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Abstract

Background: The secondary structure that maximizes the number of non-crossing matchings between
complimentary bases of an RNA sequence of length n can be computed in O(n3) time using Nussinov’s dynamic
programming algorithm. The Four-Russians method is a technique that reduces the running time for certain dynamic
programming algorithms by a multiplicative factor after a preprocessing step where solutions to all smaller
subproblems of a fixed size are exhaustively enumerated and solved. Frid and Gusfield designed an O( n3

log n ) algorithm
for RNA folding using the Four-Russians technique. In their algorithm the preprocessing is interleaved with the
algorithm computation.

Theoretical results: We simplify the algorithm and the analysis by doing the preprocessing once prior to the
algorithm computation. We call this the two-vectormethod. We also show variants where instead of exhaustive
preprocessing, we only solve the subproblems encountered in the main algorithm once and memoize the results. We
give a simple proof of correctness and explore the practical advantages over the earlier method.
The Nussinov algorithm admits an O(n2) time parallel algorithm. We show a parallel algorithm using the two-vector
idea that improves the time bound to O( n2

log n ).

Practical results: We have implemented the parallel algorithm on graphics processing units using the CUDA
platform. We discuss the organization of the data structures to exploit coalesced memory access for fast running
times. The ideas to organize the data structures also help in improving the running time of the serial algorithms. For
sequences of length up to 6000 bases the parallel algorithm takes only about 2.5 seconds and the two-vector serial
method takes about 57 seconds on a desktop and 15 seconds on a server. Among the serial algorithms, the
two-vector and memoized versions are faster than the Frid-Gusfield algorithm by a factor of 3, and are faster than
Nussinov by up to a factor of 20. The source-code for the algorithms is available at http://github.com/
ijalabv/FourRussiansRNAFolding.
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Background
Computational approaches to find the secondary struc-
ture of RNA molecules are used extensively in bioinfor-
matics applications.
The classic dynamic programming (DP) algorithm pro-

posed in the 1970s has been central to most structure
prediction algorithms. While the objective of the original
algorithm was to maximize the number of non-crossing
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pairings between complementary bases, the dynamic pro-
gramming approach has been used for other models and
approaches, including minimizing the free energy of a
structure. The DP algorithm runs in cubic time and there
have been many attempts at improving its running time
[1,2]. Here, we use the Four-Russians method for speeding
up the computation.
The Four-Russians method, named after Aralazarov

et al. [3], is a method to speed up certain dynamic
programming algorithms. In a typical Four-Russians algo-
rithm there is a preprocessing step that exhaustively enu-
merates and solves a set of subproblems and the results
are tabled. In the main DP algorithm, instead of filling out
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or inspecting individual cells, the algorithm takes longer
strides in the table. The computation for multiple cells is
solved in constant time by utilizing the preprocessed solu-
tions to the subproblems. The longer strides to fill the
table reduce the runtime by a multiplicative factor. The
size of the subproblems is chosen in a way that does not
make the preprocessing too expensive.
Frid andGusfield [4] showed the application of the Four-

Russians approach for RNA folding. In their algorithm,
the preprocessing is interleaved with the algorithm com-
putation. They fill out a part of the DP table and use
these entries to complete a part of the preprocessing. The
preprocessed entries are used later in the computation.
We show a simpler algorithm, where, all the preprocess-

ing is completed before the start of the main algorithm.
This simplifies the correctness proof and the runtime
analysis. This approach helps in obtaining an O(n3/ log n)

time parallel algorithm, which is a log n factor improve-
ment over previously-known parallel algorithms. Zakov
and Frid (personal communication) had also observed
that the algorithm in [4] could be modified to do the
preprocessing once at the start of the algorithm. It is
essentially the idea described here.
In this paper we explore the implications of the one-

pass preprocessing idea. This description of the algorithm
leads naturally to two other variants. We empirically eval-
uate these variants and also the implementation of the
parallel algorithm.
The parallel architecture of general-purpose graphical

processing units (GPUs) have been exploited for many
real-world application in addition to applications in gam-
ing and visualization problems.
GPUs have also been used to speed up RNA folding

algorithms [5-7]. Here we show how the Four-Russians
method allows an organization of the data structures for
fast memory accesses. We also describe the organization
of the parallel hierarchy to exploit the inherent parallelism
of the solution.
In the rest of the section, we describe the problem in

relation to the other problems in RNA folding. To keep
the paper self-contained, we will first describe the two-
vector algorithm, our application of the Four-Russians
method to the RNA folding problem. We will use that
description to describe the original Four-Russians method
for RNA folding by Frid and Gusfield [4]. This discus-
sion leads to two other variants where the preprocessing
is done on demand, instead of the exhaustive prepro-
cessing in the two-vector method and the Frid-Gusfield
algorithm. In Section ‘An O( n2

logn ) parallel algorithm’ we
discuss the O(n2/ log n) parallel algorithm. We will then
describe the implementation of a parallel algorithm using
CUDA. The final sections have discussion on empirical
observations and conclusions.

Related work
The O(n3) dynamic programming algorithm due to
Nussinov et al. [8,9] maximizes the number of non-
crossing matching complimentary bases. There have been
many methods since Zuker and Stiegler [10] that infer the
folding using thermodynamic parameters [11,12] which
are more realistic than maximizing the number of base
pairs. These methods have been implemented in many
packages including UNAFold [13], Mfold [14], Vienna
RNA Package [15], RNAstructure [16].
Probabilistic methods include stochastic context-free

grammars [17,18], the maximum expected accuracy
(MEA) method, where secondary structures are com-
posed of pairs that have a maximal sum of pairing prob-
abilities, e.g., MaxExpect [19], Pfold [20], CONTRAfold
[21] which maximize the posterior probabilities of base
pairs; and Sfold [22], CentroidFold [23] that maximize the
centroid estimator. There are also other methods that use
a combination of thermodynamic and statistical parame-
ters [24] andmethods that use training sets of known folds
to determine their parameters, e.g., CONTRAfold [21],
Simfold [25] and ContextFold [26].
In addition to the Four-Russiansmethod, othermethods

to improve the running time include Valiant’s max-plus
matrix multiplication by Akutsu [1] and Zakov et al. [2];
and sparsification, where the branch points are pruned to
get an improved time bound [27,28].
CUDA, the programming platform for GPGPUs, has

been used to solve many bioinformatics problems. Chang,
Kimmer and Ouyang [5] and Stojanovski, Gjorgjevikj and
Madjarov [7] show an implementation of the Nussinov
algorithm on CUDA. Rizk et al. [6] describe the imple-
mentation for Zuker and Stiegler method involving energy
parameters. These methods are discussed later in the
parallel implementation section.

The Nussinov algorithm
In this paper, we consider the basic RNA folding problem
of maximizing the number of non-crossing complimen-
tary base pair matchings. Complimentary bases can be
paired, i.e., A with U and C with G. A set of disjoint pairs is
a matching. The pairs in a matching must not cross, i.e., if
bases in positions i and j are paired and if bases k and l are
paired, then either they are nested, i.e., i < k < l < j or
they are non-intersecting, i.e., i < j < k < l. The objec-
tive is to maximize the number of pairings under these
constraints.
The following algorithm, due to Nussinov [8] maxi-

mizes the number of non-crossing matchings. For an
input sequence S of length n over the alphabet A, C, G,
U, the recurrence is defined as follows. Let D(i, j) denote
the optimal cost of folding for the subsequence from i to j.
For all i, D(i, i − 1) = D(i, i) = 0 and for all i < j:
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D(i, j) = max
{
b(S(i), S( j)) + D(i + 1, j − 1)
maxi+1≤k≤j D(i, k − 1) + D(k, j) (1)

where b(., .) = 1 for complimentary bases and 0 other-
wise. The DP table is the upper triangular part of the n×n
matrix. The optimal solution is given byD(1, n). The table
can be filled column-wise from the first column till the
nth. There are other ways of filling the table too, e.g., along
the diagonals — the (i, i)-diagonal first, (i, i + 1)-diagonal
next and so on, until the last diagonal with one entry,
D(1, n). To allow for traceback we need to store the bases
that are paired to get the maximum value. Let D∗(i, j)
denote the corresponding indices. These are obtained
by substituting argmax in place of max in the above
recurrence and can be computed along with the max
value.
The first part of the recurrence can be solved in constant

time. The second part is more expensive, incurring �(n)

look ups and maximum computations. There are O(n2)
entries in the DP table and each cell can be computed in
O(n) time, giving an O(n3) time algorithm.

The Four-Russians algorithms
In this section we discuss three variants of the Four-
Russians algorithm. We will first describe the two-vector
approach. Since it is simpler than the other methods we
will use the description to discuss two other variants.

Two-vector algorithm
To apply the Four-Russians technique we start with the
following observation:

Lemma 3.1. The values along a column from bottom to
top and along a row from left to right are monotonically
non-decreasing. Consecutive cells differ at most by 1.

Proof. Consider the values of neighboring cells (i, j)
and (i + 1, j). D(i, j) represents the solution of a longer
sequence than D(i + 1, j). Therefore the former value
should be at least as large as the latter. Suppose D(i, j) dif-
fered from D(i + 1, j) by more than one. Then we can
remove any matching for i. This has at most one fewer
base pair matching and is a valid solution for the subse-
quence (i + 1, j) with a larger value than its current value,
contradicting the optimality of D(i + 1, j). An analogous
argument holds along the rows.

Once the cells D(i, l), D(i, l + 1), . . . , D(i, l + q − 1) are
computed, for some l ∈ {i, . . . , j − q}, they can be rep-
resented by D(i, l) + V0, D(i, l) + V1, . . . , D(i, l) + Vq−1,

where Vp = D(i, l+p) − D(i, l), for p ∈ {0, . . . , q − 1}. Let
us define, v0 = 0 and vp = Vp−Vp−1, for p ∈ {1, . . . , q−1}.
From lemma 3.1, vp ∈ {0, 1}, for all p ∈ [0, q − 1]. Let
v denote the binary vector v0, v1, . . . , vq−1 of differences
and let V denote the vector of running totals V0,V1, . . . ,
Vq−1.
Since the vp’s are defined from Vp’s, the inverse func-

tion is well defined: Vp = ∑p
k=0 vk . Thus D(i, l) together

with the vector v represents q consecutive cells of the
table.
Similarly, since the values are non-increasing down a

column, D(i + l + 1, j), . . . ,D(i + l + q, j) be represented
by the pairD(i+ l + 1, j), v̄, where v̄ ∈ {0,−1}q. The corre-
sponding vector of cumulative sums is denoted V̄ . We call
v the horizontal difference vector or the horizontal vector
and we call v̄ the vertical difference vector or the column
vector.
Consider q consecutive cells from l + 1 to l + q used in

computing D(i, j):

D(i, j) ← max
l+1≤k≤l+q

D(i, k − 1) + D(k, j) (2)

← max
0≤k≤q−1

D(i, l) + Vk + D(i + l + 1, j) + V̄k

← D(i, l) + D(i + l + 1, j) + max
0≤k≤q−1

Vk + V̄k (3)

As before, we use argmax in place of max to obtain
D∗(i, j), which facilitates the traceback.
As noted above the second line of the recurrence (1),

looping over elements, is more expensive part of the com-
putation and we will use (3) instead of (2) to compute the
D and D∗ values in the Four-Russians method. That is,
we will use (3) over groups of q cells each instead of one
loop of (1). Since the V vectors are in bijection with the v
vectors, we will use v in the computation. Let v and v̄ be
the corresponding vectors in (3). The following algorithm
evaluates the max computation.

Input: horizontal difference vector v and vertical differ-
ence vector v̄

1: max-val ← 0 andmax-index ← 0
2: sum1 ← 0 and sum2 ← 0
3: for k = 0 to q − 1 do
4: sum1 ← sum1 + vi
5: sum2 ← sum2 + v̄i
6: if sum1 + sum2 > max-val then
7: max-val ← sum1 + sum2
8: max-index ← k
9: end if

10: end for
11: return (max-val,max-index)



Venkatachalam et al. Algorithms for Molecular Biology 2014, 9:5 Page 4 of 12
http://www.almob.org/content/9/1/5

Using this instead of (2) is not advantageous in itself. How-
ever, if this algorithm is given as a black box, D(i, j) can
be computed in constant time by invoking the black box
once. To exploit this fact, we will preprocess this compu-
tation over all possible v and v̄ vectors and tabulate the
results in R. Table R is indexed by a pair of numbers in
the range [2q] to represent the two vectors (v, v̄). The table
lookup is a constant time operation as it fetches the max
and argmax values.We will show later that this exhaustive
enumeration is not too expensive.
In the Nussinov algorithm described in the previous

section, the recurrence over q cells is evaluated using (2)
and it takesO(q) time. In the Four-Russiansmethod, using
the preprocessing step, the max computation is available
through a table lookup and the recurrence for q terms can
be completed in constant time. This reduction in the com-
putation time is the reason for the speedup by a factor of q.
The two-vector method modifies the Nussinov algo-

rithm as follows. All the rows and columns of the table
are grouped into groups of q cells each. The recurrence
over these q cells is computed in constant time using the
preprocessing table. The recurrence involves D(i, k − 1) +

D(k, j), i.e., the value in the (k − 1)st column is used
with the kth row. Therefore the row and column group-
ings differ by one. That is, the columns are grouped
(0, 1, . . . , q − 1), (q, q + 1, . . . , 2q − 1) etc. The rows are
grouped (1, 2, . . . , q), (q+1, q+2, . . . , 2q) etc. This ensures
that the row and column groups are well characterized.
That is, to fill the cell (i, j), the kth group along row i needs
to be combined with the kth group below (i, j) in column j.
The cells of the table are filled in the same order as

before. When the last cell of a row- or a column- group is
evaluated the corresponding row and column vectors are
computed and stored. To fill cell (i, j), we retrieve the first
element and the horizontal vector of the group from row i
and the first element and the column vector from the cor-
responding group in column j. The recurrence is solved
using (3) by a table lookup. The final value for D(i, j) is the
maximum value over all the groups. There might be resid-
ual elements in the row that do not fall in these groups.
There are at most 2q such elements. These are solved
separately using Nussinov’s method. Algorithm 1 has the
algorithm listing and Figure 1 describes the algorithm
pictorially.

Algorithm 1 Procedure for the two-vector Four-Russians speedup. The DP table is filled column-wise.
1: R ← preprocess all pairs of vectors of length q
2: for j = 1 to n do
3: D( j, j) ← 0
4: D( j + 1, j) ← 0
5: for i = j − 1 down to 1 do
6: D(i, j) ← b(S[i] , S[ j] ) + D(i + 1, j − 1)
7: Let (i, i) be in the Ith group in row i.
8: Let (i, j) be in the J th group horizontally in the ith row and J ′th group vertically in the jth column.
9: Let iI be the right-most entry of group I and jJ be the left-most entry in group J

10: for k = i + 1 to iI do // For all cells in the first group
11: D(i, j) ← max(D(i, j), D(i, k − 1) + D(k, j))
12: end for
13: for k = jJ to j do // For all cells in the last group
14: D(i, j) ← max(D(i, j), D(i, k − 1) + D(k, j))
15: end for
16: for K = 1 to J − I do // For all groups in between
17: Let l be the left-most cell in the K th group to the right of I and t be the top-most cell in the K th group below

J ′.
18: Let vi,K and v̄K ,j be the corresponding horizontal and vertical difference vectors.
19: D(i, j) ← max(D(i, j), D(i, l) + D(t, j) + R(vi,K , v̄K ,j))
20: end for
21: if i mod q = 1 then // compute the vertical difference vector
22: compute and store the v vector i/qth group for column j
23: end if
24: if j mod q = q − 1 then // compute the horizontal difference vector
25: compute and store the v̄ vector ( j − 1)/qth group for row i
26: end if
27: end for
28: end for
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Figure 1 A diagrammatic representation of the two-vector method. The row and column blocks are matched as labelled. The gray boxes and
the gray dashes show the initial value and difference vectors. The group of cells in b correspond to the Four-Russians loop in lines 16–20 of
Algorithm 1; the cells in a are used in the loop in lines 10–12 and the cells in c form the loop in lines 13–15.

Runtime analysis
In the precomputation phase, there are 2q q-length vec-
tors and 22q pairs of vectors. The precomputation takes
O(q) time per vector pair. Thus the total time for precom-
putation is O(q22q).
The main algorithm: There are O(n2) cells and to fill

each cell it takes O(n/q + q) time. That is, it takes O(n/q)
time to look up the initial value and the difference vec-
tor and the R table lookups for the the O(n/q) groups. It
takes O(q) time for the residual elements. Thus it takes
O(n2 × (n/q + q)) time to fill the table. Every cell is invol-
ved in at most two vector computations, where the dif-
ference to its neighbor is computed once for the row and
for the column vector. This takes an amortizedO(n2) time
which is dominated by the rest of the algorithm.
When q = log n, the total time for the entire algorithm is

O(log n 22 log n + n2 + n2×( n
log n + log n)) = O(n2 log n +

n3/ log n) = O(n3/ log n).

FG algorithm
Frid and Gusfield [4] first showed how the Four-Russians
approach could be applied to the RNA-folding problem.
Wewill call their algorithm the FG algorithm. FG and two-
vector algorithms are variants of the same idea. We will

highlight the differences in preprocessing and the maxi-
mum value computation by the Four-Russians technique.
In particular, we will show the maximum computation in
step 19 of Algorithm 1.
After computing the q-contiguous cells of a group in a

row, the value in the initial cell D(i, p) and the horizontal
difference vector vp are known. They run the preprocess-
ing algorithm in page 3 for this fixed vp vector together
with all possible vertical difference vectors. They add the
value of D(i, p) to the maximum and table the result.
This preprocessing step is computed for every block of
every row. The preprocessing table R is indexed by row
number, group number and a vector (which is a poten-
tial column vector). The horizontal vectors need not be
stored.
Notice the difference between the two-vector and the

FG variants. In two-vector algorithm the preprocessing
for vector pairs is computed once for each distinct pair
of vectors. Whereas, in FG the preprocessing step is run
once for each group of each row, even if the vector pair was
seen earlier. This is because the table contains the result of
addition of the initial cell of the group D(i, p).
To fill cell (i, j), they iterate over all groups and find the

q-length column vectors. The preprocessed value for this
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vector in the corresponding block is retrieved from the
table and the result is added to D(q, j).
The preprocessing is for horizontal vectors seen in the

table. Since the horizontal vectors are not known before-
hand, the precomputation cannot be done prior to the
main algorithm. Instead, it is interleaved with the compu-
tation of the table. They fill part of the DP table and use
the vectors to complete some preprocessing, which in turn
is used fill another part of the table and so on.
Since the preprocessing is done for every group of every

row, the same horizontal vector can be seenmultiple times
in the table. This leads to duplicated work and slower
running time than the two-vector algorithm.
The running time for the FG method is O( n3

logb n ), where
2 < b < n and bq = n.

Two variants that memoize
The two-vector method computes the preprocessing over
all possible vector pairs. While the computation is for
done exactly once for the unique vector pairs, some of
these vector pairs might not be seen in the table. In the FG
method, the precomputation step is for only the horizon-
tal vectors that are seen in the table. However, for some
vectors, the computation is duplicated. Stated this way, a
hybrid approach suggests itself.
In our next variants, we memoize the results for a pair

of vectors. Like the two-vector approach, the preprocess-
ing is done only once for a vector pair and like the FG
algorithm, it is only for the vectors seen in the table and
the preprocessing is interleaved with the main algorithm.
Since the preprocessing table is indexed by two vectors,
unlike the FG algorithm, the results are computed only
once for every vector seen.
In the partially memoized version, upon completion of

elements of a group, if a new horizontal vector is seen, we
pair it with all possible 2q column vectors and the results
are tabled. In the completely memoized version, the result
for a pair of horizontal and vertical vectors are computed
the first time the pair is observed and the result is stored
in the table. The computed values for retrieved from the
table when they are seen again. The rest of the algorithm
is identical to the two-vector method.
All these variants take O(n3/log n) time but the memo-

ized versions potentially store fewer vectors than the two
vector method and will have a similar worst-case run-
time in practice as the two-vector method. But, as argued
before, the FG method does duplicated work and will be
slower in practice.

AnO( n2
logn ) parallel algorithm

The Nussinov DP algorithm can be parallelized with
n processes to get an O(n2) parallel algorithm on a

concurrent-read concurrent-write parallel random access
memory (CRCW PRAM) machine . In the parallel algo-
rithm, we fill the table diagonal by diagonal. We use n
processes and assign one parallel process to each column.
In the ith iteration, the pth process computes the value for
the (p − i)th diagonal entry. That is, in the first iteration,
the bottom-most cell in each column, i.e., the entries in
the main diagonal are solved and in successive iterations,
the diagonals above are solved. To compute the value for
cell (i, j), the entries in the row to its left and in the column
below (i, j) are needed. The entries in the same column
are computed in earlier iterations. Similarly, the entries
on the left are solved by other processes in earlier itera-
tions. Since these values are computed in earlier iterations,
each diagonal cell can be filled independent of the other
processes.
More formally, we have j ∈ [n] parallel processes and the

jth process computes the values of values along the col-
umn j. All processes synchronize after filling an entry; this
ensures that values needed to fill a cell are computed by
the other processes.
The parallel algorithm for process j for j = 1, 2, . . . , n:

1: D( j + 1, j) ← 0, D( j, j) ← 0
2: for i = j down to 1 do
3: D(i, j) ← D(i + 1, j − 1) + b(S[i] , S[j] )
4: for k = i + 1 to j do
5: D(i, j) ← max{D(i, j),D(i, k − 1) + D(k, j)}
6: end for
7: Synchronize with other processes
8: end for

A process has to compute the value for O(n) cells and for
each cell it needs to access O(n) other cells. Thus the total
computation takes O(n2) time with n processes.
We will describe the use the two-vector Four-Russians

method to obtain an O(n2/log n) algorithm below. The
preprocessing step that enumerates the solution for 2q ×
2q difference vectors is embarrassingly parallel and we do
not discuss the parallel algorithm for it.
As before, we fill the table along the diagonals. We use

n processes, one for each column. Each process solves the
entries of the column from bottom to top. As in the serial
algorithm, computing the maximum by looping over all
the entries is the expensive part of the computation and
will be optimized. Instead of looping over the individual
entries (lines 4 – 6 in the parallel algorithm above), we use
the Four-Russians technique to solve q cells in one step
by looking up the table computed in the preprocessing
step.
Let dH(i, j) be the horizontal difference vector for

cells D(i, j), . . . ,D(i + q − 1, j) and let dV (i, j) be the
vertical difference for cells D(i, j), . . . ,D(i + q − 1, j).
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We modify the inner loop of the parallel algorithm as
follows:

1: for k′ = 0 to � j/q� − 1 do
2: k = i + k′ ∗ q
3: D(i, j) = max{D(i, j),D(i, k) + D(k + 1, j) +

R[dH(i, k)] [dV (k + 1, j)] }
4: end for
5: for k = � j/q� × q to j do
6: D(i, j) ← max{D(i, j),D(i, k) + D(k + 1, j)}
7: end for
8: Compute the horizontal and vertical differences and

store them in dH(i− q+ 1, j) and dV (i, j) respectively.

For each entry, the first loop takes O(n/q) time and the
second loop takes O(q) time. Since all the processes are
solving the kth diagonal in the kth iteration, all of them
execute the same number of steps before synchronization.
Note that we compute the horizontal and vertical differ-
ences for every node, unlike in Algorithm 1 where they
are computed every qth cell, to ensure that every process
performs the same number of steps and simplify the anal-
ysis. The difference vectors can be computed inO(q) time.
These can also be computed in constant time by shifting
the previous difference vector and appending the new dif-
ference. But we will not assume this simplification for the
time bound computation.
Thus each entry can be computed in O(n/q + q) time.

There areO(n) entries for each process, thus the total time
taken for all processes to terminate is O(n2/q + nq). With
q = log n as before, this gives an O(n2/log n) algorithm.

Parallel implementation
GPU architecture
Graphics processing units (GPUs) are specialized pro-
cessors designed for computationally intensive real-time
graphics rendering. In addition to manipulating graphics
objects the parallel architecture can be exploited for other
tasks where large amounts of data are to be processed in
parallel. Compute Unified Device Architecture (CUDA)
is the computing engine designed by NVIDIA for their
GPUs. It allows the programmer to write highly parallel
code and provides platform-specific optimizations.
In CUDA, a serial program on a “host” CPU launches

parallel “kernels” on the “device” GPUs. Kernels specify
the code to be executed by all the threads. Every thread
executes the same code in a kernel but can be assigned
a different part of the task based on their indices. This
paradigm is called Single-Instruction Multiple-Thread
(SIMT), which is similar to Single-ProgramMultiple Data
(SPMD) where the threads are run almost in lockstep.
The programmer can group threads in a block, which

in turn can be organized in a grid hierarchy. The threads

in a block and blocks in a grid can be organized in one-,
two- or three-dimensions.While the hierarchy is specified
when launching a kernel, thread management is handled
by the underlying system. The threads within a block use
barrier synchronization. Different blocks communicate by
atomic memory operations in global memory.
Memory hierarchy includes thread-specific local mem-

ory, block-level shared memory for all threads in the block
and global memory for the entire grid. The access times
increases along the hierarchy from local to global memory.
Kernels are very fast when threads run in lockstep. If

certain threads take a conditional branch or are delayed by
memory access then all the threads in the block are stalled.
Since the access to global memory is slow (more clock
cycles than local memory access), it is efficient for the
threads within a block to access contiguous memory loca-
tions. Then the hardware coalesces memory accesses for
all threads in a block into one request. More specifically,
in our application, if a matrix is stored in row-major order
and if the threads in a block access contiguous elements of
a row, then the accesses can be coalesced.Whereas access-
ing elements along a column is inefficient as distant mem-
ory elements have to be fetched from different cache lines.
Programs that observe the hardware specifications can

exploit the optimizations in the system and are fast in
practice. We designed the program that exploits the par-
allel structure of the DP algorithm and the hardware
features of the GPU.

Related work
As mentioned earlier, the cells of a diagonal are inde-
pendent of one another and can be computed in parallel.
In Stojanovski et al. [7], elements of the diagonal are
assigned to a block of threads. This design does not handle
memory coalescence for either row or column accesses.
Chang et al. [5] allocate an n × n table and reflect the
upper-triangular part of the matrix on the main diago-
nal. Successive elements of a column are fetched from the
row in the reflected part of the matrix. When threads of a
block are assigned to elements of a diagonal, the successive
column accesses for a thread are to consecutive mem-
ory cells. However, this does not allow coalesced access
for threads within a block. Rizk and Lavenier [6] show
an implementation for RNA folding under energy mod-
els. They show a tiling scheme where a group of cells are
assigned to a block of threads to reuse the data values that
are fetched from a column. In this paper, we show that
storing the row and column vectors in different orders for
two-vector method can further improve the efficiency.

Design of the Four-Russians CUDA program
The high-level idea
Like in the parallel algorithm described in Section ‘An
O( n2

logn ) parallel algorithm’, we will fill the cells of the table
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along the diagonals. However, for efficiency reasons, we
cannot fill each diagonal in order. For example, by assign-
ing different cells of a diagonal to a block of threads, each
thread has to access a different row and different column.
This design is not efficient as threads in a block try to
access different locations of global memory which slows
down the program. For the program to be efficient on the
CUDA architecture, we exploit coalesced memory access
for faster computation and ensure that individual threads
are not stalled. We create a tiled table by grouping q × q
cells into a tile and assign a block of threads to fill a tile.We
will show that the tiles are independent and assign a grid
of blocks to solve a diagonal of tiles in parallel. Thus the
implementation can be thought of as a generalization of
the Four-Russians algorithm on the tiled table. The details
follow.

Data structures
Notice that cells D(i, j) and D(i − 1, j) both use values
in column j below D(i, j). Similarly, D(i, j + 1) and D(i, j)
refer to values in row i to the left of cell (i, j). By grouping
these cells together and assigning this group to a block of
threads the values along the rows and columns should be
fetched once per block. We will group q× q cells together
and store the values from the rows and columns in shared
memory. As noted earlier, for the four-Russians method, it
is convenient to group the rows kq + 1, . . . , (k + 1)q and
columns kq, . . . , (k + 1)q − 1, for k ∈ {0, . . . , �n/q�}. We
now have a tiled table, where each tile is a composite of
q × q cells. The tiles along a diagonal can be computed
independent of each other. Each tile is assigned to a block
of threads and computed in parallel. After all the entries
of the tile are computed, only the horizontal and vertical
differences are stored. The horizontal and vertical differ-
ence vectors are used by the Four-Russians technique for
later computations.
To fill a tile, the horizontal differences of all the tiles to

the left and vertical differences from the tiles underneath
are accessed. By storing these difference vectors together
the memory accesses can be coalesced. That is, we store
the horizontal differences of the rows in a tile together.
Similarly, the vertical differences of the tile are grouped
together. However, the horizontal and vertical differences
of the tiles are stored in different order. The horizontal
differences are stored in row-major order and the verti-
cal differences are stored in column-major order to exploit
coalesced memory access.
When each thread retrieves one vector from a tile, the

block of threads accesses contiguous memory locations
and the memory accesses are coalesced. Successive itera-
tions fetch the vectors from tiles along a row which are in
contiguous memory locations. Similarly the vertical dif-
ferences of a tile below are accessed in one coalesced
memory access by the threads of the block.

Since we group q elements together, at the last column
of tiles might have fewer than q elements and handling the
corner cases at the GPU will involve extra checks which
might slow the program down. We can avoid these by
padding the sequence with extra characters. The modified
string has n′ = n + q − n mod q characters. The final
result is still stored in cell D(1, n).

Thread hierarchy
There are a few options for assigning threads to compute
various cells in a tile. We can assign q2 threads, one per
cell, or assign q threads, one per row or column. While it
appears that q2 threads admit more parallelism, using q
threads is more advantageous for a number of reasons.
There is a limit on the number of threads that can be

allocated on a CUDA device. Requesting q2 threads per
kernel might limit the number of kernels that can be
launched in parallel. At various synchronization points
and in conditional branches (like updating a new maxi-
mum value in a cell) all threads are stalled. Moreover, with
q2 threads, most of the threads will remain idle for many
iterations due to the dependency on other cells. Instead,
the q threads can be organized to keep the threads active
in most iterations and perform the same computations
with fewer stalls.

The algorithm
Let N be the number of diagonals in the tiled table (N =
(n′ + 1)/q). The main algorithm run on the CPU is as
follows. The various kernels are described next.

1: Complete the preprocessing in the parallel.
2: Launch N init_diag kernels to solve the first two

diagonals.
3: for i = 2 to l do
4: Launch (N − i) simple_kernel kernels.
5: end for
6: for i = l to N do
7: Launch (p × (N − i)) parallel_kernel ker-

nels.
8: On completion of the previous step, launchN − i

combine_kernels
9: end for

We will first describe simple_kernel. The other ker-
nels have a similar structure and are described next. The
jth thread solves the j column for all rows of the tile. It
fetches the horizontal difference and initial cell value of
the jth row of a tile to the left and stores it in shared mem-
ory. The other threads in the block fetch from the other
rows of the tile to shared memory. These reads occur
in parallel and are coalesced as they refer to contiguous
memory addresses. The jth thread then fetches the ver-
tical difference and initial value of the jth column of the
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corresponding tile below. Since only the jth thread needs
this data, it stores it in local memory.
The threads use these values and compute the values for

the all the rows. This is repeated for all tiles. This corre-
sponds to the loop in lines 16–20 of Algorithm 1. Finally
to complete filling the tile, the rows are filled from bottom
to top. At every row, line 5 and the loop in lines 10–12 are
executed in parallel. Then the loop in lines 13–15 are exe-
cuted. The threads cannot independently to complete this
loop. The threads use synchronization to ensure that the
values in the columns to the left are written before they are
used. Finally, the jth thread computes the horizontal dif-
ferences of the j row and the vertical differences of the jth
column and store the values in the correspondingmemory
locations.

The parallel kernels
For every diagonal element, the Four-Russians part of the
code has to fetch the values from tiles below and to the
left. Closer to the top of the matrix, there are more tiles
to retrieve data from. Since these tiles are all independent,
the respective computations can be parallelized. For the
kth diagonal, we launch �k/p� kernels per tile. Each kernel
will iterate over p tiles and store the result in a temporary
location. We will then launch another kernel which will
iterate over the remaining tiles and then complete the rest
of the steps like simple_kernel to compute the values
of the individual cells of the tile and store the horizontal
and vertical differences.

Initial diagonals
The ith block of the init_diag kernel will solve the
(i, i)th diagonal tile and (i, i + 1)th tile. The values in the

Table 1 Speedup factors of the serial programs on the
desktop

Time Speedup

Length Nussinov Two-vector Partially Completely FG
(in secs) memoized memoized

2000 16.5 7.7 7.3 5.6 3.0

3000 62.5 8.8 8.3 6.4 3.4

4000 196.6 11.9 11.4 8.8 4.7

5000 630.3 21.1 18.9 14.7 7.8

6150 1027.8 18.1 17.0 13.3 7.03

(i + 1, i + 1)th diagonal tile are also needed to solve the
(i, i+1) the tile. Instead of waiting for a different kernel to
solve it and then read it from global memory, those values
are also solved by the ith block locally but the results are
not stored. The (i+ 1)th block also computes these values
and stores the horizontal and vertical differences.
The values for these tiles are computed by standard

Nussinov algorithm. To solve the (i, i + 1)th tile, the jth
thread solves the jth diagonal like in simple_kernel.

Empirical results
Prior to empirical evaluation, the FG algorithm was
expected to be the slowest due to the repeated computa-
tion. The memoized versions were expected to be faster
than the two-vector algorithm, as they preprocess only a
subset of the 22q vectors seen in the table.
We ran the programs on complete mouse non-coding

RNA sequences. We also tested the performance on ran-
dom substrings on real RNA sequences and random
strings over A,C,G,U.

Figure 2 Running time of the two-vector method on a desktop and on a fast server.
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Figure 3 Running time of the CUDA program on two GPUs. The programs run twice as fast on the Tesla card than the GeForce card.

The FG algorithm, while faster than Nussinov, was the
slowest among the Four-Russians methods, as expected.
The completely memoized version was slower than the
other two variants. This is because every lookup of the
preprocessing table includes a check to see if the pair of
vectors has already been processed. There are 22q unique
vector pairs but there areO(n

3

q ) queries to the preprocess-
ing table and each query involves checking if the vector
pair has been processed plus the processing time for new
pairs. There are O(n

2

q2 ) vector pairs in the table. For larger
n (e.g., n > 1000 and q = 8), all the 22q vectors are
expected to be present in the DP table. Generally, memo-
ized subproblems are relatively expensive compared to the
lookup. Since the preprocessing here has only q steps, the
advantage of memoization is not seen.
The partially memoized version was slightly slower than

the two vector algorithm. Again, the advantage of poten-
tially less preprocessing than the two-vector method is
erased by the need to check if a vector has been processed.
The two-vector method was the fastest on all sequence
lengths tested.
For short sequences the two vector method took negli-

gible time (less than 0.2 seconds up to 1000 bases) and are
not reported. For longer sequences, we noticed that using
longer vector lengths reduced the running time. How-
ever the improvement saturated at q = 8 or 9 (Figure 2).
Beyond this, the extra work in preprocessing overshad-
owed the benefit. A similar trend was seen for the memo-
ized versions too. However, for the FG method q = 3 gave
the best speedup and longer vector lengths had a slower
running time due to the extra preprocessing at every
group.

The algorithms implemented compute the same match-
ings as the Nussinov algorithm. The correctness of each
implementation was evaluated by comparing the entried
of the DP table of the Nussinov algorithm to the analogous
values computed by the faster implementation. All the
programs were written in C++ compiled with the highest
compiler optimizations. We only discuss the experimental
results on a desktop and two GPU cards in this paper.
We measured the running times of the different ver-

sions of our serial algorithms on a desktop machine with a
Pentium II 3 GHz processor and 1MB cache. The running
times of Nussinov and the speedups of various programs
compared to Nussinov are shown in Table 1.
The times reported are an average over 10 sequences

of approximately the same lengths. Among the serial pro-
grams tested, FG had the slowest running times and two-
vector method had the best running times. For sequences
of length 6000, the two-vector method takes close to a
minute on the desktop. As discussed earlier, the extra
steps to check if a vector or a pair of vectors have already
been processed takes longer than the benefit of potentially
fewer steps needed for preprocessing.

Table 2 Running times for the parallel program (in secs)

Length On GeForce On Tesla

2000 0.20 0.14

3000 0.62 0.38

4000 1.36 0.74

5000 2.70 1.39

6000 4.97 2.50
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On sequences of length 5000 bases, two vector had a
20 times speedup, and FG has a 7 times speedup over the
Nussinov program on a desktop machine with a Pentium
II 3 GhZ processor and 1 MB cache. On a server with
four 64-bit cores of Xeon 2.8 GhZ machines with 8 MB
primary cache, the running times of all the programs were
faster, but the relative speedup on Nussinov was more
drastic than that of other programs. The same relative
trends for the Four-Russians programs were seen — two-
vector method was faster than the partially memoized
problem; the totally memoized version, while faster than
the FG algorithm was slower than the other two vari-
ants. Figure 2 shows the running times of the two-vector
method on the desktop and servers, respectively.
Figure 3 shows the execution times on two GPU cards –

GeForce GTX 550 Ti card with 1 GB on-card memory and
Tesla C2070 with 5 GBmemory. The programs take about
a second for sequences up to 4000 bases long, and takes
about 5 seconds and 2.5 seconds for sequences of length
6000. The running times for various sequence lengths are
shown in Table 2. Even in the parallel implementation, we
see the same trend with increasing the vector lengths —
there is a marked decrease in running time by increas-
ing the vector lengths from q = 3, and the improvement
saturates around q = 8 (Figure 3).
Details on running times of the other variants can be

found in the technical report [29].

Conclusions
We described the two-vector method for using the Four-
Russians technique for RNA folding. This method is
simpler than the Frid-Gusfield method. It also improves
the bound of the parallel algorithm by a log n factor to
O( n2

log n ). We showed two other variants that memoize
the preprocessing results. These methods are faster than
Nussinov by up to a factor of 20 and the Frid-Gusfield
method by a factor of 3.
In the future, it will be interesting to see the applica-

tion of the Four-Russians technique for other methods
that use energy models with thermodynamic parame-
ters. The Frid-Gusfield method has been applied to RNA
co-folding [30] and folding with pseudoknots [31] prob-
lems; the application of the two-vector method to those
problems and its implications are also of interest. It will
be interesting to compare our run time with the other
improvements over Nussinov, like the boolean matrix
multiplication method [1].
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