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Abstract 

Background:  Hash tables constitute a widely used data structure for indexing genomes that provides a list of 
genomic positions for each possible oligomer of a given size. The offset array in a hash table grows exponentially with 
the oligomer size and precludes the use of larger oligomers that could facilitate rapid alignment of sequences to a 
genome.

Results:  We propose to compress the offset array using vectorized bitpacking. We introduce an algorithm and data 
structure called BP64-columnar that achieves fast random access in arrays of monotonically nondecreasing integers. 
Experimental results based on hash tables for the fly, chicken, and human genomes show that BP64-columnar is 3 to 
4 times faster than publicly available implementations of universal coding schemes, such as Elias gamma, Elias delta, 
and Fibonacci compression. Furthermore, among vectorized bitpacking schemes, our BP64-columnar format yields 
retrieval times that are faster than the fastest known bitpacking format by a factor of 3 for retrieving a single value, 
and a factor of 2 for retrieving two adjacent values.

Conclusions:  Our BP64-columnar scheme enables compression of genomic hash tables with fast retrieval. It also has 
potential applications to other domains requiring differential coding with random access.
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Background
In bioinformatics applications, genomes are generally 
represented not as a linear string of nucleotides, but as 
indexed data structures that can facilitate various analy-
ses, such as the rapid alignment of query reads. With 
the advent of high-throughput sequencing and the gen-
eration of unprecedented volumes of read data  [1], 
speed has become paramount in genomic alignment. 
One major indexing method of preprocessing genomes 
for efficient alignment is a hash table. A hash table rep-
resents a genome sequence as multiple lists of genomic 
positions, one list for each possible k-mer, or oligomer of 
some preselected length k.

Hash tables are used by various programs, including 
blast  [2], patternhunter  [3], shrimp  [4], blat  [5], 
NextGenMap  [6], and gmap  [7], to identify short oli-
gomer (or seed) matches between a read and the genome. 

These seeds can then be combined or extended to obtain 
a more complete alignment. Hash tables are particu-
larly useful for aligning reads that include multiple mis-
matches or indels relative to a genome. Hash tables are 
also useful for applications where ambiguity arises in the 
nucleotide content at a given position, such as with single 
nucleotide polymorphisms, or SNPs, since a hash table 
can map two different oligomers onto the same position.

In genomics, hash tables are typically implemented as a 
simple lookup table [8], in which an offset array contains 
pointers into a positions array, for the universe of possible 
k-mers (Fig. 1a). This straightforward table implementa-
tion is feasible because of the fixed and relatively small 
value of k needed for our domain. More general domains, 
having keys of arbitrary or relatively long length, require 
a hash function to compute a bucket index. Hash func-
tions raise the possibility of collisions, where different 
keys map to the same bucket index, which then necessi-
tate potentially complex and time-consuming procedures 
for handling such collisions.
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In contrast, a lookup hash table directly provides a list 
of positions in the genome containing a given k-mer. 
Obtaining that list requires extracting two adjacent val-
ues from the offset array: one representing the starting 
pointer in the positions file for the given k-mer, and one 
for the following pointer (i.e., for the k-mer incremented 
by 1). The difference between these two offsets represents 
the number of entries in the positions array for the given 
k-mer.

One limitation of lookup hash tables is that the size of 
the offset array grows exponentially with k. Consequently, 
existing applications have generally used small k-mer 
sizes, such as 11-mers for blastn and blat, and 12-mers 
for our initial implementation of gmap. However, larger 
oligomers are generally preferable for performing search, 
because their greater specificity can greatly reduce the 
number of candidate genomic positions that need to be 
processed. Accordingly, the developers of one hash table-
based alignment program FusionMap found that using 
14-mers gave a speedup of 2–4 times over using 12-mers 
for alignment [9].

Although modern computers can access increasingly 
large amounts of primary random-access memory, or 
RAM, storage space still remains an issue for storing 
and using large data structures. As the authors of the 
PatternHunter  II program stated, their development 
was hampered by the the “large memory requirements 

for multiple hashtables”  [10]. Memory considerations 
also likely precluded the developers of FusionMap from 
extending their idea beyond 14-mers, since a hash table 
for 15-mers would require the offset array to be 4 GB in 
size.

In this paper, we address this problem by using com-
pression. Compression allows larger amounts of informa-
tion to be stored within a limited amount of memory. Our 
proposed compression scheme depends on the observa-
tion that values in the offset array are monotonically non-
decreasing, because they point to successive locations 
in the positions array. In other words, each value in the 
offset array is equal to or greater than the previous one. 
In this situation, compression can be applied to the dif-
ferences between adjacent values; such differences are 
generally small integers, which can be compressed more 
efficiently than large integers. This type of compression 
has been termed differential coding, as opposed to direct 
coding, where successive values may increase or decrease 
in value, but the original values themselves tend to be 
small.

Specifically, we explore an approach to compressing off-
set arrays using a technique called vectorized bitpacking, 
in which blocks of integers are represented with fewer 
than the 32 bits that are normally allocated for them, and 
then accessed and processed in parallel. Various schemes 
for vectorized bitpacking have been developed, but they 
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Fig. 1  Hash table representation. a Standard representation using an offset array that indicates the start of genomic positions for a given k-mer. 
b Compressed representation where the offset array has been replaced by a bitstream and a metainformation array. The bitstream contains differ-
ences between offsets that have been compressed by bitpacking them into blocks of a given size. The metainformation array contains a pointer 
and a prefix sum for every block
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have been designed for the problem of decoding streams 
of integers serially. In particular, a recently published 
scheme for vectorized bitpacking called BP128  [11] is 
able to achieve very high throughputs for serial decoding, 
at a rate of 2 billion integers per second, which represents 
the fastest known method to date.

However, for the genomic problem of compressing and 
decoding offset arrays in hash tables, we do not require 
decoding of all integers serially, but rather decoding of 
individual integers with random access. In particular, for 
a given k-mer, we wish to decode two adjacent elements 
from an arbitrary location within a compressed offset 
array. In this paper, we introduce a vectorized bitpack-
ing scheme that is relatively compact and extremely fast 
for this task, and we demonstrate its effectiveness for 
genomic applications.

Methods
Vectorized bitpacking
As its name suggests, vectorized bitpacking involves two 
concepts: bitpacking and vectorization. In bitpacking, we 
attempt to conserve computer storage space by using as 
few bits as possible for storing each integer. Normally, 
arrays of integers are represented by using a single 32-bit 
word for each integer, which can represent positive val-
ues from 0 to 232 − 1, or approximately 4 billion. How-
ever, in many applications, including ours, integer values 
(or their differences) have small values that do not need 
all 32 bits in each word. A bitpacking scheme, therefore, 
uses fewer than 32 bits for each integer when possible.

Many bitpacking schemes are already well established 
for compressing integers. For example, one example of 
bitpacking is a universal code, such as Elias gamma cod-
ing [12]. In Elias gamma coding, a positive integer need-
ing c bits can be encoded using (2c − 1) bits, where the 
first (c − 1) bits are zeroes, used as a codeword to indi-
cate that the following c bits contain the actual integer. 
These leading (c − 1) bits are needed in serial decoding 
to delineate the beginning and end of each integer. Like-
wise, a similar scheme called Elias delta coding [12] rep-
resents an integer by encoding its number of bits c with 
Elias gamma, and appending the (c − 1) bits that follow 
the most significant bit. Another universal code uses sets 
of Fibonacci numbers to encode an integer  [13], and is 
intended to help with decoding in the presence of noise, 
because it can recover from a damaged bitstream.

The idea behind the second concept, vectorization, is 
to design algorithms so that they access and process inte-
gers in parallel, rather than individually. One type of vec-
torization makes use of special computer instructions for 
processing integers in parallel. These SIMD (single instruc-
tion, multiple data) instructions exploit specialized 128-
bit and 256-bit registers that have been incorporated into 

processors over the past decade, and which are scheduled 
to expand to 512-bit registers in the near future. For exam-
ple, a 128-bit register allows a processor to process four 
32-bit integers in parallel, with SIMD  operations such as 
shifting all four integers rightward by a certain number of 
bits, or adding the four integers in one register to the four 
integers in another register simultaneously.

Vector-based operations require that integers be 
encoded with a uniform bit length. Therefore, unlike uni-
versal codes, where each integer can have a distinct num-
ber of bits, a vectorized bitpacking scheme must allocate 
the same number of bits for the  integers. This does not 
mean that a single bit width needs to hold for the entire 
array of integers. Rather, an array can be divided into 
blocks of a predetermined size, such as 128 or 64 inte-
gers at a time, and all integers within each block can then 
be represented using a uniform number of bits. The bit 
width for each block is selected to be sufficient for the 
largest value in that block.

The bit width for each block represents an attribute 
that needs to be stored in a separate data structure we 
call the metainformation array (Fig.  1b). For random-
access applications, the metainformation array also needs 
to contain, for each block, a pointer into the bitstream 
where that block begins. If the bit width can be inferred 
from the total size of the block, then the metainforma-
tion array can represent the bit width implicitly based on 
the difference between successive pointer values.

Differential coding, which computes differences 
between adjacent integers before encoding, requires com-
putation of a cumulative sum after decoding to obtain the 
original ascending values. This value is called a prefix sum. 
For serial applications, a prefix sum can be computed as 
a running total from the beginning of the data stream. 
However, for random-access applications, it would be 
computationally expensive to repeatedly compute each 
prefix sum from the beginning of the data stream. There-
fore, computational efficiency can be achieved by stor-
ing intermediate prefix sums, one for the start of each 
block, so that the cumulative sum for any position can be 
obtained by summing only a relatively few difference val-
ues starting from the preceding intermediate prefix sum.

Layouts for vectorized bitpacking
When the bit width for a block is less than 32, more than 
one integer can be stored in each 32-bit word. The way in 
which integers are arranged in words can be considered 
a layout. Two layouts have been proposed so far for vec-
torized bitpacking. In a horizontal layout, adjacent inte-
gers are packed next to each other [14]. Figure 2a shows 
the horizontal layout for a bit width of 6, where each row 
represents a 128-bit vector of four 32-bit words that are 
accessed in parallel. Integers that are processed in parallel 
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are shaded with the same color. In the decoding process, 
this layout requires a separate shift operation for each 
integer in the word. Although  SIMD operations exist 
for performing distinct shifts for the words in a register, 
they entail a fair amount of complexity  in the decoding 
algorithm.

In contrast, the vertical layout used in BP128 can be 
processed by SIMD operations in a more straightforward 

manner. This layout stripes integers in sets of four across 
each set of four words  [11, 15, 16]. Figure  2b shows a 
vertical layout for a bit width of 6. Decoding in this lay-
out loads four 32-bit words in parallel (Fig.  3a) and 
masks their low-order bits to obtain the first four values 
(Fig. 3b). Then, the next four values can be obtained by 
right-shifting the words in parallel by the uniform bit 
width for the block (Fig.  3c), and again masking their 
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Fig. 2  Packing layouts for block-based differential coding. Each layout encodes a block of 64 difference values using 6 bits for each value. Values are 
placed into three 128-bit registers, each containing four 32-bit words. Each small box shows a 6-bit quantity, labeled with an integer r that indicates 
the place for storing the difference value dr. Some 6-bit quantities are spread over two words, as shown by dashed lines. Blocks of color indicate par-
allel processing of the difference values needed to decode the value x43. a Horizontal layout, with values stored in index order. b Vertical layout, with 
values striped across each set of words, as used in BP128. c Columnar layout, unidirectional scheme, with indices at increments of 4 striped across 
each set of words. d Columnar layout, bidirectional scheme
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low-order bits (Fig. 3d). Since these values represent the 
differences between the original values, we use a SIMD 
operation to keep a running sum of the shifted-and-
masked low-order bits (Fig. 3e). The remaining values in 
the block can be decoded using the same SIMD shift and 
mask steps, with a new set of four 32-bit words loaded 
whenever all of the currently loaded difference values 
have been processed. Source code for decoding a vertical 
layout is shown in Fig. 3f.

In the BP128 algorithm, because four cumulative 
sums are maintained in parallel, it is not the differ-
ences between adjacent values (i.e., xi+1 − xi) that 
we want for differential coding, but rather the differ-
ences between each value and the one four elements 
away (i.e., xi+4 − xi ). An exception holds for the first 
four differences in each block, which are computed for 
x1, x2, x3, and x4 relative to the prefix sum x0 for the 
beginning of the block, which acts as the starting point 
for computing the four cumulative sums. The overall 

cyclic difference scheme for a block of 64 is shown in 
Fig. 4a.

Bitpacking for fast random data access
Computing cumulative sums in BP128 is expensive for 
random-access applications, since the decoding proce-
dure is designed to extract the entire block of 128 inte-
gers. In other words, BP128 performs computations that 
are irrelevant if we want only a single cumulative sum 
from a given block. To improve vectorized bitpacking for 
random-access applications, we introduce the following 
modifications: (1) reduce the block size, (2) arrange inte-
gers within each block in a columnar layout, and (3) uti-
lize a bidirectional scheme for computing differences 
between values. These modifications make it possible to 
decode a single value in a differentially encoded block 
with greater efficiency than the BP128 scheme. We dis-
cuss each of these modifications in turn.

const static __m128i mask6 = _mm_set1_epi32(63U);

void unpack_06 (__m128i *out, __m128i *in) {
  __m128i in0 = _mm_load_si128(in);  // a
  __m128i sum = _mm_and_si128(in0, mask6);  // b
  _mm_store_si128(out++, sum);

  __m128i shifted = _mm_srli_epi32(in0,6);  // c
  __m128i masked = _mm_and_si128(shifted, mask6);  // d
  sum = _mm_add_epi32(sum, masked);  // e
  _mm_store_si128(out++, sum);

  ... [continue shift/mask/add to decode entire block] ...
}
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Fig. 3  Decoding of vertical layout. An example is shown for the first two cycles of serial decoding of the vertical layout from a block packed with 
a bit width of 6. Shaded regions correspond to the values in Fig. 2b. Source code is shown in part (f), with key steps shown graphically in parts (a) 
through (e). a Loading of the first 128-bit vector from the block. b Masking of the first four difference values from the vector. c, d Shifting and mask-
ing of the second four difference values from the vector. e Parallel addition of the first and second vectors of difference values. f Source code in the 
C language. Comments in the source code correspond to the steps labeled a through e
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Reduced block size
In vectorized bitpacking, integers are encoded using a 
uniform bit width for each block. The BP128 scheme is 
so named because it packs integers in blocks of 128. One 
reason for using that block size is that encoding 128 inte-
gers, regardless of which bit width from 0 through 32 is 

used, results in a bitstream that is aligned on a 128-bit 
word boundary, which can improve the speed of SIMD 
load instructions on some computer systems [17].

For serial applications, since all values in a block are 
decoded, the choice of block size should have little effect 
on overall decoding speed. In fact, a larger block size 
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Fig. 4  Difference schemes for vectorized differential coding. These schemes show the bitstream and the metainformation values for a given block, 
with p0 and p1 indicating the positions in the bitstream where this block and the next block begin, and x0 and x64 indicating the prefix sum for the 
two blocks. These schemes show how the original ascending values x in a block can be converted to difference values d. a Unidirectional cyclic 
differences as used in BP128, except shown here for a block size of 64. The difference di involves the original values xi+1 and xi−3. An exception holds 
for the first row, where differences are taken relative to x0, the prefix sum for the block. Dashed boxes indicate the first two processing steps for the 
vertical layout. b Bidirectional cyclic difference scheme, which matches the unidirectional scheme for the first half of the block, but computes differ-
ences relative to x64 for the second half of the block. Dashed boxes indicate the first two processing steps for column 2. In both parts, shaded regions 
correspond to the values needed to compute the circled values x43, requiring 3 loads for the unidirectional scheme and 2 loads for the bidirectional 
scheme. The colors correspond to those in Fig. 2c, d. Q1–Q4 indicate quarter blocks, and are annotated with the total number of SIMD loads required
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may be slightly more efficient for exhaustive decoding, 
because each call to a decoding procedure for a single 
block can handle a larger amount of work.

However, for random-access applications, a smaller 
block size is potentially advantageous in reducing the 
amount of computation needed within a given block to 
obtain a single value. In other words, a block size of 64 
should roughly halve the number of SIMD load, shift, 
mask, and addition operations needed to decode a single 
value, relative to a block size of 128. The actual effect on 
decoding speed may not achieve these theoretical savings, 
though, because of the time required for memory access 
and the effect of pipelining of operations by the proces-
sor. The drawback of halving the block size is that twice as 
many pieces of metainformation (pointers and block pre-
fix sums) are required, thereby increasing the amount of 
space needed.

One advantage of a block size of 64 is that it allows us 
to restrict the uniform bit widths to even values. As we 
mentioned previously, the BP128 scheme aligns its block 
of 128 integers at a 128-bit word boundary, for every 
bit width from 0 through 32, without any need for zero 
padding. For example, for a bit width of 3, a block of 128 
integers requires exactly three 128-bit registers for stor-
age. However, for a block size of 64, odd bit widths do 
not offer any savings in storage relative to the next larger 
even bit width. For this block size, a bit width of 3 uses 
one and a half 128-bit registers, effectively the same space 
as for a bit width of 4, which uses two full 128-bit reg-
isters. Furthermore, the decoding procedures for odd bit 
widths are more complex than those for even bit widths, 
because odd sizes do not fit evenly into 32-bit registers, 
necessitating more SIMD operations for merging integers 
that cross from the end of one register into the begin-
ning of the next one (as indicated by the dashed lines 
in Fig.  2). Consequently, decoding speeds for even bit 
widths have been shown to be slightly faster than for odd 
bit widths [16].

Although we will continue our exposition of our bit-
packing scheme using a block size of 64, we will con-
sider experimentally an even smaller block size of 32. 
Such a block size would allow us to restrict bit widths 
to multiples of 4, and should theoretically reduce the 
number of SIMD operations further, albeit at a cost of 
further  doubling the storage needed for metainforma-
tion. A block size of 64 is somewhat more natural for 
genomic applications, since it is a power of 4, meaning 
that the beginning of each block can be associated with 
a specific k-mer. However, a natural interpretation is not 
essential for either serial or random-access decoding, so 
arbitrary block sizes can be considered, although some 
may turn out to be more or less optimal for compres-
sion or speed.

Columnar packing layout
We can greatly improve the efficiency of random access 
for differential decoding by noting that most of the SIMD 
computations in a BP128 decoding are wasted if we need 
only a single cumulative sum in the block. For example, 
consider the case where we require only the cumulative 
sum for the 43rd entry, or x43. Fig. 2a, b show with color 
coding the loads needed for the horizontal and vertical 
layouts. In both layouts, all difference  values from d0 
through d42 must be decoded and summed in order to 
obtain the value for x43. For the vertical layout, a total of 
11 sets of decoding steps are needed to reach x43, with 
the first two decoding steps represented by dashed boxes 
in Fig. 4a.

However, the critical path for obtaining x43 can be 
shortened if we can load the difference values by col-
umns instead, as shown by the light blue, dark blue, and 
violet shading in Fig. 4a. Then, the path to computing x43 
involves summing the difference values in the columnar 
path from d2 through d42, and requires only three decod-
ing steps instead of 11.

To decode difference values by columns instead of 
rows, we propose a new packing layout called a colum-
nar layout (Fig. 2c). In this layout, we pack one column 
at a time, with the 16 entries in column  0 (d0, d4, ..., 
d60 ) striped in groups of four across available spaces in 
a series of 128-bit vectors. The remainder of the block 
is similarly packed in column order for columns  1, 2, 
and 3. The SIMD loads needed for obtaining x43 are 
shaded in light blue, dark blue, and violet in Fig. 2c.

Bidirectional difference scheme
The columnar layout requires us to implement a separate 
decoding procedure for each column in each quarter-
block, where the first quarter-block (Q1) contains block 
positions 1–16; Q2 contains 17–32; the Q3 contains 
33–48; and Q4 contains 48–63 (Fig.  4a). Entries in Q1 
need a single SIMD load of integers, whereas entries in 
Q2, Q3, and Q4 need two, three, and four SIMD loads, 
respectively.

In this scheme, the Q3 and Q4 entries require more 
loads, since those values are farther away from the pre-
fix sum x0, which constitutes the starting point for com-
puting cumulative sums. However, we can improve the 
situation if we consider that each block has both a begin-
ning prefix sum x0 and an ending prefix sum x64, which is 
already stored in the metainformation array as the begin-
ning prefix sum for the next block. Therefore, we can 
compute the differences for the first half-block (values x0 
through x32) relative to the beginning prefix sum, and the 
differences for the second half-block (values x32 through 
x64) relative to the ending prefix sum. (The sum x32 can 
be computed from either the beginning or the ending 
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prefix sum.) Hence, to compute a value for the second 
half of the block, we can perform SIMD operations just 
on that half, and then subtract the resulting cumulative 
sum from x64.

This idea gives rise to a bidirectional difference scheme 
(Fig. 4b), rather than the unidirectional scheme (Fig. 4a) 
that we have been considering so far. Consequently, the 
bidirectional scheme allows for fewer loads of data for 
quarter blocks Q3 and Q4, which now require only two 
and one SIMD loads, respectively. For any given entry xr 
at block position r, we can compute the desired column 
by first computing the distance δ = 31− |r − 32| to the 
nearest prefix sum, which is equivalent to δ = r − 1 for 
r ≤ 32 and δ = 63− r for r ≥ 32. Then we require only 
the values in column (δ mod 4), beginning from row 0 in 
the half-block to row ⌊δ/4⌋.

For our example of computing x43 in Q3, the desired col-
umn in the bidirectional scheme is shaded in Fig. 4b as light 
blue and dark blue, requiring two SIMD loads, as opposed 
to three. These shades correspond to the bidirectional 
columnar layout shown in Fig. 2d. In this layout, we pack 
the integers in the first half-block according to the columns 
in Fig. 4b, and then the integers in the second half-block, 
again according to columns, but in reverse order.

Within‑column summation
To decode a value from the bitcompressed differences, 
we need a total of 256 specialized procedures, to handle 
all combinations of the 16 possible even bit widths, with 
four columns for each of the four quarter-blocks. A jump 
table for xr can be used to invoke the appropriate decod-
ing procedure, based on (1) the bit width, (2) the column 
(δ mod 4), and (3) the quarter-block, based on ⌊r/16⌋. A 
bit width of 0 indicates the special case in which all val-
ues in the block are zero; for this case, the decoding pro-
cedure can simply return the prefix sum x0 for any entry 
in the block.

As an example of one of these 256 procedures, Fig.  5 
shows a procedure for decoding column  2 for the Q2 
quarter block from a block with a bit width of 6. The two 
decoding steps are also shown by the dashed boxes in 
Fig. 4b. The first decoding step yields four difference val-
ues, shown as words 0 through 3 in Fig. 5c, and the sec-
ond decoding step yields another four difference values, 
shown in Fig.  5d. Our procedure then performs a final 
SIMD addition to add the first set of difference values 
to the second set, thereby yielding words 4 through 7 in 
Fig. 5e. Words 0 through 7 from Fig. 5c, e can be stored 
in an array, as shown in Fig. 5g.

Through appropriate summations of the first four 
words, we can obtain the cumulative sums x3, x7, x11, 
and x15 for Q1, by using 1, 2, 3, and 4 terms, respectively. 
It would therefore seem, by extension, that obtaining 

the cumulative sums x19, x23, x27, and x31 for Q2 would 
require computing over 5, 6, 7, and 8 terms, respectively. 
However, our final SIMD computation is designed to 
perform some additions in parallel, and therefore makes 
summation of at most four terms sufficient in all cases. 
For example, to compute x23, we need add only words 2 
through 5, which represent the four quantities d10, d14 , 
(d2 + d18), and (d6 + d22) instead of the expected addi-
tion of six separate quantities d2, d6, d10, d14, d18, and d22.

From this example, we also see that the entries for Q1 
are decoded on the way to decoding the Q2 entries. Like-
wise, the entries for Q4 are decoded on the way to decod-
ing the Q3 entries. Therefore, we need to devise only 128 
distinct procedures for decoding the Q2 and Q3 quarter-
blocks, with the Q1 and Q4 procedures being derived 
easily as the initial parts of those procedures.

Retrieval of two adjacent offset values
Although some applications of differential coding require 
retrieval of only a single value, our domain of interest, 
genomic alignment, requires us to decode two adjacent 
offsets. These two values specify the endpoints for the list 
of genomic positions for a given k-mer, representing the 
start and end of the list in the positions array. In other 
words, when we decode x23 to obtain the start of the list, 
we must also decode x24 to obtain the end of the list. For 
a vertical layout, the additional value requires just one 
more difference value to be extracted and added. How-
ever, since our bitpacking scheme is designed to extract 
columns of values, it requires an entire second decod-
ing procedure, in this case to extract column  3 of the 
Q2 entries. The most straightforward implementation 
to retrieve two adjacent offset values would be to make 
separate calls to two decoding procedures, which we call 
a two-pass implementation.

However, a slight improvement can be made by noting 
that in our difference scheme, adjacent values will be in 
neighboring columns (where we consider column 3 and 
column 0 to be neighboring). Therefore, decoding of col-
umn 0 will always be followed by column 1; column 1 by 
column 2; column 2 by column 3; and column 3 by col-
umn 0. Because adjacent columns are packed in adjacent 
stripes in the columnar layout, difference values from 
the second column may have already been loaded dur-
ing computations for the first column. We can therefore 
combine the two  separate decoding procedures to yield 
a one-pass implementation. A one-pass implementation 
can achieve some efficiency savings by avoiding duplicate 
SIMD loads of registers. These one-pass procedures can 
be derived by appropriate merging of individual two-
pass procedures, taking advantage of registers that have 
already been loaded.
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Evaluation
Experimental setup
We evaluated the tradeoff between space and time for 
various methods to retrieve offsets from a hash table, 
both for a single offset and a pair of adjacent offsets. We 
used genomes of different sizes, namely, the fly genome 
(D. melanogaster version 5.25.64), chicken genome (Gal-
lus gallus version 4), and human genome (version hg19).

We implemented our methods within the Succinct 
Data Structure Library (SDSL)  2.0 package, which is 
publicly available as C++ source code  [18]. Our bit-
packing  code derives from a revision  [16] of the origi-
nal BP128 work  [11], which we modified to implement 
our columnar method. To be consistent with the nam-
ing of classes in the SDSL package, our classes are 

named bp64_encv_vector for the BP64-vertical 
layout; bp64_encc_vector for BP64-columnar; and 
bp32_encv_vector for BP32-columnar. We also 
implemented benchmarking procedures to compare 
our methods with existing compression methods in 
SDSL, namely, Elias gamma, Elias delta, and Fibonacci 
encoding, all with a block size of 64, as well as  with an 
uncompressed int_vector method available in SDSL. 
We added versions of these compression methods that 
encode the incremental value of 0 efficiently, by subtract-
ing 1 from each positive integer during encoding and 
adding an equivalent amount when decoding an integer 
within a block. These modifications were implemented 
with the assistance of the author of SDSL (personal com-
munication). Without these modifications, execution 

const static __m128i mask6 = _mm_set1_epi32(63U);

void unpack_06_col2_Q2 (__m128i *out, __m128i *in) {
  __m128i in0 = _mm_load_si128(in);  // a
  __m128i in1 = _mm_load_si128(++in);  // b
  __m128i out0 = _mm_srli_epi32(in0,24);  // c
  
  __m128i out1 = _mm_or_si128( _mm_srli_epi32(in0,30),
                               _mm_slli_epi32(in1,2));  // d
  
  out0 = _mm_and_si128(out0, mask6);
  _mm_store_si128(out++, out0);

  out1 = _mm_add_epi32(out0, out1); // e
  out1 = _mm_and_si128(out1, mask6);
  _mm_store_si128(out++, out1);
}

a
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Fig. 5  Decoding of columnar layout. An example is shown for decoding column 2 for quarter block Q2 from a block packed with a bit width of 6. 
Source code is listed in part (f), with key steps shown graphically in parts (a) through (e), and a final summation step in part (g). a, b Loading of two 
128-bit vectors from the block. c Parallel (SIMD) right shift of each 32-bit word by 24 bits, to move d2, d6, d10, and d14 into the lowest 6 bits. d Recom-
bining of d18, d22, d26, and d30, which are split between two 128-bit vectors in the block, using a parallel right shift of the first vector by 30 bits and 
a parallel left shift of the second vector by 2 bits. e Parallel addition of the first and second vector of differences. f Source code in the C language. 
Comments in the source correspond to the steps labeled a through e. g Difference results shown as an array of 32-bit words. The value x7 can be 
obtained by adding two terms from the array, while the value x23 can be obtained by adding four terms
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times of the original Elias and Fibonacci methods were 
extremely slow in our early benchmarking experiments.

All timing experiments were performed on a reserved 
Linux computer having 32 Intel Xeon E5-2667 v3 8-core 
processors running at 3.20 GHz. The computer had total 
memory of 264  GB and cache memory of 20  MB. The 
SDSL 2.0 library was compiled with the GNU g++ com-
piler, version 4.9.0, with the default settings, which turned 
off debugging code, and added the compiler flags “-O3 
-ffast-math -funroll-loops -msse4.2”.

Our benchmarking code generates 10 million random 
values uniformly over the space of possible queries and 
measures the average time to retrieve results for each 
query. Data structures were either read into memory 
from the filesystem or generated de novo in memory 
from the input files. A checksum was computed over 
the results to ensure that the methods gave consistent 
results and that the compiler did not optimize out the 
query. All timing measurements were repeated for 9 tri-
als, with each trial involving different random values 
generated and testing different compression strategies 
in a randomly selected order. Results are summarized by 
the median over the 9 trials. We also measured the time 
for iterating through the 10 million queries, obtaining 
the test offset index, and performing the checksum, and 
subtracted the median times from all runs. These times 
amounted to a negligible fraction of the overall running 
times.

Source code for all bitpacking implementations of 
hash tables (and our companion research on bitpacking 
for enhanced suffix arrays) is made available as Addi-
tional file  1. The package is a modification of SDSL  2.0 
that includes our new methods, benchmarking code, 
and alteration of existing methods to encode the incre-
mental value of 0 efficiently. Genomic input files for the 
benchmarking experiments are hosted on a public Web 
site, with downloading instructions available within the 
package. Alternatively, we have prepared a package, avail-
able for download as Additional file 2, that allows users to 
generate their own benchmarks from any DNA or RNA 
source.

Retrieving a single offset value
We generated genomic hash tables using 15-mers, sam-
pled every 3 bp in the genome. We used the offset array 
from each hash table as a source of monotonically non-
decreasing values to be compressed in the following 
ways: (1)  uncompressed, using the SDSL int_vec-
tor method, in which each offset was represented as a 
4-byte quantity; (2)  BP64-vertical, which is identical to 
the BP128 format as proposed by [11] that uses a unidi-
rectional difference scheme and vertical cyclic packing 

format, but with a block size of 64 values and using only 
even-valued bit widths; (3) BP64-columnar, as proposed 
in this paper, using a bidirectional difference scheme 
and columnar packing format; (4)  BP32-columnar, also 
proposed here, with a block size of 32; (5) Elias gamma 
encoding, with a block size of 64 values, as implemented 
in SDSL; (6)  Elias delta encoding, with a block size of 
64 values, as implemented in SDSL; and (7)  Fibonacci 
encoding, with a block size of 64 values, as implemented 
in SDSL.

The results for retrieving a single offset value are shown 
in Fig. 6a. These results show that retrieval time is largely 
independent of genome size, which derives from the fact 
that the offsets file length depends instead on the k-mer 
size. The uncompressed format gives the fastest times 
at 12 ns/query, but requires 4 GB of space (415 entries 
with 4 bytes required per entry). The Elias gamma, Elias 
delta, and Fibonacci formats produce compact repre-
sentations that are 6–11 % of the uncompressed format, 
but generally have the slowest retrieval times, with over 
130 ns/query for the fly genome, over 200 ns/query for 
the chicken genome, and 228–237 ns/query for human 
genomes. The BP64-vertical format requires slightly 
more space, at 8–14 % of the uncompressed format, but 
is 1.3–1.4 times faster than the SDSL methods, except for 
the fly genome, where the Elias gamma and delta meth-
ods are 10 % faster than the BP64-vertical method. The 
BP64-columnar format requires the same amount of 
space as BP64-vertical, but has retrieval times that are 
2.7–3.0 times faster. The BP32-columnar format requires 
the most space among the bitpacking routines we tested, 
at 13–19  % of the uncompressed format (or 38–60  % 
more space than BP64-columnar), with times that are 
12–15 % faster than BP64-columnar.

Retrieving two offset values
The results for retrieving two adjacent values are shown 
in Fig. 6b. The space measurements remain the same for 
each format relative to the first experiment, and only the 
time measurements differ. For the uncompressed, Elias 
gamma, Elias delta, and Fibonacci formats, we made 
two separate calls to the retrieval function. When we 
compare the results of Fig.  6b with those of Fig.  6a, we 
observe that times for two calls for the uncompressed 
data and SDSL methods were 1.2–1.7 times those for a 
single call. The fact that the retrieval time did not double 
reflects the effects of memory caching. For the BP64-ver-
tical format, two separate calls to retrieve adjacent values 
required 1.1x of the time for a single call for one value, 
whereas for the BP64-columnar and BP32-columnar 
formats, the extra time required was a factor of 1.7-1.8. 
The difference between the vertical and columnar results 
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suggests that memory caching is more effective for the 
vertical format. This makes sense, because for the vertical 
format, the next adjacent value is likely to be decoded in 
the same group of four integers as the first value. But for 
the columnar format, an adjacent value requires another 
column of 128-bit registers to potentially be loaded and 
to be decoded.

For the vectorized bitpacking formats, we implemented 
one-pass methods, which retrieve two adjacent offset 
values by combining memory retrievals whenever pos-
sible.   These methods can be contrasted with the two-
pass approach that uses two separate calls to retrieve the 
desired values. As shown in Fig. 6b, the one-pass meth-
ods have a greater effect for the columnar formats, with 
the vertical format showing speedup by a factor of 1.07, 
but the columnar formats showing a speedup of 1.2–1.4. 
Overall, the one-pass methods for the BP64-colum-
nar format are 2.1–2.2 times faster than the one-pass 
method for BP64-vertical, and the one-pass methods 
for the BP32-columnar format are 2.5–2.6 times faster. 
The comparison with the Elias gamma, Elias delta, and 
Fibonacci coding methods show a speedup of 2.9–3.9 
times for BP64-columnar and 3.5–4.6 times for BP32-
columnar, with the greater speedup seen for the chicken 
and human genomes. However, we should note that the 
SDSL methods were tested as two-pass retrievals, since 
no alternative one-pass implementations are available in 
the package.

Discussion
Our research in this area has been motivated largely by 
attempts to improve the space and time efficiency of our 
genomic alignment programs gmap  [7] and gsnap  [19]. 
Initially, both programs used a hash table of 12-mers. We 
subsequently increased the k-mer size to 15-mers, by com-
pressing the hash table using an Elias gamma compres-
sion scheme (September  2011 release), which improved 
the speed of gsnap by a factor of approximately 6–8. We 
then changed the bitpacking scheme to the BP64-vertical 
format and added a suffix array algorithm (October 2013 
release), which gave an additional speedup of 4–7 times, 
depending on the similarity between the reads and the 
genome. The research in this paper represents our subse-
quent studies to improve the decoding speed of bitpacked 
data for random access, which we have used to further 
increase the speed of our programs with a BP64-columnar 
format (April 2014 release).

Our study leads to some insights for practical genomic 
implementations. For differential coding of offset arrays 
in hash tables, our BP64-columnar and BP32-columnar 
formats offer significant improvements in random-access 
decoding speed relative to the fastest known methods 
to date, with a threefold increase in speed for retrieving 
a single value and a twofold increase for two adjacent 
values. Between the two columnar alternatives, BP32-
columnar gives a 12 % increase in speed for retrieving 
one value and a 20 % increase in speed for retrieving 
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two adjacent values, but requires 40–60  % more space. 
Therefore, BP64-columnar appears to give a better bal-
ance between storage space and decoding speed, which 
underlies our decision to use this representation for our 
alignment programs.

Apart from this study, compression of small integers 
has not been widely applied or studied for genomic align-
ment. Some researchers  [20] have used integer codes 
to compress the short reads themselves, after they have 
been aligned to a genome. Another application of integer 
codes has been to compress genomes or other nucleotide 
sequence datasets, either by themselves [21] or as differ-
ences relative to another genome [22].

In particular, although much research effort has gone 
into developing effective techniques for compressing 
genomic data structures  [23, 24], little work has been 
done on compression techniques for hash tables, despite 
their prevalence in many bioinformatics applications. 
Hash tables are closely related to inverted index lists, 
which are used widely for indexing text and Web pages 
for rapid search [25], and where compression techniques 
have been applied  [26]. However, those systems do not 
exploit the fact that a genomic hash table indexes an 
exhaustive set of k-mers, which presents domain-specific 
opportunities for compression.

An early system called cafe [27] for aligning sequences 
to databases did use compression techniques in rep-
resenting a genomic index. However, that system used 
an inverted index structure rather than a hash table, so 
it lacked an exhaustive set of offsets. Instead, it used 
integer coding to compress differences in the position 
table, achieving compression of 4–6 times smaller than 
the uncompressed size. We believe that compression of 
offsets is much more efficient than compressing posi-
tions, since for large genomes adjacent positions do not 
have the same pattern of closeness that offsets do and 
therefore do not compress as well. Moreover, to achieve 
maximal speed in combining hash table lookups, in pro-
cedures like the spanning set or complete set algorithms 
in gsnap [19], it is faster to have lists of positions avail-
able in an uncompressed format.

One contribution of this paper has been to show how 
SIMD operations can be applied to genomic represen-
tations. Vectorization has found applications in other 
areas of bioinformatics, such as speeding up Smith-
Waterman dynamic programming for nucleotide align-
ment [28–30] and profile HMM searches [31]. Likewise, 
we have applied vectorization to other parts of our align-
ment programs, such as computing mismatches between 
a query sequence and a genomic segment; constructing 
a localized hash table for a genomic region; perform-
ing dynamic programming alignment at the nucleotide 

level; and filtering results from a list of genomic positions 
to satisfy a given range of coordinates [32].

The BP64-columnar scheme in this paper is a solution 
to the general problem of differential coding with random 
access, and complements the BP128-vertical scheme for 
serial access. Therefore, our scheme conld be considered 
for any problem where a monotonically nondecreasing 
set of integers can be compressed and then retrieved by 
random access. In particular, many bitpacking schemes 
have been proposed for text retrieval  [33], and database 
tables often have a format similar to our offset array. 
Applying our methodology to other domains is beyond 
the scope of this paper. However, by providing our meth-
ods in a standard package, we hope to facilitate further 
work by researchers to experiment with our methods and 
to use them more widely.
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