
Pizzi ﻿Algorithms Mol Biol (2016) 11:6
DOI 10.1186/s13015-016-0072-x

RESEARCH

MissMax: alignment‑free sequence
comparison with mismatches through
filtering and heuristics
Cinzia Pizzi* 

Abstract 

Background:  Measuring sequence similarity is central for many problems in bioinformatics. In several contexts
alignment-free techniques based on exact occurrences of substrings are faster, but also less accurate, than alignment-
based approaches. Recently, several studies attempted to bridge the accuracy gap with the introduction of approxi-
mate matches in the definition of composition-based similarity measures.

Results:  In this work we present MissMax, an exact algorithm for the computation of the longest common substring
with mismatches between each suffix of a sequence x and a sequence y. This collection of statistics is useful for the
computation of two similarity measures: the longest and the average common substring with k mismatches. As a fur-
ther contribution we provide a “relaxed” version of MissMax that does not guarantee the exact solution, but it is faster
in practice and still very precise.

Keywords:  Sequence similarity, Alignment free, Mismatches, Compositional approaches, Phylogenetic analysis

© 2016 Pizzi. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/
zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Sequence similarity has long been playing a crucial role
in Computational Biology and Bioinformatics as a key
ingredient in the prediction of functional and structural
properties, and of evolutionary mechanisms.

Since the introduction of high throughput techniques,
hundreds of fully sequenced genomes of different species
have been made available at a fast pace. The increasing
number of available sequences makes all kind of sequence
analysis, most notably assembly, phylogenetic recon-
struction, and multiple alignments, more challenging due
to the time consuming and memory-demanding opera-
tions that need to be carried out on these huge datasets.

To try to cope with the increasing demand of time effi-
ciency, a wide range of alignment-free (or composition-
based) approaches have been proposed. The idea behind
compositional approaches is to model each sequence
in terms of the substrings that it contains, and then to

devise appropriate similarity measures to compare two
sequences based on this model [19].

Traditionally, alignment-free approaches rely on the
frequency or presence of L-mers, for a fixed length L, and
consider exact matches. Although usually very fast, in
several contexts such approaches can be much less accu-
rate than alignment-based counter-parts.

For this reason, within the last decade, several
approaches have been proposed to improve the ability
to better capture the nature of the similarity/dissimilar-
ity between biological sequences with alignment-free
techniques. Among the wide literature, we can mention,
for example, the introduction of over-representation,
rather than the raw frequency count, in the definition of
the similarity measure for fixed length [17] and maximal
length [3, 4] components; and the definition of distances
based on average longest shared substrings [18], which
frees the analysis from fixing the length of the substrings
to analyse.

More recently, several studies proposed to model
the intrinsic variability of biosequences by consider-
ing approximate matches with a bounded number of

Open Access

Algorithms for
Molecular Biology

*Correspondence: cinzia.pizzi@dei.unipd.it
Department of Information Engineering, University of Padova, via
Gradenigo 6/a, 35131 Padova, Italy

http://orcid.org/0000-0002-6616-4003
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-016-0072-x&domain=pdf

Page 2 of 10Pizzi ﻿Algorithms Mol Biol (2016) 11:6

mismatches, or by using spaced-words, in the charac-
terization of the sequence composition. Several related
experiments showed that, in the context of phyloge-
netic tree reconstruction, the introduction of approxi-
mate matches can improve the quality of the detected
sequence similarity [5, 13, 14].

Given these premises, we focused our attention on
these more involved formulations of the alignment-free
approach, in particular on those allowing for approxi-
mate matching within a bounded number of mismatches.

As a warm up we will give a brief overview of recently
proposed approaches, and will use some of the presented
results to introduce further notation used throughout the
paper.

Let us consider two sequences x = x1 . . . xn and
y = y1 . . . ym defined over an alphabet �. Let Xi = xi . . . xn
and Yj = yj . . . ym be the suffixes of x and y starting at
position i and j respectively. In the following we will
assume, without loss of generality, that both sequences
have the same length n.

An early result on speed-ups for the computation of
empirical statistic with mismatches was presented in
[15], where an O(n2) algorithm was proposed to com-
pute the number of occurrences with k mismatches of
all the substrings of length L in a string x of length n.
The key feature of this algorithm is that its complexity
is independent on the number of mismatches that are
allowed. The algorithm was proposed within the pat-
tern discovery framework [7, 8], thus the need to count
the occurrences within the same string in order to sub-
sequently estimate their over-representation. However,
the proposed solution can be easily adapted to com-
pute the number of occurrences of all the substrings
of length L of a string x in another string y, leading to
the definition of a similarity measure between the two
sequences based on the frequency of shared approxi-
mate occurrences.

The first formal definition of similarity measures based
on shared maximal substrings with mismatches was
introduced in [5]. We report here the main concepts,
but with a slightly different notation. Let LCPk(x, y) be
the length of the longest common prefix between two
strings x and y when k mismatches are allowed. Now,
consider the set of LCPk(Xi,Yj) defined for all the suf-
fixes Xi, i = 1, 2, . . . , n of x, and for all the suffixes
Yj , j = 1, 2, . . . , n of y.

The following measures of cross correlation were
defined for a given number of mismatches k:

Definition 1 MaxCork(i)  MaxCork(i), i = 1, 2, . . . , n, is
an n-length vector storing the maximum value attained
by LCPk(Xi,Yj) for each i over all values correspondingly
spanned by j.

Definition 2 AvgCork(i)  AvCork(i), i = 1, 2, . . . , n, is
an n-length vector storing the average value attained by
LCPk(Xi,Yj) for each i over all values correspondingly
spanned by j.

Definition 3 MaxCork  MaxCork is the maximum value
attained by LCPk(Xi,Yj) over all values of i ∈ (1, 2, . . . , n)
in x and j ∈ (1, 2, . . . , n) in y.

Definition 4 AvCork  AvCork is the average value
attained by LCPk(Xi,Yj) over all values of i ∈ (1, 2, . . . , n)
of x and j ∈ (1, 2, . . . , n) in y.

For measures such as MaxCork and AvCork in [5] it was
also proposed a subquadratic algorithm for their compu-
tation. This can futher be improved to O(n2

log n
) [6].

In [14] kmacs, a greedy heuristic, was proposed to
generalize the well known Average Common Substring
(ACS) distance [18] so to account for k mismatches when
considering the longest common substring between pairs
of positions in the two strings. We refer to this variant of
the ACS problem as kACS. The algorithm proposed in
[14] has time complexity O(nkz), where z is the maximum
number of occurrences in y of a string of maximal length
occurring in both x and y. Being based on a heuristic, this
method is very fast in practice, but it does not guarantee
to find the optimal solution to the problem. Note that the
kACS problem can be described in terms of the measures
of cross correlation previously defined as the mean over
all positions i in x of MaxCork(i).

We end our overview with some recently published
theoretical results. In [9] the k-LCF problem is intro-
duced as the generalization of the longest common sub-
string (there named “factor” to avoid confusion with
LCS as the Longest Common Subsequence problem) as
finding the longest common shared match between two
sequences when up to k mismatches are allowed. Also
this problem can be described in terms of the previously
defined scheme, as it corresponds to MaxCork. In [9] an
O(nm) time and O(1) space solution is provided for a
generic k and two strings of length n and m respectively,
and also an O(n+m) log(n+m) solution for the case
k = 1. Finally, in [2] an O(n logk+1 n) time and O(n) space
algorithm was proposed to provide a subquadratic solu-
tion to the kACS problem.

Within this framework we developed a new strat-
egy based on filtering for the computation of the long-
est common substring with mismatches between all the
suffixes of a sequence x and another sequence y. This
primitive is at the basis of recently proposed similarity
measures for the problem of phylogentic tree reconstruc-
tion as the longest and the average common substring
distances with mismatches.

Page 3 of 10Pizzi ﻿Algorithms Mol Biol (2016) 11:6

Formally, we will compute the values of MaxCork(i),
for all i = 1 . . . n, because this vector allows us to derive
the values of both MaxCork (or equally k-LCF) and of
kACS, being respectively:

The paper is organized as follows: in "Methods" section
we will describe the proposed filtering-based approach
to compute the values of all MaxCork(i). In "Results
and discussion" section we will discuss the results of a
set of experiments we devised to test the performances
of the proposed algorithms in practice. In "Concluding
remarks" section we will lead to the conclusions.

Methods
Our aim is to compute the values of MaxCork(i) for
each position i in x. The main idea behind the proposed
approach is to avoid the computation of the LCPk(Xi,Yj)
for all pairs of positions i ∈ x and j ∈ y. To this purpose
we will compute the value of MaxCork(i + 1) starting
from the value of the already computed MaxCork(i). This
procedure will initially give us a candidate longest match
Lmax that is at least equal to MaxCork(i − 1)− 1. We will
use this information, among some others that will be dis-
cussed in the following subsections, to reduce the cardi-
nality of the set C of possible candidates for approximate
matches longer than Lmax, and then we will verify them.

Note that, when computing the MaxCork(i) for each i,
one can either take track of their maximum value to com-
pute MaxCork, or of their sum to later compute kACS at
no extra cost.

In the description of the algorithm we will refer to
techniques that allow us to keep the worst case analysis
within the claimed worst case quadratic bound, but for
practical purposes we will use different approaches that
will be discussed in a dedicated subsection.

Initial set up: MaxCork(1)

We start with the computation of MaxCork(1) as the
maximum approximate match with k mismatches of the
suffix X1 against the sequence y. For this purpose we will
start from, and exploit, the classical concept of longest
common substring (without any mismatch allowed).

Definition 5Longest common substring  Given two
sequences x and y, of length n, find the maximum
length L for which a pair of indexes (i, j) exists such that
xi . . . xi+L−1 = yj . . . jj+L−1.

(1)MaxCork = max
i=1...n

MaxCork(i)

(2)kACS =
1

n

∑

i=1...n

MaxCork(i)

The problem of finding the longest common substring
between two sequences is a well known problem in pat-
tern matching that can be solved in linear time by the tra-
versal of a generalized suffix tree of the two sequences.
More in details, we want to be able to find the longest
common match starting at any two positions i in x and
j in y. This problem can be solved through a call to the
Lowest Common Ancestor of the corresponding leaves
ni and nj in the generalized suffix tree. The length of the
label of the path from the root to LCA(ni, nj) is the length
of their longest common prefix. LCA queries can be car-
ried out for any i and j in constant time after a linear-time
preprocessing step [10].

In particular, similarly to the routine step in [14], we
will perform k + 1 jump-extensions to compute the long-
est approximate match between X1 and the generic Yj .
As after the first jump-extension of length l1 we know
we will have a mismatch, we will call LCA on the nodes
corresponding to positions 1+ l1 + 1 and j + l1 + 1, and
repeat the procedure until the (k + 1)-th mismatch is
found. This is repeated for each j = 1 . . . n, thus taking
O(kn) time overall.

Minimum MaxCork from the previous step
Assume now we have computed L = MaxCork(i), and we
want to compute MaxCork(i + 1). Let j be the position in
y of a longest approximate match of Xi. Two cases may
hold, which are illustrated in Figs. 1 and 2 respectively:

1.	 xi = yj: in this case the k mismatches all lie within
x[i + 1, i + L− 1] and y[j + 1, j + L− 1], respec-
tively. Therefore we have LCPk(Xi+1,Yj+1) = L− 1 .
Note that this might or might not be the final
MaxCork(i + 1) over all positions of y.

2.	 xi �= yj: in this case the mismatch between the
first characters will be lost when considering the
alignment of i + 1 and j + 1, leading to k − 1 mis-
matches in the following L− 1 positions. After
L positions we know we must have a mismatch,
which is now counted as the k-th. To finally obtain
LCPk(Xi+1,Yj+1) we need a further call to LCA on
the nodes corresponding to the positions i + L+ 1
and j + L+ 1 to obtain LCP0(Xi+L+1,Yj+L+1) that
will end on the (k + 1)-th mismatch. In summary:
LCPk(Xi+1,Yj+1) = L+ LCP0(Xi+L+1,Yj+L+1) .
Again, note that this might or might not be the final
MaxCork(i + 1) over all positions of y.

It is possible that several suffixes in y are the site of a
longest match with k mismatches with Xi. All the start-
ing positions of these longest matches are considered
for further extension at this step. This is done for two
purposes:

Page 4 of 10Pizzi ﻿Algorithms Mol Biol (2016) 11:6

• • to obtain the longest possible candidate length with
k mismatches from the previous step at the mini-
mum cost (only a jump till the next mismatch to the
right is needed to have the exact length for the pairs
of positions considered at this step);

• • to avoid or reduce the possibility that we have to
deal with special cases in the following steps (see
Observation 4 in "Theoretical and Practical Consid-
erations" section).

Let Lmax be the candidate value for MaxCork(i + 1)
obtained either from Case 1 or Case 2.

Potential candidates from the previous step
Let us consider now a generic position r in Y. We must
have L′ = LCPk(Xi,Yr) < L, since L was the absolute
maximum found in the step to compute MaxCork(i), and
the ties have already been considered.

If xi = yr then k mismatches lie between
x[i + 1, i + L′ − 1] and y[r + 1, r + L′ − 1], respectively,
and LCPk(Xi+1,Yr+1) = L′ − 1 < L− 1. As a conse-
quence, the pair (i + 1, r + 1) can be ruled out as one

that cannot have an approximate match longer than the
one we are currently considering (which is greater or
equal than L− 1). Note that this observation allows us to
exclude from the candidate set C all the positions r + 1 in
y that are preceded by a symbol matching xi.

The case where xi �= yr is more involved. With refer-
ence to Fig. 3, the alignment (Xi+1,Yr+1) loses the mis-
match in the first position of the alignment (Xi,Yr),
and includes the one at position i + L′ and r + L′,
in x and y respectively. To obtain the length of LCPk
for this alignment we should add to L′ the value of
LCP0(Xi+L′+1,Yr+L′+1) , which gives the last exact contri-
bution till the (k + 1)-th match. It may happen that the
addition of this term to L′ allows one to obtain a match
longer than the potential MaxCork(i + 1) = Lmax we had
from the previously discussed Case 1 or Case 2. The main
problem here is that we do not know the value of L′.

We will then proceed by assuming r is indeed the site
of a match longer than the current maximum Lmax . If
this is the case, the gap with Lmax must be closed assum-
ing the (k + 1)-th mismatch occurs after the positions
i + L and r + L in the two strings. As a consequence,

Fig. 1  Candidate MaxCork(i + 1) from MaxCork(i) when xi = yj

Fig. 2  Candidate MaxCork(i + 1) from MaxCork(i) when xi �= yj

Page 5 of 10Pizzi ﻿Algorithms Mol Biol (2016) 11:6

LCP0(Xi+L+1,Yr+L+1) will end exactly where
LCP0(Xi+L′ ,Yr+L′) would end (see Fig. 3).

If this value is indeed bigger than or equal to Lmax we
need to make sure no further mismatch was present
between i + L′ and i + L. This can be checked by running
the jump-extension performed in the initial setup start-
ing from positions i + 1 and r + 1 until k + 1 mismatches
are found. Let Ltrue be the reached extension. If its value
is equal to L+ LCP0(Xi+L+1,Yr+L+1) then the position r
is the new candidate position for the longest match of the
suffix Xi in y, and the list of ties is reset, otherwise the
position is dropped, and the next candidate is considered.
If L+ LCP0(Xi+L+1,Yr+L+1) is equal to Lmax, then r is
added to the list of ties.

Theoretical and practical considerations
We now discuss some theoretical and practical issues
emerging from the proposed approach.

Observation 1. The worst case complexity occurs when
we inherit from step i an initial candidate that is smaller
or equal than MaxCork(i). In such a case any position
r for which xi+Lmax+1 = yr+Lmax+1 is a possible longer
match that we need to verify with the jump-extension.
This lead to potential O(n) candidate pairs per position i,
and to a worst case time complexity O(kn2).

Observation 2. We observe that even in the worst case,
we can rule out all the positions j + 1 of y that are pre-
ceded by a character that matches xi. Assuming equal
distribution, we will drop n

|�|
 positions. In practice, we

will drop a number of position equal to the frequency of
xi in y.

Observation 3. Whenever we impose a matching
condition we potentially reduce the candidate set of
a fraction equal to |�|−1

|�|
. When searching for a match

longer than the current one we have that at least the
first symbol of the last jump must be a match in order
to have a longer match. Furthermore, if the value of

Lmax computed from the longest matches at the pre-
vious step is longer than L− 1 (which is the mini-
mum) we can impose a match for the whole segment
[xi+L . . . xi+Lmax−1], thus further reducing the size of the
candidate set.

Observation 4. At step i + 1, if the value of Lmax
obtained from the longest matches at step i is L− 1 there
is the possibility that the actual longest match for Xi+1 is
smaller than the one at the previous step. Searching for
ties when the longest match is L− 1 is a very time con-
suming operation because we cannot apply the reduc-
tion of the candidate positions explained in Observation
3. This is because when Lmax = MaxCork(i)− 1 = L− 1
and xi �= xr we will have that xr+L lands on the k-th mis-
match rather than on the first position after that, thus
ending up to erroneously discard position r + 1 from fur-
ther processing. For this reason we will always try first to
find a strictly longer match. If we cannot find it, we will
search for ties at length L− 1 using only Observation 1
(and excluding of course also the positions that were
already processed).

Observation 5. The case discussed in Observation 4 is
very time consuming because the candidate set remains
pretty large. However, we have verified in practice that
the number of ties that are actually found during that
step is very small, and orders of magnitude less than the
size of C. For this reason we develop an “relaxed” ver-
sion of our algorithm in which we ignore the search of
ties for the case L− 1. This means that we are no longer
guaranteed to find the longest match for each suffix Xi,
but in practice in our experiments the error was always
negligible, and the time needed for the computation was
reduced of about a half as it will be shown in "Results and
discussion" section.

Observation 6. Building indexing data structures can be
expensive, and so can be operations that are theoretically
efficient. For example, it was already observed in [14] that

Fig. 3  Guessing the maximum extension between the suffix Xi and a candidate Yr

Page 6 of 10Pizzi ﻿Algorithms Mol Biol (2016) 11:6

a naive extension to account for k mismatches gave better
performances than calling LCA (or than performing the
equivalent operation on an enhanced suffix array [1], as
they did). In our experiments we experienced the same.
Moreover, in [12] it is shown that, in practical applica-
tions, a simple computation of the longest common
extension (LCE) between two strings can substantially
improve the performances of several algorithms that use
the LCE as a subroutine. Therefore, by keeping the origi-
nal approach in mind, but avoiding reference to indexing
data structures, we developed a tool, implementing our
algorithm MissMax, in which the extensions are per-
formed naively. Note that in many cases we just need to
perform a one-step extension, as the k-step extensions
are performed only in the initial step, and whenever we
have a candidate with an approximate match longer than
Lmax.

Observation 7. In its current implementation MissMax
uses |�| arrays of bits to take track of the presence or
absence of symbols at specific positions in y, in order to
quickly compute the set of candidates for further inspec-
tion. For DNA applications, when reading the input, we
will build 4 arrays As, one for each symbol s ∈ �. The
position i of As is set if and only if yi = s. When comput-
ing MaxCork(i + 1), the first filter is given by the com-
plement of Axi. To get the second filter we take the array
Axi+L and shift it of L positions to the left. The bitwise
AND of the two vectors is the bitvector B mentioned
above that holds the positions of the candidate set C (to
avoid a further shift of one position to the right, when
considering position j we look at the value of this vector
at position j − 1). This particular implementation limits
the applicability to genomic sequences. However, this
is not a theoretical limit of the approach. By changing
the data structures used to store the sequences, and the
approach to candidate identification, it will be also possi-
ble to deal with larger alphabets. For this purpose we plan
in the near future to develop a library to compute statistic
with mismatches on all kind of biological sequences.

Results and discussion
In this section we present the results of a set of experi-
ments that we run to test the performances of the exact
and relaxed version of MissMax. Here we are not mainly
interested in the improvement of the quality of the tree
reconstruction with mismatches, with respect of cor-
responding measures without mismatches, as they were
already discussed in [5, 14]. We are rather interested on
the time needed to compute the values of MaxCork(i),
for all the positions i in a sequence x with respect to a
second sequence y, and on the precision achievable by
heuristics. As explained in "Methods" section, these sta-
tistics can be used to compute both the MaxCork (i.e. the

longest common substring with k mismatches) based dis-
tance discussed in [5], and the kACS distance discussed
in [14]. Moreover, as our algorithms are based on filter-
ing, we will investigate also the filtering power of our
approach for both the exact version and relaxed version
discussed in Observation 4.

For what concerns the comparison with other algo-
rithms, the algorithm described in [2], which holds the
best known asymptotic complexity for the exact com-
putation of the n values of MaxCork(i), has no available
implementation yet. For the exact computation we will
thus refer to the naive algorithm. On the other side of
the spectrum, the greedy-based approach of kmacs [14],
is uncomparably fast in almost all cases (we will discuss
in details one experiment in which this did not occur).
With respect to this approach we will therefore focus our
attention on the precision achievable in the estimate of
the actual value of the longest matches.

For our experiments we considered two datasets that
were previously used in other studies (e.g. [5, 14, 18]).
The first dataset consists of the mitochondrial genomes
of 34 mammals, including species from Euarchontog-
lires, Laurasiatheria, Afrotheria, Xenarthra, Ameridel-
phia, and Monotremata. The second dataset consists of
the mitochondrial genomes of 27 primates. The length of
the genomes is between 16,000 and 17,000 bp each. All
the sequences were downloaded from the NCBI web site.
All the experiments were performed on an Intel Core
i5-4590 at 3,3 GHZ, with 8 GB of memory.

Time performances
As a first experiment we measured the time performances
of both the exact and the “relaxed” version of MissMax
on omogeneous and heterogeneous subsets of the 34
mammals datasets. In particular, we considered the sub-
set of Rodents (rat, dormouse, house mouse, guinea pig,
squirrel), the subset of Carnivora (cat, dog, harbor sail,
grey sail), and a mixed set of the two. We then meas-
ured the average time needed to compute the similarity
between two sequences within each of the omogeneous
set, and between elements of different sets in the mixed
subset. Finally we added to our analysis a set of 5 random
sequences and measured the performances within the
subset. Tables 1 and 2 report, for different k, the average
time for the comparison of a pair of sequences in each
dataset for the relaxed and the exact version of MissMax,
respectively.

It is immediate to observe that the relaxed version of
MissMax takes about half of the time needed by the exact
version. Nevertheless, even the exact algorithm allows for
a full pairwise comparison of typical datasets in about
an hour on our desktop computer. The time required for
each comparison is consistent with the one showed for

Page 7 of 10Pizzi ﻿Algorithms Mol Biol (2016) 11:6

the smaller datasets, thus the time required for the over-
all analysis is a function of the size of the dataset. For
example, with k = 5 the analysis of the full dataset of 27
primates took about 55 min, while the full analysis of the
34 mammals dataset took 1 h and 24 min. Moreover, if
we take advantage of multithreading, the full analysis of
the Primate dataset requires about 15 min, and the full
analysis of the Mammals dataset about 23 min.

With respect to the kind of sequences that are analized,
we can see how both algorithms are faster on the random
dataset than on the biological datasets. The difference
is much more evident for the exact version of the algo-
rithm, when k increases.

For comparison with other approaches, we run the
naive algorithm on the Rodents datasets. The average
time was: 7.1 s for k = 5; 10.6 s for k = 10; 17.8 s for
k = 20; 39.3 s for k = 50; and 74.99 s for k = 100. On
the contrary, the software kmacs is generally much faster
than MissMax: on such small datasets it ends practi-
cally istantaneously. We recall that the theoretical time
complexity of kmac is O(kzn), where z is the number of
positions in which there is a tie for the first longest exact
match. It is shown in [14] that in practice the values of
z are usually pretty small. Nevertheless, we report, for
completeness of discussion, the following observation.
While running our experiments, we had a case in which,
increasing the length of the sequences to compare, kmacs
performances had a suddent drop. After ruling out this

could depend on the actual input length of the sequences
(the performances were good on random sequences of
the same length), or on some bug (the results were what
we were expecting), a closer inspection of the input
sequences revealed the probable cause. More or less in
correspondance of the input length that was showing the
slow down, there was an undefined region in one of the
two sequences. Note that the computed value of the long-
est matches of suffixes was not affected, as the N region
was present just in one sequence. Nevertheless, the first
exact longest match of a suffix starting in the N region
is 0, and in such a case, z becomes equal to n, and all the
positions of the other sequence need to be extended to
find the maximum extension with mismatches.

Finally, to further investigate the scalability of the filter-
based approach we performed a similar test on longer
sequences. The results are reported in Fig. 4, where we
show the time required for three different values of k,
on sequences up to 100k bp, as a function of the input
length. The trends for the exact version are the same. We
reported a slowdown of about 2, with the actual values
slightly increasing with k. Specifically, the average slow-
down factor was 1.87 for k = 5; 2.22 for k = 50; and 2.29
for k = 100.

Exact vs heuristics
The tradeoff between exact algorithms and heuristics
could be easily summarized saying that heuristics are
faster, but do not guarantee the correct solution to the
problem. This is of course true also in our case, but we
performed anyway some further analysis to assess the
performances of MissMax (both exact and relaxed ver-
sion) and kmacs, in terms of precision in the computa-
tion of sequence similarity based on the aforementioned
distances with mismatches.

Table 1  Average time (in seconds) for the comparison
of two sequences on several datasets with the “relaxed”
version of MissMax

k Rodents Carnivora Mixed Random

5 2.11 2.22 2.15 1.85

10 2.45 2.56 2.47 2.18

20 3.07 3.17 3.09 2.72

50 4.74 4.87 4.82 4.28

100 7.42 7.62 7.57 6.65

Table 2  Average time (in seconds) for the comparison
of two sequences on several datasets with the exact ver-
sion of Missmax

k Rodents Carnivora Mixed Random

5 4.50 5.16 4.45 3.26

10 5.16 6.39 5.64 3.81

20 7.47 8.46 7.52 4.85

50 12.08 14.29 12.9 8.26

100 21.01 23.55 21.28 13.15

Fig. 4  Time performance of relaxed MissMax for different values of k,
as a function of the input length

Page 8 of 10Pizzi ﻿Algorithms Mol Biol (2016) 11:6

In terms of reconstruction of the correct phylogeny, we
tested the algorithms on the Primates datasets. MissMax
reported the same reference tree as in [11] (see Fig. 5;
the permutations within a same level of the tree are con-
sidered as equivalents) for a relatively small number of

allowed mismatches (k = 4 and k = 5). kmacs reported
an overall good reconstruction, but with some differ-
ences with respect to the references (in [14] a wide range
of k’s have been tested on the same dataset, but the exact
reference phylogeny was never captured).

Galeopterus variegat

Lemur catta

Nycticebus coucang

Tarsius bancanus

Gorilla gorilla

Homo sapiens

Pan paniscus

Pan troglodytes

Pongo pygmaeus

Pongo pygmaeus abeli

Hylobates lar

Chlorocebus aethiops

Chlorocebus tantalus

Chlorocebus pygeryth

Chlorocebus sabaeus

Macaca mulatta

Macaca sylvanus

Papio hamadrya

Colobus guereza

Procolobus badius

Nasalis larvatus

Rhinopithecus roxell

Pygatrix nemaeus

Presbytis melalophos

Trachypithecus obscu

Semnopithecus entell

Cebus albifrons
Fig. 5  The tree for the 27 primates dataset reconstructed by MissMax with k = 4. It is in perfect agreement with the reference tree reported in [11]

Page 9 of 10Pizzi ﻿Algorithms Mol Biol (2016) 11:6

As previosuly stated, kmacs is usually much faster
even than the relaxed version of MissMax. However,
in terms of computation of the actual value of the aver-
age common substring between two sequences, relaxed
MissMax is much more precise. In fact, we measured a
relative error of 0.53 % with respect to the real measure
for both the Rodents and the Carnivora datasets, and
0.46 % for the mixed dataset. For the full Primate date-
set, we measured the relative error for both k = 5 and
k = 10 , reporting 0.45 % and 0.43 % respectively. kmacs
did not achieve such a precision in the approximation
of the correct value. In our experiments it usually esti-
mates half of the length the average common substring.
This lack of precision was noted also by the authors of
kmacs in a set of experiments reported on their paper
(although on simulated sequences with a given error
rate). Anyway, as reported in [14], this does not seem
to heavily affect the reconstruction of a phylogenetic
tree. This may be due to the fact that the understimation
holds equally for all pair of sequences. However, if the
statistics need to be collected for other kind of analy-
sis, then one has to keep in mind that the approxima-
tion provided by kmacs could not be as good as the one
provided by relaxed MissMax.

Filtering power

A set of experiments was performed to measure the
goodness of our filters, investigating on the percent-
age of pair of positions that are actually considered with
respect to the maximum possible. The results are shown
in Table 3 for the relaxed and in Table 4 for the exact ver-
sion of MissMax.

We note that in the biological sequences the difference
between the size of the candidate set of the relaxed and
exact version is quite small for k = 5, but then increases
substantially with k up to k = 50, and then remains pretty
much constant for k = 100. The random sequences fol-
low the same trend, but they appear to reach the satura-
tion level earlier at k = 20.

It is interesting to note that the analysis on random
sequences is faster than in biological sequences (see
Tables 1, 2) although the size of the candidate set is big-
ger. We explain this behavior as due to the time needed to
make full check for a match. The comparison is stopped
either when the expected length is reached or when the
number of mismatches is k + 1. It is possible that with
random sequences the second condition occurs more
often after few comparisons, thus speeding up the entire
process, even if the number of positions to check is bigger.

Concluding remarks
In this work we proposed a filtering-based approach for
the computation of the longest common substring with
k mismatches between each suffix of a sequence x and a
sequence y we want to compare to. This statistics is use-
ful for the computation of alignment free distances based
on approximate matching, that are a promising approach
to improve the quality of alignment free sequence com-
parison. We developed both an exact and a relaxed ver-
sion of the algorithm. While the relaxed version cannot
guarantee to find the optimal solution, it is in practice
faster and still very precise.

Competing interests
The authors declares no competing interests.

Fundings
C.Pizzi research was partially supported by PRIN n.20122F87B2, from the Italian
Ministry of Education and Research.

Availability
The software is freely available for academics upon request to the author.

Received: 7 December 2015 Accepted: 8 January 2016

References
	1.	 Abouelhoda MI, Kurtz S, Ohlebusch E. Replacing suffix trees with

enhanced suffix arrays. J Discrete Algorithm. 2004;2:53–86.
	2.	 Aluru S, Apostolico A, Thankachan SV. Efficient alignment free sequence

comparison with bounded mismatches. In: RECOMB, LNCS. vol 9029.
Heidelberg: Springer ;2015. p. 1–12.

	3.	 Apostolico A, Denas O. Fast algorithms for computing sequence
distances by exhaustive substring composition. Algorithms Mol Biol.
2008;2:13.

	4.	 Apostolico A, Denas O, Dress A. Efficient tools for comparative substring
analysis. J Biotechnol. 2010;149(3):120–6.

	5.	 Apostolico A, Guerra C, Pizzi C. Alignment free sequence similarity with
bounded hamming distance. In: Data compression conference (DCC
2014). IEEE Press; 2014. p. 183–192.

Table 3  Average percentage of pair of positions con-
sidered in several datasets with the relaxed filter,
with respect to the quadratic maximum number of pairs

Relaxed MissMax k = 5 k = 10 k = 20 k = 50 k = 100

Rodents 7.26 8.37 9.15 9.74 9.93

Mixed 7.16 8.15 8.76 9.28 9.79

Random 9.73 13.31 15.17 15.29 15.27

Table 4  Average percentage of pair of positions consid-
ered in several datasets with the exact filter, with respect
to the quadratic maximum number of pairs.

Exact MissMax k = 5 k = 10 k = 20 k = 50 k = 100

Rodents 9.16 12.38 16.08 18.13 19.89

Mixed 9.34 12.64 16.45 17.93 19.32

Random 15.40 26.92 33.51 32.56 31.54

Page 10 of 10Pizzi ﻿Algorithms Mol Biol (2016) 11:6

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

	6.	 Apostolico A, Guerra C, Landau G, Pizzi C. Sequence similarity meas-
uresbased on bounded hamming distance. Theor Comput Sci. 2016.
doi:10.1016/j.tcs.2016.01.023.

	7.	 Apostolico A, Pizzi C. Motif discovery by monotone scores. Discrete Appl
Math. 2007;155(6–7):695–706.

	8.	 Apostolico A, Pizzi C. Scoring unusual words with varying mismatch
errors.Math Comput Sci Spec Issue Comb Algorithms.2008;1(4):639–653.

	9.	 Flouri T, Giaquinta E, Kobert K, Ukkonen E. Longest common substrings
with k mismatches. Inf Process Lett. 2015;115(6–8):643–7.

	10.	 Harel D, Tarjan RE. Fast algorithms for finding nearest common ancestor.
SIAM J Comput. 1984;13:338–55.

	11.	 Haubold B, Pfaffelhuber P, Domazet-Loso M, Wiehe T. Estimat-
ing mutation distances from unaligned genomes. J Comput Biol.
2009;16(10):1487–500.

	12.	 Ilie L, Navarro G, Tinta L. The longest common extension problem
revisited and applications to approximate string searching. J Discrete
Algorithms. 2010;8(4):418–28.

	13.	 Leimeister CA, Boden M, Horwege S, Lindner S, Morgenstern B. Fast
alignment-free sequence comparison using spaced-word frequencies.
Bioinformatics. 2014;30(14):1991–9.

	14.	 Leimeister CA, Morgenstern B. kmacs: the k-mismatch average common
substring approach to alignment-free sequence comparison. Bioinfor-
matics. 2014;30(14):2000–8.

	15.	 Pizzi C. K-difference matching in amortized linear time for all the words in
a text. Theor Comput Sci. 2007;410(8–10):983–7.

	16.	 Pizzi C. A filtering approach for alignment-free biosequences comparison
with mismatches. In: Proceedings of WABI 2015 — Workshop on algo-
rithms in bioinformatics, LNCS vol 9289, Springer; 2015. p. 231–242.

	17.	 Qi J, Wang W, Hao B. Whole proteome prokaryote phylogeny with-
out sequence alignment. A k-string composition approach. Mol Evol.
2004;58(1):1–11.

	18.	 Ulitsky I, Burstein D, Tuller T, Chor B. The average common sub-
string approach to phylogenetic reconstruction. J Comput Biol.
2006;13(2):336–50.

	19.	 Vinga S, Almeida J. Alignment-free sequence comparison—a review.
Bioinformatics. 2003;20:206–15.

http://dx.doi.org/10.1016/j.tcs.2016.01.023

	MissMax: alignment-free sequence comparison with mismatches through filtering and heuristics
	Abstract
	Background:
	Results:

	Background
	Methods
	Initial set up:
	Minimum from the previous step
	Potential candidates from the previous step
	Theoretical and practical considerations

	Results and discussion
	Time performances
	Exact vs heuristics
	Filtering power

	Concluding remarks
	Competing interests
	References

