
Miclotte et al. Algorithms Mol Biol (2016) 11:10
DOI 10.1186/s13015-016-0075-7

SOFTWARE ARTICLE

Jabba: hybrid error correction for long
sequencing reads
Giles Miclotte1,4, Mahdi Heydari1,4, Piet Demeester1,4, Stephane Rombauts2,3,4, Yves Van de Peer2,3,4,5,
Pieter Audenaert1,4 and Jan Fostier1,4*

Abstract 

Background:  Third generation sequencing platforms produce longer reads with higher error rates than second
generation technologies. While the improved read length can provide useful information for downstream analysis,
underlying algorithms are challenged by the high error rate. Error correction methods in which accurate short reads
are used to correct noisy long reads appear to be attractive to generate high-quality long reads. Methods that align
short reads to long reads do not optimally use the information contained in the second generation data, and suffer
from large runtimes. Recently, a new hybrid error correcting method has been proposed, where the second genera-
tion data is first assembled into a de Bruijn graph, on which the long reads are then aligned.

Results:  In this context we present Jabba, a hybrid method to correct long third generation reads by mapping them
on a corrected de Bruijn graph that was constructed from second generation data. Unique to our method is the use
of a pseudo alignment approach with a seed-and-extend methodology, using maximal exact matches (MEMs) as
seeds. In addition to benchmark results, certain theoretical results concerning the possibilities and limitations of the
use of MEMs in the context of third generation reads are presented.

Conclusion:  Jabba produces highly reliable corrected reads: almost all corrected reads align to the reference, and
these alignments have a very high identity. Many of the aligned reads are error-free. Additionally, Jabba corrects reads
using a very low amount of CPU time. From this we conclude that pseudo alignment with MEMs is a fast and reliable
method to map long highly erroneous sequences on a de Bruijn graph.

Keywords:  Sequence analysis, Error correction, de Bruijn graph, Maximal exact matches

© 2016 Miclotte et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
Background
The accurate determination of the DNA sequence of an
organism, i.e., establishing the precise order of the nucle-
otides A, C, G and T in a DNA molecule, is a fundamen-
tal and challenging problem in biology. Essentially this
process consists of two steps: (1) sequencing the DNA by
means of a chemical process, resulting in a large number
of reads and (2) genome assembly, where the reads are
processed to reconstruct the complete DNA sequence.
Every sequencing technology results in reads that con-
tain errors, with error profiles varying greatly between

platforms. There is a clear distinction between second
generation reads and third generation reads, where the
latter are characterized by vastly improved read lengths
albeit with much higher error rates.

For second generation sequencing we mainly consider
the Illumina platform. The different Illumina technolo-
gies produce many short (100–300 nucleotides) reads
with a high accuracy (<2 % errors, mainly substitutions)
with high throughput and at a low financial cost. New
algorithms, based on de Bruijn graphs, were specifically
developed to efficiently deal with the assembly of huge
amounts of second generation sequencing data. Over-
lap between short reads is then established in linear
time between reads that share a k-mer, i.e., a substring
of length k. Repeat resolution in the de Bruijn graphs is

Open Access

Algorithms for
Molecular Biology

*Correspondence: jan.fostier@intec.ugent.be
1 Department of Information Technology, Ghent University - iMinds,
Ghent, Belgium
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1007/s13015-016-0075-7&domain=pdf

Page 2 of 12Miclotte et al. Algorithms Mol Biol (2016) 11:10

however severely hindered by the very short read length
of the second generation data.

Recently, third generation sequencing technologies
(Pacific Biosciences, 2013; Oxford Nano Technolo-
gies, 2014) began to emerge. Pacific Biosciences SMRT
sequencing results in much longer reads (avg. >5000
nucleotides), albeit with significantly higher error rates
(up to 15%, mostly insertions and deletions and to a lesser
extent substitutions). Despite this high error rate, a very
high consensus accuracy may be achieved because the
errors are uniformly distributed over the read. If the cov-
erage is sufficiently high and overlap between the reads is
correctly established, this uniform distribution of errors
allows for very accurate consensus calling. Computing
these overlaps can not be efficiently achieved by means of
a de Bruijn graph, because the high error rate leads to an
overabundance of incorrect k-mers. Therefore, other effi-
cient methods have been developed to compute pairwise
alignments between third generation reads [1, 2].

Error correction
The processing of sequencing reads usually involves
mapping them to other sequences, either by aligning
the reads to each other to establish potential overlap, or
by mapping them to a reference genome. Errors in the
reads introduce noise to these alignments, leading to
weaker alignments than the corresponding error-free
reads would have. Lower rated alignments may then be
discarded for further analysis, potentially discarding cru-
cial information. This can be especially problematic when
dealing with low quality reads in a region with low cov-
erage. To deal with this sequencing noise, error correc-
tion methods can be applied. By correcting the errors in
the reads, the optimal alignments can be more accurately
identified and more appropriately rated, leading to bet-
ter downstream analysis, as shown in e.g. [3] for de novo
assembly.

Algorithms to correct second generation reads have
been classified [4] into three types. The k-mer spectrum-
based methods [5, 6] rely on coverage thresholds to
determine whether a k-mer represents part of the actual
DNA sequence. The suffix tree-based methods [7, 8] gen-
eralize the k-spectrum methods by handling multiple k
values at once. Finally, the multiple sequence alignment-
based methods [9] correct the reads after aligning several
similar reads.

To correct third generation reads, they can be aligned
to each other and a consensus sequence between overlap-
ping reads may then be computed. However, the coverage
required for high accuracy consensus-based correction
of third generation reads can lead to a prohibitively high
financial cost for many sequencing projects. Hybrid error
correction methods provide an alternative. The goal is

to correct long third generation reads using the more
accurate sequence information contained in second gen-
eration reads. The idea is that a (relatively cheap) second
generation data set might be sufficient to correct the long
reads, regardless of the coverage of third generation data.
This may result in a reduced financial cost for sequenc-
ing, as low coverage third generation data might suffice.
Hybrid error correction methods also appear attrac-
tive from a computational point of view as they avoid
pairwise comparisons between long reads, thus circum-
venting the quadratic computational complexity. The
first type of hybrid error correction methods LSC [10],
PacBioToCA [11] and proovread [12] rely on mapping
short reads to long reads, and then calling the consensus
sequence from this multiple alignment. However, such
methods map short reads individually and do not exploit
the context in which the short read occurs. A more recent
hybrid error correction method, LoRDEC, first constructs
a de Bruijn graph from the short reads and then maps the
long reads on this graph. The sequence implied by the
path in the graph to which the long read aligns then repre-
sents the corrected read. The use of a de Bruijn graph has
the advantage that overlap between short reads is estab-
lished prior to mapping them to long reads. In [13], it was
shown that LoRDEC achieves similar accuracy as other
error correction methods, but with significantly improved
runtimes. LoRDEC uses a k-mer index where every seed
corresponds to a node in the graph.

We introduce Jabba, a hybrid error correction method
for third generation reads. In Jabba, third generation
reads are mapped to a de Bruijn graph [14] built from
second generation reads, using a pseudo alignment
approach based on a seed-and-extend methodology. The
resulting paths in the graph dictate the read correction.
The seeds are maximal exact matches (MEM) between an
individual read and a node of the graph.

The usage of MEMs as seeds has several advantages
over k-mers as they are used in LoRDEC. Firstly, the
seeds can be longer. Even though long seeds only occur
rarely, a few longer seeds can be sufficient to have a rough
estimate of how the read should be aligned to the graph.
Shorter seeds can then be used to further refine this. Sec-
ondly, given an enhanced suffix array [15], seeds of arbi-
trary lengths can be sought without the need to rebuild
this index. This is not the case for a k-mer index (e.g. a
hash table): when different values for k have to be used
during the alignment process, different k-mer indexes
need to be built of the graph. Finally, the use of MEMs
allows for the use of arbitrary values of k to build the de
Bruijn graph. Since the high error rates of the third gen-
eration reads are the limiting factor on the minimal seed
size, this offers a clear advantage over the state of the art
in hybrid error correction. This decoupling of seed size

Page 3 of 12Miclotte et al. Algorithms Mol Biol (2016) 11:10

and k-mer size allows the use of a larger value of k to build
the de Bruijn graph, resulting in a less complex de Bruijn
graph. The k-mer size of the de Bruijn graph is then lim-
ited by the error rate in the second generation data. In
this way, correcting the short reads before construct-
ing the graph and using MEMs as seeds act together in
allowing large k-values for the de Bruijn graph, effectively
resolving many small repeats.

Jabba is implemented in C++ and OpenMP. The source
code, installation instructions, and manual are freely
available at http://bioinformatics.intec.ugent.be/jabba.

Methods
Overview
In this work, we further build upon the idea of using a
de Bruijn graph for hybrid error correction of long reads.
Specifically, the main goal is the use of Illumina data to
correct Pacific Biosciences SMRT reads.

To this end, the Illumina data is corrected using exist-
ing tools (e.g. Karect [16]). From the corrected Illumina
data a de Bruijn graph is constructed and this graph is
then further corrected using standard procedures [17].
Subsequently, long reads are aligned along a path in the
graph. This path then dictates the correction of the long
reads. This procedure is summarized in Fig. 1.

Whereas LoRDEC relies on shared k-mers to align the
long reads to a de Bruijn graph, we explore the idea of
using maximal exact matches (MEMs). MEMs are exact
matches between two sequences that can not be extended
in either direction. This as opposed to common k-mers,
which are exact matches of a fixed length k, which may or
may not be maximal. Alignment methods based on maxi-
mal exact matches have been developed for read map-
ping [18–20]. It is shown in [18] that these methods can
be more efficient than alignment techniques based on
k-mers and Burrows–Wheeler transforms [21, 22]. From
the definition of a MEM, it is clear that every MEM of
size l ≥ k can be represented as a consecutive sequence
of k-mers, and vice versa. However, finding large MEMs

can be achieved in an efficient manner, and MEMs can
compactly represent multiple k-mers.

The remainder of this section is dedicated to a more in-
depth description of all steps involved.

Assembly of the second generation data
Before the main error correction procedure can start,
the second generation data is assembled in a de Bruijn
graph. In the Jabba workflow this preprocessing step has
two phases, first the reads are corrected, then a de Bruijn
graph is constructed from these corrected reads.

Two phase preprocessing
In the preprocessing phase for Jabba, the second genera-
tion reads are processed twice. First a relatively small k-
mer size (e.g. k = 13) is used to correct the reads, using
Karect [16]. The resulting reads have a very high per
base quality and these are then used to build a de Bruijn
graph with a relatively high k-mer size (e.g. k = 75). On
this graph further corrections can then be performed, as
described below. This approach has two main advantages:

1.	 The per base accuracy is very high, which is crucial
since the long reads are corrected based on the node
content of the de Bruijn graph.

2.	 Repeats smaller than the k-mer size are resolved in
the de Bruijn graph. For large values of k (e.g. k = 75
for 100 bp reads) this greatly reduces the complex-
ity of the graph, which facilitates the alignment of
sequences to the graph.

Graph correction
Errors in short reads lead to erroneous paths in the de
Bruijn graph. Three types of errors can be discerned
based on their position in the read. An error that is
located at least k − 1 nucleotides away from both ends of
the read will result in k erroneous k-mers. In turn, this
leads to the formation of a ‘bubble’, i.e. a path of length
k that runs parallel to the real path. On the other hand,
errors positioned close to the ends of the read lead to
the creation of less than k erroneous k-mers, thus form-
ing ‘dead ends’ (tips) in the de Bruijn graph. Errors in the
reads may also result in chimeric connections between
unrelated parts of the graph. Additionally, because of
coverage biases certain paths could be absent or under-
represented in the graph.

These errors can be corrected as described in [17].
Assuming a sufficiently low error rate and a high cov-
erage, the correct path in a bubble will typically have
a higher coverage than parallel erroneous paths, and
the graph can be corrected by removing the erroneous
path. Tips can be easily identified and removed, based
on topology and coverage considerations. The chimeric

Fig. 1  To align a read to the de Bruijn graph, a seed-and-extend algo-
rithm is used. First MEMs are found between the read and the graph,
then a path in the graph is found between these seeds, creating the
final alignment

http://bioinformatics.intec.ugent.be/jabba.

Page 4 of 12Miclotte et al. Algorithms Mol Biol (2016) 11:10

connections and coverage gaps vastly complicate the
graph correction procedure, and erroneous paths may
remain present in the final corrected graph.

Aligning reads to a de Bruijn graph
To align the reads to the graph a seed-and-extend
approach is applied. By properly indexing the graph the
seeds can be found in O(m) time, where m is the size of
the read that is being mapped.

Finding maximal exact matches
To rapidly find MEMs between the nodes of the graph
and the long reads, essaMEM [23] is used. These MEMs
will be used as seeds for the alignment. By concatenat-
ing the sequences of every node and their reverse com-
plement, a single sequence is constructed. From this
sequence, an enhanced sparse suffix array is built by essa-
MEM. The sparseness factor of the index sharply reduces
the space requirement for the index, compared to tra-
ditional suffix trees or enhanced suffix arrays, but this
comes at the cost of a small increase in runtime.

Chaining seeds
To chain the seeds, several passes over the read are per-
formed. In each iteration the algorithm considers every
region of the read that has not yet been aligned. For every
such region separately, the largest seeds are considered.
From these seeds it is determined to which nodes the
current region of the read could map. For each such node
the list of all seeds between this node and the current
region of the read is considered, and an optimal place-
ment of these seeds is decided, removing the ones that do
not fit. Seeds are compatible if the distance between the
two seeds on the read is contained in an interval deter-
mined by the estimated error rates and the distance of
the seeds in the node.
Generally, larger MEMs are less likely to be noise than
shorter seeds, since the number of all k-mers increases
exponentially if k increases and the number of k-mers
contained in a sequence is similar to the size of the
sequence, independent of k. There can still be noisy long
seeds, especially when the genome contains imperfect
repeats. In this case, the correct seeds can usually be rec-
ognized amidst the noisy seeds by considering the con-
text. Firstly, the local context is considered, by comparing
the seeds in the same node. This way seeds that occur in
the same order in a node and in the read can be chained
together to form inexact matches. Secondly, if the situa-
tion is still ambiguous, the global context is considered,
by comparing the alignments in the neighborhood of the
ambiguous region. If this neighborhood has not yet been
chained in previous passes, the chaining of the current
region is delayed to the next pass.

After obtaining the presumed layout of the seeds, the
quality of the alignment is assessed. The following cases
are filtered:

1.	 Local mappings that are not super maximal, i.e., local
mappings that are on the read contained in a larger
local mapping.

2.	 Local mappings that cover less than a predetermined
fraction of the node. The absence of any seeds in the
rest of the node makes it less likely that this is actu-
ally a correct mapping. The fraction can be calculated
based on the work in Section .

After the local alignments are computed for the current
pass, the next phase begins: chaining the alignments
between different nodes by following unique paths in
the graph. During this phase every local alignment is
extended by considering the possible paths in the graphs.
Both directions of the alignments are extended in the
same manner, as follows:

1.	 If there is a unique edge, this edge must be correct
and the local alignment is extended along this edge.

2.	 If there are several edges, the lengths of the end
nodes are considered. Since the extension takes place
between two regions of the read, certain estimates
can be made for the maximal distance between the
alignments, edges that are too long are then not con-
sidered.

3.	 If at any point there are no suitable edges to extend
along, a mistake was made at some point. Either the
graph is incorrect or the original local chaining was
erroneous. In either case the erroneous region is
reprocessed in a new local chaining step.

In the rest of this section the distance between corrected
regions on a read is denoted as n and the estimated
insertion and deletion rates of the data are denoted as i
and d.

After the unique-extension step, the resulting chains
may overlap in the graph, in which case they can be
linked together to make one consecutive path. Overlap-
ping chains are however not a sufficient condition for
linking, the size of the sequences represented by the path
and the read need to be compared. If the sequence on
the path is smaller than (1+ 2i)−1n, the shortest cycle
at the common point is considered. If this shortest cycle
can not adequately fill the gap, then the paths are not
joined and the gap is left for the next pass. Likewise, if the
resulting chains do not meet, the shortest path between
both end points is considered. If this shortest path can
not adequately fill the gap, the gap is again left for the
next iteration.

Page 5 of 12Miclotte et al. Algorithms Mol Biol (2016) 11:10

By clustering seeds and only using shortest path algo-
rithms to chain the nodes, computationally expensive
path searching and per base alignment can be avoided.

Final alignment
After all passes of the algorithm have been performed,
there are often several remaining possible alignments.
The alignment that best covers the read is selected, and
used for the error correction. To correct the read ends,
the alignment is extended along unique paths in the
graph. If the read is estimated to continue further than
the longest unique path, this part of the read will be
discarded. Correcting these read ends is typically an
expensive operation, since they have to be aligned to all
possible paths leaving the aligned path. This is the case
because these read ends do not contain reliable seeds. If
they would, those seeds would have been chained with
the path. This could be further improved upon by search-
ing for smaller seeds in the read ends, however, this is not
done in Jabba, since it is a relatively expensive operation
for a small gain.

If any of the previously discarded read ends contains an
alignment, this alignment is additionally used to correct
that read end. This methodology is applied recursively.
In this way one read in the input can result in several
smaller non-overlapping reads in the output. This allows
Jabba to deal with coverage gaps in the graph, where no
uninterrupted path exists. Additionally it allows Jabba to
handle chimeric third generation reads.

Settings
Jabba takes several parameters that can affect the results.
Most importantly the minimal length l of MEMs for
the initial search can be specified, the standard value is
l = 20, but this should be chosen based on the discussion
in section in function of the data. If for a particular read,
an extremely high or low amount of seeds are found, the
seed finding procedure is repeated for this read, with a
more suitable choice of l. Incorrectly setting this param-
eter may hence still lead to results comparable to a cor-
rect choice of l, but at the cost of an increase in runtime.

Another crucial parameter is the k-value of the de
Bruijn graph. If k is too large, the graph will have many
small disconnected nodes. Since Jabba only corrects to
paths that actually exist in the graph, these nodes will
typically not contribute anything to the error correc-
tion, and most of the second generation data is not used.
If, on the other hand, k is too small, many small repeats
remain in the graph, severely reducing the size of linear
paths in the graph and increasing the path-finding com-
plexity. Building a de Bruijn graph from corrected second
generation data is a relatively inexpensive operation. As
such, this parameter can be optimized by constructing

several graphs with different k-mer sizes, and comparing
the connectedness of the resulting graphs. If two graphs
have a similar degree of connectedness, i.e., they contain
a similar number of bases in their largest components,
then the graph with the largest k should be preferred.

The maximal number p of iterations of the algorithm
can be specified, the standard value is p = 5. Finally,
Jabba has two different output modes, short attempts to
correct the read completely by estimating how far from
the extremal aligned seed the alignment still continues,
while long extends the correction maximally along lin-
ear paths in the graph. Because of this, the long output
mode has a small risk of creating additional chimeric
reads, but the resulting reads will in many cases be sev-
eral times longer than the original reads. The short out-
put mode results in output that is more similar to the
input reads.

Expected maximal exact matches in sequences
In this section the occurrence of maximal exact matches
in reads is investigated. Insertions and deletions have a
different effect on the size of maximal exact matches than
substitutions. A substitution error puts a firm stop to any
running exact matches, while an insertion or deletion
may allow for the exact match to continue, effectively
looking like an error at a further point in the read. In
the following, this difference is ignored and all errors are
treated like they were substitutions. Because of this, the
size of MEMs is slightly underestimated for sequences
that contain insertions or deletions. It is also assumed
that errors are uniformly distributed in the sequences, as
is the case for Pacific Biosciences SMRT reads.

Coverage by exact regions
In this section the expected fraction of a long read that
should be covered by MEMs larger than a given size is
explored, under the assumption that the reference con-
tains no errors. Variations on this topic have been
explored in [24–26]. In the following, n is the length of
the read, p is the error-rate and m the threshold for maxi-
mal exact matches. An exact region of size k on a read is
defined as k correct consecutive bases in that read. The
coverage by exact regions is the fraction of bases that are
contained in exact regions.

The expected number of exact regions (including those
of length 0) is the expected number of errors, i.e., np. The
expected coverage of a read by exact regions of size k is
then the product of (i) the coverage of the read by one
exact region of size k: k/n, (ii) the expected number of
exact regions: np, and (iii) the probability that an exact
region has size k: (1− p)kp. This results in:

(1)k(1− p)kp2 .

Page 6 of 12Miclotte et al. Algorithms Mol Biol (2016) 11:10

Summing (1) over all k ≥ m gives the expected coverage
of the read by exact regions of size k ≥ m:

the right hand side provides a finite formula to compute
this expected coverage. Figure 2 shows the expected
coverage by exact regions larger than m, for error-rates
p = 10% and p = 15%. The maximum 1− p is obtained
at {0, 1} since every correct base is contained in an exact
region of size ≥ 1. It can be seen that increasing p leads to
a steeper descent near the inflection point. While it was
a priori clear that a lower error rate leads to larger exact
regions, this also shows that the equilibrium between a
sufficient amount of seeds and a sufficiently large mini-
mal seed length, is less stable for higher error rates.

Occurrence of exact regions
The expected length of the longest exact region in a read
of size n is denoted by ERp(n). If np(1− p)m ≥ 1 then at
least one exact region of size k ≥ m is expected in a read
of size n, hence the expected length of the longest run
can be approximated by solving np(1− p)m = 1 for m:

The distribution around this average can be approxi-
mated by the complement of a Gumbel distribution with
cumulative distribution function

the probability that a read of length n will have an exact
region of size k ≥ m is then approximated by

(2)
∞
∑

k=m

k(1− p)kp2 = (1− p)−

m−1
∑

k=0

k(1− p)kp2 ,

(3)ERp(n) ≈ − log1−p np.

(4)F(x) = exp
(

−(1− p)x+1
)

;

These approximations are highly accurate when p and n
are sufficiently large. Figure 3 shows the fraction of reads
of length n that are expected to have an exact region of
size m, for error-rates p = 10% and p = 15%. For suf-
ficiently large values of n, replacing n by n′ > n shifts
the graph to the right by a term log1−p n/n

′, replacing
p by p′ < p shifts the graph to the left and steepens the
descent near the inflection point. This again shows that
larger error rates make the determination of a proper
seed size threshold less stable.

Applications
During the local chaining step from section one can
apply the results of section to decide whether a local
mapping is plausible or not. For each mapping the cover-
age by exact regions can easily be computed by counting
seed sizes. The resulting number can then be compared
to the expected coverage that can be obtained from sec-
tion. If there is a significant deviation in either direction,
the local mapping gets a lower rating.

When computing mappings it is required to have at
least one seed available, hence the results from section
propose good upper bounds for the minimum length of
seeds, depending on the read size and error rates. To a
certain extent this result can also be used to estimate the
probability of a read containing several exact regions of
a minimal size. If a read of size n contains a MEM of size
k ≥ m, then this MEM divides the read in two pieces, one
of size n′ and the other of approximately size n− n′ . This
approximation of the piece-sizes is made since typically

(5)
P(n, p,m) = 1− F(m+ ERp(n))

= 1− exp
(

−np(1− p)m+1
)

.

10 20 30 40 50

20%

40%

60%

80%

100%

Minimum size m

E
xp

ec
te
d
co
ve
ra
ge

10% errors
15% errors

Fig. 2  Expected coverage by exact regions of size k ≥ m for reads of
size 10,000 with 10% and 15% errors, expressed as percentages of the
whole read as a function of the minimal size of the exact regions

20 40 60 80 100

20%

40%

60%

80%

100%

Minimum size m

Fr
ac
ti
on

of
re
ad

s

10% errors
15% errors

Fig. 3  Expected percentage of reads of size 10,000 that contain at
least one exact region of size k ≥ m, for reads with 10% and 15%
errors

Page 7 of 12Miclotte et al. Algorithms Mol Biol (2016) 11:10

k is significantly smaller than n, and k is not known a
priori. The conditional probability of the read contain-
ing a second MEM of size larger than m then becomes
1− (1− P(n′, p,m))(1− P(n− n′, p,m)), with P as in (5).
Since n′ depends on the read, it is a priori not known and
integrating over n′ is required. The distribution of the size
of n′ can be approximated by the uniform distribution on
{0, . . . , n}, and because of symmetry this leads to the fol-
lowing estimate of the a priori probability of a read of size
n containing at least 2 exact regions with size larger than
m:

where Q(n, n′, p,m) = 1−
(

1− P(n′, p,m)
)(

1− P(n− n′, p,m)
) .

In a similar fashion, equation (6) can be extended to mul-
tiple seeds, possibly of different minimal sizes. However
one should be careful when using (6) and other exten-
sions of (5), since the approximation made by P(n, p, m)
becomes less accurate when n decreases.

Results
Jabba is compared with LoRDEC [13] and proovread [12].
In [12, 13] it is demonstrated that LoRDEC and proovread
perform better than both LSC [10] and PacBioToCA [11].

Data
To evaluate Jabba a combination of simulated and real
data was used. The sources of the data are specified in
Table 1.

For Escherichia coli, Aeromonas hydrophila, Saccharo-
myces cerevisiae, Arabidopsis thaliana, and Drosophila
melanogaster, Illumina paired-end reads were simulated
using ART Illumina [27], using the MiSeq profile. For
Ostreococcus tauri, real Illumina reads were used, with an
average size of 76 bp.

From the A. hydrophila genome Pacific Biosciences
reads were simulated using pbsim [28], with average read
length of 10 kbp and 15% errors, distributed as 60% inser-
tions, 30% deletions and 10% substitutions. Real Pacific
Biosciences datasets were used for all other genomes. For
O. tauri, the Illumina and Pacific Biosciences data were
sequenced from the same strain.

Parameters
LoRDEC
LoRDEC was run with k = 19 for the bacterial data sets,
for S. cerevisiae, and for O. tauri, as suggested in [13].
For the larger genomes the best results were obtained
for k = 21. LoRDEC results are shown with and without
post-processing with LoRDEC-trim. For all data sets the
short reads were preprocessed with Karect, to allow a

(6)P(n, p,m) =
2

n

n/2
∑

n′=0

Q(n, n′, p,m) ,

more clear comparison of the tools. Additionally, for E.
coli, A. hydrophila and O. tauri, LoRDEC was applied to
the uncorrected reads.

proovread
For proovread the standard parameters were used.

Jabba
For Jabba the minimum MEM size was l = 20 and the
de Bruijn graphs were built with k = 75 for all datasets
except for O. tauri, where k = 55 was used due to the
short read lengths of the second generation data, i.e.,
76 bp. Jabba was run with the short output mode.

Evaluation metrics
After correction the reads are aligned to the reference
genome with BLASR [29], with a minimum alignment
identity of 70%. In Table 3 the following metrics are used
to compare the performance of the tools:

• • Gain: relative change in errors of the aligned reads
compared to the original reads.

• • Accuracy: the identity percentage of the aligned
reads.

• • Error-free: the fraction of the aligned reads that
aligns without errors.

• • Aligned: the fraction of aligned bases.
• • Throughput: the ratio of corrected base pairs and

input base pairs.
• • Nx: the Nx of the reads, i.e., the minimum read size

such that all reads larger than this contain x% of the
bases in the data set. In Table 3 the N50 is shown,
continuous plots of Nx values are displayed in
Figures 4 and 5.

• • CPU time: the average CPU time per read.
• • Memory: the peak memory usage.

All experiments were run on dual-socket octa-core
Intel Xeon Sandy Bridge computing nodes at 2.6 GHz
and 64 GB of memory. The runtimes and memory
usage are measured using the standard Linux time
command.

Evaluation and discussion
Table 2 shows the results for LoRDEC, proovread and
Jabba. The output of LoRDEC has been post-processed
by trimming and splitting the reads and only retain-
ing the regions of the reads that are of high quality. The
proovread run on S. cerevisiae did not finish after 3 days
and is not included in this discussion. In the follow-
ing discussion every reference to LoRDEC concerns the
results of LoRDEC with preprocessing by Karect, unless
otherwise mentioned.

Page 8 of 12Miclotte et al. Algorithms Mol Biol (2016) 11:10

On the simulated long reads for A. hydrophila, all tools
perform very well. The main difference between the tools
on the simulated data is in the percentage of error-free
reads; almost all reads produced by Jabba and proovread
contain no errors. LoRDEC on the other hand, only
reaches up to 86.74 % error-free reads.

On all real data sets, all the tools perform worse than
on the simulated data set. From the table it is clear that
LoRDEC and proovread have a slightly higher through-
put than Jabba on all data sets. However, a significant per-
centage (11%–50%) of the reads corrected by LoRDEC
do not align to the reference. For the aligned reads, all
the tools achieve over 98% accuracy on all datasets. Jabba
consistently has the highest accuracy on real data sets
and keeps performing well even on the larger genomes.
Both LoRDEC and proovread obtain significantly worse
accuracies on the larger genomes than on the bacterial
genomes. For all data sets, except for O. tauri, over 95%

of the Jabba-corrected reads that align to the reference
contain no errors. For LoRDEC and proovread this num-
ber is significantly lower, many reads still contain errors.

In general, the output of Jabba is very reliable for both
the real and the simulated data. Almost all reads that are
corrected by Jabba are of very high quality, and many of
them contain no errors at all.

From Figs. 4 and 5 it is clear that on every data set, the
output from Jabba is contained in longer reads than the
output from both other tools.

The memory usage of all tools is shown in Table 4.
The memory usage of Jabba is almost linear in the
genome size. LoRDEC uses more memory than Jabba
on the smaller genomes, but this is a peak during the
construction of the de Bruijn graph. On the two larger
genomes, Jabba uses more memory than LoRDEC. The
memory usage of Jabba is dominated by the storage of
the enhanced sparse suffix array, which can be linearly

Table 1  The data sets and reference genomes

a  Reference genome available at http://www.ncbi.nlm.nih.gov/nuccore
b  Reads available at http://www.ncbi.nlm.nih.gov/sra
c  Reference genome available at http://www.fruitfly.org/sequence/release5genomic.shtml

ID Number
of reads

Number
of bases (Mbp)

Maximal
read length

N50 Estimated
coverage

Escherichia coli

 Reference NC_000913a

 Short reads ART 28.4 M 2840 100 100 600×
 Long reads SRR1284073b 163 K 649 49,424 13,578 135×

Aeromonas hydrophila

 Reference NC_008570a

 Short reads ART 4.74 M 474 100 100 100×
 Long reads pbsim 515 4.74 24,430 10,421 1×

Saccharomyces cerevisiae

 Reference NC_001133a

 Short reads ART 9.72 M 2430 250 250 200×
 Long reads SRR1284074b 1.96 M 5580 37,008 3973 453×

SRR1284662b

Ostreococcus tauri

 Reference NC_014426a

 Short reads [30] 9.72 M 1778 76 76 135×
 Long reads [30] 225 K 1135 22,892 7322 86×

Arabidopsis thaliana

 Reference NC_003070a

 Short reads ART 23.9 M 5975 250 250 49×
 Long reads SRR1284093b 327 K 1439 86,350 14,256 12×

SRR1284094b

Drosophila melanogaster

 Reference Release 5c

 Short reads ART 24.1 M 6025 250 250 49×
 Long reads SRR1204085b 327 K 686 55,988 12,478 6×

SRR1204086b

http://www.ncbi.nlm.nih.gov/nuccore
http://www.ncbi.nlm.nih.gov/sra
http://www.fruitfly.org/sequence/release5genomic.shtml

Page 9 of 12Miclotte et al. Algorithms Mol Biol (2016) 11:10

decreased by increasing the sparseness factor. This is
shown for A. hydrophila in Table 5. In this table the rela-
tion between memory usage (m) and sparseness factor
(s) is approximately m = 82.57/s + 20.50. This sparse-
ness factor allows Jabba to also run on lower memory
machines, but this comes at a cost in runtime. Another
major contributor to the peak memory usage are reads
that have an overabundance of MEMs with the graph.

The average CPU time per read is displayed in Table 3.
Jabba processes 10–100 reads per CPU second. Both
LoRDEC and proovread require significantly more CPU

Table 2  Results for LoRDEC, proovread and Jabba

Results for proovread on S. cerevisiae have been left out because they did not compute in 3 days. The subscript p indicates that the tool used the reference genome
instead of short reads. The subscript n indicates that the tool used uncorrected short reads

Gain (%) Accuracy (%) Error-free (%) Aligned (%) Throughput (%) N50 (bp)

E. coli - simulated short and real long reads - 4.7 Mbp

 Uncorrected reads 85.16 0 59.16 13,578

 LoRDECn 96.46 99.47 13.74 82.16 62.30 4661

 LoRDEC 98.83 99.82 79.31 88.95 63.70 7618

 proovread 99.64 99.94 89.64 99.57 58.65 5706

 Jabba 99.70 99.95 95.70 99.23 57.04 12,760

A. hydrophila—simulated short and simulated long reads: 4.8 Mbp

 Uncorrected reads 86.84 0 100 10,421

 LoRDECn 99.21 99.89 25.29 96.72 94.79 7625

 LoRDEC 99.93 99.99 86.74 99.76 95.35 9695

 proovread 99.99 99.99 96.53 99.99 95.40 9803

 Jabba 99.74 99.96 97.66 99.98 98.04 10,215

S. cerevisiae - simulated short and real long reads: 12.3 Mbp

 Uncorrected reads 83.21 1.50 27.99 3969

 LoRDECn 91.17 98.51 44.02 77.77 21.72 2869

 LoRDEC 92.08 98.67 60.82 83.12 30.43 3802

 proovread – – – – – –

 Jabba 99.87 99.97 98.35 99.93 27.67 8373

O. tauri - real short and real long reads: 13.2 Mbp

 Uncorrected reads 83.83 0.05 23.10 7322

 LoRDECn 91.04 98.55 63.60 85.05 31.43 985

 LoRDEC 91.51 98.62 66.76 85.42 31.54 1043

 proovread 98.11 99.69 80.28 90.55 26.31 1501

 Jabba 99.06 99.84 83.33 93.31 13.81 4183

A. thaliana - simulated short and real long reads: 121 Mbp

 Uncorrected reads 83.32 8.00 47.82 14,256

 LoRDEC 90.43 98.40 59.35 50.69 46.09 904

 proovread 91.11 98.51 69.71 96.66 42.08 7788

 Jabba 99.47 99.91 96.67 99.85 39.87 12,647

D. melanogaster—simulated short and real long reads: 122 Mbp

 Uncorrected reads 85.70 22.97 41.72 12,478

 LoRDEC 89.18 98.45 54.29 49.24 44.78 1119

 proovread 97.07 99.58 67.72 98.36 43.49 11,476

 Jabba 99.51 99.93 96.24 99.81 38.20 15,553

 Jabbap 99.51 99.93 96.24 99.82 38.22 15,564

Table 3  Average CPU time per read for LoRDEC, proovread
and Jabba

Results for proovread on S. cerevisiae have been left out because they did not
compute in 3 days

LoRDEC (ms) proovread (ms) Jabba (ms)

E. coli: 4.7 Mbp 111 1782 47

A. hydrophila: 4.8 Mbp 582 5652 11

S. cerevisiae: 12.3 Mbp 172 – 28

O. tauri: 13.2 Mbp 462 3165 9

A. thaliana: 121 Mbp 633 2128 100

D. melanogaster: 122 Mbp 289 1699 53

Page 10 of 12Miclotte et al. Algorithms Mol Biol (2016) 11:10

time. The high speed of Jabba is a result of the pseudo
alignment approach.

The preprocessing with Karect requires a high amount
of computing resources, as shown in Table 6. However,
the increase in error-free reads is significant, and on all
data sets LoRDEC performs better in this regard after
preprocessing the second generation data with Karect.
Additionally, Table 7 indicates that the throughput and
N50 of proovread corrected reads can also be signifi-
cantly improved by preprocessing the short reads. This
indicates that the integrated short read error correc-
tion (k-mer frequency filtering) performs worse than the

Table 4  Peak memory usage for LoRDEC, proovread
and Jabba

Results for proovread on S. cerevisiae have been left out because they did not
compute in 3 days

LoRDEC (MB) proovread (MB) Jabba (MB)

E. coli - 4.7 Mbp 2946 17,035 175

A. hydrophila - 4.8 Mbp 1205 617 103

S. cerevisiae - 12.3 Mbp 2693 – 401

O. tauri - 13.2 Mbp 2208 12,963 328

A. thaliana - 121 Mbp 3876 7042 5098

D. melanogaster - 122
Mbp

3936 6656 4099

Fig. 4  Nx plots for E. coli, A. hydrophila and S. cerevisiae Fig. 5  Nx plots for O. tauri, A. thaliana and D. melanogaster

Page 11 of 12Miclotte et al. Algorithms Mol Biol (2016) 11:10

dedicated second generation error correction tool Karect.
For Jabba this preprocessing step carries the additional
advantage of allowing a larger k-mer size for the de Bruijn
graph. A de Bruijn graph that was built from uncorrected
short reads, with k = 75, is very disconnected and can
not be used for alignment of long reads. From the results
on a perfect graph for D. melanogaster, it is clear that
after preprocessing short reads with Karect, Jabba per-
forms equally well on a graph built from short reads as on
a perfect graph. Any further improvements to the hybrid
error correction procedure should therefore be focused
on the alignment procedures, and not on further correc-
tion of the second generation data.

Conclusion
Jabba produces highly reliable corrected reads: almost all
corrected reads align to the reference, and these align-
ments have a very high identity. Many of the aligned
reads are error-free and the N50 of the reads is high com-
pared to other tools. Additionally, Jabba corrects reads
using a very low amount of CPU time. From this we con-
clude that pseudo alignment with MEMs is a fast and
reliable method to map long highly erroneous sequences
on a de Bruijn graph.

From the comparison of LoRDEC and proovread with
and without preprocessing with Karect, we conclude that
dedicated second generation error correction tools can
provide a meaningful contribution to the hybrid error
correction procedure. Especially for the creation of error-
free reads, LoRDEC’s built-in short read error correction
procedure performs significantly worse than building a
graph from corrected short reads. Additionally, this pre-
processing is vital for Jabba, since it allows Jabba to use a
de Bruijn graph with a high value of k.

Jabba performs equally well on a perfect graph and a
graph constructed from corrected short reads, future
work in hybrid error correction should be focused on
improving the alignment procedures.

Authors’ contributions
GM, MH, PA and JF designed and implemented algorithms. GM conducted
benchmark experiments and performed the theoretical analysis. All authors
designed the study and wrote the manuscript. All authors read and approved
the final manuscript.

Author details
1 Department of Information Technology, Ghent University - iMinds, Ghent,
Belgium. 2 Department of Plant Systems Biology, VIB, Ghent, Belgium. 3 Depart-
ment of Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
4 Bioinformatics Institute Ghent, Ghent, Belgium. 5 Department of Genetics,
Genome Research Institute, University of Pretoria, Pretoria, South Africa.

Acknowledgements
The computational resources (Stevin Supercomputer Infrastructure) and
services used in this work were provided by the VSC (Flemish Supercomputer
Center), funded by Ghent University, the Hercules Foundation and the Flemish
Government - department EWI. We acknowledge the support of Ghent Uni-
versity: Bioinformatics Institute Ghent - From Nucleotides to Networks.

Competing interests
The authors declare that they have no competing interests.

Funding
This project is supported by The Research Foundation - Flanders (FWO)
(G0C3914N). The authors acknowledge the Multidisciplinary Research Partner-
ship “Bioinformatics: from nucleotide to networks” project (no. 01MR0310W) of
Ghent University.

Received: 10 December 2015 Accepted: 25 April 2016

References
	1.	 Myers EW. Efficient local alignment discovery amongst

noisy long reads. Algorithms Bioinform. 2014;8701:52–67.
doi:10.1007/978-3-662-44753-6_5.

	2.	 Berling K, Koren S, Chin C-S, Drake J, Jane M. Assembling large genomes
with single-molecule sequencing and locality sensitive hashing. Nat
Biotech. 2015;33:623–30. doi:10.1038/nbt.3238.

	3.	 Salzberg SL, Phillippy AM, Zimin A, Puiu D, Magoc T, Koren S, Treangen
TJ, Schatz MC, Delcher AL, Roberts M, Marcxais G, Pop M, Yorke JA. GAGE:
A critical evaluation of genome assemblies and assembly algorithms.
Genome Res. 2012;22(3):557–67. doi:10.1101/gr.131383.111.

	4.	 Yang X, Chockalingam SP, Aluru S. A survey of error-correction methods
for next-generation sequencing. Brief. Bioinform. 2013;14(1):56–66.
doi:10.1093/bib/bbs015.

Table 5  Peak memory usage for the index in Jabba,
with different sparseness factors on A. hydrophila

Sparseness factor Memory (MB)

1 103

2 62

3 48

4 41

Table 6  Runtimes and peak memory usage for Karect,
with a limit of 64 Gb memory

CPU time (h) Memory (GB)

E. coli 5.26 35.0

A. hydrophila 3.57 9.7

S. cerevisiae 1.99 60.4

O. tauri 1.60 37.7

A. thaliana 18.27 50.3

D. melanogaster 16.01 50.6

Table 7  Throughput and N50 for proovread on A. hydroph-
ila without preprocessing the short reads with Karect

proovread without Karect 94.59 % 7303 bp

proovread with Karect 95.40 % 9803 bp

http://dx.doi.org/10.1007/978-3-662-44753-6_5
http://dx.doi.org/10.1038/nbt.3238
http://dx.doi.org/10.1101/gr.131383.111
http://dx.doi.org/10.1093/bib/bbs015

Page 12 of 12Miclotte et al. Algorithms Mol Biol (2016) 11:10

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

	5.	 Kelley DR, Schatz MC, Salzberg SL. Quake: quality-aware detection
and correction of sequencing errors. Genome Biol. 2010;11(11):116.
doi:10.1186/gb-2010-11-11-r116.

	6.	 Greenfield P, Duesing K, Papanicolaou A, Bauer DC. Blue: correct-
ing sequencing errors using consensus and context. Bioinformatics.
2014;30(19):2723–32. doi:10.1093/bioinformatics/btu368.

	7.	 Schröder J, Schröder H, Puglisi SJ, Sinha R, Schmidt B. SHREC: A short-
read error correction method. Bioinformatics. 2009;25(17):2157–63.
doi:10.1093/bioinformatics/btp379.

	8.	 Ilie L, Fazayeli F, Ilie S. HiTEC: accurate error correction in high-throughput
sequencing data. Bioinformatics. 2011;27(3):295–302. doi:10.1093/
bioinformatics/btq653.

	9.	 Salmela L, Schroder J. Correcting errors in short reads by multiple align-
ments. Bioinformatics. 2011;27(11):1455–61. doi:10.1093/bioinformatics/
btr170.

	10.	 Au KF, Underwood JG, Lee L, Wong WH. Improving PacBio long
read accuracy by short read alignment. PLoS One. 2012;7(10):46679.
doi:10.1371/journal.pone.0046679.

	11.	 Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G, Wang
Z, Rasko DA, Mccombie WR, Jarvis ED, Phillippy AM. Hybrid error correc-
tion and de novo assembly of single-molecule sequencing reads. Nat
Biotechnol. 2012;30(7):693–700. doi:10.1038/nbt.2280.

	12.	 Hackl T, Hedrich R, Schultz J, Forster F. Proovread: large-scale high-
accuracy PacBio correction through iterative short read consensus.
Bioinformatics. 2014;30(21):3004–11. doi:10.1093/bioinformatics/btu392.

	13.	 Salmela L, Rivals E. LoRDEC: accurate and efficient long read error correc-
tion. Bioinformatics. 2014;30(24):3506–14. doi:10.1093/bioinformatics/
btu538.

	14.	 Compeau PEC, Pevzner PA, Tesler G. How to apply de Bruijn graphs to
genome assembly. Nat Biotechnol. 2011;29(11):987–91. doi:10.1038/
nbt.2023.

	15.	 Abouelhoda MI, Kurtz S, Ohlebusch E. Replacing suffix trees with
enhanced suffix arrays. J Discret Algorithms. 2004;2(1):53–86. doi:10.1016/
S1570-8667(03)00065-0.

	16.	 Allam A, Kalnis P, Soloyev V. Karect: accurate correction of substitution,
insertion and deletion errors for next-generation sequencing data. Bioin-
formatics. 2015;31(21):3421–8. doi:10.1093/bioinformatics/btv415.

	17.	 Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly
using de Bruijn graphs. Genome Res. 2008;18(5):821–9. doi:10.1101/
gr.074492.107.

	18.	 Liu Y, Schmidt B. Long read alignment based on maximal exact match
seeds. Bioinformatics. 2012;28(18):318–24. doi:10.1093/bioinformatics/
bts414.

	19.	 Vyverman M, Baets BD, Fack V, Dawyndt P. A long fragment aligner
called ALFALFA. BMC Bioinformatics. 2015;16(1):159. doi:10.1186/
s12859-015-0533-0.

	20.	 Li H. Aligning sequence reads, clone sequences and assembly contigs
with BWA-MEM. http://arxiv.org/abs/1303.3997v2arXiv:1303.3997v2
[q-bio.GN]. 2013.

	21.	 Li H, Durbin R. Fast and accurate long-read alignment with Burrows–
Wheeler transform. Bioinformatics. 2010;26(5):589–95. doi:10.1093/
bioinformatics/btp698.

	22.	 Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat
Methods. 2012;9(4):357–9. doi:10.1038/nmeth.1923.

	23.	 Vyverman M, De Baets B, Fack V, Dawyndt P. EssaMEM: finding maximal
exact matches using enhanced sparse suffix arrays. Bioinformatics.
2013;29(6):802–4. doi:10.1093/bioinformatics/btt042.

	24.	 Arratia R, Gordon L, Waterman MS. An extreme value theory for sequence
matching. Ann Stat. 1986;14(3):971–93.

	25.	 Gordon L, Schilling MF, Waterman MS. An extreme value theory for long-
est head runs. Probab Theory Relat Fields. 1986;72:279–87.

	26.	 Schilling MF. The surprising predictability of long runs. Math Mag.
2012;85(2):141–9. doi:10.4169/math.mag.85.2.141.

	27.	 Huang W, Li L, Myers JR, Marth GT. ART: a next-generation sequenc-
ing read simulator. Bioinformatics. 2012;28(4):593–4. doi:10.1093/
bioinformatics/btr708.

	28.	 Ono Y, Asai K, Hamada M. PBSIM: PacBio reads simulator-toward accurate
genome assembly. Bioinformatics. 2013;29(1):119–21. doi:10.1093/
bioinformatics/bts649.

	29.	 Chaisson MJ, Tesler G. Mapping single molecule sequencing
reads using basic local alignment with successive refinement
(BLASR): application and theory. BMC Bioinform. 2012;13(238):1–18.
doi:10.1186/1471-2105-13-238.

	30.	 Blanc-Mathieu R, Verhelst B, Derelle E, Rombauts S, Bouget F-Y, Carré
I, Château A, Eyre-Walker A, Grimsley N, Moreau H, Piégu B, Rivals
E, Schackwitz W, Van de Peer Y, Piganeau G. An improved genome
of the model marine alga Ostreococcus tauri unfolds by assess-
ing Illumina de novo assemblies. BMC Genome. 2014;15(1):1103.
doi:10.1186/1471-2164-15-1103.

http://dx.doi.org/10.1186/gb-2010-11-11-r116
http://dx.doi.org/10.1093/bioinformatics/btu368
http://dx.doi.org/10.1093/bioinformatics/btp379
http://dx.doi.org/10.1093/bioinformatics/btq653
http://dx.doi.org/10.1093/bioinformatics/btq653
http://dx.doi.org/10.1093/bioinformatics/btr170
http://dx.doi.org/10.1093/bioinformatics/btr170
http://dx.doi.org/10.1371/journal.pone.0046679
http://dx.doi.org/10.1038/nbt.2280
http://dx.doi.org/10.1093/bioinformatics/btu392
http://dx.doi.org/10.1093/bioinformatics/btu538
http://dx.doi.org/10.1093/bioinformatics/btu538
http://dx.doi.org/10.1038/nbt.2023
http://dx.doi.org/10.1038/nbt.2023
http://dx.doi.org/10.1016/S1570-8667(03)00065-0
http://dx.doi.org/10.1016/S1570-8667(03)00065-0
http://dx.doi.org/10.1093/bioinformatics/btv415
http://dx.doi.org/10.1101/gr.074492.107
http://dx.doi.org/10.1101/gr.074492.107
http://dx.doi.org/10.1093/bioinformatics/bts414
http://dx.doi.org/10.1093/bioinformatics/bts414
http://dx.doi.org/10.1186/s12859-015-0533-0
http://dx.doi.org/10.1186/s12859-015-0533-0
http://dx.doi.org/10.1093/bioinformatics/btp698
http://dx.doi.org/10.1093/bioinformatics/btp698
http://dx.doi.org/10.1038/nmeth.1923
http://dx.doi.org/10.1093/bioinformatics/btt042
http://dx.doi.org/10.4169/math.mag.85.2.141
http://dx.doi.org/10.1093/bioinformatics/btr708
http://dx.doi.org/10.1093/bioinformatics/btr708
http://dx.doi.org/10.1093/bioinformatics/bts649
http://dx.doi.org/10.1093/bioinformatics/bts649
http://dx.doi.org/10.1186/1471-2105-13-238
http://dx.doi.org/10.1186/1471-2164-15-1103

	Jabba: hybrid error correction for long sequencing reads
	Abstract
	Background:
	Results:
	Conclusion:

	Introduction
	Background
	Error correction

	Methods
	Overview
	Assembly of the second generation data
	Two phase preprocessing
	Graph correction

	Aligning reads to a de Bruijn graph
	Finding maximal exact matches
	Chaining seeds
	Final alignment

	Settings

	Expected maximal exact matches in sequences
	Coverage by exact regions
	Occurrence of exact regions
	Applications

	Results
	Data
	Parameters
	LoRDEC
	proovread
	Jabba

	Evaluation metrics
	Evaluation and discussion

	Conclusion
	Authors’ contributions
	References

