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Abstract 

Background:  Progressive alignment is the standard approach used to align large numbers of sequences. As with all 
heuristics, this involves a tradeoff between alignment accuracy and computation time.

Results:  We examine this tradeoff and find that, because of a loss of information in the early steps of the approach, 
the alignments generated by the most common multiple sequence alignment programs are inherently unstable, 
and simply reversing the order of the sequences in the input file will cause a different alignment to be generated. 
Although this effect is more obvious with larger numbers of sequences, it can also be seen with data sets in the order 
of one hundred sequences. We also outline the means to determine the number of sequences in a data set beyond 
which the probability of instability will become more pronounced.

Conclusions:  This has major ramifications for both the designers of large-scale multiple sequence alignment algo-
rithms, and for the users of these alignments.
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Background
The creation of a multiple sequence alignment is a rou-
tine step in the analysis of homologous genes or proteins. 
For aligning more than a few hundred sequences, most 
methods use a heuristic approach termed “progressive 
alignment” by Feng and Doolittle [1]. This is a two-stage 
process: first a guide tree [2] is created by clustering the 
sequences based on some distance or similarity measure, 
and then the branching structure of the guide tree is used 
to order the pairwise alignment of sequences. The power 
of progressive multiple sequence alignement may come 
from the fact that “more similar” sequences are aligned 
first: “...assuming that in progressive alignment, the best 
accuracy is obtained at each node by aligning the two 
profiles that have fewest differences, even if they are not 
evolutionary neighbours” [3].

The guide tree determines the order in which the 
sequences are aligned. All sequences are compared to 
each other to generate a matrix of distance measures 

between each pair of sequences. By necessity, the calcu-
lation of these distance measures must be fast as it will 
clearly require O(N 2) time and memory for N sequences. 
Most alignment programs use k-tuple scores  [4, 5] to 
measure the similarity of two sequences, or related 
word-based measures. Some use other string-matching 
algorithms to the same effect. While these approaches 
are fast, they only score exact matches between two 
sequences. For proteins, amino acids that are considered 
very similar, for example using the PAM  [6] or BLO-
SUM [7] matrices, are treated as complete mismatches.

This paper examines the impact of the tradeoff of accu-
racy for speed in the construction of the guide trees in 
protein progressive multiple sequence alignment. We 
find that, because of a loss of information when calcu-
lating the distance measures, the alignments generated 
are inherently unstable. This instability is easily seen by 
changing the order of the protein sequences in the input 
file. This will cause a different alignment to be generated. 
We also show that, while this instability is more appar-
ent with larger alignments and with some alignment pro-
grams, it is also found in small alignments of less than 
100 sequences.
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This instability is due to huge numbers of tied scores in 
the distance matrices used to make the guide trees. With 
word-based distances, there is a relatively small number 
of possible distance scores that can be found between two 
sequences. This number will depend on the length of the 
sequences and on the metric used. The effect is that once 
you get to even moderately large numbers of sequences, 
the distance matrix will have many tied scores which would 
ideally be represented in the guide tree as multifurcations. 
Progressive alignment is a strictly pairwise algorithm and 
the branching order within these tied groups will be com-
pletely arbitrary and determined purely by how the cluster-
ing code was written. If you change the sequence order, you 
will change the cluster order and hence the order of pro-
gressive alignment. This means that the supposed power 
of the guide tree to sensibly align the sequences in the cor-
rect order is lost and the considerable computation effort 
required to calculate them may be completely wasted.

Methods
HomFam
The analysis presented here uses the HomFam alignment 
benchmark system [8]. This consists of the single-domain 
Pfam [9] (version 25) families which have at least 5 mem-
bers with known structures in a HOMSTRAD [10] struc-
tural alignment. We measure the proportion of correctly 
aligned core columns out of all aligned core columns in 
the reference sequences (BAliSCORE TC score  [11]), 
when these sequences are embedded in larger data sets. 
The TC score ranges from 0.0 (no core columns in the 
reference sequences correctly aligned) to 1.0 (all ref-
erence sequence core columns correctly aligned). An 
alternative TC score measures the proportion of all cor-
rectly-aligned columns. While the results were similar, 
we use core columns in this paper.

On examining the HomFam sequences, it was noticed 
that a number of proteins had the same amino acid 
sequence even though they were (correctly) labelled differ-
ently in Pfam. As an example, in the zinc finger family (Pfam 
accession number PF00096), the sequence information for:

>D2I3U5_AILME/95-116
ACADCGKTFSQSSHLVQHRRIH
and
>ZN787_HUMAN/95-116
ACADCGKTFSQSSHLVQHRRIH

are identical. Table 1 shows the number of sequences in 
each HomFam family and the number of these which are 
unique. In the remaining analysis, duplicate sequences 
were removed from the HomFam families. Having dupli-
cate sequences will automatically give tied distances and 
we wished to separate this effect from effects due to using 
k-tuple scores.

Table 1  Duplicate sequence percentages in  HomFam pro-
tein families

Protein family Total seqs Unique seqs % Dup

aadh 3119 2348 24.72

aat 25,090 19,879 20.77

Acetyltransf 46,279 31,943 30.98

ace 3983 3787 4.92

adh 21,326 15,452 27.54

aldosered 13,270 10,787 18.71

Ald_Xan_dh_2 2583 2037 21.14

annexin 3133 2288 26.97

asp 3249 2979 8.31

az 1057 892 15.61

biotin_lipoyl 11,826 7332 38.00

blmb 17,194 13,102 23.80

blm 9097 7145 21.46

bowman 494 218 55.87

cah 1374 1197 12.88

ChtBD 769 447 41.87

cryst 1153 909 21.16

cyclo 6282 4967 20.93

cys 4303 3910 9.13

cyt3 379 347 8.44

cytb 3200 2622 18.06

DEATH 1176 874 25.68

DMRL_synthase 2094 1423 32.04

egf 7762 5405 30.36

flav 4606 3103 32.63

GEL 2190 1583 27.72

ghf10 1497 1393 6.95

ghf11 516 461 10.66

ghf13 12,597 9870 21.65

ghf1 4350 3471 20.21

ghf22 748 608 18.72

ghf5 2711 2355 13.13

glob 3942 2828 28.26

gluts 10,085 7841 22.25

gpdh 7683 4993 35.01

hip 162 115 29.01

hla 13,460 9148 32.03

HLH 6776 3417 49.57

HMG_box 4774 2988 37.41

hom 12,029 6044 49.75

hormone_rec 3504 2896 17.35

hpr 3344 1878 43.84

hr 3702 1985 46.38

icd 5673 4505 20.59

il8 1062 799 24.76

ins 787 524 33.42

int 7567 6185 18.26

KAS 2064 1490 27.81
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One side effect of the removal process is that the 
remaining sequences are sorted in ascending alphabethi-
cal order of the sequences (not the sequence names) 
within each of the HomFam families. As each dataset is 
later randomly shuffled before being aligned, this will not 
have an effect on any of the alignments produced.

Software
This article examines the instability of the alignments 
produced by the progressive multiple sequence alignment 
programs Clustal Omega [12], Kalign [13], Mafft [14] and 
Muscle [3]. These programs were selected based on their 
widespread use, their ability to align more than a thou-
sand protein sequences, and their use of a guide tree 
based on the similarity between each pair of sequences 
to determine the order in which the sequences will be 
aligned.

Each of the alignment programs generates a distance 
matrix containing the similarity or distance measures 
between all pairwise combinations of input sequences. 
Kalign does not output this distance matrix by default, 
but on examining kalign2_main.c line 135, the code 
to output the distance matrix has been commented out. 
This code was uncommented and modified to output 
the distance matrix to a specific text file. In addition, the 
distance measures were output to 25 decimal places to 
ensure that any duplicates were not as a result of round-
ing when formatting the output.

The other three alignment programs were also modi-
fied to output distance measures to 25 decimal places: 
Clustal Omega: line 327 of clustal/symmatrix.c; 
Mafft: line 2643 of io.c; Muscle: line 59 of fast-
clust.cpp.

For all four alignment programs, the runtime param-
eters were limited to those required to generate a dis-
tance matrix. By default, Clustal Omega uses the mBed 
algorithm  [8] to cluster the sequences on the basis of a 
small number of “seed” sequences. This only requires 
the calculation of the similarity measures between these 
seed sequences and all other sequences in the input file. 
By requesting that a full distance matrix be generated and 
output, the sequences were clustered using the similarity 
measures between all pairs of input sequences.

For Mafft, the FFT-NS-1, FFT-NS-2 and G-INS-1 
algorithms were used. With FFT-NS-1, a distance matrix 
is first generated using the 6-tuple score between each 
pair of sequences—both sequences are scanned from the 
start for matching 6-tuples, and when a match is found 
the score is incremented and scanning continues from 
the next residue  [4]. A guide tree is then constructed 
by clustering according to these distances, and the 

Table 1  continued

Protein family Total seqs Unique seqs % Dup

kringle 1082 821 24.12

kunitz 2256 1753 22.30

ldh 7353 3094 57.92

LIM 6423 3729 41.94

ltn 1056 909 13.92

lyase_1 7627 5611 26.43

mmp 1421 1136 20.06

mofe 2561 2326 9.18

msb 4876 4094 16.04

myb_DNA-binding 10,393 7124 31.45

OTCace 4790 3234 32.48

oxidored_q6 3343 1974 40.95

p450 21,001 19,700 6.19

PDZ 14,944 9552 36.08

peroxidase 4509 3589 20.40

phc 2945 1961 33.41

phoslip 928 803 13.47

profilin 682 579 15.10

proteasome 5715 4549 20.40

Rhodanese 14,043 10,011 28.71

rhv 17,970 9151 49.08

ricin 740 548 25.94

rnasemam 492 438 10.98

rrm 27,590 18,692 32.25

rub 1430 975 31.82

rvp 93,675 64,987 30.62

scorptoxin 355 311 12.39

sdr 50,144 40,212 19.81

seatoxin 88 63 28.41

serpin 3136 2957 5.71

slectin 927 749 19.20

sodcu 2031 1586 21.91

sodfe 4447 2728 38.65

Stap_Strp_toxin 634 174 72.56

sti 608 536 11.84

subt 7506 6469 13.81

Sulfotransfer 2484 2269 8.65

tgfb 1598 1022 36.04

tim 3894 2909 25.30

tms 2113 1518 28.16

TNF 551 417 24.32

toxin 488 450 7.79

trfl 830 742 10.60

tRNA-synt_2b 11,288 7670 32.05

uce 4545 3744 17.62

zf-CCHH 88,330 45,901 48.03

The list of HomFam protein families, the total number of sequences in each 
family, the number of unique sequences, and the percentage of the total 
number of sequences that are duplicates
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sequences are then aligned using the branching order of 
the guide tree. With FFT-NS-2, the alignment produced 
by the FFT-NS-1 method is used to regenerate the dis-
tance matrix and the guide tree, and then do a second 
progressive alignment. In this paper, FFT-NS-1 will be 
specified whenever distance measures are needed. If no 
distance measures are required, the default FFT-NS-2 
method will be used. The G-INS-1 algorithm was also 
used in Figure1 for comparison with a distance measure 
that doesn’t rely on matching k-tuples.

With Muscle, the number of iterations was limited to 2 
rather than the default of 16. This is the number of itera-
tions recommended by the authors for large datasets.

The program versions and runtime parameters used are 
as follows:

Clustal Omega (v1.2.0-r289): --full 
--distmat-out=...

Kalign (v2.04): -q
Mafft (v7.029b) FFT-NS-1: --retree 1 --anys-

ymbol --distout
Mafft (v7.029b) FFT-NS-2: --anysymbol 

--distout
Mafft (v7.029b) G-INS-1: --anysymbol 

--globalpair
Muscle (v3.8.31): -maxiters 2 -DistMx1 ...
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Fig. 1  Difference in TC core scores for random samples and in reverse order. The difference in the TC core scores for 1000 randomly-selected 
sequences and in reverse order. 68 HomFam protein families. n = 10 samples per family
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Supporting material
A package of utility programs, data files and scripts is 
available for download from http://www.bioinf.ucd.ie/
download/2015instability.tar.gz.

Results and discussion
In the following sections, we refer to distance matrices 
and the calculation of distances between sequences. In 
most of the cases we discuss here, we actually use simi-
larity scores. Nonetheless these can be easily converted 
to distances and we retain the use of the words distance 
and distances out of convenience.

Alignment instability
For each of the 94 HomFam families we selected the 
HOMSTRAD reference sequences and a random selec-
tion of sequences to make up 1000 sequences in total. 
Families with an insufficient number of sequences were 
excluded, leaving a total of 68 families.

The 1000 sequences were randomly shuffled, a default 
alignment was generated (for Mafft, both the FFT-NS-2 
and G-INS-1 algorithms were used), and the alignment 
quality measured using its BAliSCORE TC score. The 
order of the sequences in the input file was then reversed, 
the alignment repeated with the same parameters and 
the quality of this alignment measured. The difference 
between the two quality scores was then calculated. This 
process was repeated 10 times for each of the 68 Hom-
Fam families, and the results are presented in Fig. 1.

In the first four panels, and for virtually all of the rep-
resented HomFam families, reversing the order in which 
the sequences are listed in the input file has an impact on 
the quality of the alignments produced. For some protein 
families and alignment programs this impact is consid-
erable, with the alignment of up to 50  % of columns in 
the reference sequences changing by reversing the order 
of the input sequences. In the fifth panel, Mafft G-INS-1 
uses Needleman-Wunsch  [15] to calculate the distance 
measures between each pair of sequences. Although 
some instability is still present, it is significantly lower 
than for the other alignment programs using their default 
parameters.

It should be noted that Mafft’s G-INS-1 is considerably 
slower than FFT-NS-2 for the given number of sequences, 
taking approximately two orders of magnitude longer to 
run. It also requires over ten times more memory, and 
both memory and time requirements scale quadradically. 
As a result it is not recommended for aligning more than 
a few hundred sequences, but was included in the figure 
for reference purposes. In the remainder of this paper, we 
will only examine the distance measure calculations used 
when aligning larger numbers of sequences.

Unique distances
Clustal Omega uses 1-tuple scores to determine the dis-
tance measures between proteins, where the scores are 
calculated in the same was as Mafft’s 6-tuple score except 
for the different lengths of matching string. Muscle uses 
6-tuple scores calculated in the same way as Mafft, and 
Kalign uses the Muth Manber  [16] approximate string 
matching algorithm. Such methods essentially count 
the number of matches between sequences, ignoring 
both the position of the matches and the actual values 
matched. The number of matches between sequences is 
therefore related to the lengths of the sequences. Clearly 
different, unrelated pairs of sequences can generate the 
same distance. In addition, the chances of seeing such 
matches will increase as the number of sequences being 
aligned increases. It is not clear how the clustering algo-
rithm used in each of the alignment programs resolves 
such ties in distance measures. However, unless this sce-
nario is specifically catered for, the default approach will 
be to choose between pairs of sequences based on their 
positions in the input file, either the first pair with that 
distance measure or the last pair.

In order to further investigate the frequency of such 
tied distances, the number of unique distance values in 
a distance matrix computed for a dataset was deter-
mined. The four alignment programs, Clustal Omega, 
Kalign, Mafft and Muscle were run with the parameters 
listed previously on random samples of sequences drawn 
from each of the HomFam protein families. Sample sizes 
ranged from 50 to 10,000 sequences (or as many unique 
sequences as were in the HomFam family), and each sam-
pling was repeated 100 times. The number of unique dis-
tances were counted in the distance matrices produced 
from each alignment, and the mean number of unique 
distances for each family and number of sequences are 
presented in Fig. 2.

The number of unique distances generated by Mafft 
is considerably higher than for the other alignment pro-
grams. However, for all alignment programs, the num-
bers of unique distances show clear trends of levelling 
off as the number of sequences increases. In addition, 
as the total number of distances calculated is given by 
N (N − 1)/2 for N sequences, for the larger data sets the 
vast majority of distance measures are duplicated in each 
alignment program.

Same length sequences
To determine why the number of unique distances reaches 
a plateau while the total number of pairwise distances 
increases quadratically, we need to examine how the dis-
tances between sequences are calculated. To simplify the 
analysis, we will first look at sequences of the same length.

http://www.bioinf.ucd.ie/download/2015instability.tar.gz
http://www.bioinf.ucd.ie/download/2015instability.tar.gz
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Clustal Omega uses 1-tuple scores for comparing 
sequences. With sequences of the same length it can 
therefore only generate a maximum of L+ 1 unique 
distances where L is the length of the sequences. These 
correspond to sequences with no matches, 1 match, 2 
matches, etc. up to identical sequences. Mafft and Muscle 
use 6-tuple scores, so the maximum number of unique 
distances between sequences of length L is (L− 5)+ 1 
where (L− 5) is the number of 6-tuples in a sequence and 
the additional +1 is necessary if no matches are found. 
The calculation of these distance measures ignores both 
the position of the matches and the values matched.

Depending on the actual amino acids, Kalign calculates 
the distance measure as zero between pairs of protein 
sequences of up to 32 amino acids each.

Different length sequences
Clustal Omega scales the 1-tuple scores by the length of 
the shorter of the two sequences. Similarly Muscle scales 
its 6-tuple scores by the number of 6-tuples in the shorter 
sequence, and Kalign scales based on the length of the 

longer sequence. In Mafft, the distance measure is calcu-
lated as:

where:

Sij is the 6-tuple score between sequences i and j, and x 
and y are the lengths of the longer and shorter sequences 
respectively. The additional scaling is deemed necessary 
as Dij can be near zero when comparing very short and 
very long sequences, even if the sequences are unrelated.

Theoretical maximum number of unique distances 
and sequences
Based on this analysis, the two factors that determine 
the number of different possible distance measures are 

D′

ij = Dij/f (x, y)

Dij = 1−
Sij

min(Sii, Sjj)
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y

x
× 0.1+

10000

(x + 10000)
+ 0.01

0

10,000

20,000

30,000

40,000

C
lu

stal O
m

eg
a (F

u
ll)

0 2500 5000 7500 10000

Number of sequences

U
n

iq
u

e 
d

is
ta

n
ce

s

0

500

1,000

1,500

2,000

K
alig

n

0 2500 5000 7500 10000

Number of sequences

U
n

iq
u

e 
d

is
ta

n
ce

s

0

500,000

1,000,000

1,500,000

2,000,000

M
afft (F

F
T

−N
S

−1)

0 2500 5000 7500 10000

Number of sequences

U
n

iq
u

e 
d

is
ta

n
ce

s

0

10,000

20,000

30,000

40,000

M
u

scle (2i)

0 2500 5000 7500 10000

Number of sequences

U
n

iq
u

e 
d

is
ta

n
ce

s

Fig. 2  Unique distances by number of sequences for each alignment program. The number of unique distances with increasing number of 
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the lengths of the sequences and the number of differ-
ent sequence lengths. For simplicity, we will ignore the 
minor adjustments to the sequence lengths due to using 
1-tuples or 6-tuples. Hence, for Clustal Omega, Kalign 
and Muscle, the theoretical maximum number of unique 
distances is given as the product of the longest sequence 
length and the number of different sequence lengths 
in the dataset. For Mafft, as both sequence lengths are 
included in the additional scaling factor, the theoreti-
cal maximum is the longest sequence length times the 
square of the number of different sequence lengths. These 
theoretical maxima are conservative as all sequences may 
not be as long as the longest sequence, and all possible 
matches for all sequence lengths may not be found.

So, for Clustal Omega, Kalign and Muscle:

and for Mafft:

where MaxUniqueDists is the theoretical maximum 
number of unique distances, MaxSeqLength is the 
length of the longest sequence in the dataset, and 
Count(SeqLengths) is the number of different sequence 
lengths.

In addition

where MaxSeqs is the maximum number of sequences 
that can be aligned before duplicate distance measures 
are generated.

Figure  3 plots these theoretical maxima for Clustal 
Omega, Kalign and Muscle (3a), and Mafft (3b) for each 
HomFam family based on all sequences in each family. 
Also shown are the maximum numbers of unique dis-
tances for each family found in the datasets used to con-
struct Fig.  2 previously. As can be seen, the pattern of 
unique distances in the datasets follows but is lower than 
the theoretical maxima.

The lower plots in Fig. 3 shows the maximum number 
of sequences that can be aligned without duplicate dis-
tance measures, derived from these maximum numbers 
of unique distances. Again these maximum numbers of 
sequences are a conservative measure, as they are based 
on all lengths of sequences occurring in the dataset and 
each sequence having its full range of possible matches. 
Perhaps the most stiking thing about the lower plot is 
that the numbers of sequences are so low, particularly for 
Clustal Omega, Kalign and Muscle.

It should be noted, however, that duplicate distance 
measures do not necessarily lead to instability in the align-
ment generated. It will depend on whether the duplicate 
measures are the lowest values in the distance matrix at that 

MaxUniqueDists = MaxSeqLength× Count(SeqLengths)

MaxUniqueDists = MaxSeqLength× Count(SeqLengths)2

MaxSeqs(MaxSeqs − 1)/2 = MaxUniqueDists

step in the clustering process, which will in turn depend on 
what has happened in the previous clustering steps. Hence, 
we cannot say for definite that duplicate measures will 
lead to alignment instability. However, as the number of 
duplicate measures increases, so too does the likelihood of 
alignment instability. As the alignment instability is deter-
mined by the characteristics of the input sequences, we 
recommend that alignment programs be modified to issue 
a warning of potential instability when the clustering algo-
rithm encounters tied distance measures.

Smaller alignments
While the instability demonstrated earlier is more appar-
ent in larger alignments, it can also be present when 
smaller numbers of sequences are aligned. This can be 
shown by randomly selecting 50, 100 and 250 sequences 
(including each family’s reference sequences) from each 
HomFam family and calculating the TC scores for the 
forward and reversed datasets, as was done in Fig. 1. 100 
random samples were used for each HomFam family and 
for each of the three dataset sizes. For each sample, the 
forward and reverse TC scores were compared, and the 
number of differences for each HomFam family were 
counted. These counts are shown in Fig. 4.

As can be seen, the instability in sequence alignments 
occurs even with small alignments. Also, as the number 
of sequences increases so too does the number of differ-
ences in TC scores. While there is no clear trend between 
the number of unique distances and the number of TC 
score differences for a particular alignment program, this 
trend can be seen across the different programs—Mafft 
shows the fewest number of differences in TC scores and 
Kalign the most.

Algorithm symmetry
It should also be pointed out that another reason for the dif-
ference in TC scores reported above may be due to the asym-
metry of the different implementations of distance measure 
calculations. Different distance measures could then cause a 
different clustering order and give a different tree topology, 
causing sequences to be aligned in a different order.

To illustrate, we randomly select two Retroviral aspartyl 
protease (Pfam accession number PF00077) sequences, 
run the four alignment programs and extract the distance 
measures between the two sequences. The order of the 
two sequences is then reveresed, the alignment programs 
run again, and the distance measure from this second run 
is compared with the original. (Clustal Omega requires 
a minimum of three sequences, so three sequences were 
selected at random and the distances between the first 
and third sequences were compared.)

Out of 10,000 samples, for Clustal Omega there were 9 
different distances identified. With Mafft and Muscle, no 
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different distance measures were found. However, with 
Kalign 6516 differences were found.

Conclusions
In this paper we have demonstrated a very strong 
dependence on the order of the input sequences in a 
data file when we measure multiple alignment accuracy. 
This effect is disconcerting as merely changing the order 
of the sequences can change the alignment. The scale 
of this effect is somewhat surprising and mainly shows 
up when the numbers of sequences grows large. It can, 
nonetheless, be seen in data sets of the order of a hun-
dred sequences or so.

We have also noticed that when we examine distance 
matrices generated by some widely used MSA packages 
that these become increasing dominated by tied values. 
The more sequences you have, the greater the percentage 
of the scores in a distance matrix that are duplicates of 
other scores. We can trace this effect to the use of k-tuple 
scores for computing these distances. For sequences of a 
given length, there is a finite and relatively small number 

of possible scores that can be generated. For shorter 
length sequences, the number of possible distances is also 
reduced. If you use real alignment scores using an amino 
acid weight matrix such as BLOSUM [7], the number of 
possible scores is still finite although much greater than 
with k-tuple distances. Given enough sequences though, 
you will inevitably get many tied values in a distance 
matrix. The use of such alignment scores is limited how-
ever, to relatively small datasets as they are expensive to 
compute, as was seen with Mafft G-INS-1 in Fig. 1. For 
really big alignments, of many thousands of sequences, 
we have little alternative to the use of k-tuple or word 
based scores at some stage of the progressive alignment 
procedure. Iteration, as carried out by Clustal Omega, 
Mafft and Muscle can help as the later alignments can 
use real alignment scores but these are very expensive 
computationally and do not eliminate tied scores. It is 
also possible to mitigate the alignment instability by, say, 
ordering the input sequences lexicographically before 
calculating the k-tuple scores. However, while this will 
result in a consistent alignment being produced, it is 
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difficult to justify from a biological point of view why one 
particular alignment out of numerous alternatives should 
be chosen. The solution to this issue is not clear-cut. We 
have previously shown [17] that the accuracy of progres-
sive alignment decreases markedly with very large data-
sets. We assumed this was due to the greedy nature of the 
algorithm. Here we show that progressive alignment also 
produces alignments that have a strong dependence on 
the sequence order in the input file. The use of “chained” 
guide trees  [18] can help improve accuracy but will still 
have a strong dependence on input file sequence order.
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