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Abstract

This paper presents a constraint-based method for improving protein docking results. Efficient constraint propagation
cuts over 95% of the search time for finding the configurations with the largest contact surface, provided a contact is
specified between two amino acid residues. This makes it possible to scan a large number of potentially correct
constraints, lowering the requirements for useful contact predictions. While other approaches are very dependent on
accurate contact predictions, ours requires only that at least one correct contact be retained in a set of, for example,
one hundred constraints to test. It is this feature that makes it feasible to use readily available sequence data to predict
specific potential contacts. Although such prediction is too inaccurate for most purposes, we demonstrate with a
Naïve Bayes Classifier that it is accurate enough to more than double the average number of acceptable models
retained during the crucial filtering stage of protein docking when combined with our constrained docking algorithm.
All software developed in this work is freely available as part of the Open Chemera Library.
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Background
Proteins are large molecules formed by long chains of
amino acid residues, often hundreds of residues long. The
sequence of residues in each chain is determined by the
DNA sequence of its corresponding gene, where each
nucleotide triplet specifies which of 20 different amino
acids will be covalently bound at that position of the chain,
releasing one water molecule in the peptide bond reaction
and leaving behind the amino acid residue, the remain-
ing molecule, bound to the growing chain. Thousands
of millions of years of evolution ensured that the pro-
teins thus formed have a well defined structure and were
selected for playing important roles in the biochemistry
of the organism. In many cases, these roles involve spe-
cific interactions with other proteins and understanding
which partners interact and the structure of the complexes
formed by these protein interactions is a fundamental part
not only of current fundamental research in molecular
biology but also in applied fields such as drug design or
metabolic engineering.

Docking
Protein docking is the prediction of these protein-protein
complexes from the known structures of the protein tar-
gets [1]. This is not an easy task, as demonstrated by
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the results of the Critical Assessment of PRediction of
Interactions experiment, ongoing since 2001 [2]. Accord-
ing to the 2010 report for rounds 13-19, out of a total of
4420 submissions by 64 groups and 12 web servers, for
six out of the thirteen target complexes there were no
predictions considered highly accurate and only 16 mod-
els of at least acceptable quality in total, considering all
submissions. Furthermore, one third of the participants
failed to submit acceptable models for any target [3]. The
more recent results, for rounds 20-27, was similar, with
only four out of ten protein-protein docking targets with
highly accurate results and 40% of the participants failing
to submit even one model of acceptable accuracy [4].
Protein docking can be divided into two different tasks:

filtering, wherein a large number of possible configura-
tions is scanned and a small fraction is retained; and
scoring, wherein each of the retained candidate models
is examined in more detail so they can be ranked and,
hopefully, the correct models identified [5]. These are suf-
ficiently distinct problems that CAPRI even has a separate
track for groups dealing solely with scoring. One possi-
ble way of improving protein docking results is to improve
the scoring functions, and this is an important line of
research. But another possibility is to improve filtering so
that the scoring stage needs to rule out a smaller num-
ber of incorrect candidates in the search for the more
accurate models. This is the goal of the work we describe
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here. From readily available sequence data, for each pro-
tein complex we obtain a set of potential contacts between
specific amino acid residues. This set of contacts includes,
with a good probability, at least one correct contact. By
adequately processing the constraints derived from these
contacts we can then quickly scan the whole set of poten-
tial contacts and increase the fraction of correct docking
configurations in the set of candidate models.

Contact prediction
At present, there are no reliable methods for accurately
predicting specific residue contacts between proteins,
though some success has been achieved in the predic-
tion of interface regions, encompassing tens of amino
acid residues on each partner, and these have been used
to improve docking simulations. For example, PI-LZerD
[6] uses predicted interface regions as an additional filter
in the first docking stage by selecting models consistent
with the predicted regions. However, this information is
not used to actually guide the search for the initial set
of models. Rather, it is added after the initial search,
requiring that a very large number of models be kept
initially (fifty thousand) to compensate this additional
filtering. The authors of CPORT [7] report a similar prob-
lem, even though they were using interface predictions
as restraints in HADDOCK [8], which uses ambiguous
restraints as part of a cost function to minimize during
search. The main problem remains that accurate models
of the complex are often lost during the geometric search
stage, a drawback that led us to consider an alternative
approach to take advantage of the constraint program-
ming approach in BiGGER [9,10]. By pruning the search
space with constraints, it is more likely that correct mod-
els will be retained in the first filtering stage without
requiring a very large set of candidate models. In previous
papers we explored the possibility of improving dock-
ing simulations with geometric constraints [11], showed
how propagation is implemented in BiGGER in order
to allow pruning the search space with such constraints
[9] and presented some preliminary work on how such
constraints could be inferred from sequence data [12].
This paper focus on establishing a more solid foundation
for this approach, outlining the procedure for processing
sequences and obtaining the constraints and providing a
practical tool that can be applied to real problems in the
future.

Our contribution
The goal of this work is to improve protein docking
by restricting the search space with predicted inter-
protein contacts. In particular, the main goal is to classify
potential contacts in such a way that at least one cor-
rect contact can be kept in a small set of possibilities
(e.g. 100 possible contacts). These possibilities are then

scanned in a constrained docking simulation to obtain
the most promising candidates using the BiGGER dock-
ing algorithm [9,10]. These predictions are derived from
the analysis of Multiple Sequence Alignments (MSA) of
homologous sequences in different organisms. The ratio-
nale is that, if homologs of both partners are present in
different species, it is likely that they interact in a similar
manner and that the residues contributing to this inter-
action will be under evolutionary constraints that can be
detected in the sequence alignment. This can result, for
example, in more conserved regions, correlated mutations
due to coevolution, better residue complementarity and
so forth. Since we try to predict contacts between specific
amino acid residues, instead of predicting less specific
interface regions, the prediction errors will be greater.
However, specific contacts allow a much tighter pruning
of the search space when processed with constraint pro-
gramming, which can compensate for prediction errors by
scanning a sufficiently large set of potential contacts.
Currently, one contribution from this work is the actual

classifier and constrained docking software, which is
open source and freely available. Although still not user-
friendly, the software already allows the application of our
classifier to predict the most likely contacts and use those
predictions for constrained docking with the more recent
version of BiGGER. However, a more important contribu-
tion is perhaps the demonstration of this framework for
improving protein docking, which combines the predic-
tion of specific contacts with a constraint programming
approach, where the latter technique can help overcome
the difficulties created by the large error margins in the
predictions.

Method
Data preparation
From the Protein-Protein Docking Benchmark Version
4.0 [13] we selected all protein-protein complexes con-
sisting of chains at least 50 amino acid residues long and
whose structures had at most 10% unresolved residues.
In addition, we excluded all antibody-antigen complexes
because antibodies are generated by V(D)J recombina-
tion [14] and do not coevolve with antigens. We then
searched for homologs of all sequences in the 50% iden-
tity clusters of the UniProt Reference Clusters database
(UniRef50) [15], with the goal of obtaining a broad sam-
ple of sequence homologs. We queried UniRef50 to find
matching clusters for each of our query sequences and
then retrieved all sequences from each cluster. Prelimi-
nary results indicated that this is a better approach than
a standard BLAST search [16] on individual sequences,
which may not return enough sequences due to server-
side limitations, and also better than PSI-BLAST [17]
because PSI-BLAST finds more distant relatives through
iterative queries against profiles determined by conserved
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regions. Although sequence conservation is one poten-
tially useful feature, coevolution can also be indicative
of a contact region and can only be detected in variable
regions [18,19], so this bias towards conserved domains
is not desirable. By using the UniRef50 database and
retrieving the full clusters we can easily gather a large
and unbiased sample of matching sequences using read-
ily available services, which is important if our approach
is to be of practical use to the community. We then
matched and sorted all sequences obtained for each com-
plex according to source organism, retaining only those
sequences that could bematched to sequences for all other
protein chains in the complex. The result was a pool of
103 complexes with at least 50 sequences for each chain.
All sequence sets were aligned with Clustal Omega [20]
(selecting a maximum of 2000 sequences, due to perfor-
mance considerations, in the few cases where more were
available).
These 103 complexes were randomly split into a training

set of 75 complexes and a test set with the remaining 28
complexes. The training set was also randomly split into
5 partitions of 15 complexes each for estimating the clas-
sifier performances using five-fold cross validation. For
each complex, we considered true contacts to be pairs of
amino acid residues, one from each partner, with a dis-
tance no greater than 5Å from each other, as measured
from the centres of nonH atoms. This is the criterion used
in the CAPRI programme for assessing protein interac-
tion predictions [2]. It was also necessary to decide which
residues would be considered as candidates for contact
prediction. Only surface residues need to be considered,
since buried residues cannot interact with the other part-
ner, but it was necessary to decide how much surface
area a residue would need exposed to count as a sur-
face residue. The smaller this cutoff value, the greater the
number of false contacts that will need to be classified.
However, with larger cutoff values true contacts may be
lost. Although we do not needmany true contacts - in the-
ory, identifying one would be enough to restrict the search
space - we must not risk losing them all, so it was espe-
cially important to take into account those complexes with
the smallest number of true contacts. Given these require-
ments we considered two indicators to minimize. One is
the ratio of the average number of potential contacts to the
minimum number of true contacts retained for any com-
plex. The other is the fraction of lost true contacts in the
complex with the smallest number of true contacts. Thus
we selected a cutoff value of 38Å2 because this is the value
that minimizes the product of these two measures in our
training set of 75 complexes. The exposed area estimates
were computed using only heavy (non H) atoms, present
in the PDB files. Up to a cutoff value of 38Å2, the ratio
between the total number of potential contacts and the
minimum number of true contacts per complex decreased

significantly from 2300:1 (for a surface exposure greater
than 0Å2) down to 780:1 while the minimum number of
correct contacts kept per complex decreased only from 25
to 22. Beyond this cutoff value of 38Å2 the reduction in
the total number of potential contacts no longer compen-
sates the loss of true contacts from the complexes with the
smallest interfaces.
For all potential residue contacts, we computed a set

of 21 base descriptors: maximum and minimum exposed
surface for residues in the pair, both for the full residue
and the side-chains; maximum and minimum substitu-
tion scores, using the Gonnet substitution matrix [21],
for the substitution of each amino acid in the pair with
all corresponding amino acids in the MSA and the same
score relative to the average for the whole protein; inter-
action scores of the corresponding residues in the MSA
averaged over all sequences, namely two volume normal-
ized contact scores [22,23] and all atom and αC contact
propensities [24]; maximum and minimum fraction of
gaps in corresponding places in the MSA and maximum
and minimum gap counts for each residue relative to the
total gap counts for the MSA; SCOTCH interaction score
[25] applied to the amino acid pair only, ignoring sequence
neighbours). These 21 base descriptors were then aggre-
gated over the spatial neighbourhood of each residue at
the surface of the protein. This neighbourhood is defined
as the specified residue plus all residues in the candidate
set that are in contact with the specified residue. Thus,
each of the initial 21 descriptors resulted in two additional
scores: the average of the scores from all residues in one
neighbourhood to the specific residue of the other partner
(designated “all to one”), and the averages of all residues in
one neighbourhood to all residues in the other neighbour-
hood (designated “all to all”). This resulted in an initial
total of 63 descriptors to be used as features in the classi-
fier. All values were scaled so as to range from -1 to 1 over
the training set of 75 complexes for visual examination
and comparison of features, with the same scaling factors
were applied to the test set.

Naive Bayes classifier
For this work, we chose to use a Naive Bayes Classifier
(NBC). The NBC assumes that all features are condition-
ally independent given the class of the example, classifying
each example according to the product of the probabil-
ities of its features given each class and a probability
distribution of each feature given each class. Although
this is generally not true, it has the distinct advantage
of allowing one to consider each feature independently
and thus greatly simplifies the calculations required for
feature selection. We chose to use an NBC because it
generally performs well and because the independence
assumption of the features is particularly suitable for using
the classifier itself for feature selection, since the relevant
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probability distributions can be estimated beforehand,
greatly speeding up the evaluation of feature combinations
(see below). In an NBC, given the assumption that all fea-
tures are conditionally independent given the class, the
probability of vector x, consisting of d features, belonging
to a class Ck is proportional to:

p(Ck|x) ∝ p(Ck)
d∏

i=1
p(xi|Ck) (1)

Where p(Ck) is the overall probability of belonging to
class Ck and p(xi|Ck) is the probability of feature i hav-
ing value xi if the class is Ck[26]. To estimate the class
conditional probability distributions we used the Equal
Width Discretization (EWD) method, which consists of
simply distributing the values of a continuous feature into
n intervals of equal width. Despite its simplicity, EWD is
reportedly a good method for NBC [27]. For each case, we
chose n to be twice the cube root of the number of val-
ues, which is the Rice rule for choosing the number of bins
in a histogram. This meant n ≈ 200 for non-contacting
residue pairs and n ≈ 30 for contacting pairs, with a small
variation depending on the training fold as the protein
complexes have a different number of candidate pairs.
In practice, due to round-off errors, instead of the prod-

uct of the conditional probabilities it is best to use the
sum of the logarithms of these probabilities. Thus, for a
generic problem with N classes and d features, the class is
determined by

Class(x) = argk max Log
(
p∗(Ck|x)

)

where Log
(
p∗(Ck|x)

) = Log (p(Ck)) +
d∑

i=1
Log (p(xi|Ck))

(2)

Given that we have only two classes, being C0 the class
of residue pairs that are not in contact and C1 the class of
residue pairs in contact, we can use the NBC classification
to score each x:

S(x) = Log
(
p∗(C1|x)

) − Log
(
p∗(C0|x)

)
(3)

To evaluate the performance of each NBC (see section
Feature selection) we used five-fold cross-validation over
the training set of 75 complexes, measuring the R-
precision of the NBC trained with each subset of features,
averaged over the 75 complexes. R-precision is a stan-
dard measure used in document retrieval problems [28],
and corresponds to the precision obtained in the first
R results of a query, where R is the number of exam-
ples of the desired class. This is an appropriate measure
because our contact prediction problem is analogous to a
document retrieval problem in that we are interested in
obtaining correct contacts close to the top of the rank-
ing, thus reducing the number of potential pairs to test

during the docking simulation before a good model of the
complex is obtained. In our case, this means that, for each
complex j, we ranked the potential contacts according to
the S score in equation 3, counted the number of true con-
tacts in the first Rj positions, where Rj is the total number
of true contacts for that complex, and divided by Rj. How-
ever, if there were no true contacts in the highest ranking
Rj candidate pairs for complex j, then we modified the
R-precision computation. In these cases, the standard R-
precision measure simply assigns a value of 0 to the result.
However, we were interested in measuring by how much
the classifier failed to place a true contact in the high-
est Rj. Thus, for complex j, we considered the value of
R-precision of a given classifier to be:

Rprec(j)=

⎧⎪⎨
⎪⎩

1
Rj

Rj∑
k=1

isTrue(j, k), if highestTrue(j)≤ Rj

1 − highestTrue(j)/Rj, if highestTrue(j)> Rj

(4)

where isTrue(j, k) is 1 if the contact ranked in posi-
tion k for complex j is a true contact, 0 otherwise, and
highestTrue(j) is the position of the highest ranking true
contact for complex j. The R-precision value assigned
to each classifier was the average over all complexes
classified.

Feature selection
It would not be reasonable to assume that all descriptors
would be useful features with which to classify the poten-
tial contacts, and in machine learning problems it is often
necessary to select a subset of features from all descriptors
available. To this end, we implemented a search algorithm
[29] that first evaluates all features isolatedly, retains the
best N, then tests each of those N combined with each
of the other features, retains the best N pairs, and so
forth, adding a new feature to each of the retained subsets
at each iteration. Essentially, this is a forward sequen-
tial search but retaining N successors instead of just one
at each iteration. In our case, the maximum R-precision
value in cross-validation was obtained for a set of 20 out
of the 63 original descriptors (see the Additional file 1 for
a list of these descriptors). With more features the cross-
validation score decreased consistently, so we stopped the
search at 45 features. We used the 20 features that max-
imised the R-precision value to train our final classifier on
the 75 complexes in the training set and then evaluate it
on the 28 complexes of the test set.

Results
On the test set, the final classifier ranked a median of
26.5 false positives higher than the first true contact. Con-
sidering that the median of the total number of contacts
in the test set is 13770 and the median number of true
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contacts is 41, this means that the classifier is perform-
ing considerably better than a random guess (an average
of 100 simulations using random scores gave a median
ranking of 314 for the top ranking true contact). More
relevant is the fact that the classifier ranks at least one
true contact within the first 100 positions in 23 of the
28 test complexes, and one true contact in the highest
200 positions in 25 of the 28 test complexes. There is
still room for improvement because, for the three com-
plexes where the first true contact was ranked over 200,
the rankings were 550, 888 and 1318, beyondwhat we con-
sider to be useful. However, for any given complex, if we
test the best 100 or 200 potential contacts it is likely we
will find at least one true contact that will help guide the
search for the right configuration. This is where the con-
straint programming approach comes into play. BiGGER
can prune the search space using constraint propagation
[9], making constrained docking very efficient. In the 28
test complexes, unconstrained docking runs took a total
of 76 core hours at 2GHz for bound dockings, 89 hours for
the unbound dockings. Due to the pruning of the search
space, each constrained docking run is around 20 to 30
times faster than the unconstrained search, which allows
us to screen the highest scoring 100 contacts predicted
by the classifier in approximately ten to fiteen hours per
complex, on average (279 core hours total for the bound
dockings, 370 hours for the unbound dockings). Using
multiple cores for a single docking run, easily available on
modern personal computers, it is feasible to screen hun-
dreds of potential contacts in a few hours with BiGGER.
This is a typical time for protein docking runs and since
the translational search is repeated for each of thousands
of orientations of the ligand protein, parallelization has
virtually no overhead. Unbound docking runs took, on
average, one third longer than bound docking runs solely
because the unbound structures were often larger than
those found in the complex.
The remaining question was how beneficial this

approach can be. To this end we compared constrained
and unconstrained docking simulations on all 28 com-
plexes of the test set. For the constrained simulations, we
used the 100 highest ranking contact predictions. Thus,
for 5 complexes there were no true contacts in the con-
straint set. The 28 complexes in the test set were mod-
elled using both randomly oriented bound structures and
unbound structures. Though in absolute values unbound
docking results in a lower number of acceptablemodels, as
expected due to the conformational differences between
the unbound structures and the target complex, the rela-
tive gains due to using constraints are consistent across all
cases.
For each docking run, we classified the models gener-

ated with and without constraints according to the ligand
and interface root mean square deviations (rmsd). These

are criteria used in the CAPRI programme [30], and con-
sist in measuring the root of the mean of the squared
distances between corresponding atom positions in two
structures. The ligand rmsd score is measured by super-
imposing the structure of the larger partner (designated
as the target) in the true, known, complex and the com-
plex predicted by docking and then measuring the rmsd
for the smaller of the two partners (called the ligand). This
gives us a measure of the deviation in the position of the
smaller partner, relative to the larger one, when compared
with the true complex structure. The interface rmsd is the
minimised rmsd score computed for all interface residues,
defined as all residues from one partner that are within 5Å
of any residue of the other partner, and measures the dif-
ference between the predicted and the actual interfaces.
Following the criteria used in the CAPRI programme,
we considered a model to be acceptable if the ligand
rmsd is less than 10Å and the interface score is less than
4Å.
Table 1 shows both the bound and unbound docking

results. The first column indicates the Protein Data Bank
(PDB) identifier of the protein complex. The remaining
columns group results according to the total number of
models retained. Each cell shows the number of accept-
able models obtained using constraints followed by a dash
and the number of acceptable models obtained in the
unconstrained docking. In the case of constrained dock-
ing, the total set of models retained was obtained by
retaining the same number of models from each con-
straint, equal to 1% of the total. Thus, 5 models per
constraint for the 500 models column, 10 for the 1000
models column, and so forth. The reason for sampling
across constraints instead of aggregating all models is
that incorrect models which happen to have a good sur-
face contact can exclude acceptable models from the set
of retained models. Sampling across constraints reduces
this effect. Our results show that, on average, contact
prediction significantly increases this number relative to
unconstrained docking. The gain, measured by the ratio
of acceptable models between constrained and uncon-
strained dockings, is, on average, 2.2 (sigma=0.2), and
an analysis of variance for data with repeated measures
(with and without constraints) indicates p values ranging
from 0.003 to 0.00004, depending on the total number
of models kept, so the results are all statistically signifi-
cant. Despite this average effect, individual cases may be
affected by other factors. The top five rows of Table 1 show
cases where no correct constraint was identified in the
set of 100 constraints used, so in theses cases constrained
docking tends to give worse results, although some con-
straints may be incorrect by a sufficiently small margin
to still allow acceptable models and even compensate the
difficulties of unbound docking, as happens in complex
1akj. Even when correct constraints are predicted, these
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Table 1 This table shows the results for the 28 complexes in the test set

Unbound Bound

PDB ID 500 1000 2000 5000 500 1000 2000 5000

1gla 0 / 0 0 / 0 0 / 0 0 / 0 1 / 1 2 / 2 2 / 4 7 / 8

1y64 0 / 0 0 / 0 0 / 0 0 / 0 0 / 1 0 / 2 0 / 2 0 / 3

1akj 10 / 3 13 / 5 15 / 6 26 / 13 5 / 5 8 / 8 14 / 12 18 / 21

1s1q 0 / 0 0 / 0 0 / 0 0 / 0 4 / 12 5 / 16 6 / 30 8 / 41

3bp8 4 / 0 5 / 2 9 / 4 27 / 14 9 / 8 10 / 13 12 / 25 18 / 42

1pvh 0 / 0 0 / 0 0 / 0 0 / 0 2 / 1 2 / 1 3 / 2 5 / 3

2nz8 1 / 1 1 / 1 3 / 2 4 / 3 23 / 9 38 / 10 50 / 12 70 / 23

2j0t 2 / 2 3 / 2 7 / 3 11 / 7 10 / 5 12 / 5 20 / 8 30 / 20

7cei 0 / 1 0 / 1 0 / 1 0 / 4 5 / 1 6 / 1 7 / 1 7 / 1

1ijk 0 / 0 0 / 0 0 / 0 1 / 1 2 / 2 2 / 2 3 / 3 5 / 5

2o3b 0 / 0 0 / 0 0 / 0 10 / 4 0 / 0 0 / 0 0 / 0 1 / 1

1jwh 0 / 0 1 / 0 5 / 0 9 / 1 0 / 0 0 / 0 0 / 0 3 / 0

1i2m 0 / 0 0 / 0 0 / 0 3 / 0 1 / 1 3 / 1 6 / 3 12 / 6

2pcc 2 / 0 3 / 0 4 / 1 8 / 1 2 / 0 5 / 5 8 / 6 15 / 13

1h1v 0 / 0 0 / 0 0 / 0 0 / 0 2 / 2 3 / 3 5 / 6 10 / 8

1b6c 0 / 0 1 / 1 2 / 1 2 / 1 21 / 25 36 / 35 62 / 43 117 / 61

2hle 1 / 0 2 / 1 3 / 1 11 / 3 2 / 0 4 / 0 9 / 2 16 / 5

1bkd 0 / 0 0 / 0 0 / 0 0 / 0 19 / 6 35 / 9 67 / 15 106 / 20

1he1 11 / 6 18 / 12 30 / 17 53 / 34 32 / 3 42 / 5 77 / 9 140 / 17

1m10 16 / 5 19 / 5 27 / 11 54 / 17 36 / 9 54 / 14 75 / 17 106 / 22

1i4d 0 / 0 0 / 0 0 / 0 0 / 0 4 / 7 5 / 8 9 / 11 13 / 22

1azs 0 / 0 0 / 0 0 / 0 0 / 0 16 / 2 24 / 2 48 / 3 58 / 7

2sni 1 / 1 1 / 2 1 / 3 3 / 16 26 / 14 41 / 26 70 / 38 142 / 82

1gpw 0 / 1 2 / 1 2 / 3 13 / 10 25 / 14 42 / 22 73 / 26 132 / 41

1ofu 3 / 0 4 / 0 6 / 1 10 / 1 7 / 0 18 / 0 38 / 2 75 / 4

1z0k 1 / 1 3 / 1 16 / 4 39 / 20 36 / 17 58 / 27 92 / 43 179 / 85

1jzd 0 / 0 0 / 0 1 / 0 2 / 4 29 / 7 44 / 13 67 / 14 110 / 27

1fak 0 / 0 0 / 0 0 / 0 1 / 0 0 / 1 1 / 2 6 / 4 11 / 6

Av. gain 2,48 2,24 2,26 1,86 2,09 2,15 2,43 2,38

The top five complexes are those for which no true contact was ranked in the highest ranking 100 predicted contacts and had no correct constraints among the 100
used in docking. Unbound and bound docking runs are split into several columns for different numbers of models retained, and each cell shows the number of
acceptable models using constraints and without constraints. The bottom row shows the average gain in acceptable models in each case, given by the total number
of acceptable models using constraints divided by the total without constraints (including all complexes, even those without correct constraints).

may not allow acceptable models given the conformation
changes in unbound dockings (e.g. 7cei) or may result in
a lower number of acceptable models if a significant num-
ber of unacceptable models have a higher surface contact
score even when given a correct constraint (e.g 1i4d). In
some fortuitous cases (e.g. 2o3b), the unbound structures
happen to be less favourable to some high ranking incor-
rect models than to some acceptable models, leading to
better results with unbound structures. In general, indi-
vidual cases are influenced by many different factors but,
on average, using predicted constraints according to the
method we propose improves the number and fraction

of acceptable models retained, a useful result to improve
the chances of correctly identifying the structure of the
complex.

Conclusion
Our current results are quite promising given the sig-
nificant increase in the number of good and acceptable
complexes retained in the geometric search stage. Com-
parisons with other approaches to improving docking
with contact predictions is not easy because these alter-
natives tend to strongly couple filtering and scoring and
do not report on the specific effect of constraints in
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the filtering stage. For example, [6] report a maximum
improvement of 17%, with bound docking simulations, on
the number of complexes with acceptable predictions in
the highest ranking models for the final score. It is not
clear how to compare this result with our more than two-
fold average increase in the number of acceptable models
retained. However, experience with real docking appli-
cations shows that the scoring stage needs to be very
flexible to account for the nature of each complex and
the data available (see, for example, [31-36], but BiGGER
has been used in over 70 published complex predictions)
and so we should consider filtering and ranking the mod-
els as two distinct problems. In fact, filtering is a crucial
stage because no scoring function at the ranking stage can
help find an accurate model if no accurate models were
retained during the filtering stage. This is also the rea-
son why the CAPRI programme has independent tracks
for scorers and predictors. Thus our focus here is on the
filtering stage and on information that can be used to
prune the search space. From our results we can con-
clude that efficient constraint propagation allows us to
screen a large number of potentially correct constraints
and thus make use of even very noisy data. In this work
we presented a default scenario where the only source
of constraints is contact prediction from sequence data,
but often there is additional information that can provide
more reliable constraints, further improving the results.
We also present a framework for finding the appropriate
constraints, although our current classifier probably can
be still significantly improved. There are likely to be bet-
ter descriptors than the ones we are currently using and,
once a good set of descriptors are selected there are more
powerful classification algorithms that we can use to find
the right constraints (the main reason for using the Naïve
Bayes classifier was for its efficiency in feature selection
through model selection).
The source code for the software described in this work

is part of the Open Chemera Library and is freely available
at https://github.com/lkrippahl/Open-Chemera.
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