two RNAs. IntaRNA [14] combines
the accessibility of target sites as well as the existence of
a user-definable seed to find RNA-RNA interaction. Min-
imizing the joint free energy between two RNA molecules
under a number of energy models with growing com-
plexity was introduced in [2]. Another interesting heuristic
approach for this problem was presented in [15]. This
algorithm employs some dot matrices representation of all
possible base pairs for finding the secondary structure of
each RNA and between the two RNAs.
An approximation algorithm was presented in [1],

where an RNA-RNA interaction graph is created in
which every edge represents a possible bond in or be-
tween two RNAs. A set of edges is found to maximize
the number of bonds. A statistical sampling algorithm
was introduced in [16] based on some modifications to
the grammars. It calculates the interaction probabilities
for any given single region on RNA. RactIP [17] predicts
RNA-RNA interaction using integer programming. Ac-
cordingly, it uses the approximate information of the
internal and external base pairing probabilities of joint
structures as an objective function of integer program-
ming. PETcofold [18] employs covariance information
in the internal and external base pairs to predict SSIR of
two multiple alignments of RNA sequences. InteRNA
[19] reduces the time and space complexity of RRIP
problem described by Alkan et al. [2] using dynamic
programming sparsification.
One of the pitfalls of the most existing algorithms is

their high computational time to predict RNA-RNA
interaction, while a number of them have not been
performed on some RNA pairs to predict binding sites be-
tween two single regions of RNAs. Alkan et al. [2] proved
that RNA-RNA interaction prediction is an NP-complete
problem.
In this paper, we propose a new genetic algorithm

called GRNAs as an appropriate solution for the RRIP
problem. This algorithm can be performed on some
standard RNA pairs with high accuracy. In this method, at
first, all possible stems in each RNA as well as all possible
hybrid regions between two RNAs are extracted from a
dot matrix. The initial population consists of some indi-
viduals, where each of them is an SSIR obtained from
some randomly extracted stems and hybrid regions of the
dot matrix. The minimum free energy is computed for
each individual as a fitness value. For each generation,
some individuals are selected to mate based on their
fitness values and form a new population. Then, mutation
operation is done on a few individuals. The population
generation terminates when the free energy of an indi-
vidual is minimum enough. Finally, one of the best indi-
viduals is selected as an optimal SSIR. The algorithm is
conducted on some real datasets and compared with some
other algorithms to investigate efficiency and validity of
the proposed method. The time and space complexity of
the proposed method in each iteration is 0(l2 + |P|), where
l and |P| indicate the sum of the length of two RNAs and
the length of an individual, respectively. The results show
that the accuracy of the algorithm is as efficient as the
other related methods.
The rest of this paper is organized as follows. In Section

2, some definitions and notations are described. In Section
3, a genetic algorithm called GRNAs is presented to pre-
dict RNA-RNA interaction. The results and conclusion
are discussed in Sections 4 and 5, respectively.

Definitions and notations
An RNA molecule is composed of a long, usually single-
stranded chain of nucleotide units; adenine (A), cytosine
(C), guanine (G) and uracil (U). Thus, R = r1r2… rn in
5 ' − 3 ' direction is an RNA sequence, where |R| = n
and ri ∈ {A,C,G,U} (1 ≤ i ≤ n). The RNA structure is
formed by the creation of hydrogen bonds between
Watson-Crick complementary bases (A −U and C −G)
and a Wobble base pair (G −U).
In an RNA secondary structure, each base interacts

with at most one other base, and no base pairs cross
each other. Two bases ri and rj (1 ≤ i < j ≤ n) of the base
pair (ri, rj) are represented by ' (' and ') ', respectively and
each unpaired base is declared by '. '. A stem consists of
subsequent base pairs and a loop is one sequence of
consecutive unpaired bases.
A secondary structure of two interacting RNAs, R1

and R2, contains the set of stems in each RNA and the
hybrid regions between two RNAs as well as loops. Each
hybrid region consists of subsequent hybrid base pairs
between two RNAs. Two bases ri ∈ R1 and rj ∈ R2 of
the hybrid base pair (ri, rj) are represented by ' [' and '] ',
respectively.
Example. Let R1 = CGGUUUGAGGUCCG and R2 =

ACUACCGAAAAGUU be two RNA sequences. The SSIR
of the two RNAs is shown as follows;

50 −CGGUUUGAGGUCCG− 30 50 −ACUACCGAAAAGUU− 30

:: ½ Þ½ Þ½ Þ ð �ð �ð � ::½ �½ �½ � Þ Þ Þððð
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In this example, each RNA has one stem. In the left
hand RNA, one stem is found by the production of
bonding between CGG and the reverse CCG (GCC).
There are two hybrid regions between the sequences R1

and R2. The first one is produced by binding between
UUU and the reverse AAA (AAA). The second one is
generated by binding between GGU and the reverse
ACC (CCA).

A new genetic algorithm for RNA-RNA interaction
prediction
Genetic algorithm is an optimization method based on
evolutionary biology that is widely used to solve search
and optimization problems [20-22]. In this section, a
new genetic algorithm, GRNAs, is presented to predict
RNA-RNA interaction. In the following, initial popula-
tion, fitness function, crossover and mutation operations
are introduced.

Initial population
In the proposed algorithm, two RNA sequences R ' =
r ' 1r ' 2… r ' n (|R ' | = n) and R " = r " 1r " 2… r " m (|R " | =
m) are given as inputs. The two RNAs R ' and R " are con-
verted to the sequence R = r1r2… rl as follows;

ri ¼
r 0i 1 ≤ i ≤ n;

r }i−n−1 nþ 2≤ i≤ l
N i ¼ nþ 1;

;

8<
:

where N is an arbitrary character to distinguish between
two sequences and l =m + n + 1.
A dot matrix MR

l�l is made, where the axes in the dot
matrix correspond to the two sequences R and reverse
R,as follows;

MR i; j½ � ¼
1 if ri; rl−jþ1

� �
∈f A;Uð Þ; U ;Að Þ; C;Gð Þ;

G;Cð Þ; U ;Gð Þ; G;Uð Þg;
0 else;

8>><
>>:

where ri and rl-j+1 (1 ≤ i, j ≤ l) are the i-th and l-j+1-th
nucleotides in the sequence R = r1r2… rl, respectively.
Each right-skewed consecutive value of 1’s which is
parallel to the main diagonal in the dot matrix is
selected as a sub-diagonal. Each sub-diagonal shows a
possible stem in each RNA or hybrid region between
two RNAs. Set DR shows all sub-diagonals in the dot
matrix as follows;

DR ¼ < i; j; t > 1 ≤ i ≤ l&1≤ j ≤ l&1≤ t ≤ l − 1j g;f

where i and j indicate the start position of the row and
the column of a sub-diagonal with t+1 consecutive 1’s,
respectively. Hence, each <i,j,t> is a set of consecutive
base pairs as follows;

< i; j; t >¼ ri; rl−jþ1
� �

;⋯; riþt ; rl−j−tþ1
� �� �

;

According to the prior knowledge, we know that
Watson-Crick base pairs occur more than Wobble in
RNA structures. In this regard, we compute the percent
of G-U pairs on our dataset approximated 14%. So, G-U
pairs are removed from the sub-diagonals including more
than 14%G-U pairs. For each d1 = < i1, j1, t1 > ∈DR and
d2 = < i2, j2, t2 > ∈DR, d1 ∝ d2 is defined as;

d1∝ d2 ¼ ri; rj
� �

∈d1 ∃ rk ; rg
� �

∈d2; i ¼ k∨i ¼ g∨j ¼ k∨j ¼ gg;���

where d1 ∝ d2 represents all base pairs in d1 overlapping
with d2.
For each individual P, a |DR| -tuple is randomly made

as;

I ¼< x1; x2;⋯; x DRj j >; ⋅xk ∈ 0; 1f g;

where xk (1 ≤ k ≤ |DR|) indicates the k-th sub-diagonal
in I. In other words, individual P contains those sub-
diagonals that their related x in I is equal to 1. Here,
xk = 1 means sub-diagonal dk ∈ P, while xk = 0 points to
dk ∉ P. Then, the individual P is constructed as follows;

P ¼ Ck xk ¼ 1;Ck≠ϕg;jf ð1Þ
where the set Ck (modified k-th sub-diagonal) is obtained
as follows;

Ck ¼ ri; rj
� �

∈ dk
� �

−∪1≤t≤k−1
Ct∈P

dk∝Ct :

Here, Ck ∈ P is a set of base pairs in dk without any
common base pairs in the previous sub-diagonals, dt(1 ≤
t < k), of individual P. Finally, Ck is modified by removing
the lonely base pairs from it as follows;

Ck ¼ Ck− ri; rj
� �

∈Ck riþ1; rj−1
� �

∉Ck & ri−1; rjþ1
� �

∉Ckg:
���

Notice that a set of the produced individuals creates
an initial population.

Fitness function
For each individual P, let S and H represent two RNAs
secondary structures and binding sites between the two
RNAs, respectively. Therefore, the fitness function is
defined as follows;

Fitness Pð Þ ¼ MFE Sð Þ þ MFE Hð Þ;
where for C ∈ {S,H}, MFE(C) denotes the minimum free
energy of structure C. We apply RNAeval.exe [7] to com-
pute minimum free energies of secondary structures and
binding sites separately.
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Crossover
Crossover operation is performed between the indi-
viduals with the rate of 0.9. The good and mediocre
individuals are transferred to the next population. The
remaining individuals are consecutively selected for cross-
over operation.
Let P1 and P2 are selected as parents. For each individ-

ual Pi, 1 ≤ i ≤ 2, a |DR| -tuple is defined as follows:

Ii ¼< xi1; xi2;⋯; xi DRj j >; xij ¼ 1 if Cj∈Pi;
0 else:

�

In this procedure, a random position k, 1 ≤ k ≤ |DR|, is
selected and I1 and I2 are crossed. Then, I ' 1 and I ' 2 are
formed as follows:

I 01 ¼< x11; x12;⋯; x1k ; x2 kþ1ð Þ;⋯; x2 DRj j >;

I 02 ¼< x21; x22;⋯; x2k ; x1 kþ1ð Þ;⋯; x1 DRj j > :

In the following, two new individuals P ' 1 and P ' 2 are
generated from I ' 1 and I ' 2 similar to the described me-
thod in the initial population (refers to the Equation 1),
respectively.

Mutation
Mutation operation is done with the rate of 0.1 on a
few randomly selected individuals in each generation.
Assume that P is an individual selected for mutation.
For the individual P, a |DR| -tuple is obtained by:

I ¼< x1; x2;⋯; x DRj j >; xi ¼ 1 if Ci∈P;
0 else:

�

An item xj, where xj = 1 is randomly selected and
replaced to 0. Then, another xk (xk = 0) is replaced to 1.
The new individual, P, is obtained from the changed I
based on the proposed method in initial population
(refers to the Equation 1). Finally, if Ck ∉ P (all the base
pairs of dk have overlapping with the existence sub-
diagonals in P), the other xi (xi = 0) is selected to replace
with 1. This process continues until Ck ∈ P or the de-
fined number of generations is reached. When mutation
is performed on a number of individuals, they will be
increasingly sorted based on their fitness values.

Termination of the GRNAs algorithm
The GRNAs algorithm terminates when the best indi-
vidual in definite generations will not be changed or the
defined number of generations be reached. After the
termination of the algorithm, one of the best individuals
is selected as the best folding of two RNAs and the best
interaction between the two RNAs.
Time and space complexity
We have obtained the time and space complexity of
GRNAs in each iteration. Making the dot matrix needs
the complexity of O(l2) where l exposes sum of the
length of the two RNAs. Let h and |P| be the number of
individuals and the length of an individual P. The time
complexity of creating the initial population is O(h. |
P| 2). We set h = 40 and |P| = max{|R ' |, |R " |}, so h can
be ignored. Sorting individuals based on their fitness
values requires O(|P|. h. log h). Crossover and mutation
operations take O(|P| 2) and O(|P|), respectively. Thus,
the time complexity in each iteration in the proposed al-
gorithm is O(h. |P|(|P| + log h)). The maximum number
of iteration is at most I = 20. Therefore, the time com-
plexity of the algorithm is O(I. h. |P|(|P| + log h) + l2) that
is simplified with O(l2 + |P|).
On the other hand, for storing the h individuals of

length |P| we need O(h. |P|) space complexity. Further-
more, the population in the algorithm uses both dot
matrix and an array of sub-diagonals. Hence, the storage
complexity of these two types is O(l2), where l denotes
sum of the length of the two RNAs. Thus the total space
complexity of GRNAs is O(h|P| + l2) which is simplified
with O(l2 + |P|).

Results and discussion
The GRNAs has been performed on a machine with
two-Core Intel(R) Duo processor T6670 2.20 GHz and
4 GB RAM to predict the interaction structure between
two RNAs. The proposed genetic algorithm is performed
on two well-known datasets of RNA-RNA interactions.
The first set contains: R1inv-R2inv, Tar-Tar*, DIS-DIS,
CopA-CopT and IncRNA54-RepZ in the Escherichia
coli bacteria [12]. The joint secondary structures of
this dataset include kissing hairpins. We evaluate the
performance of joint secondary structure prediction of
this dataset.
Also, this algorithm is carried on the second set of

datasets with their binding sites including some RNA
pairs called: DsrA-Rpos, GcvB-argT, GcvB-dppA, GcvB-
gltI, GcvB-livK, GcvB-livJ, GcvB-oppA, GcvB-STM4351,
IstR-tisAB, MicA-ompA, MicA-lamB, MicC-ompC, MicF-
ompF, OxyS-fhlA, RyhB-sdhD, RyhB-sodB, SgrS-ptsG and
Spot42-galK [14]. This dataset is used to appraise the per-
formance of RNA-RNA interaction prediction in binding
sites.
To evaluate the prediction accuracy of the GRNAs,

F-measure (F) and Matthews Correlation Coefficient
(MCC) [18] are calculated using sensitivity (Sn) and posi-
tive predictive value (PPV). Assume that the number of
correctly predicted base pairs, the number of false pre-
dicted base pairs and the number of unpredicted base
pairs are indicated by TP, FP and FN, respectively. So, Sn,
PPV, F, and MCC are defined as follows:



Table 1 The results of joint secondary structure prediction of GRNAs in MCC in comparison to the PETcofold and other
joint structure prediction methods such as RNAcofold, inteRNA, Pairfold and RactIP

RNA-RNA pairs GRNAs PETcofold RNAcofold inteRNA Pairfold RactIP

MicA-ompA 67 87 80 49 86 57

OxyS-fhlA 60 80 61 64 61 48

RyhB-uof-fur 56 13 21 12 21 19

RyhB-sodB 74 67 65 70 65 65

Average 64 62 57 49 58 47
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Sn ¼ TP= TP þ FNð Þ; PPV ¼ TP= TP þ FPð Þ;
F ¼ 2� Sn� PPVð Þ= Snþ PPVð Þ;
MCC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sn� PPV :

p

Table 1 shows the results of joint secondary structure
prediction of our algorithm, GRNAs, in Matthews
Correlation Coefficient [18]. It is also compared to the
state-of-the-art methods such as PETcofold [18], the
sparsified version of inteRNA [19], Pairfold [3], RactIP
Table 2 The results of binding sites prediction of GRNAs in se
[12,14] in comparison to inRNAs, IntaRNA, RNAup and RactIP

Sensitivity PPV

RNA-RNA pairs GRNAs inRNAs IntaRNA RNAup

Tar-Tar* 100 100 100 100

R1inv-R2inv 100 100 100 100

DIS-DIS 100 100 100 100

CopA-CopT 89.47 88.9 100 55.6

IncRNA54-RepZ 71.44 100 73.8 75

DsrA-Rpos 73.08 80.8 80.8 80.8

GcvB-argT 87.5 95 95 90

GcvB-dppA 94.12 100 100 100

GcvB-gltI 91.67 75 0 0

GcvB-livK 70.83 54 54.2 54.2

GcvB-livJ 95.45 63.4 95.5 95.5

GcvB-oppA 90.91 100 100 100

GcvB-STM4351 72 76 76 88

IstR-tisAB 69.44 72.2 87.9 66.7

MicA-ompA 93.75 100 100 100

MicA-lamB 82.61 100 100 82.6

MicC-ompC 90.91 100 100 72.7

MicF-ompF 100 96 96 80

OxyS-fhlA 80 81.3 50 37.5

RyhB-sdhD 58.82 61.8 58.8 79.4

RyhB-sodB 100 100 100 100

SgrS-ptsG 60.87 56.6 73.9 73.9

Spot42-galK 61.36 43.2 40.9 52.3

Average 84.1 84.5 81.9 77.6
[17] and RNAcofold [7]. The MCC evaluates the joint
structure, i.e. both the binding sites between the two
RNAs and the secondary structure of each single RNA.
In two pairs MicA-ompA and OxyS-fhlA, PETcofold
has the best MCC value and in other two pairs RyhB-uof-
fur and RyhB-sodB, GRNAs has the highest MCC value.
We also compared GRNAs with four state-of-the-art

methods: inRNAs, IntaRNA, RNAup and RactIP. Table 2
shows the results of prediction in binding sites in sen-
sitivity and positive predictive values on the datasets
nsitivity and positive predictive value on the datasets

RactIP GRNAs inRNAs IntaRNA RNAup RactIP

81.5 100 83.3 83.3 83.3 57.9

100 100 77.8 100 77.8 100

75 100 100 100 100 78.3

100 80.95 82.8 39.1 65.2 100

100 100 88.9 85 85.7 83.3

65.4 100 77.8 77.8 77.8 73.9

95 100 86.4 95 94.7 100

94.1 100 85 58.6 45.9 59.3

100 95.65 50 0 0 100

95.5 89.47 57 56.5 56.5 95.5

95.8 95.45 82.4 95.5 95.5 95.8

100 100 73.3 95.7 95.7 100

88 100 100 90.5 95.7 100

77.8 100 100 96 100 100

87.5 100 100 100 100 87.5

56.5 90.48 100 82.1 70.4 86.7

72.7 100 100 53.7 41 88.9

83.3 100 96 96 95.2 76.9

56.3 86.96 100 100 100 81.8

82.4 95.24 95.5 100 79.4 82.4

100 100 100 81.8 90 39.1

83.9 87.5 76.5 100 100 100

68.2 87.1 76 64.3 52.3 69.8

84.7 96.03 86.5 80.5 78.4 85.1
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[12,14] using the proposed approach and mentioned
methods. Here, only external base pairs are considered
to measure accuracy. According to the second half of
Table 2, the average positive predictive value on datasets
[12,14] is 96.03%. This table shows that our method is
comparable with the existing methods. Table 3 indicates
the accuracy of GRNAs in F-measure with considering
binding sites. In GRNAs, the average F-measure is 89%.
The results shown in Tables 2 and 3 indicate that GRNAs
works as efficient as the other methods in average sensi-
tivity, positive predictive value and F-measure.
Our genetic algorithm randomly selects the sub-

diagonals to make individuals. Therefore different individ-
uals with variety sub-diagonals are constructed. Due to
the nature of proposed genetic approach, some of the
RNA-RNA interactions can be predicted more accurate
than the other algorithms. For example the accuracy rate
of Tar-Tar* is obtained 100%, while maximum accuracy of
the other approaches is 90.9%.
We compare the computational time complexity of

GRNAs and state-of-the-are methods. The time and space
Table 3 The results of binding sites prediction of GRNAs
in F-measure on the datasets [12,14] in comparison to
inRNAs, IntaRNA, RNAup and RactIP

RNA-RNA pairs GRNAs inRNAs IntaRNA RNAup RactIP

Tar-Tar* 100 90.9 90.9 90.9 67.7

R1inv-R2inv 100 87.5 100 87.5 100

DIS-DIS 100 100 100 100 76.6

CopA-CopT 85 85.7 56.2 60 100

IncRNA54-RepZ 82.92 94.1 79 80 90.9

DsrA-Rpos 84.44 79.3 79.3 79.3 69.4

GcvB-argT 93.33 90.5 95 92.3 97.4

GcvB-dppA 96.97 91.9 73.9 62.9 72.2

GcvB-gltI 93.62 60 0 0 100

GcvB-livK 76.07 55.5 55.3 55.3 95.5

GcvB-livJ 95.45 71.7 95.5 95.5 95.8

GcvB-oppA 95.24 84.6 97.8 97.8 100

GcvB-STM4351 83.72 86.4 82.6 91.7 93.6

IstR-tisAB 81.96 83.9 91.8 80 78.5

MicA-ompA 96.77 100 100 100 87.5

MicA-lamB 86.36 100 90.2 76 68.4

MicC-ompC 95.24 100 69.9 52.4 80

MicF-ompF 100 96 96 86.9 80

OxyS-fhlA 83.33 89.7 66.7 54.5 66.7

RyhB-sdhD 72.73 75 74.1 79.4 82.4

RyhB-sodB 100 100 90 94.7 56.3

SgrS-ptsG 71.79 65.1 85 85 85

Spot42-galK 72 55.1 50 52.3 69

Average 89 84.5 79.1 76.3 83.6
complexity of several algorithms (TIRNA [15], App
(approximation algorithm to predict SSIR) [14], ripalign
[23], and other methods in the Tables 1, 2 and 3) are given
in Table 4. As it is shown, the time complexity of GRNAs
in each iteration is O(l2 + |P|), where l and |P| indicate
sum of the length of the two RNAs and the length of an
individual, respectively. Also, Space complexity of the
proposed method is O(l2 + |P|).
Conclusion
In this paper, a new genetic algorithm was introduced
for solving RNA-RNA interaction prediction problem. In
this algorithm, all possible stems in each RNA and hy-
brid regions between two RNAs are extracted from a dot
matrix showing all possible base pairs. Initial population
is formed based on some stems and hybrid regions of
the dot matrix. Minimum free energy is considered as a
fitness function. Crossover operation is done between
some consecutive individuals in the population. Muta-
tion is taken on a few randomly selected individuals.
Population generation continues until the minimum free
energy of the best individual becomes minimal enough.
Finally, one of the best individuals is selected to form
RNA-RNA interaction structure. The proposed algo-
rithm was tested on several RNA-RNA interaction data-
sets. The experimental results indicate a high accuracy
of GRNAs. Furthermore, time and space complexity of
GRNAs is as efficient as the other related studies.
Availability
The program of GRNAs is available at http://mostafa.ut.
ac.ir/grnas.
Table 4 Comparison of time and space complexity of
some algorithms

Algorithm Time complexity Space complexity

GRNAs O(l2 + |P|) O(l2 + |P|)

TIRNA O(k2 log k2) O(k2)

SPM O(n3m3) O(n2m2)

LM O(n3m3) O(n2m2)

inRNAs O(k4w) O(k2)

RNAup O(n3m) O(n2)

EBM O(n3m3) O(n2m2)

App O(n3m3) O(n2m2)

Pairfold O(k3) O(k2)

IntaRNA O(nm + nl3) O(nm)

ripalign O(N6) O(N4)

PETcofold O(MIl3)

RactIP O(n5)

Here, l and |P| indicate the sum of the length of two RNAs and the length of
an individual, respectively.
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