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Abstract 

Background:  Superpositioning is an important problem in structural biology. Determining an optimal superposition 
requires a one-to-one correspondence between the atoms of two proteins structures. However, in practice, some 
atoms are missing from their original structures. Current superposition implementations address the missing data 
crudely by ignoring such atoms from their structures.

Results:  In this paper, we propose an effective method for superpositioning pairwise and multiple structures without 
sequence alignment. It is a two-stage procedure including data reduction and data registration.

Conclusions:  Numerical experiments demonstrated that our method is effective and efficient. The code package of 
protein structure superposition method for addressing the cases with missing data is implemented by MATLAB, and it 
is freely available from: http://sourceforge.net/projects/pssm123/files/?source=navbar
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Background
Superposition is a frequently used method to measure 
spatial similarity of three-dimensional objects such as 
computer vision, image science and molecular biology. 
Molecular biology employs superposition to support a 
wide variety of tasks. It is a very important problem to 
superimpose two or more protein structures in structural 
bioinformatics. Superpositioning problems have been 
explored by many studies [1–5]. The optimal superposi-
tion of three-dimensional (3D) conformations of similar 
structures is necessary in many real cases. Determining 
an optimal superposition normally requires a one-to-
one correspondence between the atoms in the different 
structures [6]. The superposition of multiple structures’ 
situation is complicated by the fact that if structure X is 
superimposed on structure Y and structure Z is superim-
posed on structure Y, then, in general, structure X is not 

optimally superimposed on structure Z. In this case, the 
superposition of X on Z is only optimal superposition if 
two of the three structures are identical in shape.

A superposition is a particular orientation of objects 
in three-dimensional space. There are many approaches 
to solve this problem. One of the approaches to solve the 
superpositioning problem is the method proposed by 
Kabsch [3], which allows computing the optimal transfor-
mation via singular value decomposition of a covariance 
matrix derived from the coordinates of the correspond-
ing three-dimensional structure. Another approach for 
this problem proposed by Kearsley [7] uses the algebra of 
quaternions. Multiple structure superposition programs 
have many applications, including understanding evolu-
tionary conservation and divergence, functional predic-
tion, automated docking, comparative modeling, protein 
and ligand design, construction of benchmark data sets 
and protein structure prediction and so on [8–11].

Structure alignment is different from superposition of 
structures. A structural alignment is the assignment of 
amino acid residue-residue correspondences between 
similar structural proteins [12]. One way to represent an 
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alignment is using the familiar row and column matrix 
format, in which sequence alignments use single letter 
abbreviations for residues. Alignments of amino acid 
sequences of proteins play important roles in structure 
molecular biology such as the study of evolution in pro-
tein families, the identification of patterns of conser-
vation in sequences, homology modeling, and protein 
crystal structure solution by molecular replacement.

In molecular biology, corresponding residues have 
similar structures. Many homologous proteins share a 
common core structure, in which the chain retains the 
topology of its folding pattern, but varies in geometric 
details. This retained similarity makes it possible to align 
the residues of the core. Since the structure of many pro-
teins is still unknown and proteins with similar structural 
motifs often exhibit similar biological properties even 
when they are distantly related, structure alignment can 
help characterize the role of many proteins.

There are two ways for protein structure alignments, 
sequence-based alignments and non-sequence-based 
alignments (i.e. Structal [13], TM-align [13], LovoAlign 
[13]). For closely related proteins, sequence-based align-
ments give consistent answers, reflecting evolution-
ary divergence. For distantly related proteins, however, 
sequence-based alignments lead to diverse residue cor-
respondences. At this case, we need non-sequence-based 
alignments. Non-sequential alignments can handle many 
cases such as reordering of domains and circular permu-
tations [13–15].

Most multiple structure alignment programs are based 
on pairwise structural alignment programs [16, 17]. Even 
simplified variants of structure alignment are known to 
be NP-hard [18, 19]. In many cases, certain residues are 
missing. For example, one crystal structure of a protein 
may omit loop regions that are present in another crystal 
structure of the same protein [20]. Most of the multiple 
structural alignment methods divide it into two sub-
problems. The first is to identify multiple corresponding 
structural elements. The second is to calculate the appro-
priate rigid-body transformation for each structure to 
create an optimal superposition.

There are three broad classes for structure alignment 
programs: the first class is aligned fragment pair (AFP) 
chaining methods [21]. The second class [22], is distance 
matrix methods. The third class includes everything else, 
such as geometric hashing and methods using secondary 
structural elements [22]. THESEUS is a software to con-
sider the missing data by adopting an expectation-max-
imization (EM) algorithm [23]. However, EM algorithm 
relies on a sequential structure alignment and it is highly 
dependent on the choice of the initial value. In this paper, 
we propose a new method for non-sequential structure 

superposition. We use the combination of principal com-
ponent analysis (PCA) and iterative closest point (ICP) 
registration techniques. The point of our method is we 
treat the proteins as the whole structures.

In this work, we propose a simple and efficient protein 
structure superposition method for addressing the cases 
with missing data (PSSM). We adopt a two-stage pro-
cedure including data reduction and registration tech-
niques to address this problem. We have applied it to the 
cytochrome C data, Globins family data, Serine Protein-
ases family data, Fisher’s dataset and the simulated data 
to demonstrate its efficiency and accuracy.

Methods
Here we introduce a two-stage method for the optimal 
superposition of pairwise and multiple structures with 
incomplete data. In the first stage, the key is to adopt a 
data reduction technique to get a reduced representation 
which is not sensitive to the noise and the missing resi-
dues. Based on the representation, we can obtain a rough 
superposition of pairwise or multiple structures with a 
least square technique. In the second stage, we employ 
the powerful iterative closest point (ICP) algorithm to 
further refine the superposition and find the optimal 
solution (Fig. 1).

The iterative closest point algorithm, originally intro-
duced in the area of computer vision for image regis-
tration, can be used in bioinformatics for the alignment 
of complete protein structures. Bertolazzi [24] used 
this method for the structural alignment of protein 
surfaces.

We implemented the method in Matlab software as a 
package named PSSM.

Discovering rough superpositioning based 
on principal‑axes transform
In this section we introduce the principal component 
analysis, the principal-axes transform techniques and the 
rotational search needed for some cases.

principal component analysis
Principal component analysis (PCA) is a very popular 
subspace analysis technique which is successfully applied 
in many domains for dimension reduction. It helps you 
reduce the number of variables in an analysis by describ-
ing a series of uncorrelated linear combinations of the 
variables that contain most of the variance. This reduc-
tion is achieved by transforming the original variables 
to the uncorrelated principal components—new vari-
ables. This new variables are ordered so that the first few 
ones keep the most of the variation in all of the original 
variables.
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The computation of principal components can give the 
principal component of the points. Then, we rotate the 
points along this principal component. This allows us to 
get the best initial value of the points. After this step, we 
employ the iterative closest point algorithm to further 
refine the superposition and find the optimal solution.

Principal‑axes transform
The principal axes of a protein structure are computed 
directly from its atomic coordinates. The first moment 
of these points is their center of mass, and the three 
eigenvectors and eigenvalues of the second moment ten-
sor give the principal axes and their relative lengths. The 
transform aligns the centers of mass and principal axes 
in order of decreasing relative lengths. The principal axes 
are coarse shape descriptors and are affected very little 
by noise or small differences in the structure and region 
being aligned [13]. The least square method was used 
to align corresponding principal-axes. As an example, 
we demonstrated the alignment of two two-dimensional 
shapes using the principal-axes transform in Fig. 2.

Rotational search strategy
The principal-axes transform is expected to yield correct 
rough superpositioning for many initial values. How-
ever, it may fail to produce proper ones in some cases. 
We consider a rotational search strategy to improve this 

situation to test multiple orientations. The axis of rota-
tion is a line which goes through points (0, 0, 0) (geomet-
ric center) and u (the linear combination of eigenvectors 
of one protein). The interval degree is set as 10◦. In prac-
tice, the principal-axes alignment method is applied first, 
followed by a rotational search if the resulting structure 
superpositioning does not give satisfactory results below 
a given RMSD (root mean squared deviation) value, then 
the principal-axes alignment method is applied again.

Structures with random rotations
To show the effectiveness of PSSM method, we use 
random rotational matrices to generate a random cor-
responding structure. A random rotational orthogo-
nal matrix is generated by a MATLAB function [i.e., 
orth(rand(3,3))]. As we know, the rotational matrices 
change the points’ position and orientation.

Refining the superpositioning based on iterative closest 
point algorithm
The iterative closest point (ICP) algorithm is based 
on quaternion [25]. The unit quaternion is a four 
vector �qR = [q0, q1, q2, q3]

T, where q0 ≥ 0, and 
q20 + q21 + q22 + q23 = 1. The 3× 3 rotation matrix gener-
ated by a unit rotation quaternion is

Let �qT = [q4, q5, q6]
T be a translation vector. The 

complete registration state vector �q is denoted as 
�q = [ �qR, �qT ]

T . Let P = {�pi}
Np

i=1 be a measured data point 
set to be aligned with a model point set X = {�xi}

Nx
i=1 , 

where Nx = Np and each point �pi corresponds to the 
point �xi with the same index. The mean square objective 
function to be minimized is

R( �qR) =


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Fig. 1  The flow chart of our pairwise protein structure superposition 
algorithm for missing data (PSSM)

Fig. 2  Illustration of the principal axes transform for aligning two 
two-dimensional shapes
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Defining �µp and �µx by:

The cross-covariance matrix �px of the sets P and X is 
given by

The symmetric 4 × 4 matrix Q(�px) is:

where � = [A23A31A12]
T and Ai,j = (�px −�T

px)i,j. I3 is 
the 3× 3 identity matrix. The unit eigenvector, denoted 
as �qR = [q0, q1, q2, q3]

T, corresponding to the maximum 
eigenvalue of the matrix Q(�px) is selected as the optimal 
rotation. The optimal translation vector is given by

This least square quaternion operation is O(Np) and is 
denoted as

where dms is the mean square point matching error. The 
notation �q(P) is used to denote the point set P after trans-
formation by the registration vector �q.

Let d be the distance metric between an individual 
data point �p and a model shape X, then d(�p,X) will be 
denoted:

The closest point in X denoted �y such that 
d(�p, �y) = d(�p,X). let Y be the resultant corresponding 
point set ( the set of all closest points), and let C be the 
closest point operator, then

The least squares registration is computed as described:

(2)�µp =
1

Np

Np
∑

i=1

�pi,

(3)�µx =
1

Nx

Nx
∑

i=1

�xi,

(4)

�px =
1

Np

Np
∑

i=1

[( �pi − �µp)( �xi − �µx)
T ]

=
1

Np

Np
∑

i=1

[ �pi �xi
T ] − �µp �µx

T
.

Q(�px) =

[

tr(�px) �T

� �px +�T
px − tr(�px)I3

]

,

(5)�qT = �µx − R( �qR) �µp.

(6)(�q, dms) = Q(P,X),

(7)d(�p,X) = min
�x∈X

||�x − �p||.

(8)Y = C(P,X).

(9)(�q, d) = Q(P,Y ).

The positions of the data shape point set are then updated 
via P = �q(P).

Algorithm 3.1 ICP procedure
1.	 Given the point set P with Np points �p from the data 

shape and the model shape X.
2.	 The iteration is initialized by setting 

P0 = P, �q0 = [1, 0, 0, 0, 0, 0, 0]T and k = 0. The reg-
istration vectors are defined relative to the initial data 
set P0 so that the final registration represents the 
complete transformation. Steps (a)–(d) in the follow-
ing are applied until convergence within a tolerance τ .

(a)	 Compute the closest points: Yk = C(Pk ,X), 
where C denotes the closest point operator.

(b)	 Compute the registration: (�qk , dk) = Q(P0,Yk).

(c)	 Apply the registration: Pk+1 = �qk(P0).
(d)	 Terminate the iteration when the change in 

mean-square error falls below a preset positive 
threshold τ (i.e. �dk − dk+1� < τ), which speci-
fies the desired precision of the registration, oth-
erwise, set k = k+1, go to step (a).

It is worth noting that in Eq. (8) C is not a unique map 
from P to X, but this does not influence the algorithm. The 
ICP algorithm does not require a one-to-one correspond-
ence between P and X. It was proved in Ref. [25] that the 
ICP algorithm always monotonically converged to a local 
minimum with respect to the mean square distance objec-
tive function. Our superpositioning algorithm also works 
well as demonstrated in all of our numerical experiments.

The combined procedure for pairwise and multiple 
structure superposition
The principal component analysis gives the principal-
axes of each protein structure. The ICP algorithm is a 
powerful method for points registration. However, it is 
only converges to a local minimum value and is sensi-
tive to the initial value. In the following, we introduce the 
combined procedure for the pairwise structure superpo-
sition in detail.

Data preprocessing is needed. We download proteins 
from the National Center for Biotechnology Informa-
tion (NCBI) database or other database, and the format 
is Protein Data Bank (PDB). We extract 3-dimensional 
coordinate and put the data into txt format. The Matlab 
program runs on the system of windows7, with AMD 
Athlon(tm) P340 Dual-Core Processor.

Algorithm 3.2 Pairwise structure superposition
1.	 Input the proteins structure data Pa, Pb, set initial 

value k = 1.
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2.	 Employ principal component analysis to find the 
principal components. For each of the two proteins 
Pa and Pb, the eigenvectors and eigenvalues is calcu-
lated (u1,u2,u3 for Pa and v1, v2, v3 for Pb), and the 
geometric center is determined.

3.	 The protein Pb is rotated. The rotating axis goes 
through O (0,  0,  0) (geometric center) and parallels 
to the vector v (here, v is v1 or v1+v2 or v1+v3). The 
interval degree is set to 10◦.

4.	 For each rotated position of Pb, the eigenvectors and 
eigenvalues is calculated again. The principal-axes 
of the new Pb and Pa is aligned using least square 
method.

5.	 The ICP algorithm is applied.
6.	 If RMSD < c (e.g., c = 1.5) or number of iterations 

exceeds certain times, output the cumulative rotation 
matrix and translation vector, break; Else, go back to 
3.

7.	 If RMSD > c, (e.g., c = 1.5) for the whole circle. Then 
we choose the smallest RMSD case, and output the 
rotation matrix and translation vector.

The multiple structures superposition algorithm is a 
natural extension of that for pairwise structure superpo-
sition. We first suggest to use the one with the median 
length of structure chains as the template protein. The 
key idea is applying pairwise structure superposition to 
calculate the superposition between the remaining pro-
teins and the template protein. For example, there are 
three proteins X, Y, Z to be superimposed, and assuming 
protein X is the middle protein (model protein), then, Y 
is superimposed on structure X, Z is also superimposed 
on structure X.

The details of our multiple algorithm are as follows:

Algorithm 3.3 Multiple structure superposition

1.	 Input the protein structures, C = P1,P2, . . . ,Pn, 
n ≥ 3.

2.	 Calculate the length of each protein and sort them by 
length.

3.	 Choose the middle sized protein as the template 
structure, denoted as Mi, for each protein in C calling 
the pairwise proteins superposition algorithm, out-
put the RMSD between this protein and the template 
and this protein’s number, denoted as set Ti. The ini-
tial value i is equals 1.

4.	 For each protein in Ti, sort by RMSD in ascending 
order. If the RMSD < c (e.g., c = 1.5), we put the pro-
teins and the corresponding RMSD in set Si. If the 
RMSD > c, we put the proteins and the correspond-
ing RMSD in set Ti+1.

5.	 Choose the largest RMSD protein in set Si as tem-
plate Mi+1, for each protein in Ti+1 calling the pair-
wise proteins superposition algorithm, change 
RMSD in Ti+1.

6.	 i ← i + 1, using step 4 and step 5, update Mi, Ti and 
Si.

7.	 If |Ti| = |Ti+1| or |Ti| = 0, stop.
8.	 Output each protein rotation matrix R and transla-

tion vector T.

Performance metrics
There are two parameters to measure the quality of the 
protein structure superposition: the number of residues 
that are aligned in the superposition and the average 
pairwise root mean squared deviation (RMSD) between 
aligned atoms. Clearly, the goal is to minimize the RMSD 
while maximizing the number of residues used in the 
superposition. In the following sections, if we do not 
mention the number of points used in superposition, the 
number is the smaller one between a pair of proteins.

Results
In this section, we tested our method PSSM using both 
simulated data and protein structures from the PDB. We 
compared it with several typical methods including least 
square (LS), Cα-match [26], CPSARST [27], CCP4 [28], 
SuperPose [29] and MUSTANG [30].

Results of the simulated data
We used the protein structure d1cih (835) as an example, 
and generated four rotated structures with three random 
rotational orthogonal matrices r1, r2 and r3 and one spe-
cific matrix r4 representing a 90-degree-rotation around 
z-axis.

The four rotation matrices r1, r2, r3, r4 are as follows:

r1 =





−0.2579 0.8740 0.4117
−0.7291 0.1035 − 0.6766
−0.6339 − 0.4747 0.6106



,

r2 =





0.1853 0.5045 − 0.8433
0.8945 − 0.4419 − 0.0678
−0.4069 − 0.7417 − 0.5332



,

r3 =





−0.6533 − 0.7515 − 0.0926
0.2860 − 0.3581 0.8888
−0.7010 0.5541 0.4489



,

r4 =





0 − 1 0
1 0 0
0 0 1



.
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We superimposed the four structures on the original one. 
Numerical experiments show that PSSM works well for 
all cases (Table 1). However, the running time is different 
due to the position and orientation of initial solutions to 
the optimal one. We can also use all possible correspond-
ence between two structures and apply least square (LS) 
directly. It can also give a better superposition. The com-
plexity of this algorithm is O(n2), where n is the num-
ber of sequence-aligned atoms. However, this algorithm 
needs sequence alignment. The complexity of our pair-
wise structure superposition is O(mn), where m and n are 
the number of the C(α) atoms of the proteins.

Because the least square (LS) method is popular and 
serves as an optimality criterion for determining the best 
superposition, we compared our method with it. We use 
the Cα atomic coordinates of five pairwise protein struc-
tures from d1cih, d1lfma, d1m60a, d2pcbb, and d1kyow 
to demonstrate our method can get similar superposition 
accuracy with LS. We can see that our algorithm indeed 
get almost the same RMSD as LS (Table  2). Although 

PSSM may take more time, it doesn’t require the initial 
correspondence or sequence alignment.

Numerical experiments show that our method can get 
comparative RMSD with larger number of aligned resi-
dues than Cα-match and CPSARST (Table  3). This may 
be because our method treats the structure with missing 
data as a whole structure.

We compare our PSSM method with CCP4 and Super-
Pose (Table  4) and find that each method has its own 
advantage. We adopt four pairs of proteins including 
1nls and 2bqp, 1glh and 1cpn, 1yad and 2dua, 1zbd and 
1puj as testing system. Take 1nls and 2bqp as an example, 
PSSM gets 228 aligned residues (Cα) with RMSD of 1.4Å, 
CCP4 gets 114 aligned 114 residues with RMSD of 0.999Å 
and SuperPose gets 205 aligned residues with RMSD of 
18.14Å. Compared with CCP4 and SuperPose, PSSM gets 
more aligned residues, and gives reasonable and com-
petitive RMSD compared those obtained by CCP4, and 
demonstrates overall better results than SuperPose. A 
possible reason is that SuperPose uses a secondary struc-
tural alignment strategy to guide the superposition. It is 
proper for secondary structural alignment and good at 
detecting domain or hinge motions in proteins. While our 
method is designed for the full structure superposition 
(see more examples in Additional file 1: Tables S2 and S3).

We also benchmark the performance of PSSM against 
DALI and MATT using Fischer’s benchmark data-
set (Table 5). Fischer’s dataset is a popular benchmark 
for testing protein structure alignment programs, and 
they contain 68 pairs of protein structures. In Table 5, 
we use the average aligned residues and the average 
RMSD. (The pairs alignment performance can be seen 
in Additional file  1: Tables S4 and S5). Table  5 shows 
the performance. The average RMSD (aveRMSD) of 
our method is greater than DALI AND MATT, but the 
average aligned (aveAligned) residue is longer than 
DALI and MATT.

The usability of PSSM algorithm
The following analysis show how the missing data affect 
the performance of PSSM. We keep one copy of a protein 
structure and delete some atoms from another copy of it 

Table 1  The superposition results of  PSSM for  two identi-
cal protein structures with  one randomly generated by  a 
rotation from another one

Structure data Time (s) RMSD (Å)

v .− v . ∗ r1  317.8 4.0628 ∗ 10−14

v .− v . ∗ r2 1161.4 4.2752 ∗ 10−14

v .− v . ∗ r3   27.3 5.0009 ∗ 10−14

v .− v . ∗ r4    2.3 2.0260 ∗ 10−14

Table 2  Comparison between PSSM and LS

Structure name Time (s) RMSD (Å)

id1(size)–id2(size) LS PSSM LS LS

d1cih (108)–d1lfma (103) 0.002   0.331 0.6 0.6

d1cih (108)–d2pcbb (104) 0.007 9.418 0.7 0.7

d1cih (108)–d1m60a (104) 0.006  21.484 1.2 1.2

d2pcbb (104)–d1m60a (104) 0.007 7.394 1.3 1.3

d1cih (108)–d1kyow (108) 0.002 3.768 0.7 0.7

Table 3  Comparison of PSSM with Cα-match and CPSARST

“Aligned” means how many residues were aligned

PDB/SCOP entries PSSM Cα-match CPSARST

id1(size)–id2(size) Aligned RMSD (Å) Aligned RMSD (Å) Aligned RMSD (Å)

1nls (237)–2bqpA (228) 228 1.4 214 1.3 218 1.4

1glh (214)–1cpn (208) 208 0.7 206 0.5 206 0.5

1yadA (190)–2duaA (283) 190 2.6 130 1.7 151 2.4

1zbdA (177)–1pujA (261) 177 3.2 113 1.5 130 3.2

d1nkla (78)–d1qdma1 (77)  77 2.6  49 1.4  70 2.4
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to simulate a protein structure with missing data. Two 
deleting approaches are explored. The first one is delet-
ing the atoms in order and the second one is deleting the 
atoms in a random way.
Figure 3a shows that the performance of pairwise super-
position between the protein structure d1cih (with only 
Cα atoms) and a mimic structure through a rotation of 
d1cih. Here the rotation matrix is:

r =





0.9548 0.2182 0.2019
−0.1777 0.9634 − 0.2007
−0.2383 0.1558 0.9586



,

d1cih has 108 Cα). We can see that when deleting the 
atoms in order and the number of deleted atoms is 
below 10, the RMSD is very small. However, when 
the number is greater than 10, the RMSD is sharply 
increased to about 3Å. In this case, for random deleting, 
the RMSD keeps small until the deleted atoms are more 
than 20.

Figure  3b shows that the performance of pairwise 
superposition between the protein structure d1cih with 
all main chain atoms and a mimic structure through the 
rotation of d1cih. The rotation matrix r is:

d1cih’s main chain has 835 atoms. When deleting the 
atoms in order, the results show that the RMSD keeps 
small up to 50 atoms deleted. However, when the deleted 

r =





0 1 0
1 0 0
0 0 1



,

Table 4  Comparison of PSSM with CCP4 and SuperPose

“Aligned” means how many residues were aligned

PDB/SCOP entries PSSM CCP4 SuperPose

id1(size)–id2(size) Aligned RMSD (Å) Aligned RMSD (Å) Aligned RMSD (Å)

1nls_ (237)–2bqpA (228) 228 1.4 114 1.0 205 18.1

1glh_ (214)–1cpn_ (208) 208 0.7 156 0.4 156 0.4

1yadA (190)–2duaA (283) 190 2.6 157 2.4 183 10.6

1zbdA (177)–1pujA (261) 177 3.2  97 2.0 177 20.0

Table 5  Performance comparison on Fischer’s dataset

Fischer’s dataset (67 of 68 pairs) DALI MATT PSSM

aveAligned 155 152 186

aveRMSD (Å) 2.77 2.87 2.90

Fig. 3  Superposition RMSD of d1cih and one of its rotated configuration with a number of deleted (a) Cα atoms or (b) main chain atoms, respec-
tively. The atoms are deleted in a random (blue color) or an ordered manner in the first 100 atoms (red color), respectively
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atoms are more than 50, the RMSD is sharply increased 
to 2Å, and can keep at similar level till 70 atoms deleted.

From the above analysis, we can see that PSSM for 
pairwise structure superposition is relatively robust for 
the case with random missing data than with sequen-
tial missing data. From the two cases above and more 
cases we run, we find that PSSM requires the difference 
between the two protein lengths less than about 20 %, for 
structure superposition with missing data.

Multiple protein structure superposition
We test our method using the proteins from three fami-
lies. One of a ten protein structure superposition case 
is from the cytochrome C family which includes d1cih, 
d1pcbb, d1lfma, d1crj, d1csu, d1csx, d1yeb, d1kyow, 
d1m60a, and d1u74d. The other two families are Globins 
and Serine Proteinases. We choose five proteins for the 
Globins family and seven proteins for the Serine Protein-
ases. These proteins have different amino acid sequence, 
yet similar structures. We choose d1cih, 2dhbb and 2pka 
as the template protein structure which has the median 
length. In practice, we only need to find one template 
protein in the case. We show the results of our method 
for the pairwise superposition RMSD in these three 
families (Tables 5, 6, 7), respectively. We can see that our 
PSSM method works very well. There is only one case 
2pka versus 1ppb with relatively larger RMSD than other 
pairs (Table 6).

We also compared our PSSM with MUSTANG using 
five proteins in the Globins family and seven proteins 
in the Serine Proteinases family as testing systems 

(Tables  8, 9). Generally, these two methods have 
shown very competitive results. For the Globins fam-
ily, PSSM is better than MUSTANG with two more 
aligned residues and even a bit smaller RMSD (1.37 
versus 1.41  Å). As to the Serine Proteinases family, 
PSSM aligned more atoms with a slightly larger RMSD 
(1.72 versus 1.56 Å) 

Conclusion
We have proposed an effective method PSSM for super-
positioning pairwise and multiple structures with 
missing data. The method does not need a sequence 
alignment in advance. It employs the principal compo-
nent analysis to find the initial rough superposition, and 
then uses an iterative closest point algorithm for refin-
ing and getting accurate registration. According to what 
we’ve known, this is the first time to combine PCA and 
ICP algorithm to study the problem of non-sequential 
superposition. Numerical experiments demonstrate its 
accuracy and effectiveness. This method has the com-
parable accuracy as the least square method which is 
a classical method for protein structure superposition. 
However, the least square method needs the sequence 
alignment.

Table 6  The RMSD of  pairwise superposition between   
d1cih and others with PSSM for cytochrome C

PDB-id1 (size)–PDB-id2 (size) Time (s) RMSD (Å)

d1cih (835)–d1crj (847)  2.301 0.3829

d1cih (835)–d1csu (846)  2.685 0.3881

d1cih (835)–d1csx (846)  2.674 0.4852

d1cih (835)–d1yeb (847)  3.108 0.7979

d1cih (835)–d1kyow (850) 48.480 0.9363

d1cih (835)–d1lfma (800)  6.399 1.0420

d1cih (835)–d2pcbb (823) 424.890 1.1760

d1cih (835)–d1u74d (847) 1196.996 0.8338

d1cih (835)–d1m60a (819) 754.727 1.4786

Table 7  The RMSD of pairwise superposition between 2pka 
and others with PSSM for serine proteinases data set

PDB-id1 (size)–PDB-id2 (size) Time (s) RMSD (Å)

2pka (232)–3est (240) 397.0237 1.5222

2pka (232)–1ton (227) 300.4844 1.3310

2pka (232)–3rp2 (224) 460.3419 1.5825

2pka (232)–4ptp (223) 236.3811 1.1994

2pka (232)–5cha (236) 454.4466 1.7583

2pka (232)–1ppb (295) 542.5367 2.9835

Table 8  The RMSD of  pairwise superposition between   
2dhbb and others with PSSM for Globins data set

PDB-id1 (size)–PDB-id2 (size) Time (s) RMSD (Å)

2dhbb (146)–1hhoa (141) 26.9685 1.4944

2dhbb (146)–1hhob (146)  0.2768 1.0898

2dhbb (146)–2dhba (141) 43.1975 1.4393

2dhbb (146)–1mbd (153) 15.4869 1.4735
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