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Abstract

Background: The sheer amounts of biological data that are generated in recent years have driven the development
of network analysis tools to facilitate the interpretation and representation of these data. A fundamental challenge in
this domain is the reconstruction of a protein-protein subnetwork that underlies a process of interest from a
genome-wide screen of associated genes. Despite intense work in this area, current algorithmic approaches are
largely limited to analyzing a single screen and are, thus, unable to account for information on condition-specific
genes, or reveal the dynamics (over time or condition) of the process in question.

Results: We propose a novel formulation for the problem of network reconstruction from multiple-condition data
and devise an efficient integer program solution for it. We apply our algorithm to analyze the response to influenza
infection and ER export regulation in humans. By comparing to an extant, single-condition tool we demonstrate the
power of our new approach in integrating data from multiple conditions in a compact and coherent manner,

capturing the dynamics of the underlying processes.
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Background

With the increasing availability of high-throughput data,
network biology has become the method of choice for
filtering, interpreting and representing these data. A fun-
damental problem in network biology is the reconstruc-
tion of a subnetwork that underlies a process of interest
by efficiently connecting a set of implicated proteins (e.g.
derived by some genome-wide screen) in a network of
physical interactions. In recent years, several algorithms
have been suggested for different variants of this problem,
including the Steiner tree based methods of [1,2], the flow
based approach of [3] and the anchored reconstruction
method of [4].

Despite the plethora of network reconstruction meth-
ods, these have been so far largely limited to explaining a
single experiment or condition. In practice, the network
dynamically changes over time or conditions, calling for
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reconstructions that can integrate such data to a coher-
ent picture of the activity dynamics of the underlying
pathways.

Here we tackle this multiple-condition scenario, where
the reconstructed subnetwork should explain in a coher-
ent manner multiple experiments driven by the same set
of proteins (referred to here as anchor proteins) while pro-
ducing different sets of affected proteins, or terminals.
As in the single-condition case, a parsimonious assump-
tion implies that the reconstructed subnetwork should be
of minimum size. In addition, we require that its path-
ways, leading from the anchors to each of the terminals,
are as homogeneous as possible in terms of the condi-
tions, or labels they span. We formulate the resulting
minimum labeling problem, show that it is NP complete
and characterize its solutions. We then offer an equivalent
formulation that allows us to design a polynomial integer
linear programming (ILP) formulation for its solution. We
implement the ILP algorithm, MKL, and apply it to two
datasets in humans concerning the response to influenza
infection and ER export regulation. We show that the
MKL networks are significantly enriched with respect
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to the related biological processes and allow obtaining
of novel insights on the modeled processes. Finally, we
compare MKL with an extant method, ANAT [4], demon-
strating the power of our algorithm in integrating data
from multiple conditions in a compact and informative
manner.

Preliminaries

Let G = (V,E) be a directed graph, representing a
protein-protein interaction (PPI) network, with vertex set
V and edge set E, and leta € V be an anchor node. Denote
by In(v) (Out(v)) the set of incoming (outgoing) edges of
anode v € V, respectively. Let L = {1,...,k} be a set of
labels, representing k > 1 conditions. Let f : E — 2@
be a labeling function that assigns each edge of E a (pos-
sibly empty) subset of labels. For 1 < i < k, we define
Ei(f) = {e € E : i € f(e)} to be the set of edges
with label i. We further denote fi,(v) = |, (v (€) and
Jour V) = Ueeourn S (©)-

We say that a labeling function f is valid if for every ter-
minal ¢ and condition i in which ¢ is affected, there exists
a path from a to t whose edges are restricted to E;(f), or
in other words, are assigned with the label i. We evaluate
the cost of the labeling according to the number of labels
L(f) used and the number of edges N (f) that are assigned
with at least one label. Formally, L(f) = ",z |f(e)| and
N(f) = |{e € E : f(e) # 0}|. The cost is then defined as
a-L(f)4+ (1 —a) -N(f), where 0 < a < 1 balances the two
terms.

We study the following minimum k-labeling (MKL)
problem on G: The input is an anchor node a € V and
k > 1 sets of terminals 77, ..., T in V' \ {a} that implic-
itly assign to each terminal the subset of conditions (or
labels) in which it is affected. The objective is to find a
valid labeling of the edges of G of minimum cost.

Clearly, any valid labeling induces a subnetwork that can
model the given conditions: this subnetwork is comprised
of those edges that are assigned a non-empty subset of
labels. We note that for k = 1 we have L(f) = N(f),
thus in this case the MKL problem is equivalent to the
minimum directed Steiner tree problem. The parameter
« balances between two types of solutions: (1) a subnet-
work with minimum number of labels (@ = 1), which
is equivalent to the union of independent Steiner trees
for each of the conditions, and (2) a subnetwork with
minimum number of edges (¢ = 0), which is simply a
Steiner tree spanning the terminals in the union of all
conditions. However, general instances of MKL where
a # 0,1 can be solved neither by combining the inde-
pendent Steiner trees of each of the conditions nor by
constructing a single Steiner tree over all terminals. This
is illustrated by the toy examples in Figures 1 and 2. Next,
we provide a characterization of solutions to the MKL
problem.
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Figure 1 The optimal MKL solution for « = 0.5 is neither the
union of label-specific Steiner trees nor a subgraph of it. In this
instance k = 2, T; = {x,y} and T, = {y,z}. The optimal Steiner trees
for Ty and T, are composed of the red (dashed) and blue (solid) edges,
respectively. The best MKL solution that uses only edges of the union
can be achieved by pushing label 1 over the red edges and 2 over the
blue edges, resulting in 14 labels and 14 edges. In contrast, the
optimal solution, whose labels appear on top of the figure, contains
the blue and green (waved) edges, spanning 15 labels and 9 edges.

Theorem 1. Given a solution labeling f to an MKL
instance, let G; denote the subgraph of G that is induced by
the edges in E;(f). Then G; is a directed tree rooted at a.

Proof. By definition, there is a directed path in G;
from a to each of the terminals in Tj. Clearly, any edge

Figure 2 The optimal MKL solution for & = 0.6 is not a minimum
Steiner tree over all terminals. In this instance k = 2, Ty = {x, w}
and T, = {y,z}. The black (solid) edges form a Steiner tree with 6
edges and 8 labels, whereas the blue (dashed) edges constitute an

MKL solution with 7 edges and 7 labels.
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directed into a can be removed without affecting the
constraints of a valid solution. Thus, it suffices to show
that the underlying undirected graph of G; contains no
cycles. By minimality of the solution, every vertex in G;
is reachable from a or else it can be removed along with
its edges. Suppose to the contrary that vi,...,v, is a
cycle in the underlying graph. Since 4 cannot be on this
cycle and by the above observation, each of the cycle’s
vertices is reachable from a. W.l.o.g., let v; be the far-
thest from a in G; among all cycle vertices. Then one
can obtain a smaller solution by removing one of the
edges (v1,v2), (vy, v1) (depending on their orientations), a
contradiction. O

As noted earlier, when kK = 1 the MKL problem is
equivalent to the minimum directed Steiner tree problem,
which is known to be NP-complete [5]. A simple reduction
from this case yields the following result:

Theorem 2. The MKL problem is NP-complete for every
k>1

Proof. Let k > 1. Given an instance of the mini-
mum 1-labeling problem, that is, a network G = (V,E),
an anchor ¢ € V and a single set of terminals T C
V, we generate the following input to the minimum k-
labeling problem. Define the background network G’ =
(VI,E'), where V/ = V U {t1,...,ts_1} and E = EU
{(a,t1),...,(a,tr—1)}, where {t,'}]f*1 are new nodes not in
V. The input k sets of terminals are then T, {t1}, . . ., {tx—1},
and the anchor remains a. The key observation to com-
plete this proof is that an optimum solution to the reduced
instance must include all edges (a,¢;), plus an optimal
tree that connects a to the terminals in 7 using a single
label. O

Methods

An alternative formulation of MKL

As the MKL problem is NP-complete, we aim to design
an integer linear program for it, which will allow us to
solve it to optimality or near-optimality for moderately-
sized instances. In order to design an efficient ILP, we first
provide an alternative formulation of the MKL problem,
expressed in terms of units of flow per label pushed from
the anchor toward the terminals. To this end, we extend
the labeling definition to support assignment of multi-
sets, as described below. We denote a multi-set by a pair
M = (S, 1), where S is a set and u: S — ZT. We say that
x € Mifx € S. We let |M| denote the cardinality of the
underlying set S.

The union W of two multi-sets (Si, 1), (So, ) is
defined as the pair (S, 1), where S = S; U Sy; for every
x € 8S1 NSy, nx) = pui1(x) + pax); for x € S\ Sy,
nx) = pi1(); and for x € Sy \ S1, u(x) = pa(x). We
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extend the definitions of fi,(v) and f,,:(v) to multi-sets
using this union operator. Finally, for a vertex v # a we let
L(v) = {i € L : v € T;}; note that for non-terminal nodes
Lv) =40.

The alternative objective formulation is as follows: Find
a multi-set label assignment g : E — 2 that satisfies the
following constraints:

(i) gout(a@) = (L, ), where (i) = |T;| for everyi € L.
(The total amount of flow that goes out from the
anchor per label equals the number of terminals that
belong to the corresponding experiment).

(i) Foreveryv # a, giy(v) = gout (V) W L(v).
(For each label i, the incoming flow of a node v
equals its outgoing flow, incremented by 1 if v is a
terminal expressed in experiment i).

(iii) Denote L(g) = Y, lg(e)l,
N(g) =I|{e€ E:g(e) # 0}|,and let 0 < o < 1. Then
a-L(g) + (1 —a)  N(g) is minimal.

We claim that the two formulations are equivalent. Given
a multi-set labeling g, it is easy to transform it into a label-
ing f by taking at each edge the underlying set of labels.
One can show that the labeling f is valid, i.e. for each i
there are paths in E;(f) that connect a to each of the ter-
minals in 7;. For the other direction, given a labeling f we
can transform it into a multi-set labeling g by defining the
multiplicity of a label i at the edge (u,v) € E;(f) as the
number of terminals from T; in the subtree of G; that is
rooted at v. It is easy to see that all constraints are satisfied
by this transformation.

The above problem formulation can be made stricter by
requiring that the set of incoming labels to a terminal is
exactly the set of labels associated with the terminal. That
is, for every terminal ¢ and i € L \ L(t), we require that
i ¢ gin(t). Our ILP formulation includes this requirement
in order to better reflect the experimental observations,
though in practice both versions produce very similar
results.

An ILP algorithm

In order to formulate the problem as an integer program,
we define three sets of variables: (i) binary variables of
the form y', indicating for every e € E and i € L whether
the edge e is tagged with label j; (ii) integer variables
of the form «x!, indicating for every e € E and i € L the
multiplicity of label i (in the range 0 to |T;|); and (iii)
binary variables of the form z,, indicating for every e € E
whether the edge e participates in the subnetwork (car-
rying any label). For a vertex v € V, let b, be a binary
indicator of whether i € L(v) or not. Let o be some fixed
value in the range [0,1]. The formulation is as follows
(omitting the constraints on variable ranges):
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By Theorem 1, the constraint

Y oa<1
ecln(v)
can be added to the ILP without affecting the optimal
solution. The following Lemma leverages this insight for
enhancing the ILP performance by removing some of the
integrality constraints.

YveV,iel (6)

Lemma 1. Assume that constraint (6) is added to the ILP
formulation above. If all y'.’s are restricted to binary val-
ues then the range constraints x’e €l0,|T;]] and z, €[0,1]
guarantee that all x’s and z,’s are assigned integer values
in any optimal solution.

Proof. Let v € V. We first prove that for every e € In(v)
and i € L, x, must be an integer. By the new constraint (6)
and the integrality of all s, the sum >, In(v) y. is either
0 or 1. If it is O then by constraint (1), for each of these
edges x. = 0. Otherwise, exactly one of these edges has
9. = 1 and therefore x. > 0. Denote by G; the subnet-
work that is induced by all edges having nonzero flow for
label i (i.e. edges e fulfilling xé > 0). Denote by T;(v) the
set of terminals in T; that are reachable from v in G;, and
let £ € T;(v). By applying the above argument for each
of the nodes between v and ¢, we infer that there is a sin-
gle path that carries flow from v to ¢ in G;, and that all of
s incoming flow (of label i) must pass through v. Every
t € T;(v) absorbs a flow of 1 and therefore from the flow-
preserving constraint (4), ), Inw) x‘e > |T;(v)|. The other
direction holds too since the flow of label i that v sends can
be collected only by terminals in T;(v). Thus, we conclude
that all x’s in this sum equal 0 except for a single element
which equals |T;(v)|, i.e. all of them are integers.

To prove that all z.’s are integral, consider some edge
e € E. If there exists i € L such that y, = 1 then from con-
straint (2) it follows that z, = 1. Otherwise, the equality
z, = 0 follows from the minimality of the solution. O

Heuristic data reduction and runtime analysis

Since solving an ILP is a time consuming task, we devised
a heuristic method for filtering the input network, aiming
to capture those edges that the MKL optimal solution is
more likely to use. Specifically, we focused on (directed)
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edges that lie on a near shortest path — up to d edges
longer than a shortest path — between the anchor and any
of the terminals.

In order to support this heuristic and find a value for d
that achieves a satisfying balance between running time
and optimality, we tested the performance of our ILP
algorithm on the influenza dataset (which is the more
computationally expensive dataset described in the Exper-
imental results Section) withd = 0,d = 1,d = 2,
and without the heuristic filtering. These parameter val-
ues induced input background networks of 0.01x, 0.1x,
0.5x and x edges, respectively, where x ~ 80,000 is the
complete network size. Using d = 1, six hours were suf-
ficient to achieve an optimal solution of cost (combined
number of labels and edges) 275. Using d = 2, a solution
of similar quality (cost 272) was achieved after 48 hours.
This execution also proved that the optimal solution with
d = 2 has a lower bound of at least 262, showing that
the theoretical improvement over d = 1 is limited to less
than 5%. This analysis motivated our selection of d = 1
for the experimental evaluation that follows. Further, it is
interesting to note that with this choice, the convergence
toward the optimum is very fast: in three hours one could
achieve a solution that is less than 1% behind the opti-
mum (though this time period was not enough to prove
this approximation guarantee). This is in large contrast to
the settings of d > 2 that are characterized by very slow
convergence (>10% approximation ratio after 24 hours).
The results are summarized in Figure 3.

T T T T
550 —&— d=0: achieved sol. H
—®— d=0: lower bounds
—A— d=1: achieved sol.
500 —®—d=1: lower bounds |
—A— d=2: achieved sol.
—®—d=2: lower bounds ||
d=Inf: achieved sol.
d=Inf: lower bounds
400 q

350 ‘\ 1
300 | — & 4
250 | 3
S |
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Running time (hours)
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Solution cost vs. best proven cost

Figure 3 Dependency of the MKL algorithm performance on the
heuristic filtering. This figure compares the performance of the MKL
algorithm with respect to different values of the heuristic data
reduction parameter d and when setting different limits on the
running time. For each value of d (0, 1, 2 or no heuristic filtering), two
plots with the same color are displayed: the top plot (triangle
symbols) shows the cost of the achieved solution after the specified
number of hours (or less); the bottom plot (circles) shows the best
proven theoretical lower bound on an optimal solution as reported
by the same execution. Note that for d = 0 these two (black) plots
fully coincide.
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Performance evaluation
We used the commercial IBM ILOG CPLEX optimizer
to solve the ILP and instructed it to accept approximate
solutions that deviate by at most 5% from the optimum,
enabling our executions to end within less than two hours.
We evaluated a solution subnetwork using both
network-based and biological measures. The network-
based measures included the number of labels, number
of edges and a homogeneity score. To compute the homo-
geneity score of a node v, we examined the frequencies
of all subsets of labels assigned to terminals under v. The
score of v was defined as the highest frequency found
divided by the number of terminals under v. The homo-
geneity score of the subnetwork was then defined as the
average over all nodes that span at least two terminals. To
quantify the biological significance of the reconstructed
subnetworks, we measured the functional enrichment of
their internal nodes (non-input nodes) with respect to val-
idation sets that pertain to the process in question. In
addition, we provide expert analysis of the subnetworks.
We compared the performance of our method to that
of the state-of-the-art ANAT reconstruction tool [4],
which was shown to outperform many existing tools in
anchored reconstruction scenarios. For each dataset, we
applied ANAT (with its default parameters, and with-
out the heuristic filtering) to each condition separately,
then unified the results to get an integrated subnetwork.
We labeled the solution straightforwardly: an edge e was
labeled i if e participated in the subnetwork that was con-
structed for condition i. We also compared our results to
those attained by computing a Steiner tree over the ter-
minals of all conditions together, implemented using the
same ILP algorithm by setting @ = 0.

Experimental results

We tested the performance of our algorithm on two
human datasets concerning the cellular response to
the influenza virus and ER export regulation. The two
datasets were analyzed in the context of a human PPI net-
work reported in [4] which contains 44,738 (bidirectional)
interactions over 10,169 proteins.

For each of the two datasets, we tested the robustness of
our algorithm to different choices of the weighting param-
eter o, observing that the number of edges and labels
varied by at most 8% and 4%, respectively, over a wide
range of values (0.25-0.75). Thus, we chose « = 0.5 for
our analyses in the sequel.

Response to influenza infection

We used data on the response to viral infection by
the HIN1 influenza strain A/PR/8/34 (‘PR8’) in primary
human bronchial epithelial cells [6]. The dataset contains
a collection of 135 virus-human PPIs and gene expres-
sion profiles, measured at different time points along the
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course of the infection. We focused on four time points
(the “conditions”) ¢t = 2,4, 6,8 (i.e. k = 4 labels), in each
time point selecting those genes that were differentially
expressed above a cutoff of 0.67 [6]. We did not include
time points earlier than ¢ = 2 or later than ¢ = 8, as the
former had no or very few differentially expressed genes,
while the latter induced an order of magnitude larger
gene sets that are presumably associated with secondary
responses.

We augmented the human network by the influenza-
host PPIs and an auxiliary anchor node (named ‘virus’)
which we connected to the 10 viral proteins. After the
heuristic filtering (using d = 1), the network contained
1,598 proteins and 8,708 interactions.

The four terminal sets contained 8,19,19 and 49 pro-
teins, respectively, with 77 total in their union, out of
which 57 were reachable from the anchor. The resulting
MKL subnetwork, which is shown in Figure 4, contains
127 edges over 123 nodes (117 human, 5 viral and the
anchor node) with 60 internal (non-input) nodes. This
subnetwork is much more compact than the solution sug-
gested by ANAT, which contains 173 nodes out of which
106 are internal. The subnetworks of MKL and ANAT are
quite different in terms of node composition, having 31
internal intersecting nodes. A summary of our network-
based measures for the subnetworks predicted by our
algorithm, ANAT, and the Steiner tree algorithm is given
in Table 1.

Next, we scored the enrichments of both subnetworks
with viral infection related processes such as: viral repro-
duction, intracellular receptor mediated signaling path-
way and apoptosis. The MKL subnetwork was highly
enriched with these processes, outperforming the ANAT
and the Steiner subnetworks (Table 2). In the following we
present a detailed analysis of the MKL inferred subnet-
work and demonstrate its high predictive power and its
ability to characterize viral proteins and host mediators in
terms of their temporal effect on their targets. Specifically,
we show that this subnetwork suggests that an imbalance
in the timing of effect between viral proteins (e.g. M1 and
NP) or between host mediators (such as Smad3 and UBC)
can reveal their different kinetics of influence on host pro-
teins. This is in large contrast to the results produced
by the ANAT tool, which does not provide any timing
imbalance among downstream targets of viral proteins or
host mediators (data not shown).

We first present an example of an inferred path-
way, selected to demonstrate our MKL approach. The
PA-Rnf5-UBC- DAXX-MXI1 and NS1-SP100-MX1 paths
are a clear example of a predicted pathway that is well
supported by extant experimental findings. It is con-
sistent with the known role of both DAXX and SP100
as major components of the PML bodies which con-
trol together the localization of MX1 in distinct nuclear
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triangle; t =4 - green/square; t = 6 - red/hexagon; t = 8 - gray/octagon; more than one time point - cyan oval nodes with thick border. The root is the
artificial virus node and the first level is composed solely of viral proteins.

components [7]. Further, DAXX is known to be regu-
lated in vivo by ubiquitination through UBC and Rnf5
[8], supporting our placement of DAXX downstream to
UBC.

The MKL network shows that the targets of some
human proteins have a common temporal behavior,
whereas others have different downstream temporal
responses. This is consistent with the fact that PPIs nat-
urally represent different mechanisms that might differ
in their kinetics. For example, the targets of Traf2 are
mainly early responding genes whereas the targets of

Table 1 Comparison of network-based measures between
MKL, ANAT and the Steiner tree algorithm

Measure MKL ANAT Steiner
Influenza infection
No. of labels 158 254 187
No. of edges 122 186 113
Homogeneity score 0.63 0.58 0.57
ER export
No. of labels 152 213 163
No. of edges 145 203 144
Homogeneity score 0.88 0.74 0.81

Ccdc33 have longer temporal responses. The early effect
of Traf2 is consistent with the findings that Traf2 is a
signaling transduction kinase protein with fast kinetics.
A similar characterization can be applied to other sig-
nal transduction proteins such as Smad3. Conversely, the
Ccdc33 protein regulates its targets in late time points
(6—8 hours) by an unknown mechanism. The results here
suggest that this mechanism is orders of magnitude slower

Table 2 Comparison of enrichments between the MKL,
ANAT and Steiner tree solutions

Biological process MKL ANAT Steiner
Influenza infection
Intracellular receptor mediated 6.5e-10 2.1e-04 1.2e-05
signaling pathway (GO:0030522)
Apoptosis (GO:0006915) 3.7e-04 1.7e-04 3.3e-04
Viral reproduction (GO:0016032) 2.5e-03 >0.01 >0.01
ER export
Vesicle-mediated transport 1.2e-05 7.6e-04 8.5e-05
(GO:0016192)
Cellular membrane organization 1.4e-05 6.6e-05 1.6e-05
(GO:0016044)
Intracellular protein transport 9.2e-06 7.8e-06 2.3e-05
(GO:0006886)

This table compares the subnetworks reconstructed by the MKL, ANAT and
Steiner tree algorithms for the viral infecion and the ER export datasets with
respect to the following measures: number of labels, number of edges and
homogeneity score.

This table compares the hypergeometric p-values indicating the significance of
the overlap between each of the predicted subnetworks (considering non-input
genes only) and the gene sets of GO categories that are of relevance to the
investigated biological processes.
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than phosphorylation. Similarly, the control of Ruf5 and
UBC is expected to show fast kinetics through ubiquiti-
nation. Nevertheless, we find that all the Ruf5/UBC 19
targets are controlled in late time points (6-8 hours),
suggesting a novel temporal (late) control on the activ-
ity of Ruf5-specific UUBC-based ubiquitination during the
course of influenza infection.

Regulation of endoplasmic reticulum (ER) export

The journey of secretory proteins, which make up roughly
30% of the human proteome starts by exit from the
ER. Export from the ER is executed by so called COPII
vesicles that bud from ER exit sites (ERES). A protein
that is of central importance for ERES biogenesis and
maintenance is SecI6A, a large (~250 kDa) protein that
localizes to ERES and interacts with COPII components
[9]. We have recently performed a siRNA screen to test
for kinases and phosphatases that regulate the func-
tional organization of the early secretory pathway [10].
Among the hits identified were 64 kinases/phosphatases
that when depleted result in a reduction in the num-
ber of ERES. Thus, these are 64 different potential
regulators of ER export. More recently, a full genome
screen tested for genes that regulate the arrival of a
reporter protein from the ER to the cell surface [11].
There, the depletion of 45 proteins was shown to affect
ERES. However, whether the defect in arrival of the
reporter to the cell surface was due to an effect on ER
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export or due to alterations in other organelles along
the secretory route (e.g., Golgi apparatus) remains to be
determined.

We applied MKL to these two screens, serving as
two “conditions” highlighting different repertoires of
ER export signaling-regulatory pathways. As the two
screens do not intersect (most likely due to differences in
read-outs), there were 109 terminals overall, 85 of them
reachable in our human PPI network. Due to its cen-
tral importance for ER export and ERES formation, we
chose SecI6A as the anchor for this application. After the
heuristic filtering, the network contained 1,907 nodes and
11,329 edges. The resulting MKL subnetwork, which has
145 nodes and 59 internal ones, is depicted in Figure 5. In
comparison, the ANAT solution contains 190 nodes and
104 internal ones (with 35 internal nodes common to the
two solutions). As evident from Table 1, the MKL solution
has a substantially lower cost and is more homogeneous.

We assessed the functional enrichment of the MKL sub-
network with biological processes that are of relevance to
ER export such as cellular membrane organization, intra-
cellular protein transport and vesicle-mediated transport.
All three categories were highly enriched, and the p-values
attained compare favorably to those computed for the
ANAT and the Steiner solutions (Table 2).

Interestingly, 4 proteins of the MKL solution are related
to autophagy (two of them internal nodes, p = 0.02).
Autophagy is an endomembrane-based cellular process
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that is responsible for capturing and degradation of sur-
plus organelles and proteins. Links between ER export
and autophagy have been proposed [12] but there is very
limited mechanistic insight into this link. The vesicle-
mediated transport process includes the STX17, SNAP29
and ULKI proteins. The latter is a kinase that initiates the
biogenesis of autophagosomes [1]. STX17 and SNAP29
were recently proposed to be involved in autophagy by
promoting the formation of ER-mitochondria contact
sites and the fusion of autophagosomes with lysosomes
[14,15]. As the MKL network was generated with ter-
minals and an anchor that regulate ER export, we pro-
pose that this approach could be used to identify the
molecular link between secretion and autophagy in the
future.

Conclusions

The protein-protein interaction network represents a
combination of diverse regulation and interaction mech-
anisms operating in different conditions and time scales.
Integrating such data in a coherent manner to describe a
process of interest is a fundamental challenge, which we
aim to tackle in this work via a novel ILP-based mini-
mum labeling algorithm. We apply our algorithm to two
human datasets and show that it attains compact solu-
tions that capture the dynamics of the data and align
well with current knowledge. We expect this type of anal-
ysis to gain further momentum as composite datasets
spanning multiple conditions and time points continue to
accumulate.
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