
Frid and Gusfield ﻿Algorithms Mol Biol (2016) 11:22
DOI 10.1186/s13015-016-0081-9

RESEARCH

An improved Four‑Russians method
and sparsified Four‑Russians
algorithm for RNA folding
Yelena Frid* and Dan Gusfield

Abstract 

Background:  The basic RNA secondary structure prediction problem or single sequence folding problem (SSF) was
solved 35 years ago by a now well-known O(n3)-time dynamic programming method. Recently three methodolo-
gies—Valiant, Four-Russians, and Sparsification—have been applied to speedup RNA secondary structure prediction.
The sparsification method exploits two properties of the input: the number of subsequence Z with the endpoints
belonging to the optimal folding set and the maximum number base-pairs L. These sparsity properties satisfy
0 ≤ L ≤ n/2 and n ≤ Z ≤ n2/2, and the method reduces the algorithmic running time to O(LZ). While the Four-Rus-
sians method utilizes tabling partial results.

Results:  In this paper, we explore three different algorithmic speedups. We first expand the reformulate the single

sequence folding Four-Russians �
(

n3

log2 n

)

-time algorithm, to utilize an on-demand lookup table. Second, we create a

framework that combines the fastest Sparsification and new fastest on-demand Four-Russians methods. This com-
bined method has worst-case running time of O(L̃Z̃), where L

log n
≤ L̃ ≤ min

(

L, n
log n

)

 and Z
log n

≤ Z̃ ≤ min
(

Z , n2

log n

)

 .

Third we update the Four-Russians formulation to achieve an on-demand O(n2/ log2 n)-time parallel algorithm. This

then leads to an asymptotic speedup of O(L̃Z̃j) where Zj
log n

≤ Z̃j ≤ min
(

Zj ,
n

log n

)

 and Zj the number of subsequence

with the endpoint j belonging to the optimal folding set.

Conclusions:  The on-demand formulation not only removes all extraneous computation and allows us to incorpo-
rate more realistic scoring schemes, but leads us to take advantage of the sparsity properties. Through asymptotic
analysis and empirical testing on the base-pair maximization variant and a more biologically informative scoring
scheme, we show that this Sparse Four-Russians framework is able to achieve a speedup on every problem instance,
that is asymptotically never worse, and empirically better than achieved by the minimum of the two methods alone.

Keywords:  RNA folding, Single sequence folding, RNA secondary structure, Secondary structure prediction, Four-
Russians, Sparsification

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Non-coding RNA (ncRNA) affects many aspects of gene
expression, regulation of epigenetic processes, transcrip-
tion, splicing, and translation [14]. It has been observed
that in eukaryotic genomes the ncRNA function is more
clearly understood from the structure of the molecule,

than from sequence alone. While there have been
advances in methods that provide structure experimen-
tally, the need for computational prediction has grown as
the gap between sequence availability and structure has
widened. In general, RNA folding is a hierarchical pro-
cess in which tertiary structure folds on top of

Open Access

Algorithms for
Molecular Biology

*Correspondence: yafrid@ucdavis.edu
Department of Computer Science, UC Davis, One Shields Avenue,
Davis, CA, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-016-0081-9&domain=pdf

Page 2 of 11Frid and Gusfield ﻿Algorithms Mol Biol (2016) 11:22

thermodynamically optimal1 secondary structure, sec-
ondary structure is a key component of structure
prediction [14].

Efficient O(n3)-time dynamic programming algorithms
were developed more than thirty years ago to find non-
crossing secondary structure of a single RNA molecule
with n bases [22, 23, 27, 29, 38, 39]. We call this basic
folding or single sequence folding (SSF) problem. In addi-
tion, McCaskill [19] created an O(n3)-time algorithm for
the partition function for RNA secondary structure. Based
on these algorithms, software has been developed and
widely used [15, 16, 25, 36, 37]. Probabilistic methods,
employing Stochastic context-free grammar (SFCG), were
also developed to solve the basic folding problem [7, 8].

The accuracy of all these methods is based on the
parameters given by the scoring function. Thermody-
namic parameters [17, 18, 28, 33] and statistical param-
eters [6, 7], or a combination of the two [2, 13] are
currently employed.

The Valiant [1, 34], Sparsification [4, 30], and the Four-
Russians (FR) [9, 24] methods where previously applied
to improve on the computation time for secondary struc-
ture prediction. For SSF, the Valiant method achieves the

asymptotic time bound of O
(

n3

2�log(n)

)

 by incorporating the

current fastest min/max-plus matrix multiplication algo-
rithm [32, 34]. The Four-Russians method was applied to
single sequence [10, 24], cofolding [11] and pseudoknot-
ted [12] folding problems. The Sparsification method, was
developed to improve computation time in practice for a
family of RNA folding problems, while retaining the opti-
mal solution matrix [4, 20, 21, 26, 30, 35].

Methods
In this paper, we combine the Four-Russians method [24]
and the Sparsification method [4]. While the former
method reduces the algorithm’s asymptotic running
time to �

(

n3

log2 n

)

, the latter eliminates many redundant

computations. To combine these methods, we use an on-
demand tabulation (instead of a preprocessing approach
which is typically applied in FR algorithms), remov-
ing any redundant computation and guaranteeing the
combined method is at least as fast as each individual
method, and in certain cases even faster. First, we refor-
mulate SSF Four-Russians �

(

n3

log2 n

)

-time algorithm [24]

to utilizes on-demand lookup table creation. Second, we
combine the fastest Sparsification and Four-Russians SSF
speedup methods. The Sparse Four Russians speedup
presented here leads to a practical and asymptotically

1  Or close to optimal.

fastest combinatorial algorithm (even in the worst-
case). The new algorithm has an O(L̃Z̃) run time where
LZ

log2 n
≤ L̃Z̃ ≤ min

(

n3

log2 n
, LZ

)

. In practice, when

accounting for every comparison operation the Sparse
Four Russians outperforms both the Four-Russians and
Sparsification methods. Third, we extended the Four-
Russian SSF algorithm to be computed in O(n2/ log2 n)-
time. The simulated results for this formulation and O(n)
processors achieve a practice speedup on the number of
comparison operations performed.

Results
Problem definition and basic algorithm
Let s = s0s1 . . . sn−1 be an RNA string of length n over the
four-letter alphabet � = {A,U ,C ,G}, such that si ∈ �
for 0 ≤ i < n. Let si,j denote the substring sisi+1 . . . sj−1 .
We note that for simplicity of exposition substring si,j
does not contain the nucleotide j. A folding (or a second-
ary structure) of s is a set M of position pairs (k, l), such
that: (1) 0 ≤ k < l < n; (2) and there are no two different
pairs (k , l), (k ′, l′) ∈ M such that k ≤ k ′ ≤ l ≤ l′ (i.e. each
position participates in at most one pair, and the pairs are
non-crossing).

Let β(i, j) return a score associated with position pair
(i, j). Let L(s,M) be the score associated with a folding
M of RNA string s, and let L(s) be the maximum score
L(s,M) over all foldings M of s. The RNA Folding or SSF
problem is: given an RNA string s, compute L(s), and find
an optimal folding M such that L(s,M) = L(s). In this
work, we assume the following simple scoring scheme:

where β(i, j) = 1 if (si , sj) ∈ {(A,U), (U ,A), (C ,G), (G,C)} , and
β(i, j) = 0 otherwise. Richer scoring schemes allow more
biologically significant information to be captured by
the algorithm. However, the algorithms for solving the
problem similar recurrences and other discrete scoring
schemes may be accelerated in a similar way to what we
present here.

For the folding M of si,j, an index k ∈ (i, j) is called a
split point in M if for every (x, y) ∈ M, either y < k or
k ≤ x. A folding M is called a partitioned folding (with
respect to si,j) if there exists at least one split point; oth-
erwise M is called a co-terminus folding. Let the matrix
L be a matrix such that L[i, j] = L(si,j). In addition, let
Lp[i, j] be the maximum value of L(si,j ,M) taken over
all partitioned foldings M of si,j. Similarly, let Lc[i, j] be
the maximum value of L(si,j ,M) taken over all co-termi-
nus foldings M of si,j. Let L[i, i] = L[i, i + 1] = 0. For all
j > i + 1, L[i, j] can be recursively computed as follows
([23]):

L(s,M) =
∑

(i,j)∈M

β(i, j),

Page 3 of 11Frid and Gusfield ﻿Algorithms Mol Biol (2016) 11:22

For completeness, when j < i, define L[i, j] = Lp[i, j] =

Lc[i, j] = −∞.
The above recurrence may be efficiently implemented

using a dynamic programming (DP) algorithm. Essen-
tially, the DP algorithm computes and maintains values of
the form L[i, j], Lp[i, j] and Lc[i, j] for every 0 ≤ i ≤ j ≤ n
in three n+ 1× n+ 1 matrices. The algorithm trav-
erses the matrices in increasing column order index j
from 1 to n. Within each column, the cell L[k, j] is com-
puted in decreasing index order k from j − 1 to 0. Once
L[k, j] is computed, Lp[i, j] is updated for all i < k such
that Lp[i, j] = max(Lp[i, j], L[i, k] + L[k , j]). The solution
L(s, M) is stored in cell L[0, n]. Clearly, computing Lp is
the bottleneck of the computation, since for a given i, j,
there may be �(n) split points to examine.

Extending the notation and moving towards a vector
by vector computation of L
For a matrix A and some integer intervals I, J, denote by
A[I, J] the sub-matrix of A obtained by projecting it onto
the row interval I and column interval J. When I = [i]
or J = [j], we simplify the notation by writing A[i, J] or
A[I, j].

Definition 1  For a set of integers K, define the notation
L
p
K [i, j], and the max-plus operation ⊗ as

For an interval I = [i, i + 1, . . . i′], define LpK [I , j] to be the
vector such that

We divide the solution matrix L in two ways: q × q sub-
matrices (Fig. 1) and size q sub column vectors (the value
of q will be determined later). Let Kg be the gth interval
such that Kg = {q · g , q · g + 1, . . . , q · g + q − 1}. We call
these sets Kgroups, and use Kg as the interval starting at
index g · q. For an index i, define gi =

⌊

i
q

⌋

. It is clear that
i ∈ Kgi.

Similarly, we break up the row indices into groups
of size q, denoted by Ig where Ig = {k = q · g , k + 1,
 ...k + q − 1} . (Clearly, row index set Ig is equivalent to
the Kgroup Kg. We only introduce this extra notation for
simplicity of the exposition).

(1)
L[i, j] = max(Lp[i, j], Lc[i, j]),

(2)Lp[i, j] = max
k∈(i,j)

(L[i, k] + L[k , j]),

(3)Lc[i, j] = L[i + 1, j − 1] + β(i, j − 1).

L
p
K [i, j] = L[i,K] ⊗ L[K , j] = max

k∈K
(L[i, k] + L[k , j]).

L
p
K [I , j] = L[I ,K] ⊗ L[K , j] =

[

LPK [i, j] for all i ∈ I
]

Given this notation LP[i, j] can be rewritten as maxi-
mization L

p
Kg
[i, j] values for all Kg index Kgroups

between i and j. However, in some cases, the indices
{i + 1, . . . q · gi+1 − 1} do not form a full Kgroup Kgi .
Similarly indices {qgj , qgj + 1, . . . j − 1} do not form a
full Kgroup Kgj. Therefore, LP[i, j] can be computed by
maximizing the full and non full Kgroups Kg. In Eq. 4 and
the following sections we do not explicitly differentiate
between full and non full groups.

We extend the notation further, to compute the matrix
Lp not cell by cell but instead by vectors of size q corre-
sponding to the Ig ′ row sets, as follows.

The DP algorithm can be updated to incorporate the
extended notation. Within each column, compute the
matrices in vectors of size q. Once L[Kg , j] is computed
it is used in computation of LpKg

[Ig ′ , j] for g ′ < g. When
computing LpKg ′

[Ig ′ , j] we follow Eq. 1–3 to complete the
computation of cells L[Ig ′ , j].

Sparsification of the SSF algorithm
The Sparsification method achieves a speedup by reducing
the number of split points examined during the computation
of LP[i, j]. As Fig. 2 shows the focus of Sparsified Four Rus-
sians algorithm will narrow down only on those submatrices
whose split points are step-oct for a particular i, j [4, 30].

OCT and STEP sub‑instances of sequence s
Sub-instance si,j is optimally co-terminus (OCT) if every
optimal folding of si,j is co-terminus. We introduce the
extra notation below

if L[i, j] = Lc[i, j] > Lp[i, j] then we say L[i, j] is OCT.
Sub-instance si,j is STEP, if L[i, j] > L[i + 1, j] where

L[i, j] = L(si,j) and L[i + 1, j] = L(si+1,j). For ease of expo-
sition we also say L[i, j] is STEP when si,j is STEP. A STEP
sub-instance si,j implies that nucleotide i is paired in
every optimal folding of si,j.

Fact 1  For every sub-instance si,j with j > i there is an
optimal split point k ∈ (i, j) such that either k = i + 1 or
L[i, k] is STEP and L[k, j] is OCT [4].

Notation: For the index set K = {k , k + 1, . . . k ′} and col-
umn j, let Koctj be the set of indices such that Koctj ⊂ K
and ∀

k∈K
octj L[k , j] is OCT. Given the row interval

I = {i, i + 1, . . . i′}, let I stepk be the set of rows such that
I stepk ⊂ I, and for all i ∈ I stepk L[i, k] is STEP.

(4)Lp[i, j] = max
gi≤g≤gj

L
p
Kg
[i, j]

(5)Lp[Ig ′ , j] = max
g ′≤g≤gj

L
p
Kg
[Ig ′ , j].

Page 4 of 11Frid and Gusfield ﻿Algorithms Mol Biol (2016) 11:22

We further define operation ⊗step−oct such that
given I = {i, i + 1, . . . , i′} and K = {k , k + 1, . . . , k ′} ,
L[I ,K] ⊗step−oct L[K , j] results in A[I, j] where
∀
i∈(I stepk∪I stepk+1∪...I

stepk′)
A[i, j] is computed by the follow-

ing procedure:

Using the operation ⊗step−oct and based on Fact 1. We
reduce the time to compute Lp[Ig ′ , j] by considering a
split-point k only if k = i + 1 or L[i, k] is STEP and L[k, j]
is OCT for i ∈ Ig ′ and k ∈ (i, j).

Note Eq. 6 does not explicitly show that for LPKg ′
[Ig ′ , j] the

split-point i + 1 must be examined for every i ∈ Ig ′.

Asymptotic time bound of sparsified SSF When comput-
ing matrix Lp[i, j] we examine value L[i, k] only if L[k, j]
is OCT. Let Z, be the total number of sub-instances

(6)
Lp[Ig ′ , j] = max

g ′≤g≤gj
L
p
Kg
[Ig ′ , j] = max

g ′≤g≤gj
L[Ig ′ ,Kg] ⊗step−oct L[Kg , j].

in s or cells in matrix L that are OCT. Given that L[k, j]
is OCT, Lp[i, j] must examine the split point k, for all
i ∈ {0, 1, . . . k} such that L[i, k] is STEP. Let L be the
total number of STEP sub-instances in column k. More
precisely L = |{0, 1, . . . k}stepk | (Creating the list of split-
points that correspond to STEP incidence requires no
additional computation time [4]). The total time to com-
pute SSF when examining only STEP, OCT combinations
(Sparsification method), is O(LZ). As shown in Backofen
et al. [4] Z is bounded by Z ≤ n2 and L is bounded by
L ≤ n

2. The overall asymptotic time bound of the Sparsifi-
cation method is O(LZ) remains O(n3).

On‑demand Four Russians speedup
Presented here is an on-demand version of the �(log2 n)

-time Four-Russians algorithm implied by Pinhas
et al. [24].

Observation 1  The scores stored in L[k, j] and L[k + 1, j]
differ by the effect of adding only one more nucleotide (i.e.,
sk). Therefore, L[k , j] − L[k + 1, j] belongs to a finite set of

Fig. 1  An example of how a solution matrix L is broken down into submatrices. Using the extended vector notation we can say that cell L[i, j]
belongs to the vector L[Kgi , j] as well as submatrix L[Igi , Kgj]. We partition the solution matrix L into O(n2/q) vectors of size O(q) and O(n2/q2) subma-
trices, of size O(q2)

Page 5 of 11Frid and Gusfield ﻿Algorithms Mol Biol (2016) 11:22

differences D, where D is the set of scores created as the
result of the scoring scheme β. The cardinality of the set
of differences, D = |D|, is O(1) when β is discrete. For the
simple β scoring function (+1 for every permitted pair,
and 0 otherwise), the set D is equal to {0, 1} and therefore
|D| = 2 [23].

Let �x = [x0, x1, . . . , xq−1] be an integer vector of length
q. We say that �x is D-discrete if ∀l∈(0,q)|xl−1 − xl | ∈ D.
We define the �-encoding of 2-discrete vector �x to be a
pair of integers (x0,�x) such that x0 is the first element
in �x and �x is the integer representation of the binary
vector [x0 − x1, x1 − x2, . . . , xq−2 − xq−1]. Note that
0 ≤ �x < 2q−1. For simplicity, we will interchangeably
use �x to imply either (x0,�x) or [x0, x1, . . . , xq−1]. Clearly,
�-encoding takes O(q) time to compute.
�-encoding vector operations:

• • Let (x0,��x)+ c = (x0 + c,��x) be equivalent to
�x + c = [x0 + c, x1 + c, . . . , xq−1 + c].

• • Let B⊗ (x0,�x) be equivalent to B⊗ �x.
• • Let max((x0,�x), (y0,�y)) be equivalent to
max(�x, �y) .

MUL lookup table
Based on Observation 1, any column vector in matrix
L is 2-discrete. Given vector L[Kg , j] and its �-encod-
ing (x0 = L[gq, j], �x = �L[Kg ,j]), it is clear that
�x ∈ [0, 2q − 1].

Fact 2  L[Ig ′ ,Kg] ⊗ L[Kg , j] is equivalent to L[Ig ′ ,Kg] ⊗ (0,�L[Kg ,j])

+L[gq, j] [24].

Let MULB[i] be a lookup table, where given a
q×q submatrix B = L[Ig ′ ,Kg] and i = �L[Kg ,j] ,
the entry MULL[Ig ′ ,Kg][�L[Kg ,j]] = (y0,�y) where
�y = L[Ig ′ ,Kg] ⊗ (0,�L[Kg ,j]). We could reformulate the
computation of LpKg

[Ig ′ , j] to utilize the MUL lookup table.

Equation 7, abstracts the detail that we still have to com-
pute each referenced entry in the MUL lookup table. Each
entry in the MUL lookup table is computed on-demand
i.e. only when it corresponds to a required calculation.
(This removes any extraneous calculation incurred when

(7)

L
p
Kg
[Ig ′ , j] = L[Ig ′ ,Kg] ⊗ L[Kg , j]

= MULL[Ig ′ ,Kg][�L[Kg ,j]] + L[gq, j].

Fig. 2  An sample examination to determine wether a submatrix and vectors are STEP−OCT . The yellow cells indicate STEP instances. The red cells
indicate OCT instances. The L[Ig′ , Kg] ⊗ L[Kg , j] operation is only performed on submatrices with sigSTEP ⊙ sigOCT > 0

Page 6 of 11Frid and Gusfield ﻿Algorithms Mol Biol (2016) 11:22

preprocessing all possible entries as in the typical Four-
Russians implementation.) If entry MULL[Ig ′ ,Kg][�L[Kg ,j]]
does not exist we compute L[Ig ′ ,Kg] ⊗ (0,�L[Kg ,j])
directly in O(q2) time. If entry MULL[Ig ′ ,Kg][�L[Kg ,j]] exists
then the operation is O(1)-time lookup.
There are O

(

n2

q2

)

 submatrices within L. For each sub-
matrix the maximum number of entries we com-
pute for lookup table MUL is 2q−1. In total, the
asymptotic time bound to populate lookup table MUL is
O
(

n2

q2
· 2q−1 · q2) = O(n2 · 2q

)

.

MAX lookup table
Let the max of two 2-discrete q-size vectors �v and
�w , denoted max(�v, �w), result in a q-size vector �z,
where ∀0≤k<q zk = max(vk ,wk). Without loss of general-
ity, let w0 ≥ v0. Comparing the first element in each vec-
tor there are two possibilities either (1) w0 − v0 > q − 1
or (2) w0 − v0 ≤ q − 1. In the first case, (w0 − v0 > q − 1 ),
it is clear that max(�v, �w) is equal to �w. In the second case,
we make use of the following fact [24].

Fact 3  Given two vectors (w0,�w) and (v0,�v),
if w0 − v0 ≤ q − 1 then max(�v, �w) = max ((0,�v), (w0 − v0,

�w))+ v0.

Lets define lookup table MAX such that entry
MAX[i, i′, h] = max

(

(0, i), (h, i′)
)

. Hence, we reformu-
late Fact 3. to incorporate the MAX lookup table:

We summarize these results in the function � max:

Function � max : :

input: such that w0 ≥ v0 and = (v0,∆v) and = (w0,∆w)
output: = (z0,∆z) where ∀i∈[0,q)zi = max(vi, wi)
if(w0 − v0 ≥ q − 1) : =
else : = MAX [∆v0,∆w0, (w0 − v0)] + v0

In Eq. 8, below, we integrate the vector comparison
function �max. Each vector Lp[Ig ′ , j] is computed by
maximizing over O(n / q) vectors. We will compute the
lookup table MAX on-demand for every entry that does
not exist an O(q). Clearly the lookup table MAX will con-
tain at most 2(q−1) · 2(q−1) · q for all entries. In worst
case, the lookup table MAX computes in O(2q

2
q) time.

The matrix Lp and hence L is solved by a total of O
(

n2

q

)

computations of Eq. 8. In total, given lookup table MUL

max(�v, �w) = MAX[�v0,�w0, (w0 − v0)] + v0

(8)
Lp[Ig ′ , j] = �max

g ′≤g≤gj

(

MULL[Ig ′ ,Kg]

[

�L[Kg ,j]

]

+ L[gq, j]
)

and MAX, the time to compute the Four-Russians SSF is

O











n3

q2
����

computation

+ 22qq + n22q
� �� �

on-demand lookup table











.

Setting q = ǫ log n, where ǫ ∈ (0, .5) [31], the total
computation time is equal to �(n3

log2 n
), which achieves a

speedup by a factor of �(log2 n), compared to the original
O(n3)-time solution method.

Extending to D‑discrete vectors
We define the �-encoding of D-discrete vector �x to be a
pair of integers (x0,�x) such that x0 is the first element
in �x and �x is the integer representation in base 10 of
the vector [x0 − x1, x1 − x2, . . . , xq−2 − xq−1] in base
D where x0 is the most significant integer. Note that
0 ≤ �x < Dq−1. As a result for a more complicated scor-
ing scheme B we could apply the Four-Russians speedup
by augmenting the encode, and decode functions as well
as the �max algorithm.

input: such that w0 ≥ v0 and = (v0,∆v) and = (w0,∆w)
output: = (z0,∆z) where ∀i∈[0,q)zi = max(vi, wi)
if(w0 − v0 ≥ D(q − 1)) : =
else : = MAX [∆v0,∆w0, (w0 − v0)] + v0

This would result in a total asymptotic time for Four-
Russians SSF where |D| > 2 of

Setting q = ǫ logD n, where ǫ ∈ (0, .5) [31], the total
computation time is equal to �

(

n3

log2 n

)

, which achieves a

speedup by a factor of �(log2 n), compared to the original

O(n3)-time solution method.

Sparse Four‑Russian method
With the Four-Russians method, a speedup is gained by
reducing q split point index comparisons for q subse-
quences to a single O(1) time lookup. The Sparsification
method reduces the comparison to only those indices
which correspond to STEP–OCT folds.

STEP–OCT condition for sets of split points
In this section, we achieve a Sparsified Four-Russian
speedup for the computation of the Lp matrix. As in the
Four Russians method, we will conceptually break up the

O











n3

q2
����

computation

+ D2qq + n2Dq

� �� �

on-demand lookup table











.

Page 7 of 11Frid and Gusfield ﻿Algorithms Mol Biol (2016) 11:22

solution matrix L in two ways: in q × q size submatri-
ces, and q size subcolumn vectors. The submatrices are
indexed by g ′ and g such that the corresponding submatrix
is L[Ig ′ ,Kg] . The subcolumn vectors are indexed by g and j ,
such that the corresponding subcolumn vector is L[Kg , j].

We augment the Four-Russians SSF to reduce the num-
ber of entries, and lookups into the MUL table. If and only
if, the matrix L[Ig ′ ,Kg] contains at least one cell L[i, k] that
is STEP and within vector L[Kg , j] the cell L[k, j] is OCT
we will lookup MULL[Ig ′ ,Kg][�L[Kg ,j]] . If such an entry does
not exist we will compute L[Ig ′ ,Kg] ⊗ (0,�L[Kg ,j]) and
store the result into lookup table MUL.

The following notation will be used to help deter-
mine if a split point Kgroup should be examined in the
computation.

OCT subcolumn vector  Given the vector L[Kg , j] let �m
be a q size binary vector such that ∀0≤x≤q−1m[x] = 1 if
L[gq + x, j] is OCT. Let the sigOct of the vector L[Kg , j] ,
written sigOct(L[Kg , j]), be equal to m the integer rep-
resentation of the binary vector �m. Clearly 0 ≤ m < 2q ,
and if m > 0 then L[Kg , j] contains at least one OCT
instance. Let O(Z̃) be the total number of subcolumn
vectors which contain an instance that is OCT. Clearly,
Z
q ≤ Z̃ ≤ min

(

n2

q ,Z
)

.

STEP submatrix  Given the submatrix L[Ig ′ ,Kg], let �m′
be a q size binary vector such that ∀x∈[0,q)m′[x] = 1 if
∃0≤i≤q−1 L[qg ′ + i, qg + x] is STEP. Let sigStep of a sub-
matrix, written sigStep(L[Ig ′ ,Kg]), be equal to m′ the
integer representation of the binary vector �m′ . Clearly
0 ≤ m′ < 2q. Let L̃ be the total number of submatrices
which contain an instance that is STEP within L[[0, n],Kg].
Clearly, Lq ≤ L̃ ≤ min(nq , L).

Observation 2  Suppose that, si,k is STEP, and integer
m′ = sigStep(L[Ig ′ ,Kg]) such that i ∈ Ig ′ (or Ig ′ = Igi) and
k ∈ Kg (or Kg = Kgk). Then, the corresponding binary vec-
tor �m′ must be set to 1 in position x where x is an index
such that k = qg + x. More precisely, if L[i, k] is STEP
then m′[x] = 1 by the definition of sigStep.

Observation 3  Suppose sk ,j is OCT, and suppose integer
m = sigOct(L[Kg , j]) such that k ∈ Kg. Then, the corre-
sponding binary vector �m must be set to 1 in position x,
where x is an index such that k = qg + x. More precisely,
if sk ,j is OCT then m[x] = 1 by the definition of sigOct.

Given two binary vectors v and w the dot product
of their integer representation is equal to a binary
number x such that x = v ⊙ w = v0 ∧ w0 ∨ v1 ∧ w1 ∨ ...
∨vq−1 ∧ wq where |v| = |w| = q − 1

Theorem 1  For any subinstance si,j either i + 1 is the
optimal split point, or there is an optimal split point
k ∈ (i, j), such that sigStep(L[Igi ,Kgk])⊙ sigOct(L[Kgk , j])
equals 1.

Proof  Based on Fact 1 for any sub-instance si,j there
is an optimal split point k such that either k = i + 1
or si,k is STEP and sk ,j is OCT. If si,k is STEP and sk ,j is
OCT then L[i, k] is STEP and L[k, j] is OCT. The cell
L[i, k] belongs to submatrix L[Igi ,Kgk] and the cell L[k, j]
belongs to the vector L[Kgk , j]. Let x be an index such
that k = qgk + x. Let �m′ be a binary vector that cor-
responds to sigStep(L[Igi ,Kgk]). Based on Observation
2, m′[x] must equal 1. Let �m be the binary vector that
corresponds to sigOct(L[Kgk , j]). Based on Observa-
tion 3, m[x] equals 1. Therefore, m[x] ∧m′[x] = 1 and
sigStep(L[Igi ,Kg])⊙ sigOct(L[Kg , j]) = 1. � �

Notation: The index g is STEP–OCT if given the set of
rows Ig ′ and the column j if sigStep(L[Ig ′ ,Kg])⊙

sigOct(L[Kg , j]) = 1.
We can reformulate the computation of Lp[Ig ′ , j] by ref-

erencing the lookup table MUL only if g is STEP–OCT.
This reduces the number of operations used in comput-
ing the bottleneck LP matrix.

We update the DP algorithm to only access the MUL
lookup table for matrix and vector combinations that sat-
isfy the property

sigStep(L[Ig ′ ,Kg])⊙sigOct(L[Kg , j]) = 1.

Let G be a lookup table, where give an index g ∈ [0, n/q]
and integer m ∈ [0, 2q] the G[g][m] ⊂ {I0, I1, . . . , Ig } is a
set of row index intervals. Each index Ig ′ within G[g][m]
satisfies the following condition:

Lookup table G (updated on-demand) allows us to imple-
ment Eq. 9. As L[Kg , j] is computed, the corresponding
SigOct is also computed. Let m = sigOct(L[Kg , j]). By iter-
ating through Ig ′ ∈ G[g][m] set of row indices we access
table MUL only when both of the following conditions
hold at the same time: the submatrix L[Ig ′ ,Kg] contains
at least one cell L[i, k] where si,k is STEP and within vec-
tor L[Kg , j] the cell L[k, j] contains sk ,j that is OCT (where
i ∈ Ig ′ and k ∈ Kg).

The Sparsified Four-Russian algorithm implements
Eq. 9. The complete function will tabulate STEP, and OCT
instances as well as sigStep and sigOct values. The G, MUL
and MAX lookup tables will be computed on-demand.

(9)

Lp[Ig ′ , j] = � max

g is STEP−OCT

where g ∈ [g ′, gj]

(

MULL[Ig ′ ,Kg]

[

�L[Kg ,j]

]

+ L[gq, j]
)

if Ig ′ ∈ G[g][m] then sigStep(L[Ig ′ ,Kg])⊙m = 1.

Page 8 of 11Frid and Gusfield ﻿Algorithms Mol Biol (2016) 11:22

Discussion
Asymptotic analysis of sparsified Four‑Russians.
We assume O(1)-time RAM access for log(n) bits.
The calculation for column j can be broken down into
LPK=[qgj ,j)

[i, j] and LPK=[0,qgj)
[i, j] for all i < j. The computa-

tion of
LP[qgj ,j)[[0, n], j] occurs when Kgroup Kgj is not full, and

follows the Sparsification algorithm maximizing over
STEP–OCT split points only. This reduces the compari-
sons made from O(n · q) to O(Lq̃) where q̃ < q is the total
number OCT instances within the interval [qg,j). The
computation of LP[0,qgj)[[0, n], j] employs Sparsified Four
Russians speedup. The MUL table entries are created
and references only for STEP–OCT submatrix vector

combinations. This reduces the comparisons made to
O(L̃Z̃).

The helper function complete is called O(n2/q) times
for the entire algorithm. The complete function outer-
loop iterates at most O(q) times updating the lists of OCT
and STEP split points, as well as sigOct and sigStep val-
ues. Overall the complete function takes O(q + x̃) where
x̃ ≤ q2 is the number of STEP–OCT instance combina-
tions. The asymptotic runtime of the Sparsified Four-
Russian algorithm is

Asymptotic analysis of on‑demand lookup tables
calculation
We compute the lookup tables G, MUL, and MAX on-
demand. For each vector L[Kg , j] containing an OCT
instance (where m = sigOct(L[Kg , j])), if G[g][m] does not
exist then we directly compute it. For the computation of
a single entry into lookup table G, we iterate through
O(L̃) submatrices and compute the dot product in O(q)
time.2 In total, an update is called to lookup table G at
most O(C̃ = min(2q , Z̃)) times. The entire G lookup table
on-demand computation takes O(on-demandG) = O(L̃C̃ · q)
or O(G) ≤ O

(

min(L̃2q , L̃Z̃) · q
)

≤ O
(

min
(

n2q

q , LZq

))

.
For each vector containing an OCT instance if an entry

doesn’t exist in the lookup table MUL it is computed
on-demand. Each entry takes O(L̃ · q2) time to compute.
There are min(2q , Z̃) such computation. In total, lookup
table MUL takes O(L̃q2 ·min(2q , Z̃))-time. Setting
q = ǫ log n where ǫ ∈ (0, .5) the asymptotic run-time for
on-demand computation is O(L̃Z̃).

The entire algorithm takes O(L̃Z̃) where LZ

log2 n
≤ L̃Z̃

≤ min
(

n3

log2 n
, LZ

)

.

Empirical results
We tested 20 randomly generated sequences for each size
N = 64, 128, 256, 512.

The empirical testing results are given not in seconds
but in the number of operations including both lookup
table creation and split-point comparisons. We do so to
abstract from the effect compiler optimizations. Note
that the testing does not account for memory access
time, or extend the algorithm to D > 2 scoring schemes
(Table 1).

For N = 128 the Sparse Four-Russians(SFR) algorithm
performs 25 % less comparisons than the Sparsified(SP)
SSF algorithm and 80 % less comparison than the

O(L̃Z̃)+ O

(

n2

q
· x̃

)

+ O
(

updating lookup tables on-demand
)

= O(L̃Z̃)

2  Using some word tricks the dot product could be computed in O(1)-time.

Page 9 of 11Frid and Gusfield ﻿Algorithms Mol Biol (2016) 11:22

Four-Russians (FR) algorithm. In all test cases, the Sparse
Four-Russians performed better than the minimum of
either method alone.

An O(n2/ log2(n)) simple parallel Four‑Russians RNA
folding algorithm
Lets solve the recurrence relation (Eq. 1–3) in increasing
index j order and then move up the column j computing
one cell at a time in decreasing i order. Each cell L[i, j] is
solved by calculating Eq. 1–3 for all i < k ≤ j.

Given this j, i, k order, let us reformulate the computa-
tion by moving up each column in O(n/q) q-size subcol-
umn vectors instead of n cells.

Utilizing n processors
Lets create a new process for each column j, creating n
process in total. We can synchronously move up the
matrix computing each column subvector such that on
iteration d we compute L[Igj−d , j] for all j ∈ (0, n).

Invariant 1  Given gi and gj ∀i∈Igi∀k∈Kg
L[i, k] = L(si,k) .

In other words, submatrix L[Igi ,Kg] is computed. Simi-
larly L[Kg , j] is computed or ∀k∈Kg

L[k , j] = L(sk ,j).

Please note that the function complete assumes that
L
p

K
[I , j] is computed, where K = {i, i + 1, . . . j − 2, j − 1} − K .

Replacing the max(Lp[Igi , j], L[Igi ,Kg])⊗ L[Kg , j]) com-
putation with lookups into MUL and MAX tables would
reduces the run-time for finding the solution matrix L to
O(n2/log2n). As stated in "Extending to D-discrete vectors"
section it is possible to create lookup tables on-demand and
achieve a reduction in computation time of �(log2n) factor.

The preprocessing can also be achieve in paral-
lel reducing the asymptotic cost form O(n3/ log2 n) to
O(n2/ log2 n). If entry MULL[Igi ,Kg][�L[Kg ,j]] does not exist
we compute L[Igi ,Kg] ⊗ (0,�L[Kg ,j]) directly in O(q2).

There are O
(

n2

q2

)

 submatrices within L. For each sub-
matrix the maximum number of entries we compute for
lookup table MUL is Dq−1. However, in each iteration at
worse O(n) of the entries are computed simultaneously. In
total, the asymptotic time bound to populate lookup table

MUL is O





n2

q2
· Dq−1 · q2

n



 = O
�

n2·Dq

n

�

= O(n · Dq).

Based on Williams [31] O(Dq) is bound by O(n/ log2 n)
when setting q = ǫ log n. Hence, for the MUL lookup
table the total asymptotic computation time is
O(n · Dq) = O(n2/ log2 n), For the MAX table similarly
the serial computation of O(D2qq) total time is reduced
by a factor of n in the parallel case. The total computation
time for the MAX table is therefore O(n/ log3 n).

Table 1  Number of all comparisons computed

Size O(n3) FR SP SFR

64 43,680 12,014 2733 1837

128 349,504 49,456 13,196 9982

256 2,796,160 346,692 79,544 41,393

512 22,500,863 5,746,853 650,691 503,425

Page 10 of 11Frid and Gusfield ﻿Algorithms Mol Biol (2016) 11:22

Parallel sparisified Four‑Russians single sequence folding
algorithm
Let Zx be the number of OCT cells in column x. Let
∀x∈[0,n]Zj ≥ Zx.

The parallel algorithm would take as long as would take
as a it takes for the last processor to complete.

In order to extend the parallel Four-Russians single
sequence folding algorithm to utilize the Sparsifica-
tion speedup we will limit the call to MUL table only if
sigSTEP(L[Igi ,Kg])⊙ sigOCT (L[Kg , j]) > 0. As result
given Zj the total time to compute for processor j is
O(L̃Z̃j) where Zj

log n
≤ Z̃j ≤ min

(

Zj ,
n

log n

)

.

Conclusion
This work combines the asymptotic speedup of Four-
Russians with the very practical speedup of Sparsification.
The on-demand formulation of the Four-Russians not only
removes all extraneous computation. This approach allows
the Four-Russians SSF to achieve a speedup in practice for
realistic scoring schemes. This also leads us to take advan-
tage of the sparsity properties. Through asymptotic analy-
sis and empirical testing on the base-pair maximization
variant and a more biologically informative scoring scheme,
we show that the Sparse Four-Russians framework is able
to achieve a speedup on every problem instance, that is
asymptotically never worse, and empirically better than
achieved by the minimum of the two methods alone. We
also showed that through some re-organization we could
apply the Four-Russians speedup to parallel algorithm
and achieve and asymptotic time of O(n2/ log2 n). The
algorithm created here can be implemented in CUDA to
compute on multiprocessor GPUs. Because the algorithm
allows for memory cell independence one can apply mem-
ory and cache optimization without affecting the algorithm.
The utility in this framework lies not only on its ability to
speedup single sequence folding but its ability to speedup
the family of RNA folding problems for which both Spar-
sification and Four-Russians have bene applied separately.

Future work in this area would be to examine the abil-
ity to sparsify memory [3], as Four-Russians at worst
case requires an additional factor of 2log(n) in memory.
Another open question is wether it is possible to apply
the �(log3 n) [5] speedup of boolean matrix multiplica-
tion to RNA folding.

Authors’ contributions
YF contributed to the conception and analysis of the framework. YF and DG
jointly contributed to the design and interpretation of the framework, and
jointly contributed to the writing and editing of the manuscript. Implemen-
tation and testing was done by YF. All authors read and approved the final
manuscript.

Acknowledgements
We would like to sincerely thank Shay Zakov and Michal Ziv-Ukelson for their
their many helpful comments and suggestions. This research was partially

supported by the IIS-1219278 Grant. uld like to sincerely thank Shay Zakov and
Michal Ziv-Ukelson for their their many helpful comments and suggestions.
This research was partially supported by the IIS-1219278 Grant.

Competing interests
The authors declare that they have no competing interests.

Received: 15 December 2015 Accepted: 28 June 2016

References
	1.	 Akutsu T. Approximation and exact algorithms for RNA secondary struc-

ture prediction and recognition of stochastic context-free languages. J
Comb Optim. 1999;3(2–3):321–36.

	2.	 Andronescu M, Condon A, Hoos H, Mathews D, Murphy KP. Efficient
parameter estimation for RNA secondary structure prediction. Bioinfor-
matics. 2007;23(13):i19–28. doi: 10.1093/bioinformatics/btm223. http://
bioinformatics.oxfordjournals.org/content/23/13/i19.abstract

	3.	 Backofen R, Tsur D, Zakov S, Ziv-Ukelson M (2009) Sparse RNA folding:
time and space efficient algorithms. In: CPM09; 2009. p. 249–62

	4.	 Backofen R, Tsur D, Zakov S, Ziv-Ukelson M. Sparse RNA folding: time
and space efficient algorithms. J Discrete Algorithms. 2011;9(1):12–31.
doi:10.1016/j.jda.2010.09.001.

	5.	 Chan T. Speeding up the Four Russians algorithm by about one more
logarithmic factor. In: SODA; 2015. p. 212–17

	6.	 Do C, Woods D, Batzoglou S. Contrafold: RNA secondary structure predic-
tion without physics-based models. Bioinformatics. 2006;22(14):e90–8.
doi:10.1093/bioinformatics/btl246. http://bioinformatics.oxfordjournals.
org/content/22/14/e90.abstract.

	7.	 Dowell R, Eddy S. Evaluation of several lightweight stochastic context-
free grammars for RNA secondary structure prediction. BMC Bioinformat-
ics. 2004;5(1):71. doi:10.1186/1471-2105-5-71. http://www.biomedcentral.
com/1471-2105/5/71.

	8.	 Durbin R, Eddy S, Krogh A, Mitchison G . Biological sequence analy-
sis: probabilistic models of proteins and nucleic acids. Cambridge:
Cambridge University Press; 1998. http://www.amazon.com/
Biological-Sequence-Analysis-Probabilistic-Proteins/dp/0521629713

	9.	 Frid Y, Gusfield D. A simple, practical and complete O(n3/log(n)) -time
algorithm for RNA folding using the four-Russians speedup. In: WABI;
2009. p. 97–107

	10.	 Frid Y, Gusfield D. A simple, practical and complete O(n3/log(n))-time
algorithm for RNA folding using the [four-russians] speedup. Algorithms
Mol Biol. 2010a;5(1):13.

	11.	 Frid Y, Gusfield D. A worst-case and practical speedup for the RNA co-
folding problem using the four-Russians idea. In: Moulton V, Singh M, edi-
tors. Algorithms in bioinformatics. Heidelberg: Springer; 2010b. p. 1–12.

	12.	 Frid Y, Gusfield D. Speedup of RNA pseudoknotted secondary structure
recurrence computation with the four-Russians Method. In: COCOA;
2012. p. 176–87

	13.	 Juan V, Wilson C. RNA Secondary structure prediction based on free
energy and phylogenetic analysis. J Mol Biol. 1999;289(4):935–47.

	14.	 Leontis NB, Westhof E. RNA 3D structure analysis and prediction. Berlin:
Springer; 2012.

	15.	 Markham NR, Zuker M. UNAFold. In: Keith JM, editor. Bioinformatics,
methods in molecular biology. New York: Humana Press; 2008. p. 3–31.

	16.	 Mathews D, Andre T, Kim J, Turner D, Zuker M. An updated recursive algo-
rithm for RNA secondary structure prediction with improved thermody-
namic parameters. Mol Modeling Nucleic Acids: 246–57

	17.	 Mathews DH, Sabina J, Zuker M, Turner D. Expanded sequence
dependence of thermodynamic parameters improves prediction of
RNA secondary structure. J Mol Biol. 1999;288(5):911–40. doi:10.1006/
jmbi.1999.2700. http://www.sciencedirect.com/science/article/pii/
S0022283699927006.

	18.	 Mathews DH, Disney MD, Childs J, Schroeder S, Zuker M, Turner DH.
Incorporating chemical modification constraints into a dynamic
programming algorithm for prediction of RNA secondary structure.
Proceedings of the National Academy of Sciences of the United States

http://dx.doi.org/10.1093/bioinformatics/btm223
http://bioinformatics.oxfordjournals.org/content/23/13/i19.abstract
http://bioinformatics.oxfordjournals.org/content/23/13/i19.abstract
http://dx.doi.org/10.1016/j.jda.2010.09.001
http://dx.doi.org/10.1093/bioinformatics/btl246
http://bioinformatics.oxfordjournals.org/content/22/14/e90.abstract
http://bioinformatics.oxfordjournals.org/content/22/14/e90.abstract
http://dx.doi.org/10.1186/1471-2105-5-71
http://www.biomedcentral.com/1471-2105/5/71
http://www.biomedcentral.com/1471-2105/5/71
http://www.amazon.com/Biological-Sequence-Analysis-Probabilistic-Proteins/dp/0521629713
http://www.amazon.com/Biological-Sequence-Analysis-Probabilistic-Proteins/dp/0521629713
http://dx.doi.org/10.1006/jmbi.1999.2700
http://dx.doi.org/10.1006/jmbi.1999.2700
http://www.sciencedirect.com/science/article/pii/S0022283699927006
http://www.sciencedirect.com/science/article/pii/S0022283699927006

Page 11 of 11Frid and Gusfield ﻿Algorithms Mol Biol (2016) 11:22

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

of America. 2004;101(19):7287–92. doi:10.1073/pnas.0401799101. http://
www.pnas.org/content/101/19/7287.abstract.

	19.	 McCaskill JS. The equilibrium partition function and base pair binding
probabilities for RNA secondary structure. Biopolymers. 1990;29(6–
7):1105–19. doi:10.1002/bip.360290621. http://dx.doi.org/10.1002/
bip.360290621.

	20.	 Møhl M, Salari R, Will S, Backofen R, Sahinalp S. Sparsification of RNA struc-
ture prediction including pseudoknots. Algorithms Mol Biol. 2010;5:39.

	21.	 Salari R, Will S, Backofen R, Sahinalp S, Möhl M. Sparsification of RNA struc-
ture prediction including pseudoknots. In: Moulton V, Singh M, editors.
WABI. Berlin: Springer; 2010. p. 40–51.

	22.	 Nussinov R, Jacobson A. Fast algorithm for predicting the second-
ary structure of single-stranded RNA. PNAS. 1980;77(11):6309–13.
doi:10.1073/pnas.77.11.6309. http://dx.doi.org/10.1073/pnas.77.11.6309.

	23.	 Nussinov R, Pieczenik G, Griggs JR, Kleitman DJ. Algorithms for loop
matchings. SIAM J Applied Math. 1978;35(1):68–82. doi:10.1137/0135006.
http://link.aip.org/link/?SMM/35/68/1.

	24.	 Pinhas T, Zakov S, Tsur D, Ziv-Ukelson M. Efficient edit distance with
duplications and contractions. Algorithms Mol Biol. 2013;8:27.

	25.	 Reuter J, Mathews D. RNAstructure: software for RNA secondary
structure prediction and analysis. BMC Bioinformatics. 2010;11(1):129.
doi:10.1186/1471-2105-11-129. http://www.biomedcentral.
com/1471-2105/11/129.

	26.	 Salari R, Möhl M, Will S, Sahinalp S, Backofen R. Time and space efficient
RNA–RNA interaction prediction via sparse folding. In: RECOMB; 2010. p.
473–90

	27.	 Sankoff D, Kruskal JB, Mainville S, Cedergreen R. Fast algorithms to deter-
mine RNA secondary structures containing multiple loops. In: Sankoff
D, Kruskal JB, editors. Time warps, string edits and macromolecules: the
theory and practice of sequence comparison. Boston: Addison-Wesley;
1983. p. 93–120.

	28.	 Tinoco I, Borer P, Dengler B, Levine M, Uhlenbec O, Crothers D, Gralla J.
Improved estimation of secondary structure in ribonucleic-acids. Nature.
1973;246(150):40–1.

	29.	 Waterman MS, Smith TF. RNA secondary structure: a complete math-
ematical analysis. Math Biosc. 1978;42:257–66.

	30.	 Wexler Y, Zilberstein CBZ, Ziv-Ukelson M. A study of accessible motifs and
RNA folding complexity. J Comput Biol. 2007;14(6):856–72.

	31.	 Williams R. Matrix-vector multiplication in sub-quadratic time: (some pre-
processing required). In: Pruhs K, Stein C, editors. Bansal N. SIAM: SODA;
2007. p. 995–1001.

	32.	 Williams R. Faster all-pairs shortest paths via circuit complex-
ity. In: Symposium on theory of computing. STOC: New York;
2014. p. 664–73. doi:10.1145/2591796.2591811. http://doi.acm.
org/10.1145/2591796.2591811

	33.	 Xia T, SantaLucia J, Burkard M, Kierzek R, Schroeder S, Jiao X, Cox C, Turner
D. Thermodynamic parameters for an expanded nearest-neighbor model
for formation of RNA duplexes with watson-crick base pairs. Biochemistry.
1998;37(42):14,719–14,735. doi:10.1021/bi9809425. http://pubs.acs.org/
doi/abs/10.1021/bi9809425

	34.	 Zakov S, Tsur D, Ziv-Ukelson M. Reducing the worst case running times
of a family of RNA and CFG problems, using valiant’s approach. In: WABI;
2010. p. 65–77

	35.	 Ziv-Ukelson M, Gat-Viks I, Wexler Y, Shamir R. A faster algorithm for RNA
Co-folding. In: Proceedings of the 8th International workshop on algo-
rithms in bioinformatics. Waterville: WABI; 2008. p. 174–85

	36.	 Zuker M. The use of dynamic programming algorithms in RNA secondary
structure prediction. In: Waterman M, editor. Mathematical methods for
DNA sequences. Boca Raton: CRC Press, Inc.; 1989. p. 159–84.

	37.	 Zuker M. Mfold web server for nucleic acid folding and hybridization
prediction. Nucleic Acids Res. 2003;31(13):3406–3415. doi:10.1093/nar/
gkg595. http://nar.oxfordjournals.org/content/31/13/3406.full.pdf+html

	38.	 Zuker M, Sankoff D. RNA secondary structures and their prediction. Bull
Math Biol. 1984;46(4):591–621.

	39.	 Zuker M, Stiegler P. Optimal computer folding of large RNA sequences
using thermodynamics and auxiliary information. Nucleic Acids Res.
1981;9(1):133–48.

http://dx.doi.org/10.1073/pnas.0401799101
http://www.pnas.org/content/101/19/7287.abstract
http://www.pnas.org/content/101/19/7287.abstract
http://dx.doi.org/10.1002/bip.360290621
http://dx.doi.org/10.1002/bip.360290621
http://dx.doi.org/10.1002/bip.360290621
http://dx.doi.org/10.1073/pnas.77.11.6309
http://dx.doi.org/10.1073/pnas.77.11.6309
http://dx.doi.org/10.1137/0135006
http://link.aip.org/link/?SMM/35/68/1
http://dx.doi.org/10.1186/1471-2105-11-129
http://www.biomedcentral.com/1471-2105/11/129
http://www.biomedcentral.com/1471-2105/11/129
http://dx.doi.org/10.1145/2591796.2591811
http://doi.acm.org/10.1145/2591796.2591811
http://doi.acm.org/10.1145/2591796.2591811
http://dx.doi.org/10.1021/bi9809425
http://pubs.acs.org/doi/abs/10.1021/bi9809425
http://pubs.acs.org/doi/abs/10.1021/bi9809425
http://dx.doi.org/10.1093/nar/gkg595
http://dx.doi.org/10.1093/nar/gkg595
http://nar.oxfordjournals.org/content/31/13/3406.full.pdf+html

	An improved Four-Russians method and sparsified Four-Russians algorithm for RNA folding
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Methods
	Results
	Problem definition and basic algorithm
	Extending the notation and moving towards a vector by vector computation of L
	Sparsification of the SSF algorithm
	OCT and STEP sub-instances of sequence s

	On-demand Four Russians speedup
	MUL lookup table
	MAX lookup table
	Extending to D-discrete vectors

	Sparse Four-Russian method
	STEP–OCT condition for sets of split points

	Discussion
	Asymptotic analysis of sparsified Four-Russians.
	Asymptotic analysis of on-demand lookup tables calculation
	Empirical results
	An simple parallel Four-Russians RNA folding algorithm
	Utilizing n processors
	Parallel sparisified Four-Russians single sequence folding algorithm

	Conclusion
	Authors’ contributions
	Acknowledgements
	References

