
Wu ﻿Algorithms Mol Biol (2016) 11:5
DOI 10.1186/s13015-016-0069-5

RESEARCH

Bitpacking techniques for indexing
genomes: I. Hash tables
Thomas D. Wu*

Abstract 

Background:  Hash tables constitute a widely used data structure for indexing genomes that provides a list of
genomic positions for each possible oligomer of a given size. The offset array in a hash table grows exponentially with
the oligomer size and precludes the use of larger oligomers that could facilitate rapid alignment of sequences to a
genome.

Results:  We propose to compress the offset array using vectorized bitpacking. We introduce an algorithm and data
structure called BP64-columnar that achieves fast random access in arrays of monotonically nondecreasing integers.
Experimental results based on hash tables for the fly, chicken, and human genomes show that BP64-columnar is 3 to
4 times faster than publicly available implementations of universal coding schemes, such as Elias gamma, Elias delta,
and Fibonacci compression. Furthermore, among vectorized bitpacking schemes, our BP64-columnar format yields
retrieval times that are faster than the fastest known bitpacking format by a factor of 3 for retrieving a single value,
and a factor of 2 for retrieving two adjacent values.

Conclusions:  Our BP64-columnar scheme enables compression of genomic hash tables with fast retrieval. It also has
potential applications to other domains requiring differential coding with random access.

Keywords:  Hash table, Sequence alignment, Genomics, Data compression

© 2016 Wu. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/
zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
In bioinformatics applications, genomes are generally
represented not as a linear string of nucleotides, but as
indexed data structures that can facilitate various analy-
ses, such as the rapid alignment of query reads. With
the advent of high-throughput sequencing and the gen-
eration of unprecedented volumes of read data [1],
speed has become paramount in genomic alignment.
One major indexing method of preprocessing genomes
for efficient alignment is a hash table. A hash table rep-
resents a genome sequence as multiple lists of genomic
positions, one list for each possible k-mer, or oligomer of
some preselected length k.

Hash tables are used by various programs, including
blast [2], patternhunter [3], shrimp [4], blat [5],
NextGenMap [6], and gmap [7], to identify short oli-
gomer (or seed) matches between a read and the genome.

These seeds can then be combined or extended to obtain
a more complete alignment. Hash tables are particu-
larly useful for aligning reads that include multiple mis-
matches or indels relative to a genome. Hash tables are
also useful for applications where ambiguity arises in the
nucleotide content at a given position, such as with single
nucleotide polymorphisms, or SNPs, since a hash table
can map two different oligomers onto the same position.

In genomics, hash tables are typically implemented as a
simple lookup table [8], in which an offset array contains
pointers into a positions array, for the universe of possible
k-mers (Fig. 1a). This straightforward table implementa-
tion is feasible because of the fixed and relatively small
value of k needed for our domain. More general domains,
having keys of arbitrary or relatively long length, require
a hash function to compute a bucket index. Hash func-
tions raise the possibility of collisions, where different
keys map to the same bucket index, which then necessi-
tate potentially complex and time-consuming procedures
for handling such collisions.

Open Access

Algorithms for
Molecular Biology

*Correspondence: twu@gene.com
Department of Bioinformatics and Computational Biology, Genentech,
Inc., 1 DNA Way, 94080, South San Francisco, CA 94080, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-016-0069-5&domain=pdf

Page 2 of 13Wu ﻿Algorithms Mol Biol (2016) 11:5

In contrast, a lookup hash table directly provides a list
of positions in the genome containing a given k-mer.
Obtaining that list requires extracting two adjacent val-
ues from the offset array: one representing the starting
pointer in the positions file for the given k-mer, and one
for the following pointer (i.e., for the k-mer incremented
by 1). The difference between these two offsets represents
the number of entries in the positions array for the given
k-mer.

One limitation of lookup hash tables is that the size of
the offset array grows exponentially with k. Consequently,
existing applications have generally used small k-mer
sizes, such as 11-mers for blastn and blat, and 12-mers
for our initial implementation of gmap. However, larger
oligomers are generally preferable for performing search,
because their greater specificity can greatly reduce the
number of candidate genomic positions that need to be
processed. Accordingly, the developers of one hash table-
based alignment program FusionMap found that using
14-mers gave a speedup of 2–4 times over using 12-mers
for alignment [9].

Although modern computers can access increasingly
large amounts of primary random-access memory, or
RAM, storage space still remains an issue for storing
and using large data structures. As the authors of the
PatternHunter II program stated, their development
was hampered by the the “large memory requirements

for multiple hashtables” [10]. Memory considerations
also likely precluded the developers of FusionMap from
extending their idea beyond 14-mers, since a hash table
for 15-mers would require the offset array to be 4 GB in
size.

In this paper, we address this problem by using com-
pression. Compression allows larger amounts of informa-
tion to be stored within a limited amount of memory. Our
proposed compression scheme depends on the observa-
tion that values in the offset array are monotonically non-
decreasing, because they point to successive locations
in the positions array. In other words, each value in the
offset array is equal to or greater than the previous one.
In this situation, compression can be applied to the dif-
ferences between adjacent values; such differences are
generally small integers, which can be compressed more
efficiently than large integers. This type of compression
has been termed differential coding, as opposed to direct
coding, where successive values may increase or decrease
in value, but the original values themselves tend to be
small.

Specifically, we explore an approach to compressing off-
set arrays using a technique called vectorized bitpacking,
in which blocks of integers are represented with fewer
than the 32 bits that are normally allocated for them, and
then accessed and processed in parallel. Various schemes
for vectorized bitpacking have been developed, but they

position

position

position
position

list

4k

0

Offset array

k-mer offset

position

position

position
position

list

Metainfo array Positions array

k-mer/
blocksize

pointer

Bitstream

...

Blocksize

a b

prefix sum

...

...

Positions array

Fig. 1  Hash table representation. a Standard representation using an offset array that indicates the start of genomic positions for a given k-mer.
b Compressed representation where the offset array has been replaced by a bitstream and a metainformation array. The bitstream contains differ-
ences between offsets that have been compressed by bitpacking them into blocks of a given size. The metainformation array contains a pointer
and a prefix sum for every block

Page 3 of 13Wu ﻿Algorithms Mol Biol (2016) 11:5

have been designed for the problem of decoding streams
of integers serially. In particular, a recently published
scheme for vectorized bitpacking called BP128 [11] is
able to achieve very high throughputs for serial decoding,
at a rate of 2 billion integers per second, which represents
the fastest known method to date.

However, for the genomic problem of compressing and
decoding offset arrays in hash tables, we do not require
decoding of all integers serially, but rather decoding of
individual integers with random access. In particular, for
a given k-mer, we wish to decode two adjacent elements
from an arbitrary location within a compressed offset
array. In this paper, we introduce a vectorized bitpack-
ing scheme that is relatively compact and extremely fast
for this task, and we demonstrate its effectiveness for
genomic applications.

Methods
Vectorized bitpacking
As its name suggests, vectorized bitpacking involves two
concepts: bitpacking and vectorization. In bitpacking, we
attempt to conserve computer storage space by using as
few bits as possible for storing each integer. Normally,
arrays of integers are represented by using a single 32-bit
word for each integer, which can represent positive val-
ues from 0 to 232 − 1, or approximately 4 billion. How-
ever, in many applications, including ours, integer values
(or their differences) have small values that do not need
all 32 bits in each word. A bitpacking scheme, therefore,
uses fewer than 32 bits for each integer when possible.

Many bitpacking schemes are already well established
for compressing integers. For example, one example of
bitpacking is a universal code, such as Elias gamma cod-
ing [12]. In Elias gamma coding, a positive integer need-
ing c bits can be encoded using (2c − 1) bits, where the
first (c − 1) bits are zeroes, used as a codeword to indi-
cate that the following c bits contain the actual integer.
These leading (c − 1) bits are needed in serial decoding
to delineate the beginning and end of each integer. Like-
wise, a similar scheme called Elias delta coding [12] rep-
resents an integer by encoding its number of bits c with
Elias gamma, and appending the (c − 1) bits that follow
the most significant bit. Another universal code uses sets
of Fibonacci numbers to encode an integer [13], and is
intended to help with decoding in the presence of noise,
because it can recover from a damaged bitstream.

The idea behind the second concept, vectorization, is
to design algorithms so that they access and process inte-
gers in parallel, rather than individually. One type of vec-
torization makes use of special computer instructions for
processing integers in parallel. These SIMD (single instruc-
tion, multiple data) instructions exploit specialized 128-
bit and 256-bit registers that have been incorporated into

processors over the past decade, and which are scheduled
to expand to 512-bit registers in the near future. For exam-
ple, a 128-bit register allows a processor to process four
32-bit integers in parallel, with SIMD operations such as
shifting all four integers rightward by a certain number of
bits, or adding the four integers in one register to the four
integers in another register simultaneously.

Vector-based operations require that integers be
encoded with a uniform bit length. Therefore, unlike uni-
versal codes, where each integer can have a distinct num-
ber of bits, a vectorized bitpacking scheme must allocate
the same number of bits for the integers. This does not
mean that a single bit width needs to hold for the entire
array of integers. Rather, an array can be divided into
blocks of a predetermined size, such as 128 or 64 inte-
gers at a time, and all integers within each block can then
be represented using a uniform number of bits. The bit
width for each block is selected to be sufficient for the
largest value in that block.

The bit width for each block represents an attribute
that needs to be stored in a separate data structure we
call the metainformation array (Fig. 1b). For random-
access applications, the metainformation array also needs
to contain, for each block, a pointer into the bitstream
where that block begins. If the bit width can be inferred
from the total size of the block, then the metainforma-
tion array can represent the bit width implicitly based on
the difference between successive pointer values.

Differential coding, which computes differences
between adjacent integers before encoding, requires com-
putation of a cumulative sum after decoding to obtain the
original ascending values. This value is called a prefix sum.
For serial applications, a prefix sum can be computed as
a running total from the beginning of the data stream.
However, for random-access applications, it would be
computationally expensive to repeatedly compute each
prefix sum from the beginning of the data stream. There-
fore, computational efficiency can be achieved by stor-
ing intermediate prefix sums, one for the start of each
block, so that the cumulative sum for any position can be
obtained by summing only a relatively few difference val-
ues starting from the preceding intermediate prefix sum.

Layouts for vectorized bitpacking
When the bit width for a block is less than 32, more than
one integer can be stored in each 32-bit word. The way in
which integers are arranged in words can be considered
a layout. Two layouts have been proposed so far for vec-
torized bitpacking. In a horizontal layout, adjacent inte-
gers are packed next to each other [14]. Figure 2a shows
the horizontal layout for a bit width of 6, where each row
represents a 128-bit vector of four 32-bit words that are
accessed in parallel. Integers that are processed in parallel

Page 4 of 13Wu ﻿Algorithms Mol Biol (2016) 11:5

are shaded with the same color. In the decoding process,
this layout requires a separate shift operation for each
integer in the word. Although SIMD operations exist
for performing distinct shifts for the words in a register,
they entail a fair amount of complexity in the decoding
algorithm.

In contrast, the vertical layout used in BP128 can be
processed by SIMD operations in a more straightforward

manner. This layout stripes integers in sets of four across
each set of four words [11, 15, 16]. Figure 2b shows a
vertical layout for a bit width of 6. Decoding in this lay-
out loads four 32-bit words in parallel (Fig. 3a) and
masks their low-order bits to obtain the first four values
(Fig. 3b). Then, the next four values can be obtained by
right-shifting the words in parallel by the uniform bit
width for the block (Fig. 3c), and again masking their

01632481

17
3349218

42036525824405691228446013

21
3753622

25
41571026

29
45611430

c Columnar, unidirectional, 6 bits/di�erence

6215314763 5811274359 547233955 503193551
34384246

0161172

18
3196347

4205216824925101228132914

22
7235943

26
11275539

30
15315135

d Columnar, bidirectional, 6 bits/di�erence

3449334832 3853375236 4257415640 4661456044
62585450

01234

21

22232425

5
678911121314151617181920

27282930313233343536
37

38394041

10

26

a Horizontal, 6 bits/di�erence

4344454647
58

4950515254555657
53

42

485960616263

0481216

20
24283236

15913172610141837111519

21
25293337

22
26303438

23
27313539

b Vertical, 6 bits/di�erence

4751555963 4650545862 4549535761 4448525660
40414243

Fig. 2  Packing layouts for block-based differential coding. Each layout encodes a block of 64 difference values using 6 bits for each value. Values are
placed into three 128-bit registers, each containing four 32-bit words. Each small box shows a 6-bit quantity, labeled with an integer r that indicates
the place for storing the difference value dr. Some 6-bit quantities are spread over two words, as shown by dashed lines. Blocks of color indicate par-
allel processing of the difference values needed to decode the value x43. a Horizontal layout, with values stored in index order. b Vertical layout, with
values striped across each set of words, as used in BP128. c Columnar layout, unidirectional scheme, with indices at increments of 4 striped across
each set of words. d Columnar layout, bidirectional scheme

Page 5 of 13Wu ﻿Algorithms Mol Biol (2016) 11:5

low-order bits (Fig. 3d). Since these values represent the
differences between the original values, we use a SIMD
operation to keep a running sum of the shifted-and-
masked low-order bits (Fig. 3e). The remaining values in
the block can be decoded using the same SIMD shift and
mask steps, with a new set of four 32-bit words loaded
whenever all of the currently loaded difference values
have been processed. Source code for decoding a vertical
layout is shown in Fig. 3f.

In the BP128 algorithm, because four cumulative
sums are maintained in parallel, it is not the differ-
ences between adjacent values (i.e., xi+1 − xi) that
we want for differential coding, but rather the differ-
ences between each value and the one four elements
away (i.e., xi+4 − xi ). An exception holds for the first
four differences in each block, which are computed for
x1, x2, x3, and x4 relative to the prefix sum x0 for the
beginning of the block, which acts as the starting point
for computing the four cumulative sums. The overall

cyclic difference scheme for a block of 64 is shown in
Fig. 4a.

Bitpacking for fast random data access
Computing cumulative sums in BP128 is expensive for
random-access applications, since the decoding proce-
dure is designed to extract the entire block of 128 inte-
gers. In other words, BP128 performs computations that
are irrelevant if we want only a single cumulative sum
from a given block. To improve vectorized bitpacking for
random-access applications, we introduce the following
modifications: (1) reduce the block size, (2) arrange inte-
gers within each block in a columnar layout, and (3) uti-
lize a bidirectional scheme for computing differences
between values. These modifications make it possible to
decode a single value in a differentially encoded block
with greater efficiency than the BP128 scheme. We dis-
cuss each of these modifications in turn.

const static __m128i mask6 = _mm_set1_epi32(63U);

void unpack_06 (__m128i *out, __m128i *in) {
 __m128i in0 = _mm_load_si128(in); // a
 __m128i sum = _mm_and_si128(in0, mask6); // b
 _mm_store_si128(out++, sum);

 __m128i shifted = _mm_srli_epi32(in0,6); // c
 __m128i masked = _mm_and_si128(shifted, mask6); // d
 sum = _mm_add_epi32(sum, masked); // e
 _mm_store_si128(out++, sum);

 ... [continue shift/mask/add to decode entire block] ...
}

a

f

b

048121615913172610141837111519

48121659131761014187111519

0123

0+41+52+63+7

shifted = _mm_srli_epi32(in0,6)

masked = _mm_and_si128(shifted, mask6)

sum = _mm_add_epi32(sum, masked)

x5x6x7x8

x1x2x3x4

in0 = _mm_load_si128(in)

sum = _mm_and_si128(in0, mask6)

c

d

e

4567

Fig. 3  Decoding of vertical layout. An example is shown for the first two cycles of serial decoding of the vertical layout from a block packed with
a bit width of 6. Shaded regions correspond to the values in Fig. 2b. Source code is shown in part (f), with key steps shown graphically in parts (a)
through (e). a Loading of the first 128-bit vector from the block. b Masking of the first four difference values from the vector. c, d Shifting and mask-
ing of the second four difference values from the vector. e Parallel addition of the first and second vectors of difference values. f Source code in the
C language. Comments in the source code correspond to the steps labeled a through e

Page 6 of 13Wu ﻿Algorithms Mol Biol (2016) 11:5

Reduced block size
In vectorized bitpacking, integers are encoded using a
uniform bit width for each block. The BP128 scheme is
so named because it packs integers in blocks of 128. One
reason for using that block size is that encoding 128 inte-
gers, regardless of which bit width from 0 through 32 is

used, results in a bitstream that is aligned on a 128-bit
word boundary, which can improve the speed of SIMD
load instructions on some computer systems [17].

For serial applications, since all values in a block are
decoded, the choice of block size should have little effect
on overall decoding speed. In fact, a larger block size

a Unidirectional cyclic di�erences

b Bidirectional cyclic di�erences

Q1: x1 .. x16
(1 load)

Q2: x17 .. x32
(2 loads)

Q4: x49 .. x64
(4 loads)

Q3: x33 .. x48
(3 loads)

Q1: x1 .. x16
(1 load)

Q2: x17 .. x32
(2 loads)

Q3: x47 .. x32
(2 loads)

Q4: x63 .. x48
(1 load)

Meta Bitstream
p0, x 0 d0 = x 1 − x 0 d1 = x 2 − x 0 d2 = x 3 − x 0 d3 = x 4 − x 0

d4 = x 5 − x 1 d5 = x 6 − x 2 d6 = x 7 − x 3 d7 = x 8 − x 4
d8 = x 9 − x 5 d9 = x 10 − x 6 d10 = x 11 − x 7 d11 = x 12 − x 8

d12 = x 13 − x 9 d13 = x 14 − x 10 d14 = x 15 − x 11 d15 = x 16 − x 12
d16 = x 17 − x 13 d17 = x 18 − x 14 d18 = x 19 − x 15 d19 = x 20 − x 16
d20 = x 21 − x 17 d21 = x 22 − x 18 d22 = x 23 − x 19 d23 = x 24 − x 20
d24 = x 25 − x 21 d25 = x 26 − x 22 d26 = x 27 − x 23 d27 = x 28 − x 24
d28 = x 29 − x 25 d29 = x 30 − x 26 d30 = x 31 − x 27 d31 = x 32 − x 28
d32 = x 33 − x 29 d33 = x 34 − x 30 d34 = x 35 − x 31 d35 = x 36 − x 32
d36 = x 37 − x 33 d37 = x 38 − x 34 d38 = x 39 − x 35 d39 = x 40 − x 36
d40 = x 41 − x 37 d41 = x 42 − x 38 d42 = x 43 − x 39 d43 = x 44 − x 40
d44 = x 45 − x 41 d45 = x 46 − x 42 d46 = x 47 − x 43 d47 = x 48 − x 44
d48 = x 49 − x 45 d49 = x 50 − x 46 d50 = x 51 − x 47 d51 = x 52 − x 48
d52 = x 53 − x 49 d53 = x 54 − x 50 d54 = x 55 − x 51 d55 = x 56 − x 52
d56 = x 57 − x 53 d57 = x 58 − x 54 d58 = x 59 − x 55 d59 = x 60 − x 56
d60 = x 61 − x 57 d61 = x 62 − x 58 d62 = x 63 − x 59 d63 = x 64 − x 60

p1, x 64

Meta Bitstream
p0, x 0 d0 = x 1 − x 0 d1 = x 2 − x 0 d2 = x 3 − x 0 d3 = x 4 − x 0

d4 = x 5 − x 1 d5 = x 6 − x 2 d6 = x 7 − x 3 d7 = x 8 − x 4
d8 = x 9 − x 5 d9 = x 10 − x 6 d10 = x 11 − x 7 d11 = x 12 − x 8

d12 = x 13 − x 9 d13 = x 14 − x 10 d14 = x 15 − x 11 d15 = x 16 − x 12
d16 = x 17 − x 13 d17 = x 18 − x 14 d18 = x 19 − x 15 d19 = x 20 − x 16
d20 = x 21 − x 17 d21 = x 22 − x 18 d22 = x 23 − x 19 d23 = x 24 − x 20
d24 = x 25 − x 21 d25 = x 26 − x 22 d26 = x 27 − x 23 d27 = x 28 − x 24
d28 = x 29 − x 25 d29 = x 30 − x 26 d30 = x 31 − x 27 d31 = x 32 − x 28
d63 = x 64 − x 63 d62 = x 64 − x 62 d61 = x 64 − x 61 d60 = x 64 − x 60
d59 = x 63 − x 59 d58 = x 62 − x 58 d57 = x 61 − x 57 d56 = x 60 − x 56
d55 = x 59 − x 55 d54 = x 58 − x 54 d53 = x 57 − x 53 d52 = x 56 − x 52
d51 = x 55 − x 51 d50 = x 54 − x 50 d53 = x 57 − x 49 d52 = x 56 − x 48
d47 = x 51 − x 47 d46 = x 50 − x 46 d45 = x 49 − x 45 d44 = x 48 − x 44
d43 = x 47 − x 43 d42 = x 46 − x 42 d41 = x 45 − x 41 d40 = x 44 − x 40
d39 = x 43 − x 39 d38 = x 42 − x 38 d37 = x 41 − x 37 d36 = x 40 − x 36
d35 = x 39 − x 35 d34 = x 38 − x 34 d33 = x 37 − x 33 d32 = x 36 − x 32

p1, x 64

Fig. 4  Difference schemes for vectorized differential coding. These schemes show the bitstream and the metainformation values for a given block,
with p0 and p1 indicating the positions in the bitstream where this block and the next block begin, and x0 and x64 indicating the prefix sum for the
two blocks. These schemes show how the original ascending values x in a block can be converted to difference values d. a Unidirectional cyclic
differences as used in BP128, except shown here for a block size of 64. The difference di involves the original values xi+1 and xi−3. An exception holds
for the first row, where differences are taken relative to x0, the prefix sum for the block. Dashed boxes indicate the first two processing steps for the
vertical layout. b Bidirectional cyclic difference scheme, which matches the unidirectional scheme for the first half of the block, but computes differ-
ences relative to x64 for the second half of the block. Dashed boxes indicate the first two processing steps for column 2. In both parts, shaded regions
correspond to the values needed to compute the circled values x43, requiring 3 loads for the unidirectional scheme and 2 loads for the bidirectional
scheme. The colors correspond to those in Fig. 2c, d. Q1–Q4 indicate quarter blocks, and are annotated with the total number of SIMD loads required

Page 7 of 13Wu ﻿Algorithms Mol Biol (2016) 11:5

may be slightly more efficient for exhaustive decoding,
because each call to a decoding procedure for a single
block can handle a larger amount of work.

However, for random-access applications, a smaller
block size is potentially advantageous in reducing the
amount of computation needed within a given block to
obtain a single value. In other words, a block size of 64
should roughly halve the number of SIMD load, shift,
mask, and addition operations needed to decode a single
value, relative to a block size of 128. The actual effect on
decoding speed may not achieve these theoretical savings,
though, because of the time required for memory access
and the effect of pipelining of operations by the proces-
sor. The drawback of halving the block size is that twice as
many pieces of metainformation (pointers and block pre-
fix sums) are required, thereby increasing the amount of
space needed.

One advantage of a block size of 64 is that it allows us
to restrict the uniform bit widths to even values. As we
mentioned previously, the BP128 scheme aligns its block
of 128 integers at a 128-bit word boundary, for every
bit width from 0 through 32, without any need for zero
padding. For example, for a bit width of 3, a block of 128
integers requires exactly three 128-bit registers for stor-
age. However, for a block size of 64, odd bit widths do
not offer any savings in storage relative to the next larger
even bit width. For this block size, a bit width of 3 uses
one and a half 128-bit registers, effectively the same space
as for a bit width of 4, which uses two full 128-bit reg-
isters. Furthermore, the decoding procedures for odd bit
widths are more complex than those for even bit widths,
because odd sizes do not fit evenly into 32-bit registers,
necessitating more SIMD operations for merging integers
that cross from the end of one register into the begin-
ning of the next one (as indicated by the dashed lines
in Fig. 2). Consequently, decoding speeds for even bit
widths have been shown to be slightly faster than for odd
bit widths [16].

Although we will continue our exposition of our bit-
packing scheme using a block size of 64, we will con-
sider experimentally an even smaller block size of 32.
Such a block size would allow us to restrict bit widths
to multiples of 4, and should theoretically reduce the
number of SIMD operations further, albeit at a cost of
further doubling the storage needed for metainforma-
tion. A block size of 64 is somewhat more natural for
genomic applications, since it is a power of 4, meaning
that the beginning of each block can be associated with
a specific k-mer. However, a natural interpretation is not
essential for either serial or random-access decoding, so
arbitrary block sizes can be considered, although some
may turn out to be more or less optimal for compres-
sion or speed.

Columnar packing layout
We can greatly improve the efficiency of random access
for differential decoding by noting that most of the SIMD
computations in a BP128 decoding are wasted if we need
only a single cumulative sum in the block. For example,
consider the case where we require only the cumulative
sum for the 43rd entry, or x43. Fig. 2a, b show with color
coding the loads needed for the horizontal and vertical
layouts. In both layouts, all difference values from d0
through d42 must be decoded and summed in order to
obtain the value for x43. For the vertical layout, a total of
11 sets of decoding steps are needed to reach x43, with
the first two decoding steps represented by dashed boxes
in Fig. 4a.

However, the critical path for obtaining x43 can be
shortened if we can load the difference values by col-
umns instead, as shown by the light blue, dark blue, and
violet shading in Fig. 4a. Then, the path to computing x43
involves summing the difference values in the columnar
path from d2 through d42, and requires only three decod-
ing steps instead of 11.

To decode difference values by columns instead of
rows, we propose a new packing layout called a colum-
nar layout (Fig. 2c). In this layout, we pack one column
at a time, with the 16 entries in column 0 (d0, d4, ...,
d60 ) striped in groups of four across available spaces in
a series of 128-bit vectors. The remainder of the block
is similarly packed in column order for columns 1, 2,
and 3. The SIMD loads needed for obtaining x43 are
shaded in light blue, dark blue, and violet in Fig. 2c.

Bidirectional difference scheme
The columnar layout requires us to implement a separate
decoding procedure for each column in each quarter-
block, where the first quarter-block (Q1) contains block
positions 1–16; Q2 contains 17–32; the Q3 contains
33–48; and Q4 contains 48–63 (Fig. 4a). Entries in Q1
need a single SIMD load of integers, whereas entries in
Q2, Q3, and Q4 need two, three, and four SIMD loads,
respectively.

In this scheme, the Q3 and Q4 entries require more
loads, since those values are farther away from the pre-
fix sum x0, which constitutes the starting point for com-
puting cumulative sums. However, we can improve the
situation if we consider that each block has both a begin-
ning prefix sum x0 and an ending prefix sum x64, which is
already stored in the metainformation array as the begin-
ning prefix sum for the next block. Therefore, we can
compute the differences for the first half-block (values x0
through x32) relative to the beginning prefix sum, and the
differences for the second half-block (values x32 through
x64) relative to the ending prefix sum. (The sum x32 can
be computed from either the beginning or the ending

Page 8 of 13Wu ﻿Algorithms Mol Biol (2016) 11:5

prefix sum.) Hence, to compute a value for the second
half of the block, we can perform SIMD operations just
on that half, and then subtract the resulting cumulative
sum from x64.

This idea gives rise to a bidirectional difference scheme
(Fig. 4b), rather than the unidirectional scheme (Fig. 4a)
that we have been considering so far. Consequently, the
bidirectional scheme allows for fewer loads of data for
quarter blocks Q3 and Q4, which now require only two
and one SIMD loads, respectively. For any given entry xr
at block position r, we can compute the desired column
by first computing the distance δ = 31− |r − 32| to the
nearest prefix sum, which is equivalent to δ = r − 1 for
r ≤ 32 and δ = 63− r for r ≥ 32. Then we require only
the values in column (δ mod 4), beginning from row 0 in
the half-block to row ⌊δ/4⌋.

For our example of computing x43 in Q3, the desired col-
umn in the bidirectional scheme is shaded in Fig. 4b as light
blue and dark blue, requiring two SIMD loads, as opposed
to three. These shades correspond to the bidirectional
columnar layout shown in Fig. 2d. In this layout, we pack
the integers in the first half-block according to the columns
in Fig. 4b, and then the integers in the second half-block,
again according to columns, but in reverse order.

Within‑column summation
To decode a value from the bitcompressed differences,
we need a total of 256 specialized procedures, to handle
all combinations of the 16 possible even bit widths, with
four columns for each of the four quarter-blocks. A jump
table for xr can be used to invoke the appropriate decod-
ing procedure, based on (1) the bit width, (2) the column
(δ mod 4), and (3) the quarter-block, based on ⌊r/16⌋. A
bit width of 0 indicates the special case in which all val-
ues in the block are zero; for this case, the decoding pro-
cedure can simply return the prefix sum x0 for any entry
in the block.

As an example of one of these 256 procedures, Fig. 5
shows a procedure for decoding column 2 for the Q2
quarter block from a block with a bit width of 6. The two
decoding steps are also shown by the dashed boxes in
Fig. 4b. The first decoding step yields four difference val-
ues, shown as words 0 through 3 in Fig. 5c, and the sec-
ond decoding step yields another four difference values,
shown in Fig. 5d. Our procedure then performs a final
SIMD addition to add the first set of difference values
to the second set, thereby yielding words 4 through 7 in
Fig. 5e. Words 0 through 7 from Fig. 5c, e can be stored
in an array, as shown in Fig. 5g.

Through appropriate summations of the first four
words, we can obtain the cumulative sums x3, x7, x11,
and x15 for Q1, by using 1, 2, 3, and 4 terms, respectively.
It would therefore seem, by extension, that obtaining

the cumulative sums x19, x23, x27, and x31 for Q2 would
require computing over 5, 6, 7, and 8 terms, respectively.
However, our final SIMD computation is designed to
perform some additions in parallel, and therefore makes
summation of at most four terms sufficient in all cases.
For example, to compute x23, we need add only words 2
through 5, which represent the four quantities d10, d14 ,
(d2 + d18), and (d6 + d22) instead of the expected addi-
tion of six separate quantities d2, d6, d10, d14, d18, and d22.

From this example, we also see that the entries for Q1
are decoded on the way to decoding the Q2 entries. Like-
wise, the entries for Q4 are decoded on the way to decod-
ing the Q3 entries. Therefore, we need to devise only 128
distinct procedures for decoding the Q2 and Q3 quarter-
blocks, with the Q1 and Q4 procedures being derived
easily as the initial parts of those procedures.

Retrieval of two adjacent offset values
Although some applications of differential coding require
retrieval of only a single value, our domain of interest,
genomic alignment, requires us to decode two adjacent
offsets. These two values specify the endpoints for the list
of genomic positions for a given k-mer, representing the
start and end of the list in the positions array. In other
words, when we decode x23 to obtain the start of the list,
we must also decode x24 to obtain the end of the list. For
a vertical layout, the additional value requires just one
more difference value to be extracted and added. How-
ever, since our bitpacking scheme is designed to extract
columns of values, it requires an entire second decod-
ing procedure, in this case to extract column 3 of the
Q2 entries. The most straightforward implementation
to retrieve two adjacent offset values would be to make
separate calls to two decoding procedures, which we call
a two-pass implementation.

However, a slight improvement can be made by noting
that in our difference scheme, adjacent values will be in
neighboring columns (where we consider column 3 and
column 0 to be neighboring). Therefore, decoding of col-
umn 0 will always be followed by column 1; column 1 by
column 2; column 2 by column 3; and column 3 by col-
umn 0. Because adjacent columns are packed in adjacent
stripes in the columnar layout, difference values from
the second column may have already been loaded dur-
ing computations for the first column. We can therefore
combine the two separate decoding procedures to yield
a one-pass implementation. A one-pass implementation
can achieve some efficiency savings by avoiding duplicate
SIMD loads of registers. These one-pass procedures can
be derived by appropriate merging of individual two-
pass procedures, taking advantage of registers that have
already been loaded.

Page 9 of 13Wu ﻿Algorithms Mol Biol (2016) 11:5

Evaluation
Experimental setup
We evaluated the tradeoff between space and time for
various methods to retrieve offsets from a hash table,
both for a single offset and a pair of adjacent offsets. We
used genomes of different sizes, namely, the fly genome
(D. melanogaster version 5.25.64), chicken genome (Gal-
lus gallus version 4), and human genome (version hg19).

We implemented our methods within the Succinct
Data Structure Library (SDSL) 2.0 package, which is
publicly available as C++ source code [18]. Our bit-
packing code derives from a revision [16] of the origi-
nal BP128 work [11], which we modified to implement
our columnar method. To be consistent with the nam-
ing of classes in the SDSL package, our classes are

named bp64_encv_vector for the BP64-vertical
layout; bp64_encc_vector for BP64-columnar; and
bp32_encv_vector for BP32-columnar. We also
implemented benchmarking procedures to compare
our methods with existing compression methods in
SDSL, namely, Elias gamma, Elias delta, and Fibonacci
encoding, all with a block size of 64, as well as with an
uncompressed int_vector method available in SDSL.
We added versions of these compression methods that
encode the incremental value of 0 efficiently, by subtract-
ing 1 from each positive integer during encoding and
adding an equivalent amount when decoding an integer
within a block. These modifications were implemented
with the assistance of the author of SDSL (personal com-
munication). Without these modifications, execution

const static __m128i mask6 = _mm_set1_epi32(63U);

void unpack_06_col2_Q2 (__m128i *out, __m128i *in) {
 __m128i in0 = _mm_load_si128(in); // a
 __m128i in1 = _mm_load_si128(++in); // b
 __m128i out0 = _mm_srli_epi32(in0,24); // c

 __m128i out1 = _mm_or_si128(_mm_srli_epi32(in0,30),
 _mm_slli_epi32(in1,2)); // d

 out0 = _mm_and_si128(out0, mask6);
 _mm_store_si128(out++, out0);

 out1 = _mm_add_epi32(out0, out1); // e
 out1 = _mm_and_si128(out1, mask6);
 _mm_store_si128(out++, out1);
}

a

f g

b

0161172

18
3193248

4205216824925101228132914

22
7233652

26
11274056

30
15314460

2

31948

61014

72352

2+186+2210+2614+30

out0 = _mm_srli_epi32(in0,24)

out1 = _mm_or_si128(_mm_srli_epi32(in0,30),_mm_slli_epi32(in1,2))

out1 = _mm_add_epi32(out0, out1)

word[0]word[1]word[2]word[3]

word[4]word[5]word[6]word[7]

18222630

in0 = _mm_load_si128(in)

in1 = _mm_load_si128(++in)

c

d

e

d2

d14

d10

d6

d2+d18

d6+d22

d10+d26

d14+d30

sum:
x23

word[0]

word[1]

word[2]

word[3]

word[4]

word[5]

word[6]

word[7]

sum:
x7

Fig. 5  Decoding of columnar layout. An example is shown for decoding column 2 for quarter block Q2 from a block packed with a bit width of 6.
Source code is listed in part (f), with key steps shown graphically in parts (a) through (e), and a final summation step in part (g). a, b Loading of two
128-bit vectors from the block. c Parallel (SIMD) right shift of each 32-bit word by 24 bits, to move d2, d6, d10, and d14 into the lowest 6 bits. d Recom-
bining of d18, d22, d26, and d30, which are split between two 128-bit vectors in the block, using a parallel right shift of the first vector by 30 bits and
a parallel left shift of the second vector by 2 bits. e Parallel addition of the first and second vector of differences. f Source code in the C language.
Comments in the source correspond to the steps labeled a through e. g Difference results shown as an array of 32-bit words. The value x7 can be
obtained by adding two terms from the array, while the value x23 can be obtained by adding four terms

Page 10 of 13Wu ﻿Algorithms Mol Biol (2016) 11:5

times of the original Elias and Fibonacci methods were
extremely slow in our early benchmarking experiments.

All timing experiments were performed on a reserved
Linux computer having 32 Intel Xeon E5-2667 v3 8-core
processors running at 3.20 GHz. The computer had total
memory of 264 GB and cache memory of 20 MB. The
SDSL 2.0 library was compiled with the GNU g++ com-
piler, version 4.9.0, with the default settings, which turned
off debugging code, and added the compiler flags “-O3
-ffast-math -funroll-loops -msse4.2”.

Our benchmarking code generates 10 million random
values uniformly over the space of possible queries and
measures the average time to retrieve results for each
query. Data structures were either read into memory
from the filesystem or generated de novo in memory
from the input files. A checksum was computed over
the results to ensure that the methods gave consistent
results and that the compiler did not optimize out the
query. All timing measurements were repeated for 9 tri-
als, with each trial involving different random values
generated and testing different compression strategies
in a randomly selected order. Results are summarized by
the median over the 9 trials. We also measured the time
for iterating through the 10 million queries, obtaining
the test offset index, and performing the checksum, and
subtracted the median times from all runs. These times
amounted to a negligible fraction of the overall running
times.

Source code for all bitpacking implementations of
hash tables (and our companion research on bitpacking
for enhanced suffix arrays) is made available as Addi-
tional file 1. The package is a modification of SDSL 2.0
that includes our new methods, benchmarking code,
and alteration of existing methods to encode the incre-
mental value of 0 efficiently. Genomic input files for the
benchmarking experiments are hosted on a public Web
site, with downloading instructions available within the
package. Alternatively, we have prepared a package, avail-
able for download as Additional file 2, that allows users to
generate their own benchmarks from any DNA or RNA
source.

Retrieving a single offset value
We generated genomic hash tables using 15-mers, sam-
pled every 3 bp in the genome. We used the offset array
from each hash table as a source of monotonically non-
decreasing values to be compressed in the following
ways: (1) uncompressed, using the SDSL int_vec-
tor method, in which each offset was represented as a
4-byte quantity; (2) BP64-vertical, which is identical to
the BP128 format as proposed by [11] that uses a unidi-
rectional difference scheme and vertical cyclic packing

format, but with a block size of 64 values and using only
even-valued bit widths; (3) BP64-columnar, as proposed
in this paper, using a bidirectional difference scheme
and columnar packing format; (4) BP32-columnar, also
proposed here, with a block size of 32; (5) Elias gamma
encoding, with a block size of 64 values, as implemented
in SDSL; (6) Elias delta encoding, with a block size of
64 values, as implemented in SDSL; and (7) Fibonacci
encoding, with a block size of 64 values, as implemented
in SDSL.

The results for retrieving a single offset value are shown
in Fig. 6a. These results show that retrieval time is largely
independent of genome size, which derives from the fact
that the offsets file length depends instead on the k-mer
size. The uncompressed format gives the fastest times
at 12 ns/query, but requires 4 GB of space (415 entries
with 4 bytes required per entry). The Elias gamma, Elias
delta, and Fibonacci formats produce compact repre-
sentations that are 6–11 % of the uncompressed format,
but generally have the slowest retrieval times, with over
130 ns/query for the fly genome, over 200 ns/query for
the chicken genome, and 228–237 ns/query for human
genomes. The BP64-vertical format requires slightly
more space, at 8–14 % of the uncompressed format, but
is 1.3–1.4 times faster than the SDSL methods, except for
the fly genome, where the Elias gamma and delta meth-
ods are 10 % faster than the BP64-vertical method. The
BP64-columnar format requires the same amount of
space as BP64-vertical, but has retrieval times that are
2.7–3.0 times faster. The BP32-columnar format requires
the most space among the bitpacking routines we tested,
at 13–19 % of the uncompressed format (or 38–60 %
more space than BP64-columnar), with times that are
12–15 % faster than BP64-columnar.

Retrieving two offset values
The results for retrieving two adjacent values are shown
in Fig. 6b. The space measurements remain the same for
each format relative to the first experiment, and only the
time measurements differ. For the uncompressed, Elias
gamma, Elias delta, and Fibonacci formats, we made
two separate calls to the retrieval function. When we
compare the results of Fig. 6b with those of Fig. 6a, we
observe that times for two calls for the uncompressed
data and SDSL methods were 1.2–1.7 times those for a
single call. The fact that the retrieval time did not double
reflects the effects of memory caching. For the BP64-ver-
tical format, two separate calls to retrieve adjacent values
required 1.1x of the time for a single call for one value,
whereas for the BP64-columnar and BP32-columnar
formats, the extra time required was a factor of 1.7-1.8.
The difference between the vertical and columnar results

Page 11 of 13Wu ﻿Algorithms Mol Biol (2016) 11:5

suggests that memory caching is more effective for the
vertical format. This makes sense, because for the vertical
format, the next adjacent value is likely to be decoded in
the same group of four integers as the first value. But for
the columnar format, an adjacent value requires another
column of 128-bit registers to potentially be loaded and
to be decoded.

For the vectorized bitpacking formats, we implemented
one-pass methods, which retrieve two adjacent offset
values by combining memory retrievals whenever pos-
sible. These methods can be contrasted with the two-
pass approach that uses two separate calls to retrieve the
desired values. As shown in Fig. 6b, the one-pass meth-
ods have a greater effect for the columnar formats, with
the vertical format showing speedup by a factor of 1.07,
but the columnar formats showing a speedup of 1.2–1.4.
Overall, the one-pass methods for the BP64-colum-
nar format are 2.1–2.2 times faster than the one-pass
method for BP64-vertical, and the one-pass methods
for the BP32-columnar format are 2.5–2.6 times faster.
The comparison with the Elias gamma, Elias delta, and
Fibonacci coding methods show a speedup of 2.9–3.9
times for BP64-columnar and 3.5–4.6 times for BP32-
columnar, with the greater speedup seen for the chicken
and human genomes. However, we should note that the
SDSL methods were tested as two-pass retrievals, since
no alternative one-pass implementations are available in
the package.

Discussion
Our research in this area has been motivated largely by
attempts to improve the space and time efficiency of our
genomic alignment programs gmap [7] and gsnap [19].
Initially, both programs used a hash table of 12-mers. We
subsequently increased the k-mer size to 15-mers, by com-
pressing the hash table using an Elias gamma compres-
sion scheme (September 2011 release), which improved
the speed of gsnap by a factor of approximately 6–8. We
then changed the bitpacking scheme to the BP64-vertical
format and added a suffix array algorithm (October 2013
release), which gave an additional speedup of 4–7 times,
depending on the similarity between the reads and the
genome. The research in this paper represents our subse-
quent studies to improve the decoding speed of bitpacked
data for random access, which we have used to further
increase the speed of our programs with a BP64-columnar
format (April 2014 release).

Our study leads to some insights for practical genomic
implementations. For differential coding of offset arrays
in hash tables, our BP64-columnar and BP32-columnar
formats offer significant improvements in random-access
decoding speed relative to the fastest known methods
to date, with a threefold increase in speed for retrieving
a single value and a twofold increase for two adjacent
values. Between the two columnar alternatives, BP32-
columnar gives a 12 % increase in speed for retrieving
one value and a 20 % increase in speed for retrieving

0e+00 1e+09 2e+09 3e+09 4e+09

0
50

10
0

15
0

20
0

25
0

30
0

Space (bytes)

T
im

e
(n

se
c)

Int vector

BP32−columnar

BP64−columnar

BP64−vertical

GammaDelta

Fibonacci

hg19
gg4
dm5

a

0e+00 1e+09 2e+09 3e+09 4e+09

0
50

10
0

15
0

20
0

25
0

30
0

Space (bytes)

T
im

e
(n

se
c)

Int vector

BP32−columnar (1− & 2−pass)

BP64−columnar (1− & 2−pass)

BP64−vertical (1− & 2−pass)

GammaDelta

Fibonacci
hg19
gg4
dm5

b

Fig. 6  Results for retrieval of offset array values. Space and time usage for retrieving offset array values under various compression schemes. Offsets
are obtained from 15-mer hash tables for the fly (dm5), chicken (gg4), and human (hg19) genomes. Graphs show the retrieval time in nanoseconds
per query as a function of the space required in bytes for each format. a Retrieval results for a single value. b Retrieval results for two adjacent val-
ues. Methods tested: storage as 32-bit integers (Int vector), or compressed using Elias gamma coding (Gamma), Elias delta (Delta), Fibonacci, BP64-
vertical format, or the BP64-columnar and BP32-columnar schemes introduced here. For retrieving two adjacent values using vectorized bitpacking
formats, results are shown for both two-pass (slower) and one-pass (faster) implementations

Page 12 of 13Wu ﻿Algorithms Mol Biol (2016) 11:5

two adjacent values, but requires 40–60 % more space.
Therefore, BP64-columnar appears to give a better bal-
ance between storage space and decoding speed, which
underlies our decision to use this representation for our
alignment programs.

Apart from this study, compression of small integers
has not been widely applied or studied for genomic align-
ment. Some researchers [20] have used integer codes
to compress the short reads themselves, after they have
been aligned to a genome. Another application of integer
codes has been to compress genomes or other nucleotide
sequence datasets, either by themselves [21] or as differ-
ences relative to another genome [22].

In particular, although much research effort has gone
into developing effective techniques for compressing
genomic data structures [23, 24], little work has been
done on compression techniques for hash tables, despite
their prevalence in many bioinformatics applications.
Hash tables are closely related to inverted index lists,
which are used widely for indexing text and Web pages
for rapid search [25], and where compression techniques
have been applied [26]. However, those systems do not
exploit the fact that a genomic hash table indexes an
exhaustive set of k-mers, which presents domain-specific
opportunities for compression.

An early system called cafe [27] for aligning sequences
to databases did use compression techniques in rep-
resenting a genomic index. However, that system used
an inverted index structure rather than a hash table, so
it lacked an exhaustive set of offsets. Instead, it used
integer coding to compress differences in the position
table, achieving compression of 4–6 times smaller than
the uncompressed size. We believe that compression of
offsets is much more efficient than compressing posi-
tions, since for large genomes adjacent positions do not
have the same pattern of closeness that offsets do and
therefore do not compress as well. Moreover, to achieve
maximal speed in combining hash table lookups, in pro-
cedures like the spanning set or complete set algorithms
in gsnap [19], it is faster to have lists of positions avail-
able in an uncompressed format.

One contribution of this paper has been to show how
SIMD operations can be applied to genomic represen-
tations. Vectorization has found applications in other
areas of bioinformatics, such as speeding up Smith-
Waterman dynamic programming for nucleotide align-
ment [28–30] and profile HMM searches [31]. Likewise,
we have applied vectorization to other parts of our align-
ment programs, such as computing mismatches between
a query sequence and a genomic segment; constructing
a localized hash table for a genomic region; perform-
ing dynamic programming alignment at the nucleotide

level; and filtering results from a list of genomic positions
to satisfy a given range of coordinates [32].

The BP64-columnar scheme in this paper is a solution
to the general problem of differential coding with random
access, and complements the BP128-vertical scheme for
serial access. Therefore, our scheme conld be considered
for any problem where a monotonically nondecreasing
set of integers can be compressed and then retrieved by
random access. In particular, many bitpacking schemes
have been proposed for text retrieval [33], and database
tables often have a format similar to our offset array.
Applying our methodology to other domains is beyond
the scope of this paper. However, by providing our meth-
ods in a standard package, we hope to facilitate further
work by researchers to experiment with our methods and
to use them more widely.

Acknowledgements
The author thanks Daniel Lemire and Nathan Kurz for helpful discussions, and
for making source code for their BP128 compression format publicly avail-
able. The author also thanks Simon Gog for modifying the SDSL functions to
encode differences of zero efficiently.

Competing interests
The author declares that he has no competing interests.

Received: 3 November 2015 Accepted: 1 April 2016

References
	1.	 Kahn SD. On the future of genomic data. Science. 2011;331:728–9.
	2.	 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment

search tool. J Mol Biol. 1990;215:403–10.
	3.	 Ma B, Tromp J, Li M. PatternHunter: faster and more sensitive homology

search. Bioinformatics. 2002;18:440–5.
	4.	 Rumble SM, Lacroute P, Dalca AV, Flume M, Sidow A, Brudno M.

SHRiMP: accurate mapping of color-space reads. PLoS Comput Biol.
2009;5:1000386.

	5.	 Kent WJ. BLAT-the BLAST-like alignment tool. Genome Res.
2002;12:656–64.

	6.	 Sedlazeck FJ, Rescheneder P, von Haeseler A. NextGenMap: fast and
accurate read mapping in highly polymorphic genomes. Bioinformatics.
2013;29:2790–1.

Additional files

Additional file 1. Source code. Source code in an archive format, using
tar and bzip2, for all bitpacking implementations of hash tables, based
on a modification of the SDSL 2.0 package. Package also includes the
benchmarking programs used for timing experiments. This is the same
package as provided in our companion paper on bitpacking for enhanced
suffix arrays.Additional file 2. Source code for constructing benchmarks.
Source code in an archive format, using tar and bzip2, for users to gener-
ate their own benchmarks for any genomic text in FASTA format. This is
the same package as provided in our companion paper on bitpacking for
enhanced suffix arrays.

http://dx.doi.org/10.1007/s13015-016-0069-5
http://dx.doi.org/10.1007/s13015-016-0069-5

Page 13 of 13Wu ﻿Algorithms Mol Biol (2016) 11:5

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

	7.	 Wu TD, Watanabe CK. GMAP: a genomic mapping and alignment pro-
gram for mRNA and EST sequences. Bioinformatics. 2005;21:1859–975.

	8.	 Ning Z, Cox AJ, Mullikin JC. SSAHA: a fast search method for large DNA
databases. Genome Res. 2001;11:1725–9.

	9.	 Ge H, Liu K, Juan T, Fang F, Newman M, Hoeck W. FusionMap: detecting
fusion genes from next-generation sequencing data at base-pair resolu-
tion. Bioinformatics. 2011;27:1922–8.

	10.	 Li M, Ma B, Kisman D, Tromp J. PatternHunter II: highly sensitive and fast
homology search. Genome Inform. 2003;14:164–75.

	11.	 Lemire D, Boytsov L. Decoding billions of integers per second through
vectorization. Softw Pract Exp. 2015;45:1–29.

	12.	 Elias P. Universal codeword sets and representations of the integers. IEEE
Trans Inf Theory. 1975;21:194–203.

	13.	 Fraenkel AS, Klein ST. Robust universal complete codes for transmission
and compression. Discret Appl Math. 1996;64:31–55.

	14.	 Willhalm T, Popovici N, Boshmaf Y, Plattner H, Zeier A, Schaffner J. SIMD-
scan: ultra fast in-memory table scan using on-chip vector processing
units. Proc VLDB Endow. 2009;2:385–94.

	15.	 Schlegel B, Gemulla R, Lehner W. Fast integer compression using SIMD
instructions. In: Proceedings of the sixth international worshop on data
management on new hardware. 2010. p. 34–40.

	16.	 Lemire D, Boytsov L, Kurz N. SIMD compression and the intersection of
sorted integers. Softw Pract Exp. 2015. doi:10.1002/spe.2326.

	17.	 Shahbahrami A, Juurlink B, Vassiliadis S. Performance impact of mis-
aligned accesses in SIMD extensions. In: Proceedings of 17th annual
workshop on circuits, systems and signal processing. 2006. p. 334–42.

	18.	 Gog S, Beller T, Moffat A, Petri M. From theory to practice: plug and
play with succinct data structures. In: 13th international symposium on
experimental algorithms. 2014. p. 326–37.

	19.	 Wu TD, Nacu S. Fast and SNP-tolerant detection of complex variants and
splicing in short reads. Bioinformatics. 2010;26:873–81.

	20.	 Daily K, Rigor P, Christley S, Xie X, Baldi P. Data structures and compres-
sion algorithms for high-throughput sequencing technologies. BMC
Bioinform. 2010;11:514.

	21.	 Williams H, Zobel J. Compression of nucleotide databases for fast search-
ing. CABIOS. 1997;13:549–54.

	22.	 Brandon MC, Wallace DC, Baldi P. Data structures and compression algo-
rithms for genomic sequence data. Bioinformatics. 2009;25:1731–8.

	23.	 Giancarlo R, Scaturro D, Utro F. Textual data compression in computa-
tional biology: a synopsis. Bioinformatics. 2009;25:1575–86.

	24.	 Deorowicz S, Grabowski S. Data compression for sequencing data. Algo-
rithms Mol Biol. 2013;8:25.

	25.	 Zobel J, Moffat A. Inverted files for text search engines. ACM Comput
Surv. 2006;38:6.

	26.	 Scholer F, Williams HE, Yiannis J, Zobel J. Compression of inverted indexes
for fast query evaluation. In: Proceedings of the 25th annual ACM confer-
ence on research and development in information retrieval. 2002. p.
222–29.

	27.	 Williams HE, Zobel J. Indexing and retrieval for genomic databases. IEEE
Trans Knowl Data Eng. 2002;14:63–78.

	28.	 Wozniak A. Using video-oriented instructions to speed up sequence
comparison. Comput Appl Biosci. 1997;13:145–50.

	29.	 Rognes T, Seeberg E. Six-fold speed-up of Smith-Waterman sequence
database searches using parallel processing on common microproces-
sors. Bioinformatics. 2000;16:699–706.

	30.	 Farrar M. Striped Smith-Waterman speeds database searches six times
over other simd implementations. Bioinformatics. 2007;23:156–61.

	31.	 Eddy SR. Accelerated profile HMM searches. PLOS Comput Biol.
2011;7:1002195.

	32.	 Wu TD, Reeder J, Lawrence M, Becker G, Brauer MJ. GMAP and GSNAP for
genomic sequence alignment: Enhancements to speed, accuracy and
functionality. Methods Mol Biol. 2016;1418:283–334.

	33.	 Williams HE, Zobel J. Compressing integers for fast file access. Comput J.
1999;42:193–201.

http://dx.doi.org/10.1002/spe.2326

	Bitpacking techniques for indexing genomes: I. Hash tables
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Methods
	Vectorized bitpacking
	Layouts for vectorized bitpacking
	Bitpacking for fast random data access
	Reduced block size
	Columnar packing layout
	Bidirectional difference scheme
	Within-column summation
	Retrieval of two adjacent offset values

	Evaluation
	Experimental setup
	Retrieving a single offset value
	Retrieving two offset values

	Discussion
	Acknowledgements
	References

