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Abstract

Motivation: Knowing the location of a protein within the cell is important for understanding its function, role in
biological processes, and potential use as a drug target. Much progress has been made in developing computational
methods that predict single locations for proteins. Most such methods are based on the over-simplifying assumption
that proteins localize to a single location. However, it has been shown that proteins localize to multiple locations.
While a few recent systems attempt to predict multiple locations of proteins, their performance leaves much room for
improvement. Moreover, they typically treat locations as independent and do not attempt to utilize possible
inter-dependencies among locations. Our hypothesis is that directly incorporating inter-dependencies among
locations into both the classifier-learning and the prediction process can improve location prediction performance.

Results: We present a new method and a preliminary system we have developed that directly incorporates
inter-dependencies among locations into the location-prediction process of multiply-localized proteins. Our method
is based on a collection of Bayesian network classifiers, where each classifier is used to predict a single location.
Learning the structure of each Bayesian network classifier takes into account inter-dependencies among locations,
and the prediction process uses estimates involving multiple locations. We evaluate our system on a dataset of
single- and multi-localized proteins (the most comprehensive protein multi-localization dataset currently available,
derived from the DBMLoc dataset). Our results, obtained by incorporating inter-dependencies, are significantly higher
than those obtained by classifiers that do not use inter-dependencies. The performance of our system on
multi-localized proteins is comparable to a top performing system (YLoc+), without being restricted only to
location-combinations present in the training set.

Background
Knowing the location of a protein within the cell is essen-
tial for understanding its function, its role in biological
processes, as well as its potential role as a drug tar-
get [1]. Experimental methods for protein localization
such as those based on mass spectrometry [2] or green
fluorescence detection [3], although often used in prac-
tice, are time consuming and typically not cost-effective
for high-throughput localization. Hence, much ongo-
ing effort has been put into developing high-throughput
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computational methods [4-8] to obtain proteome-wide
location predictions.
Over the last decade, there has been significant progress

in the development of computational methods that pre-
dict a single location per protein. The focus on single-
location prediction is driven both by the data available
in public databases such as UniProt [9], where proteins
are typically assigned a single location, as well as by an
(over-)simplifying assumption that proteins indeed local-
ize to a single location. However, proteins do localize
to multiple compartments within the cell [10-13], and
translocate from one location to another [14]. Identi-
fying the mutiple locations of a protein is important
because translocation can serve some unique functions.
For instance, GLUT4, an insulin-regulated glucose trans-
porter, which is stored in the intracellular vesicles of
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adipocytes, translocates to the plasma membrane in
response to insulin [15,16]. As proteins do not localize
at random and translocations happen between designated
inter-dependent locations, we hypothesize that modeling
such inter-dependencies can help in predicting protein
locations. Thus, we aim to identify associations or inter-
dependencies among locations and leverage them in the
process of predicting locations for proteins.
Several methods have been recently suggested for pre-

dicting multiple locations for proteins. For instance, King
and Guda introduced ngLOC [17], which uses a naïve
Bayes classifier (see e.g. [18]) to obtain a probability dis-
tribution over locations for a query protein, where each
location probability is computed independently. Each pro-
tein is represented as an n-gram constructed based on
its amino acid sequence. For a query protein, estimates
of the conditional probabilities of the protein to be local-
ized to each location, given its amino acid sequence, are
determined. Using the estimates of the two most probable
locations, a multi-localized confidence score is computed
as ameasure of the likelihood of the protein to be localized
to both locations; if the score is above a certain threshold,
the protein is predicted to be assigned to both locations.
This method is limited to proteins that are localized to at
most two locations.
Li et al. [19] construct multiple binary classifiers, where

each binary classifier distinguishes between a pair of loca-
tions (one vs. one). Each binary classifier consists of an
ensemble of k-nearest neighbors (k-NN) (see e.g. [20])
and Support Vector Machines (SVMs) (see e.g. [20,21]).
The protein representation used in the binary classifiers is
based on sequence-derived features (e.g. amino acid com-
position) and gene ontology (GO) terms. The predictions
from all the classifiers are combined to obtain a score for
each location. A query protein is assigned to the location
with the highest score. If multiple locations have the same
highest score, a multi-location prediction is made and all
the locations sharing the highest score are predicted for
the protein.
Several methods use variations of k-NN to predict mul-

tiple locations for proteins. WoLF PSORT [22,23] uses
k-NN with a distance measure that combines Euclidean
andManhattan distances, Euk-mPLoc [24] uses an ensem-
ble of k-NN, and iLoc-Euk [25] uses a multi-label k-NN
classifier. Both WoLF PSORT and Euk-mPLoc represent
proteins based on sequence-derived features, while Euk-
mPLoc also uses relevant GO terms. Proteins in iLoc-Euk
are represented either using relevant GO terms or using
features that aim to capture the likely substitutions along
the proteins’ amino acid sequences over time. Given a
query protein, WoLF PSORT assigns it to the location-
combination that is most common among the protein’s k
nearest neighbors, thus limiting the method to predict-
ing location-combinations present in the training set. The

two systems iLoc-Euk and Euk-mPLoc both compute a
score for each location, based on the query protein. iLoc-
Euk assigns the protein to the locations having the highest
scores; the number of locations assigned is the same as
that associated with the nearest neighbor protein in the
dataset. Euk-mPLoc assigns the query protein to loca-
tions whose score lies within a certain deviation from the
highest score. iLoc-Euk was not extensively tested against
existing multi-location predictors. Moreover, to achieve
the reported level of performance, iLoc-Euk strongly relies
on features that are only available for proteins that are
already annotated. The performance of Euk-mPLoc was
evaluated using an extensive dataset [26] and is the lowest
among current multi-location predictors. Methods sim-
ilar to iLoc-Euk were proposed for localizing subsets of
eukaryotic proteins [27,28], virus proteins [29], and bac-
terial proteins [30,31]. Several domain-specific systems
using the same ideas have been introduced by the same
group (Euk-mPLoc 2.0 [32], Hum-mPLoc 2.0 [33], Plant-
mPLoc [34], and Virus-mPLoc [35]).
In contrast to the approaches listed above that

use feature-based similarity, KnowPredsite [36] uses
sequence-based similarity to construct a collection of
location-annotated peptide fragments and predict mul-
tiple locations for proteins. The collection is built by
extracting for each protein in the training dataset peptide
fragments from its sequence and from sequences simi-
lar to its sequence; each fragment is annotated with the
protein’s locations. The peptide fragments for a query pro-
tein are obtained in a similar manner, and the system uses
the location annotations of matching peptide fragments in
the collection to compute a score for each location. Using
the two highest location scores, a multi-localized confi-
dence score is computed to determine if the protein is
multi-localized. This method is restricted to predictions
of at most two locations for a protein (similar to that seen
earlier for ngLOC [17]).
Notably, none of the above methods for predicting mul-

tiple locations utilizes inter-dependencies among loca-
tions in the prediction process. All the above models
independently predict each single location and thus do not
take into account predictions for other locations.
Recent work by He et al. [37] attempts to take advantage

of correlation among locations when predicting multiple
locations of proteins. As part of their classifier training
process, an imbalanced multi-modal multi-label learning
(which they denote IMMML) classifier attempts to learn
a correlation measure between pairs of locations that is
later used to make the predictions. The protein repre-
sentation used in IMMML is based on sequence-derived
features (amino acid composition and pseudo-amino acid
composition) and gene ontology (GO) terms. While this
system takes into account a simple type of dependency
among locations, namely pair-wise correlation between
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locations, it does not account for any more complex inter-
dependencies. Furthermore, this system was not tested on
any extensive protein multi-localization dataset.
YLoc+[26], a comprehensive system for protein loca-

tion prediction, uses a naïve Bayes classifier (see e.g. [18])
and captures protein localization to multiple locations by
explicitly introducing a new class for each combination of
locations supported by the training set (i.e. having proteins
localized to the combination). Thus, each prediction per-
formed by the naïve Bayes classifier can assign a protein
to only those combinations of locations included in the
training data. To produce its output, YLoc+ transforms
the prediction into a multinomial distribution over the
individual locations. We also note that as the number of
possible location-combinations is exponential in the num-
ber of locations, training the naïve Bayes classifier in this
manner does not provide a practical model in the gen-
eral case of multi-localized proteins, beyond the training
set. The performance of YLoc+ was evaluated using an
extensive dataset [26] and is the highest among current
multi-location predictors.
In this paper, we present a new method that directly

models inter-dependencies among locations and incorpo-
rates them into the process of predicting locations for
proteins. Our system is based on a collection of Bayesian
network classifiers (see e.g. [38]). Each Bayesian Network
(BN) related to each classifier corresponds to a single
location L. Each such network is used to assign a condi-
tional probability for a protein to be found at location L,
given both the protein’s features and information regard-
ing the protein’s other possible locations. Learning each BN
involves learning the dependencies among the other loca-
tions that are primarily related to proteins localizing to
location L. For each Bayesian network classifier, its corre-
sponding BN is learnt with the goal to improve the classi-
fier’s prediction quality. The formulation of multi-location
prediction as classification via Bayesian networks, as well
as the network model are presented in the next section.
Notably, our system does not assume that all proteins it
classifies are multi-localized, but rather more realistically,
that proteins may be assigned to one or more locations.
We train and test our preliminary system on a dataset

containing single- and multi-localized proteins previously
used in the development and testing of the YLoc+ sys-
tem [26], which includes the most comprehensive col-
lection of multi-localized proteins currently available,
derived from the DBMLoc dataset [11]. As done in other
studies [7,8,26,39], we use multiple runs of 5-fold cross-
validation. The results clearly demonstrate the advantage
of using location inter-dependencies. The F1 score of
81% and overall accuracy of 76% obtained by incorporat-
ing inter-dependencies are significantly higher than the
corresponding values obtained by classifiers that do not
use inter-dependencies. Also, while our system retains

a level of performance comparable to that of YLoc+ on
the same dataset, we note that unlike YLoc+, by training
the individual classifiers to predict individual − although
inter-dependent − locations, the training of our system
is not restricted to only those combinations of locations
present in the dataset, thus our system is generalizable
to multi-locations beyond those included in the training
set.
The rest of the paper proceeds as follows: The next

section formulates the problem of protein subcellu-
lar multi-location prediction and briefly provides back-
ground on Bayesian networks and relevant notations. The
Methods section discusses the structure, parameters, and
inter-dependencies comprising our Bayesian network col-
lection, and introduces the learning procedure used for
finding them. Experiments and results follow, provid-
ing details about the dataset, the performance evaluation
measures, and experimental results. Last, we summarize
our findings and outline future directions.

Problem formulation
As is commonly done in the context of classification, and
protein-location classification in particular [26,39,40], we
represent each protein, P, as a weighted feature vector,
�f P = 〈

f P1 , . . . , f
P
d

〉
, where d is the number of features.

We view each feature as a random variable Fi represent-
ing a characteristic of a protein, such as the presence or
absence of a short amino acid motif [5,39], the relative
abundance of a certain amino acid as part of amino-acid
composition [17], or the annotation by a Gene Ontol-
ogy (GO) term [41]. Each vector-entry, f Pi , corresponds
to the value taken by feature Fi with respect to protein
P. In the experiments described here, we use the exact
same representation used by Briesemeister et al. [26] as
explained in the Experiments and results section, under
Data preparation.
We next introduce notation relevant to the represen-

tation of a protein’s localization. Let S = {s1, . . . , sq} be
the set of q possible subcellular components in the cell.
For each protein P, we represent its location(s) as a vec-
tor of 0/1 values indicating the protein’s absence/presence,
respectively, in each subcellular component. The location-
indicator vector for protein P is thus a vector of the form:
�l P = 〈

lP1 , . . . , lPq
〉
where lPi = 1 if P localizes to si and

lPi = 0 otherwise. As with the feature values, each loca-
tion value, lPi , is viewed as the value taken by a random
variable, where for each location, si, the correspond-
ing random variable is denoted by Li. Given a dataset
consisting of m proteins along with their location vec-
tors, we denote the dataset as:D = {(

Pj,�l Pj
) | 1 ≤ j ≤ m

}
.

We thus view the task of protein subcellular multi-
location prediction as that of developing a classifier
(typically learned from a dataset D of proteins whose



Simha and Shatkay Algorithms for Molecular Biology 2014, 9:8 Page 4 of 13
http://www.almob.org/content/9/1/8

locations are known) that given a protein P outputs a q-
dimensional location-indicator vector that represents P’s
localization.
As described in the previous section, most recent

approaches that extend location-prediction beyond a sin-
gle location (e.g. KnowPredsite [36] and iLoc-Euk [25]),
do not consider inter-dependencies among locations.
YLoc+[26] indirectly considers these inter-dependencies
by creating a class for each location-combination. Our
underlying hypothesis, which is supported by the exper-
iments and the results presented here, is that directly
capturing location inter-dependencies can form the basis
for a generalizable approach for location-prediction. We
discuss these inter-dependencies next.
Consider a subset of subcellular locations si1 , . . . , sik .

Recall that we use the random variables Li to denote
whether a protein is localized or not to location si. For-
mally, the locations in a set, si1 , . . . , sik , are considered
independent if for any protein P, the joint probability
of P to be in any of these locations can be written as
the product of the individual location probabilities, that
is:

Pr
(
Li1 = lPi1 , . . . , Lik = lPik

)
=

k∏
j=1

Pr
(
Lij = lPij

)
.

If the locations are not independent, that is, if for a
protein P,

Pr
(
Li1 = lPi1 , . . . , Lik = lPik

)
�=

k∏
j=1

Pr
(
Lij = lPij

)
,

then we say that these locations are inter-dependent.
The training of a classifier for protein multi-location

prediction involves learning such inter-dependencies so
that the classifier can leverage them in the prediction
process. We use Bayesian networks to model inter-
dependencies.
In order to develop a protein subcellular multi-location

predictor, we propose to develop a collection of classi-
fiers, C1, . . . ,Cq, where the classifier Ci is viewed as an
“expert” responsible for predicting the 0/1 value, lPi , indi-
cating P’s non-localization or localization to si. In order
to make use of location inter-dependencies, each Ci uses
estimates of location indicators of P, l̂Pj (for all other loca-
tions j, where j �= i), along with the feature-values of P,
in order to calculate a prediction. We use support vector
machines (SVMs) (e.g. [20,21]) to compute these esti-
mates. The output of classifier Ci for a protein P is given
by

Ci(P) =
⎧⎨
⎩ 1 If Pr

(
lPi = 1 | P, l̂P1 , . . . , l̂Pi−1, l̂Pi+1, . . . , l̂Pq

)
> 0.5;

0 Otherwise.
(1)

Further details about the estimation procedure itself are
provided in the Methods sections, under Multiple loca-
tion prediction.
Bayesian networks have been used before in many

biological applications (e.g. [42-44]). In this paper, we
use them to model inter-dependencies among subcellular
locations, as well as among protein-features and loca-
tions. We briefly introduce Bayesian networks here, along
with the relevant notations (see [45] for more details).
A Bayesian network consists of a directed acyclic graph
G, whose nodes are random variables, which in our case
represent features, denoted F1, . . . , Fd, and location indi-
cators, denoted L1, . . . , Lq. We assume here that all the
feature values are discrete. To ensure that, we use the
recursive minimal entropy partitioning technique pre-
sented by Fayyad and Irani [46] and used by Dougherty
et al. [47] to discretize the features; this technique was also
used in the development of YLoc+ [26].
Directed edges in the graph indicate inter-dependencies

among the random variables. Thus, as demonstrated in
Figure 1, edges are allowed to appear between feature-
and location-nodes, as well as between pairs of location-
nodes in the graph. Edges between location-nodes directly
capture the inter-dependencies among locations. We
note that there are no edges between feature-nodes
in our model, which reflects an assumption that fea-
tures are either independent of each other or condition-
ally independent given the locations. This simplifying
assumption helps speed up the process of learning the
network structure from the data, while the other allowed
inter-dependencies still enable much of the structure of
the problem to be captured (as demonstrated in the
results). Further details about the learning procedure itself

Figure 1 An example of a collection of Bayesian network
classifiers we learn. The collection consists of several classifiers
C1, . . . , Cq , one for each of the q subcellular locations. Directed edges
represent dependencies between the connected nodes. There are
edges among location variables (L1, . . . , Lq), as well as between
feature variables (F1, . . . , Fd) and location variables (L1, . . . , Lq), but not
among the feature variables. The latter indicates independencies
among features, as well as conditional independencies among
features given the locations.
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are provided in the Methods section, under Learning
Bayesian network classifiers.
To complete the Bayesian network framework, each

node v ∈ {F1, . . . , Fd, L1, . . . , Lq} in the graph is asso-
ciated with a conditional probability table, θv, contain-
ing the conditional probabilities of the values the node
takes given its parents’ values, Pr(v | Pa(v)). We denote
by � the set of all conditional probability tables, and
the Bayesian network is the pair (G,�). A consequence
of using the Bayesian network structure is that it rep-
resents certain conditional independencies among non-
neighboring nodes [45], such that the joint distribution of
the set of network variables can be simply calculated as:

Pr
(
F1, . . . , Fd, L1, . . . , Lq

) =
∏d

i=1
Pr (Fi | Pa(Fi))

×
∏q

j=1
Pr

(
Lj | Pa(Lj)

)
.
(2)

Figure 1 shows an example of a collection of Bayesian
network classifiers. The collection consists of Bayesian
network classifiers C1, . . . ,Cq, one for each of the q sub-
cellular locations s1, . . . , sq, where each classifier Ci con-
sists of the graph Gi and its set of parameters �i, (�i
not shown in the figure). For each classifier Ci, the loca-
tion indicator variable Li is the variable we need to predict
and is therefore viewed as unobserved, and is shown as
an unshaded node in the figure. The feature variables
F1, . . . , Fd are given for each protein and as such are
viewed as known or observed, shown as shaded nodes in
the figure. Finally, the values of the location indicator vari-
ables for all locations except for Li, {L1, . . . , Lq} − {Li},
are needed for calculating the predicted value of Li in
the classifer Ci. As such, they are viewed by the classi-
fier as though they are observed. Notably, the values of
these variables are not known and therefore need to be
estimated.
Thus, the structure and parameters of the network for

each classifier Ci (learnt as described in the next section),
are used to predict the value of each unobserved variable,
Li. The task of each classifier Ci, is to predict the value
of the variable Li given the values of all other variables
F1, . . . , Fd, and {L1, . . . , Lq} − {Li}. Since, as noted above,
the values of the location indicator variables Lj (j �= i)
are unknown at the point when Li needs to be calculated,
we estimate their values, using simple SVM classifiers as
described in the Methods sectiona. We note that other
methods, such as expectation maximization, can be used
to estimate all the hidden parameters, which we shall do
in the future.

Methods
As our goal is to assign (possibly multiple) locations
to proteins, we use a collection of Bayesian network
classifiers, where each classifier Ci, predicts the value

(0 or 1) of a single location variable Li – while using
estimates of all the other location variables Lj (j �= i),
which are assumed to be known, as far as the classifier
Ci is concerned. The estimates of the location values Lj
are calculated using SVM classifiers as described later
in this section. The individual predictions from all the
classifiers are then combined to produce a multi-location
prediction. For each location si, a Bayesian network clas-
sifier Ci must be learned from the training data before
it can be used. As described in the previous section,
each classifier Ci consists of a graph structure Gi and
a set of conditional probability parameters, �i, that is:
Ci = (Gi,�i). Thus, our first task is to learn the indi-
vidual classifiers, i.e. their respective Bayesian network
structures and parameters. The individual networks can
then be used to predict whether a protein localizes to each
location.
Given a protein P, each classifier Ci needs to accurately

predict the location indicator value lPi , given the feature-
values of P and estimates of all the other location indicator
values l̂Pj (where j �= i). That is, each classifier Ci in
the collection assumes that the estimates of the location-
indicator values, l̂Pj for all other locations sj (where j �= i)
are already known, and is responsible for predicting only
the indicator value lPi for location si, given all the other
indicator values. For a Bayesian network classifier this
means calculating the conditional probability

Pr(lPi = 1 | P, l̂P1 , . . . , l̂Pi−1, l̂
P
i+1, . . . , l̂

P
q ), (3)

under classifier Ci, where l̂P1 , . . . , l̂
P
i−1, l̂

P
i+1, . . . , l̂Pq are all

estimated using simple SVM classifiers. The classifiers
C1, . . . ,Cq are each learned by directly optimizing an
objective function that is based on such conditional prob-
abilities, calculated with respect to the training data.
The procedures used for learning the Bayesian network

classifiers and to combine the individual network predic-
tions are described throughout the rest of this section.

Learning Bayesian network classifiers
Given a dataset D, consisting of a set of m pro-
teins {P1, . . . ,Pm} and their respective location vectors
{�lP1 , . . . ,�lPm}, each classifier Ci is trained so as to produce
the “best” prediction possible for the value of the loca-
tion indicator lPi (for location si), for any given protein P
and a set of estimates of location indicators for all other
locations (as shown in Equation 3 above). Based on this
aim and on the available training data, we use the Con-
ditional Log Likelihood (CLL) as the objective function to
be optimized when learning each classifier Ci. Classifiers
whose structures were learnt by optimizing this objec-
tive function were found to perform better than classifiers
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that used other structures [38]. This objective function is
defined as:

CLL(Ci | D)

=
∑m

j=1
log Pr

(
Li = lPji | �f Pj , l̂Pj1 , . . . , l̂

Pj
i−1, l̂

Pj
i+1, . . . , l̂

Pj
q

)
.

Each Pj is a protein in the training set, and each proba-
bility term in the sum is the conditional probability of
protein Pj to have the indicator value lPji (for location si),
given its feature vector �f Pj and the current estimates for
all the other location indicators l̂Pjk (where k �= i), under
the Bayesian network structureGi for the classifier Ci (see
Equation 2).
To learn a Bayesian network classifier that optimizes this

objective function, we use a greedy hill climbing search.
While Grossman and Domingos [38] proposed a heuris-
tic method that modifies the basic search depicted by
Heckerman et al. [48], we do not employ it in this pre-
liminary study, but rather use the basic search, as the
latter does not prove to be prohibitively time consum-
ing. Our structure learner starts with an initial network
with no directed edges. In each iteration of the hill climb-
ing algorithm, a directed edge is either added, deleted, or
its direction reversed. An example of each of the possible
steps is shown in Figure 2. Notably, we do not allow the
introduction of directed edges that connect two feature
variables to one another. This constraint accounts for the
assumption incorporated into the network structure, as
discussed in the Problem formulation section, of indepen-
dence or conditional independence among the features
given the locations; it slightly simplifies the network struc-
ture and reduces the search space and the overall learning
time.

Figure 2 Adding, deleting, and reversing an edge in a Bayesian
network during structure learning. The network on the left (i), is
the starting point. Networks (ii), (iii), and (iv) show the addition,
deletion, and reversal of an edge, respectively, as performed by the
greedy hill climbing algorithm for structure learning.

To find estimates for the location indicator values l̂Pjk ,
we compute a one-time estimate for each indicator lPji
from the feature-values of the protein �f Pj by using an
SVM classifier (e.g. [20,21]). We employ q SVM classi-
fiers, SVM1, . . . , SVMq, where each SVM classifier, SVMi
is trained to distinguish a single location indicator li from
the rest. We use the SVM implementation provided by the
Scikit-learn library [49] with a Radial Basis Function ker-
nel. The rest of the network parameters are estimated as
follows:
Parameter learning: For each Bayesian network clas-

sifier Ci, we use the maximum likelihood estimates cal-
culated from frequency counts in the training dataset, D,
to estimate the network parameters. For each node v in
the graph Gi, (where v may either be a feature variable or
a location variable), we denote its n parents as Pa(v) =
{Pa1(v), . . . ,Pan(v)}. For each value x of v and values
y1, . . . , yn of its respective parents, the conditional proba-
bility parameter Pr(v = x | Pa1(v) = y1, . . . ,Pan(v) = yn)
is computed as follows: Let njoint be the number of
proteins in the dataset D for whom the value of
variable v is x and the values of Pa1(v), . . . ,Pan(v)
are y1, . . . , yn, respectively; Let nmarginal be the num-
ber of proteins in the dataset D whose values of the
variables denoted by Pa1(v), . . . ,Pan(v) are y1, . . . , yn
(regardless of the value of variable v). The maximum
likelihood estimate for the conditional probability is
thus:

Pr(v = x | Pa1(v) = y1, . . . ,Pan(v) = yn) = njoint
nmarginal

.

To avoid overfitting of the parameters, we add pseudo-
counts to events that have zero counts (a variation on
Laplace smoothing [50]).
To summarize, at the end of the learning process we

have q Bayesian network classifiers, C1, . . . ,Cq, like the
ones depicted in Figure 1 (one for each of the q locations),
and q SVMs, SVM1, . . . , SVMq, used for obtaining initial
estimates for each location variable for any given protein.
We next describe how these classifiers are used to predict
the multi-location of a protein P.

Multiple location prediction
Given a protein P, whose locations we would like to pre-
dict, we first use the SVMs to obtain preliminary estimates
for each of its location indicator values l̂P1 , . . . , l̂Pq . We then
use each of the learned classifiers Ci, and the preliminary
values obtained from the SVMs to predict the value of
the location indicator lPi . The classifier outputs a value of
either a 0 or a 1 by thresholding, as shown in Equation 5.
The entire process is depicted in Figure 3. The conditional
probability of lPi given the feature-values of the protein
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f P = f1
P , f2

P ,…, fd
P (Protein feature vector) 

SVM1 SVM2 SVMq

Input to SVMs

l P = l1
P ,l2

P ,…,lq
P

Predicted Location-Indicator Vector 

Output from Bayesian 
network classifiers 

ˆ l P = ˆ l 1
P , ˆ l 2

P ,…, ˆ l q
P

(Location-
Indicator 
Estimate
Vector) 

Output from SVMs

C1 C2 Cq

Input to Bayesian network 
classifiers 

Figure 3Multiple location prediction for protein P. First, SVMs SVM1, . . . , SVMq are used to obtain the location indicator estimates l̂P1, . . . , l̂
P
q . The

Bayesian network classifiers C1, . . . , Cq are then used to predict the actual location indicators lP1, . . . , l
P
q . The Bayesian network classifiers use the

location-indicator estimates as well as with inter-dependencies among the locations.

P and the estimates of the location indicator values l̂Pj
(where j �= i) is first calculated as:

Pr
(
lPi = 1| �f P, l̂P1 , . . . , l̂Pi−1, l̂

P
i+1, . . . , l̂

P
q

)
=

Pr
(
lPi = 1, �f P, l̂P1 , . . . , l̂Pi−1, l̂

P
i+1, . . . , l̂Pq

)
∑

z∈{0,1} Pr
(
lPi = z, �f P, l̂P1 , . . . , l̂Pi−1, l̂

P
i+1, . . . , l̂Pq

) .
(4)

The joint probabilities in the numerator and the denomi-
nator of Equation 4 above are factorized into conditional
probabilities using the Bayesian network structure,Gi (see
Equation 2). The 0/1 prediction for each lPi obtained from
each Ci becomes the value of the i’th position in the
location-indicator vector

〈
lP1 , . . . , lPq

〉
for protein P. This is

the complete multi-location prediction for protein P.
In the next section, we describe our experiments using

the Bayesian network framework for predicting protein
multi-location and the results obtained.

Experiments and results
We implemented our algorithms for learning and using
a collection of Bayesian network classifiers as described
above using Python and the machine learning library
Scikit-learn [49]. We have applied it to a dataset contain-
ing single- and multi-localized proteins, previously used
for training YLoc+ [26]. Below we describe the dataset,
the experiments, the evaluation methods we use, and

the multiple location prediction results obtained on the
proteins from this dataset.

Data preparation
In our experiments we use a dataset containing 5447
single-localized proteins (originally published as part of
the Höglund dataset [39]) and 3056 multi-localized pro-
teins (originally published as part of the DBMLoc set
[11] that is no longer publicly available). The com-
bined dataset was constructed and previously used by
Briesemeister et al. [26] in their extensive comparison
of multi-localization prediction systems. Notably, the
protein sequences from the Höglund dataset share no
more than 30% sequence identity with each other, while
sequences from the DBMLoc dataset share less than 80%
sequence similarity with each other. We report results
obtained over the multi-localized proteins for comparing
our system to other published systems, since the results
for these systems are only available for this subset [26].
For all other experiments described here, we report results
obtained over the combined set of single- and multi-
localized proteins. The single-localized proteins are from
the following locations (abbreviations and number of pro-
teins per location are given in parentheses): cytoplasm
(cyt, 1411 proteins); endoplasmic reticulum (ER, 198),
extra cellular space (ex, 843), golgi apparatus (gol, 150),
lysosome (lys, 103), mitochondrion (mi, 510), nucleus
(nuc, 837), membrane (mem, 1238), and peroxisome (per,
157). The multi-localized proteins are from the following
pairs of locations: cyt_nuc (1882 proteins), ex_mem (334),
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cyt_mem (252), cyt_mi (240), nuc_mi (120), ER_ex (115),
and ex_nuc (113). Note that all the multi-location subsets
used have over 100 representative proteins.

Protein representation
We use the exact same representation of a 30-dimensional
feature vector as used by Briesemeister et al. for YLoc+
[26,51], described below. However, as described later, we
also run experiments in which we do not use annotation-
based features (items iii and iv in the list below) in the
protein representation.

(i) Thirteen features derived directly from the protein
sequence data, specifically, length of the amino acid
chain, length of the longest very hydrophobic region,
respective number of Methionine, Asparagine, and
Tryptophane, occurring in the N-terminus, number
of small amino acids occurring in the N-terminus,
and numerical values based on: (a) ER retention
signal, (b) peroxisomal targeting signal, (c) clusters of
consecutive Leucines occurring in the N-terminus,
(d) secretory pathway sorting signal, (e) putative
mitochondrial sorting signal;

(ii) Nine features contructed using pseudo-amino acid
composition [52], which are based on certain physical
and chemical properties of amino acid subsequences;

(iii) Two annotation-based features constructed using
two distinct groups of PROSITE patterns, one
characteristic of plasma-membrane proteins and the
other of nucleus proteins. For each protein, the value
of the respective feature is 1 if the protein sequence
contains at least one PROSITE pattern characteristic
of the organelle, 0 otherwise;

(iv) Six annotation-based features based on
GO-annotations. Five of these correspond to five
location-specific GO terms [GO:0005783
(endoplasmic reticulum), GO:0005739
(mitochondrion), GO:0005576 (extracellular region),
GO:0042025 (host cell nucleus), and GO:0005778
(peroxisomal membrane)], where the feature value is
1 if at least one sequence homologous to the protein’s
is associated with the GO term according to
Swiss-Prot (release 42.0), 0 otherwise. The sixth
feature indicates the likely location of the protein
given all the GO terms assigned to it (or to its
homologues) in Swiss-Prot;

(See Briesemeister et al. [26,51] for further details regard-
ing the pre-processing, feature construction, and feature
selection.)

Feature discretization
To ensure that all feature values are discrete, we use the
minimal entropy partitioning technique as initially pre-
sented by Fayyad and Irani [46] and used by Dougherty

et al. [47].We rephrase the partitioning technique by using
concepts from Information Theory, in particular, the
definition of conditional entropy [53]. Each continuous-
valued feature is converted into a discrete-valued feature
by recursively dividing the range of values that the fea-
ture obtains into intervals; all feature values lying within
an interval are mapped to a single discrete feature value.
Formally, for a training set of m proteins associated

with q locations s1, . . . , sq, we denote the range of values
assigned to feature fi for proteins in the set by [lfi , hfi ],
where lfi is the lowest value in the range and hfi the high-
est. A discretization boundary Ti partitions the feature
value range [lfi , hfi ] into two intervals, [lfi ,Ti] and (Ti, hfi ].
For each protein Pj in the set (where 1 ≤ j ≤ m), its fea-
ture value for feature fi, denoted f ji , is mapped to a value
d1 if f ji ∈[lfi ,Ti] and to another value d2 if f ji ∈ (Ti, hfi ],
where d1 and d2 are two distinct values, chosen from the
set {0, 1, 2, . . .} (e.g. d1 = 0 and d2 = 1).
Each location sk (1 ≤ k ≤ q), with which a protein

Pj (whose feature value for fi is f
j
i ) may be associated, is

viewed as a value taken by a random variable S. The con-
ditional probability distribution of S given a feature value
f ji and the discretization boundary Ti is defined as:

Pr(S| f ji ,Ti) =
{
Pr

(
S| f ji ≤ Ti

)
if f ji ≤ Ti;

Pr
(
S| f ji > Ti

)
if f ji > Ti.

(5)

The respective conditional entropy is denotedH
(
S| f ji ,Ti

)
[53] and defined as:

H
(
S| f ji ,Ti

)
= − Pr

(
f ji ≤ Ti

) q∑
k=1

[
Pr

(
S = sk| f ji ≤ Ti

)

× log2
(
Pr

(
S = sk| f ji ≤ Ti

)) ]

− Pr
(
f ji > Ti

) q∑
k=1

[
Pr

(
S = sk| f ji > Ti

)

× log2
(
Pr

(
S = sk| f ji > Ti

)) ]
,

where Pr(f ji ≤ Ti) is estimated as the proportion of
proteins in the training set whose feature value for fi is
less than or equal to Ti, Pr(f

j
i > Ti) is estimated as

the proportion of proteins whose feature value for fi is
greater than Ti, Pr(sk| f ji ≤ Ti) is estimated by the propor-
tion of proteins associated with location sk among those
whose feature value for fi is less than or equal to Ti, and
Pr(sk| f ji > Ti) is estimated by the proportion associated
with sk among those proteins whose feature value for fi is
greater than Ti. The discretization boundary Ti is chosen
such that the conditional entropy H(S| f ji ,Ti) is minimal.
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The partitioning into intervals is applied recursively, and
terminates when a stopping condition based on the Min-
imum Description Length Principle, (see Fayyad and Irani
[46] for details), is satisfied. This recursive partitioning is
independently applied to each of the features.

Exclusion of annotation-based features
It has been shown by several groups [8,41,54] that protein
subcellular location prediction performance is improved
by incorporating features based on GO-annotations asso-
ciated with each protein (which may also include location
annotation) into the protein representation. However, we
note that an important goal of protein location predic-
tion is to assign locations to proteins that are not yet
annotated; that is, the location-prediction tool may serve
as an aid in the protein annotation process. Therefore,
it is useful to be able to accurately predict location of
proteins even without using annotation-based features
such as PROSITE patterns and GO terms. To test the
performance of our system with and without such fea-
tures, we have constructed several versions of the dataset
in which we include/exclude PROSITE-based and GO-
based features. (i) PROSITE-GO — which includes both
PROSITE- and GO-based features in the protein repre-
sentation; (ii)No-PROSITE-GO— which does not include
any PROSITE- or GO-based features in the protein rep-
resentation; (iii) No-PROSITE — which does not include
PROSITE-based features, but includesGO-based features;
and (iv) No-GO — which does not include any GO-based
features , but includes PROSITE-based features, in the
protein representation. These datasets are used later in
this section (see Classification results) to demonstrate
that location inter-dependencies can be used to improve
prediction performance, even in the absence of PROSITE-
based and GO-based features.

Experimental setting and performance measures
To compare the performance of our system to that
of other systems (YLoc+ [26], Euk-mPLoc [24], WoLF
PSORT [23], and KnowPredsite [36]), whose performance
on a large set of multi-localized proteins was described
in a previously published comprehensive study [26], we
use the exact same dataset, employing the commonly
used stratified 5-fold cross-validation. As the information
about the exact 5-way splits used in previous studies is
not available, we ran five complete runs of 5-fold-cross-
validation (i.e. 25 runs in total), where each complete run
of 5-fold cross-validation uses a different 5-way split. The
use of multiple runs with different splits helps validate
the stability and the statistical significance of the results.
To ensure that the results obtained by using our 5-way
splits for cross-validation can be fairly compared with
those reported before [26], we replicated the YLoc+ runs
using our 5-way splits, and obtained results that closely

match those originally reported by Briestmeister et al [26].
(The replicated F1-label score is 0.69 with standard devi-
ation ±0.01, compared to YLoc+ reported F1-label score
of 0.68, and the replicated accuracy is 0.65 with standard
deviation ±0.01, compared to YLoc+ reported accuracy
of 0.64). The total training time for our system is about
11 hours (wall-clock), when running on a standard Dell
Poweredge machine with 32 AMD Opteron 6276 proces-
sors. Notably, no optimization or heuristics for improving
run time were employed, as this is a one-time training. For
the experiments described here, we ran 25 training exper-
iments, through 5 times 5-fold cross validation, where the
total run time was about 75 hours (wall clock).
We use in our evaluation the adaptedmeasures of accu-

racy and F1 score proposed by Tsoumakas et al. [55] for
evaluating multi-label classification. Some of these mea-
sures have also been previously used for multi-location
evaluation [26,37]. To formally define these measures, let
D be a dataset containing m proteins. For a given protein
P, let MP = {

si | lPi = 1, where 1 ≤ i ≤ q
}
be the set

of locations to which protein P localizes according to the
dataset, and let M̂P = {

si | l̂Pi = 1, where 1 ≤ i ≤ q
}

be the set of locations that a classifier predicts for protein
P, where l̂Pi is the 0/1 prediction obtained (as described
in the Methods section). The multi-label accuracy and the
multi-label F1 score are defined as:

Acc = 1
|D|

∑
P∈D

|MP ∩ M̂P|
|MP ∪ M̂P| and

F1 = 1
|D|

∑
P∈D

2|MP ∩ M̂P|
|MP| + |M̂P| , respectively.

To evaluate how well our system classifies proteins as
localized or not localized to each individual location si, we
use adapted measures of multi-label precision and recall
denoted Presi and Recsi and defined as follows [26]:

Presi = 1
|{P ∈ D|si ∈ M̂P}|

∑
P∈D|si∈M̂P

|MP ∩ M̂P|
|M̂P| ;

Recsi = 1
|{P ∈ D|si ∈ MP}|

∑
P∈D|si∈MP

|MP ∩ M̂P|
|MP| .

We use here the terms Multilabel-Precision and
Multilabel-Recall to refer to Presi and Recsi , respectively.
Note that Presi captures the ratio of the number of cor-
rectly predicted multiple locations to the total number of
multiple locations predicted, and Recsi captures the ratio
of the number of correctly predicted multiple locations
to the number of original multiple locations, for all the
proteins that co-localize to location si. Therefore, high
values of these measures for proteins that co-localize to
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the location si indicate that the sets of predicted locations
that include location si are predicted correctly.
Additionally, the F1-label score used by Briesemeister

et al. [26] to evaluate the performance of multi-location
predictors is computed as:

F1-label = 1
|S|

∑
si∈S

2 × Presi × Recsi
Presi + Recsi

.

Finally, to evaluate the correctness of predictions made
for each location si, we use the standard precision and
recall measures, denoted by Pre-Stdsi and Rec-Stdsi (e.g.
[7]) and defined as:

Pre-Stdsi = TP
TP + FP

and Rec-Stdsi = TP
TP + FN

,

where TP (true positives) denotes the number of proteins
that localize to si and are predicted to localize to si, FP
(false positives) denotes the number of proteins that do
not localize to si but are predicted to localize to si, and
FN (false negatives) denotes the number of proteins that
localize to si but are not predicted to localize to si.

Classification results
Table 1 shows the F1-label score and the accuracy of our
system obtained when running over the PROSITE-GO
version of the dataset (which includes both PROSITE- and
GO-based features in the protein representation), in com-
parison to those obtained by other predictors (as reported
by Briesemeister et al. [26], Table Three there), using the
same set of multi-localized proteins and evaluation mea-
sures. While the table shows that our system has a slightly
lower performance than YLoc+, the differences in the val-
ues are not statistically significant (as indicated by the
standard deviations of the scores obtained by our system),
and the overall performance level is comparable. Thus our
approach performs as effectively as current top-systems,
while having the advantage of directly capturing inter-
dependencies among locations in a generalizable manner

Table 1 Multi-location prediction results on the
PROSITE-GO version of the dataset, averaged over 25 runs
of 5-fold cross-validation, for multi-localized proteins
only, using our system, YLoc+[26], Euk-mPLoc [24], WoLF
PSORT [23], and KnowPredsite [36]

Our system YLoc+ Euk-mPLoc WoLF KnowPredsite
[26] [24] PSORT [23] [36]

F1-label 0.66 (± 0.02) 0.68 0.44 0.53 0.66

Acc 0.63 (± 0.01) 0.64 0.41 0.43 0.63

The F1-label score and Accmeasures shown for all the systems except for ours
are taken directly from Table Three in the paper by Briesemeister et al. [26].
Standard deviations are provided for our system (not available for others).

(that is, without introducing a new location-class for each
new location-combination).
Tables 2 and 3 both show the F1 score, the F1-label

score, and the accuracy obtained by the SVM classifiers
(used for computing estimates of location indicators)
without using location inter-dependencies, compared
with the corresponding values obtained by our system
using location inter-dependencies, on the combined
dataset of both single- and multi-localized proteins.
Table 2 displays the scores obtained when running
over the PROSITE-GO version of the dataset, whereas
Table 3 displays the scores obtained when running over
the No-PROSITE-GO, No-PROSITE, and No-GO ver-
sions of the dataset (which do not include the respective
annotation-based features in the protein representation).
All the scores in Tables 2 and 3 obtained using inter-
dependencies are higher (in some cases statistically signif-
icantly) than those obtained by using SVMs alone without
utilizing inter-dependencies. The differences are highly
statistically significant (p � 0.001), as measured by the 2-
sample t-test [56] when running over the PROSITE-GO,
No-PROSITE, and No-GO versions of the dataset.
Table 3 shows that location inter-dependencies improve

multi-location prediction even when annotation-based
features, which utilize PROSITE or GO, are not included
in the feature set representing the protein. Furthermore,
we see from Tables 2 and 3 that the performance of
our system does not deteriorate substantially when run-
ning over dataset versions that do not include vari-
ous annotation-based features. Thus, our system shows
robustness to the presence/absence of annotation-based
features.
Table 4 shows the prediction results obtained by our

system when running over the PROSITE-GO version of
the dataset for the five locations that have the largest
number of associated proteins: cytoplasm (cyt), extra-
cellular space (ex), nucleus (nu), membrane (mem), and
mi (mitochondrion), on the combined dataset of both
single- and multi-localized proteins. For each location si,
we show the standard precision (Pre-Stdsi ) and recall

Table 2 Multi-location prediction results on the
PROSITE-GO version of the dataset, averaged over 25
runs of 5-fold cross-validation, for the combined set of
single- andmulti-localized proteins, using our system

F1 F1-label Acc

SVMs (without using 0.77 (± 0.01) 0.67 (± 0.02) 0.72 (± 0.01)
dependencies)

Our system (using 0.81 (± 0.01) 0.76 (± 0.02) 0.76 (± 0.01)
dependencies)

The table shows the F1 score, the F1-label score, and the overall accuracy (Acc)
obtained from SVMs without using location inter-dependencies and from our
system, which uses location inter-dependencies. Standard deviations are shown
in parentheses.
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Table 3 Multi-location prediction results on the No-PROSITE-GO, No-PROSITE, and No-GO versions of the dataset,
averaged over 25 runs of 5-fold cross-validation, for the combined set of single- andmulti-localized proteins, using our
system

Dataset F1 F1-label Acc

SVMs (without using dependencies) No-PROSITE-GO 0.75 (± 0.04) 0.66 (± 0.02) 0.70 (± 0.04)

Our system (using dependencies) No-PROSITE-GO 0.78 (± 0.05) 0.72 (± 0.07) 0.73 (± 0.05)

SVMs (without using dependencies) No-PROSITE 0.77 (± 0.01) 0.66 (± 0.02) 0.72 (± 0.01)

Our system (using dependencies) No-PROSITE 0.80 (± 0.01) 0.75 (± 0.02) 0.75 (± 0.01)

SVMs (without using dependencies) No-GO 0.76 (± 0.03) 0.67 (± 0.03) 0.71 (± 0.03)

Our system (using dependencies) No-GO 0.79 (± 0.04) 0.72 (± 0.08) 0.74 (± 0.04)

The table shows the F1 score, the F1-label score, and the overall accuracy (Acc) obtained from SVMs without using location inter-dependencies and from our system,
which uses location inter-dependencies. Standard deviations are shown in parentheses.

(Rec-Stdsi ) as well as the Multilabel-Precision (Presi ) and
Multilabel-Recall (Recsi ). The table shows values for each
of the measures obtained by SVMs without using loca-
tion inter-dependencies and by our system using location
inter-dependencies. When using inter-dependencies, for
a few locations, such as cytoplasm and membrane, the
Multilabel-Precision (Presi ) decreases. Nevertheless, most
of the differences are not highly statistically significant
(p > 0.01), as measured by the 2-sample t-test [56].
The Multilabel-Recall (Recsi ) increases for all locations
with the use of inter-dependencies where the differences
in most cases are highly statistically significant (p �
0.001). We examine the statistically significant differences
in the Multilabel-Recall for cytoplasm (3785 proteins),
membrane (1824), and peroxisome (157). TheMultilabel-
Recall for cytoplasm (Reccyt) increases from 0.78 when
classifying by SVMs without using inter-dependencies,
to 0.80 when incorporating inter-dependencies. The
Multilabel-Recall for membrane (Recmem) increases from
0.76 to 0.78 under similar conditions. Even for a location

like peroxisome that has fewer associated proteins, the
Multilabel-Recall increases from 0.37 using simple SVMs
to 0.65 using our classifier. Our analysis demonstrates the
advantage of using location inter-dependencies for pre-
dicting protein locations, not just for locations that have a
large number of associated proteins but also for locations
that are associated with relatively few proteins.

Discussion and conclusions
We presented a new way to use a collection of Bayesian
network classifiers, taking advantage of location inter-
dependencies, to provide a generalizable method for
predicting possible multiple locations of proteins. The
results demonstrate that the performance of our pre-
liminary system is comparable to the current best per-
forming multi-location predictor YLoc+[26]. The latter
indirectly addresses dependencies by creating a class for
each multi-location combination. Our results also show
that utilizing inter-dependencies significantly improves

Table 4 Multi-location prediction results on the PROSITE-GO version of the dataset, per location, averaged over 25 runs
of 5-fold cross-validation, for the combined set of single- andmulti-localized proteins

cyt (3785) ex (1405) nuc (2952) mem (1824) mi (870)

Pre-Stdsi (SVMs) 0.84 (± 0.01) 0.87 (± 0.02) 0.79 (± 0.02) 0.93 (± 0.01) 0.90 (± 0.03)

Pre-Stdsi (Our system) 0.84 (± 0.01) 0.91 (± 0.02) 0.79 (± 0.03) 0.90 (± 0.01) 0.87 (± 0.03)

Rec-Stdsi (SVMs) 0.85 (± 0.01) 0.64 (± 0.02) 0.72 (± 0.02) 0.79 (± 0.02) 0.62 (± 0.03)

Rec-Stdsi (Our system) 0.86 (± 0.01) 0.65 (± 0.02) 0.74 (± 0.03) 0.80 (± 0.02) 0.66 (± 0.03)

Presi (SVMs) 0.82 (± 0.01) 0.89 (± 0.02) 0.83 (± 0.01) 0.92 (± 0.01) 0.87 (± 0.03)

Presi (Our system) 0.81 (± 0.02) 0.91 (± 0.02) 0.83 (± 0.01) 0.90 (± 0.01) 0.89 (± 0.02)

Recsi (SVMs) 0.78 (± 0.01) 0.72 (± 0.02) 0.77 (± 0.01) 0.76 (± 0.01) 0.68 (± 0.02)

Recsi (Our system) 0.80 (± 0.01) 0.74 (± 0.02) 0.78 (± 0.02) 0.78 (± 0.01) 0.73 (± 0.02)

Results are shown for the five locations si that have the largest number of associated proteins (the number of proteins per location is given in parenthesis): cytoplasm
(cyt), extracellular space (ex), nucleus (nuc), membrane (mem), and mitochondrion (mi). The table shows the per-location measures: standard precision (Pre-Stdsi ), recall
(Rec-Stdsi ),Multilabel-Precision (Presi ), andMultilabel-Recall (Recsi ), obtained from SVMs without using location inter-dependencies and from our system using location
inter-dependencies. For each location and measure, the highest of the values obtained from the two methods is shown in boldface. Standard deviations are shown in
parentheses.
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the performance of the location prediction system, with
respect to SVM classifiers that do not use any inter-
dependencies. Moreover, this improved performance due
to the use of location inter-dependencies is maintained
even when the protein representation does not include
PROSITE patterns-based features or GO-based features,
thus exhibiting robustness to the presence/absence of
annotation-based features.
In most biological applications that have used Bayesian

networks so far (e.g. [42-44]), the variable-space typically
corresponds to genes or SNPs which is a very large space
and necessitates the use of strong simplifying assumptions
and many heuristics. In contrast, we note that predict-
ing multiple locations for proteins involves a significantly
smaller number of variables (as the number of subcellular
components and the number of features for represent-
ing proteins are relatively small), making this task ideally
suitable for the use of Bayesian networks.
The study presented here is a first investigation into

the benefit of directly modeling and using location inter-
dependencies. To obtain initial estimates for location
values, we used a simple SVM classifier, and location
inter-dependencies were only learned based on these val-
ues. While the results already show much improvement
with respect to the baseline SVM classifiers, we believe
that a better approach would be to simultaneously learn
a Bayesian network while estimating the location values
using iterative optimization methods such as expectation
maximization.
We note that although the dataset we use is the most

extensive available collection of multi-localized proteins,
several subcellular locations are not represented in the
dataset at all due to the low number of proteins associated
with them. Similarly, there is not enough data pertaining
to proteins that are localized to more than two locations.
We are in the process of building a set of multi-localized
proteins that will be used in future work to test the per-
formance of our system on new, and more complex, com-
binations. We also plan to explore alternative approaches
for learning models of location inter-dependencies from
the available data.

Endnote
aWe note that here we set out to show that capturing

inter-dependencies among locations help improve
prediction, and the relatively simple estimation
procedure that we use serves sufficiently well.
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