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and sparsified Four‑Russians  
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Abstract 

Background:  The basic RNA secondary structure prediction problem or single sequence folding problem (SSF) was 
solved 35 years ago by a now well-known O(n3)-time dynamic programming method. Recently three methodolo-
gies—Valiant, Four-Russians, and Sparsification—have been applied to speedup RNA secondary structure prediction. 
The sparsification method exploits two properties of the input: the number of subsequence Z with the endpoints 
belonging to the optimal folding set and the maximum number base-pairs L. These sparsity properties satisfy 
0 ≤ L ≤ n/2 and n ≤ Z ≤ n2/2, and the method reduces the algorithmic running time to O(LZ). While the Four-Rus-
sians method utilizes tabling partial results.

Results:  In this paper, we explore three different algorithmic speedups. We first expand the reformulate the single 

sequence folding Four-Russians �
(

n3

log2 n

)

-time algorithm, to utilize an on-demand lookup table. Second, we create a 

framework that combines the fastest Sparsification and new fastest on-demand Four-Russians methods. This com-
bined method has worst-case running time of O(L̃Z̃), where L

log n
≤ L̃ ≤ min

(

L, n
log n

)

 and Z
log n

≤ Z̃ ≤ min
(

Z , n2

log n

)

 . 

Third we update the Four-Russians formulation to achieve an on-demand O(n2/ log2 n)-time parallel algorithm. This 

then leads to an asymptotic speedup of O(L̃Z̃j) where Zj
log n

≤ Z̃j ≤ min
(

Zj ,
n

log n

)

 and Zj the number of subsequence 

with the endpoint j belonging to the optimal folding set.

Conclusions:  The on-demand formulation not only removes all extraneous computation and allows us to incorpo-
rate more realistic scoring schemes, but leads us to take advantage of the sparsity properties. Through asymptotic 
analysis and empirical testing on the base-pair maximization variant and a more biologically informative scoring 
scheme, we show that this Sparse Four-Russians framework is able to achieve a speedup on every problem instance, 
that is asymptotically never worse, and empirically better than achieved by the minimum of the two methods alone.

Keywords:  RNA folding, Single sequence folding, RNA secondary structure, Secondary structure prediction, Four-
Russians, Sparsification
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Background
Non-coding RNA (ncRNA) affects many aspects of gene 
expression, regulation of epigenetic processes, transcrip-
tion, splicing, and translation  [14]. It has been observed 
that in eukaryotic genomes the ncRNA function is more 
clearly understood from the structure of the molecule, 

than from sequence alone. While there have been 
advances in methods that provide structure experimen-
tally, the need for computational prediction has grown as 
the gap between sequence availability and structure has 
widened. In general, RNA folding is a hierarchical pro-
cess in which tertiary structure folds on top of 
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thermodynamically optimal1 secondary structure, sec-
ondary structure is a key component of structure 
prediction [14].

Efficient O(n3)-time dynamic programming algorithms 
were developed more than thirty years ago to find non-
crossing secondary structure of a single RNA molecule 
with n bases   [22, 23, 27, 29, 38, 39]. We call this basic 
folding or single sequence folding (SSF) problem. In addi-
tion, McCaskill  [19] created an O(n3)-time algorithm for 
the partition function for RNA secondary structure. Based 
on these algorithms, software has been developed and 
widely used   [15, 16, 25, 36, 37]. Probabilistic methods, 
employing Stochastic context-free grammar (SFCG), were 
also developed to solve the basic folding problem  [7, 8].

The accuracy of all these methods is based on the 
parameters given by the scoring function. Thermody-
namic parameters  [17, 18, 28, 33] and statistical param-
eters   [6, 7], or a combination of the two  [2, 13] are 
currently employed.

The Valiant  [1, 34], Sparsification  [4, 30], and the Four-
Russians (FR)   [9, 24] methods where previously applied 
to improve on the computation time for secondary struc-
ture prediction. For SSF, the Valiant method achieves the 

asymptotic time bound of O
(

n3

2�log(n)

)

 by incorporating the 

current fastest min/max-plus matrix multiplication algo-
rithm  [32, 34]. The Four-Russians method was applied to 
single sequence  [10, 24], cofolding  [11] and pseudoknot-
ted [12] folding problems. The Sparsification method, was 
developed to improve computation time in practice for a 
family of RNA folding problems, while retaining the opti-
mal solution matrix [4, 20, 21, 26, 30, 35].

Methods
In this paper, we combine the Four-Russians method  [24] 
and the Sparsification method   [4]. While the former 
method reduces the algorithm’s asymptotic running 
time to �

(

n3

log2 n

)

, the latter eliminates many redundant 

computations. To combine these methods, we use an on-
demand tabulation (instead of a preprocessing approach 
which is typically applied in FR algorithms), remov-
ing any redundant computation and guaranteeing the 
combined method is at least as fast as each individual 
method, and in certain cases even faster. First, we refor-
mulate SSF Four-Russians �

(

n3

log2 n

)

-time algorithm [24] 

to utilizes on-demand lookup table creation. Second, we 
combine the fastest Sparsification and Four-Russians SSF 
speedup methods. The Sparse Four Russians speedup 
presented here leads to a practical and asymptotically 

1  Or close to optimal.

fastest combinatorial algorithm (even in the worst-
case). The new algorithm has an O(L̃Z̃) run time where 
LZ

log2 n
≤ L̃Z̃ ≤ min

(

n3

log2 n
, LZ

)

. In practice, when 

accounting for every comparison operation the Sparse 
Four Russians outperforms both the Four-Russians and 
Sparsification methods. Third, we extended the Four-
Russian SSF algorithm to be computed in O(n2/ log2 n)-
time. The simulated results for this formulation and O(n) 
processors achieve a practice speedup on the number of 
comparison operations performed.

Results
Problem definition and basic algorithm
Let s = s0s1 . . . sn−1 be an RNA string of length n over the 
four-letter alphabet � = {A,U ,C ,G}, such that si ∈ � 
for 0 ≤ i < n. Let si,j denote the substring sisi+1 . . . sj−1 . 
We note that for simplicity of exposition substring si,j 
does not contain the nucleotide j. A folding (or a second-
ary structure) of s is a set M of position pairs (k, l), such 
that: (1) 0 ≤ k < l < n; (2) and there are no two different 
pairs (k , l), (k ′, l′) ∈ M such that k ≤ k ′ ≤ l ≤ l′ (i.e. each 
position participates in at most one pair, and the pairs are 
non-crossing).

Let β(i, j) return a score associated with position pair 
(i,  j). Let L(s,M) be the score associated with a folding 
M of RNA string s, and let L(s) be the maximum score 
L(s,M) over all foldings M of s. The RNA Folding or SSF 
problem is: given an RNA string s, compute L(s), and find 
an optimal folding M such that L(s,M) = L(s). In this 
work, we assume the following simple scoring scheme:

where β(i, j) = 1 if (si , sj) ∈ {(A,U), (U ,A), (C ,G), (G,C)} , and 
β(i, j) = 0 otherwise. Richer scoring schemes allow more 
biologically significant information to be captured by 
the algorithm. However, the algorithms for solving the 
problem similar recurrences and other discrete scoring 
schemes may be accelerated in a similar way to what we 
present here.

For the folding M of si,j, an index k ∈ (i, j) is called a 
split point in M if for every (x, y) ∈ M, either y < k or 
k ≤ x. A folding M is called a partitioned folding (with 
respect to si,j) if there exists at least one split point; oth-
erwise M is called a co-terminus folding. Let the matrix 
L be a matrix such that L[i, j] = L(si,j). In addition, let 
Lp[i, j] be the maximum value of L(si,j ,M) taken over 
all partitioned foldings M of si,j. Similarly, let Lc[i, j] be 
the maximum value of L(si,j ,M) taken over all co-termi-
nus foldings M of si,j. Let L[i, i] = L[i, i + 1] = 0. For all 
j > i + 1, L[i,  j] can be recursively computed as follows 
([23]):

L(s,M) =
∑

(i,j)∈M

β(i, j),
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For completeness, when j < i, define L[i, j] = Lp[i, j] =

Lc[i, j] = −∞.
The above recurrence may be efficiently implemented 

using a dynamic programming (DP) algorithm. Essen-
tially, the DP algorithm computes and maintains values of 
the form L[i, j], Lp[i, j] and Lc[i, j] for every 0 ≤ i ≤ j ≤ n 
in three n+ 1× n+ 1 matrices. The algorithm trav-
erses the matrices in increasing column order index j 
from 1 to n. Within each column, the cell L[k, j] is com-
puted in decreasing index order k from j − 1 to 0. Once 
L[k,  j] is computed, Lp[i, j] is updated for all i < k such 
that Lp[i, j] = max(Lp[i, j], L[i, k] + L[k , j]). The solution 
L(s, M) is stored in cell L[0, n]. Clearly, computing Lp is 
the bottleneck of the computation, since for a given i,  j, 
there may be �(n) split points to examine.

Extending the notation and moving towards a vector 
by vector computation of L
For a matrix A and some integer intervals I, J, denote by 
A[I, J] the sub-matrix of A obtained by projecting  it onto 
the row interval I and column interval J. When I = [i] 
or J = [j], we simplify the notation by writing A[i,  J] or 
A[I, j].

Definition 1  For a set of integers K, define the notation 
L
p
K [i, j], and the max-plus operation ⊗ as

For an interval I = [i, i + 1, . . . i′], define LpK [I , j] to be the 
vector such that

We divide the solution matrix L in two ways: q × q sub-
matrices (Fig. 1) and size q sub column vectors (the value 
of q will be determined later). Let Kg be the gth interval 
such that Kg = {q · g , q · g + 1, . . . , q · g + q − 1}. We call 
these sets Kgroups, and use Kg as the interval starting at 
index g · q. For an index i, define gi =

⌊

i
q

⌋

. It is clear that 
i ∈ Kgi.

Similarly, we break up the row indices into groups  
of size q, denoted by Ig where Ig = {k = q · g , k + 1, 
 ...k + q − 1} . (Clearly, row index set Ig is equivalent to 
the Kgroup Kg. We only introduce this extra notation for 
simplicity of the exposition).

(1)
L[i, j] = max(Lp[i, j], Lc[i, j]),

(2)Lp[i, j] = max
k∈(i,j)

(L[i, k] + L[k , j]),

(3)Lc[i, j] = L[i + 1, j − 1] + β(i, j − 1).

L
p
K [i, j] = L[i,K ] ⊗ L[K , j] = max

k∈K
(L[i, k] + L[k , j]).

L
p
K [I , j] = L[I ,K ] ⊗ L[K , j] =

[

LPK [i, j] for all i ∈ I
]

Given this notation LP[i, j] can be rewritten as maxi-
mization L

p
Kg
[i, j] values for all Kg index Kgroups 

between i and j. However, in some cases, the indices 
{i + 1, . . . q · gi+1 − 1} do not form a full Kgroup Kgi . 
Similarly indices {qgj , qgj + 1, . . . j − 1} do not form a 
full Kgroup Kgj. Therefore, LP[i, j] can be computed by 
maximizing the full and non full Kgroups Kg. In Eq. 4 and 
the following sections we do not explicitly differentiate 
between full and non full groups.

We extend the notation further, to compute the matrix 
Lp not cell by cell but instead by vectors of size q corre-
sponding to the Ig ′ row sets, as follows.

The DP algorithm can be updated to incorporate the 
extended notation. Within each column, compute the 
matrices in vectors of size q. Once L[Kg , j] is computed 
it is used in computation of LpKg

[Ig ′ , j] for g ′ < g. When 
computing LpKg ′

[Ig ′ , j] we follow Eq. 1–3 to complete the 
computation of cells L[Ig ′ , j].

Sparsification of the SSF algorithm
The Sparsification method achieves a speedup by reducing 
the number of split points examined during the computation 
of LP[i, j]. As Fig. 2 shows the focus of Sparsified Four Rus-
sians algorithm will narrow down only on those submatrices 
whose split points are  step-oct for a particular i, j [4, 30].

OCT and STEP sub‑instances of sequence s
Sub-instance si,j is optimally co-terminus (OCT) if every 
optimal folding of si,j is co-terminus. We introduce the 
extra notation below

if L[i, j] = Lc[i, j] > Lp[i, j] then we say L[i, j] is OCT.
Sub-instance si,j is STEP, if L[i, j] > L[i + 1, j] where 

L[i, j] = L(si,j) and L[i + 1, j] = L(si+1,j). For ease of expo-
sition we also say L[i, j] is STEP when si,j is STEP. A STEP 
sub-instance si,j implies that nucleotide i is paired in 
every optimal folding of si,j.

Fact 1  For every sub-instance si,j with j > i there is an 
optimal split point k ∈ (i, j) such that either k = i + 1 or 
L[i, k] is STEP and L[k, j] is OCT  [4].

Notation: For the index set K = {k , k + 1, . . . k ′} and col-
umn j, let Koctj be the set of indices such that Koctj ⊂ K  
and ∀

k∈K
octj L[k , j] is OCT. Given the row interval 

I = {i, i + 1, . . . i′}, let I stepk be the set of rows such that 
I stepk ⊂ I, and for all i ∈ I stepk L[i, k] is STEP.

(4)Lp[i, j] = max
gi≤g≤gj

L
p
Kg
[i, j]

(5)Lp[Ig ′ , j] = max
g ′≤g≤gj

L
p
Kg
[Ig ′ , j].
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We further define operation ⊗step−oct such that 
given I = {i, i + 1, . . . , i′} and K = {k , k + 1, . . . , k ′} , 
L[I ,K ] ⊗step−oct L[K , j] results in A[I,  j] where 
∀
i∈(I stepk∪I stepk+1∪...I

stepk′ )
A[i, j] is computed by the follow-

ing procedure:

Using the operation ⊗step−oct and based on Fact 1. We 
reduce the time to compute Lp[Ig ′ , j] by considering a 
split-point k only if k = i + 1 or L[i, k] is STEP and L[k, j] 
is OCT for i ∈ Ig ′ and k ∈ (i, j).

Note Eq. 6 does not explicitly show that for LPKg ′
[Ig ′ , j] the 

split-point i + 1 must be examined for every i ∈ Ig ′.

Asymptotic time bound of sparsified SSF When comput-
ing matrix Lp[i, j] we examine value L[i, k] only if L[k,  j] 
is OCT. Let Z, be the total number of sub-instances 

(6)
Lp[Ig ′ , j] = max

g ′≤g≤gj
L
p
Kg
[Ig ′ , j] = max

g ′≤g≤gj
L[Ig ′ ,Kg ] ⊗step−oct L[Kg , j].

in s or cells in matrix L that are OCT. Given that L[k,  j] 
is OCT, Lp[i, j] must examine the split point k, for all 
i ∈ {0, 1, . . . k} such that L[i,  k] is STEP. Let L be the 
total number of STEP sub-instances in column k. More 
precisely L = |{0, 1, . . . k}stepk | (Creating the list of split-
points that correspond to STEP incidence requires no 
additional computation time [4]). The total time to com-
pute SSF when examining only STEP, OCT combinations 
(Sparsification method), is O(LZ). As shown in Backofen 
et  al.   [4] Z is bounded by Z ≤ n2 and L is bounded by 
L ≤ n

2. The overall asymptotic time bound of the Sparsifi-
cation method is O(LZ) remains O(n3).

On‑demand Four Russians speedup
Presented here is an on-demand version of the �(log2 n)

-time Four-Russians algorithm implied by Pinhas 
et al.  [24].

Observation 1  The scores stored in L[k, j] and L[k + 1, j] 
differ by the effect of adding only one more nucleotide (i.e., 
sk). Therefore, L[k , j] − L[k + 1, j] belongs to a finite set of 

Fig. 1  An example of how a solution matrix L is broken down into submatrices. Using the extended vector notation we can say that cell L[i, j] 
belongs to the vector L[Kgi , j] as well as submatrix L[Igi , Kgj ]. We partition the solution matrix L into O(n2/q) vectors of size O(q) and O(n2/q2) subma-
trices, of size O(q2)
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differences D, where D is the set of scores created as the 
result of the scoring scheme β. The cardinality of the set 
of differences, D = |D|, is O(1) when β is discrete. For the 
simple β scoring function (+1 for every permitted pair, 
and 0 otherwise), the set D is equal to {0, 1} and therefore 
|D| = 2  [23].

Let �x = [x0, x1, . . . , xq−1] be an integer vector of length 
q. We say that �x is D-discrete if ∀l∈(0,q)|xl−1 − xl | ∈ D. 
We define the �-encoding of 2-discrete vector �x to be a 
pair of integers (x0,�x) such that x0 is the first element 
in �x and �x is the integer representation of the binary 
vector [x0 − x1, x1 − x2, . . . , xq−2 − xq−1]. Note that 
0 ≤ �x < 2q−1. For simplicity, we will interchangeably 
use �x to imply either (x0,�x) or [x0, x1, . . . , xq−1]. Clearly, 
�-encoding takes O(q) time to compute.
�-encoding vector operations:

• • Let (x0,��x)+ c = (x0 + c,��x) be equivalent to 
�x + c = [x0 + c, x1 + c, . . . , xq−1 + c].

• • Let B⊗ (x0,�x) be equivalent to B⊗ �x.
• • Let max((x0,�x), (y0,�y)) be equivalent to 
max(�x, �y) .

MUL lookup table
Based on Observation 1, any column vector in matrix 
L is 2-discrete. Given vector L[Kg , j] and its �-encod-
ing (x0 = L[gq, j], �x = �L[Kg ,j]), it is clear that 
�x ∈ [0, 2q − 1].

Fact 2  L[Ig ′ ,Kg ] ⊗ L[Kg , j] is equivalent to L[Ig ′ ,Kg ] ⊗ (0,�L[Kg ,j])

+L[gq, j]  [24].

Let MULB[i] be a lookup table, where given a 
q×q submatrix B = L[Ig ′ ,Kg ] and i = �L[Kg ,j] , 
the entry MULL[Ig ′ ,Kg ][�L[Kg ,j]] = (y0,�y) where 
�y = L[Ig ′ ,Kg ] ⊗ (0,�L[Kg ,j]). We could reformulate the 
computation of LpKg

[Ig ′ , j] to utilize the MUL lookup table.

Equation 7, abstracts the detail that we still have to com-
pute each referenced entry in the MUL lookup table. Each 
entry in the MUL lookup table is computed on-demand 
i.e. only when it corresponds to a required calculation. 
(This removes any extraneous calculation incurred when 

(7)

L
p
Kg
[Ig ′ , j] = L[Ig ′ ,Kg ] ⊗ L[Kg , j]

= MULL[Ig ′ ,Kg ][�L[Kg ,j]] + L[gq, j].

Fig. 2  An sample examination to determine wether a submatrix and vectors are STEP−OCT . The yellow cells indicate STEP instances. The red cells 
indicate OCT instances. The L[Ig′ , Kg] ⊗ L[Kg , j] operation is only performed on submatrices with sigSTEP ⊙ sigOCT > 0
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preprocessing all possible entries as in the typical Four-
Russians implementation.) If entry MULL[Ig ′ ,Kg ][�L[Kg ,j]] 
does not exist we compute L[Ig ′ ,Kg ] ⊗ (0,�L[Kg ,j]) 
directly in O(q2) time. If entry MULL[Ig ′ ,Kg ][�L[Kg ,j]] exists 
then the operation is O(1)-time lookup.
There are O

(

n2

q2

)

 submatrices within L. For each sub-
matrix the maximum number of entries we com-
pute for lookup table MUL is 2q−1. In total, the 
asymptotic time bound to populate lookup table MUL is 
O
(

n2

q2
· 2q−1 · q2) = O(n2 · 2q

)

.

MAX lookup table
Let the max of two 2-discrete q-size vectors �v and 
�w , denoted max(�v, �w), result in a q-size vector �z, 
where ∀0≤k<q zk = max(vk ,wk). Without loss of general-
ity, let w0 ≥ v0. Comparing the first element in each vec-
tor there are two possibilities either (1) w0 − v0 > q − 1 
or (2) w0 − v0 ≤ q − 1. In the first case, (w0 − v0 > q − 1 ), 
it is clear that max(�v, �w) is equal to �w. In the second case, 
we make use of the following fact  [24].

Fact 3  Given two vectors (w0,�w) and (v0,�v),  
if w0 − v0 ≤ q − 1 then max(�v, �w) = max ((0,�v), (w0 − v0,

�w))+ v0.

Lets define lookup table MAX such that entry
MAX[i, i′, h] = max

(

(0, i), (h, i′)
)

. Hence, we reformu-
late Fact 3. to incorporate the MAX lookup table:

We summarize these results in the function � max:

Function � max : :

input: such that w0 ≥ v0 and = (v0,∆v) and = (w0,∆w)
output: = (z0,∆z) where ∀i∈[0,q)zi = max(vi, wi)
if(w0 − v0 ≥ q − 1) : =
else : = MAX [∆v0,∆w0, (w0 − v0)] + v0

In Eq.  8, below, we integrate the vector comparison 
function �max. Each vector Lp[Ig ′ , j] is computed by 
maximizing over O(n  / q) vectors. We will compute the 
lookup table MAX on-demand for every entry that does 
not exist an O(q). Clearly the lookup table MAX will con-
tain at most 2(q−1) · 2(q−1) · q for all entries. In worst 
case, the lookup table MAX computes in O(2q

2
q) time.

The matrix Lp and hence L is solved by a total of O
(

n2

q

)

 

computations of Eq. 8. In total, given lookup table MUL 

max(�v, �w) = MAX[�v0,�w0, (w0 − v0)] + v0

(8)
Lp[Ig ′ , j] = �max

g ′≤g≤gj

(

MULL[Ig ′ ,Kg ]

[

�L[Kg ,j]

]

+ L[gq, j]
)

and MAX, the time to compute the Four-Russians SSF is 

O











n3

q2
����

computation

+ 22qq + n22q
� �� �

on-demand lookup table











.

Setting q = ǫ log n, where ǫ ∈ (0, .5)   [31], the total 
computation time is equal to �( n3

log2 n
), which achieves a 

speedup by a factor of �(log2 n), compared to the original 
O(n3)-time solution method.

Extending to D‑discrete vectors
We define the �-encoding of D-discrete vector �x to be a 
pair of integers (x0,�x) such that x0 is the first element 
in �x and �x is the integer representation in base 10 of 
the vector [x0 − x1, x1 − x2, . . . , xq−2 − xq−1] in base 
D where x0 is the most significant integer. Note that 
0 ≤ �x < Dq−1. As a result for a more complicated scor-
ing scheme B we could apply the Four-Russians speedup 
by augmenting the encode, and decode functions as well 
as the �max algorithm. 

input: such that w0 ≥ v0 and = (v0,∆v) and = (w0,∆w)
output: = (z0,∆z) where ∀i∈[0,q)zi = max(vi, wi)
if(w0 − v0 ≥ D(q − 1)) : =
else : = MAX [∆v0,∆w0, (w0 − v0)] + v0

This would result in a total asymptotic time for Four-
Russians SSF where |D| > 2 of

Setting q = ǫ logD n, where ǫ ∈ (0, .5)   [31], the total 
computation time is equal to �

(

n3

log2 n

)

, which achieves a 

speedup by a factor of �(log2 n), compared to the original 

O(n3)-time solution method.

Sparse Four‑Russian method
With the Four-Russians method, a speedup is gained by 
reducing q split point index comparisons for q subse-
quences to a single O(1) time lookup. The Sparsification 
method reduces the comparison to only those indices 
which correspond to STEP–OCT folds.

STEP–OCT condition for sets of split points
In this section, we achieve a Sparsified Four-Russian 
speedup for the computation of the Lp matrix. As in the 
Four Russians method, we will conceptually break up the 

O











n3

q2
����

computation

+ D2qq + n2Dq

� �� �

on-demand lookup table











.
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solution matrix L in two ways: in q × q size submatri-
ces, and q size subcolumn vectors. The submatrices are 
indexed by g ′ and g such that the corresponding submatrix 
is L[Ig ′ ,Kg ] . The subcolumn vectors are indexed by g and j ,  
such that the corresponding subcolumn vector is L[Kg , j].

We augment the Four-Russians SSF to reduce the num-
ber of entries, and lookups into the MUL table. If and only 
if, the matrix L[Ig ′ ,Kg ] contains at least one cell L[i, k] that 
is STEP and within vector L[Kg , j] the cell L[k,  j] is OCT 
we will lookup MULL[Ig ′ ,Kg ][�L[Kg ,j]] . If such an entry does 
not exist we will compute L[Ig ′ ,Kg ] ⊗ (0,�L[Kg ,j]) and 
store the result into lookup table MUL.

The following notation will be used to help deter-
mine if a split point Kgroup should be examined in the 
computation.

OCT subcolumn vector   Given the vector L[Kg , j] let �m 
be a q size binary vector such that ∀0≤x≤q−1m[x] = 1 if 
L[gq + x, j] is OCT. Let the sigOct of the vector L[Kg , j] , 
written sigOct(L[Kg , j]), be equal to m the integer rep-
resentation of the binary vector �m. Clearly 0 ≤ m < 2q , 
and if m > 0 then L[Kg , j] contains at least one OCT 
instance. Let O(Z̃) be the total number of subcolumn 
vectors which contain an instance that is OCT. Clearly, 
Z
q ≤ Z̃ ≤ min

(

n2

q ,Z
)

.

STEP submatrix   Given the submatrix L[Ig ′ ,Kg ], let �m′ 
be a q size binary vector such that ∀x∈[0,q)m′[x] = 1 if 
∃0≤i≤q−1 L[qg ′ + i, qg + x] is STEP. Let sigStep of a sub-
matrix, written sigStep(L[Ig ′ ,Kg ]), be equal to m′ the 
integer representation of the binary vector �m′ . Clearly 
0 ≤ m′ < 2q. Let L̃ be the total number of submatrices 
which contain an instance that is STEP within L[[0, n],Kg ].  
Clearly, Lq ≤ L̃ ≤ min(nq , L).

Observation 2  Suppose that, si,k is STEP, and integer
m′ = sigStep(L[Ig ′ ,Kg ]) such that i ∈ Ig ′ (or Ig ′ = Igi ) and 
k ∈ Kg (or Kg = Kgk). Then, the corresponding binary vec-
tor �m′ must be set to 1 in position x where x is an index 
such that k = qg + x. More precisely, if L[i,  k] is STEP 
then m′[x] = 1 by the definition of sigStep.

Observation 3  Suppose sk ,j is OCT, and suppose integer
m = sigOct(L[Kg , j]) such that k ∈ Kg. Then, the corre-
sponding binary vector �m must be set to 1 in position x, 
where x is an index such that k = qg + x. More precisely, 
if sk ,j is OCT then m[x] = 1 by the definition of sigOct.

Given two binary vectors v and w the dot product  
of their integer representation is equal to a binary  
number x such that x = v ⊙ w = v0 ∧ w0 ∨ v1 ∧ w1 ∨ ... 
∨vq−1 ∧ wq where |v| = |w| = q − 1

Theorem  1  For any subinstance si,j either i + 1 is the 
optimal split point, or there is an optimal split point 
k ∈ (i, j), such that sigStep(L[Igi ,Kgk ])⊙ sigOct(L[Kgk , j]) 
equals 1.

Proof  Based on Fact 1 for any sub-instance si,j there 
is an optimal split point k such that either k = i + 1 
or si,k is STEP and sk ,j is OCT. If si,k is STEP and sk ,j is 
OCT then L[i,  k] is STEP and L[k,  j] is OCT. The cell 
L[i, k] belongs to submatrix L[Igi ,Kgk ] and the cell L[k, j] 
belongs to the vector L[Kgk , j]. Let x be an index such 
that k = qgk + x. Let �m′ be a binary vector that cor-
responds to sigStep(L[Igi ,Kgk ]). Based on Observation 
2, m′[x] must equal 1. Let �m be the binary vector that 
corresponds to sigOct(L[Kgk , j]). Based on Observa-
tion 3, m[x] equals 1. Therefore, m[x] ∧m′[x] = 1 and 
sigStep(L[Igi ,Kg ])⊙ sigOct(L[Kg , j]) = 1. � �

Notation: The index g is STEP–OCT if given the set of  
rows Ig ′ and the column j if sigStep( L[Ig ′ ,Kg ] )⊙

sigOct( L[Kg , j] ) = 1.
We can reformulate the computation of Lp[Ig ′ , j] by ref-

erencing the lookup table MUL only if g is STEP–OCT. 
This reduces the number of operations used in comput-
ing the bottleneck LP matrix.

We update the DP algorithm to only access the MUL 
lookup table for matrix and vector combinations that sat-
isfy the property

sigStep( L[Ig ′ ,Kg ] )⊙sigOct( L[Kg , j] ) = 1.

Let G be a lookup table, where give an index g ∈ [0, n/q] 
and integer m ∈ [0, 2q] the G[g][m] ⊂ {I0, I1, . . . , Ig } is a 
set of row index intervals. Each index Ig ′ within G[g][m] 
satisfies the following condition:

Lookup table G (updated on-demand) allows us to imple-
ment Eq.  9. As L[Kg , j] is computed, the corresponding 
SigOct is also computed. Let m = sigOct(L[Kg , j]). By iter-
ating through Ig ′ ∈ G[g][m] set of row indices we access 
table MUL only when both of the following conditions 
hold at the same time: the submatrix L[Ig ′ ,Kg ] contains 
at least one cell L[i, k] where si,k is STEP and within vec-
tor L[Kg , j] the cell L[k, j] contains sk ,j that is OCT (where 
i ∈ Ig ′ and k ∈ Kg).

The Sparsified Four-Russian algorithm implements 
Eq. 9. The complete function will tabulate STEP, and OCT 
instances as well as sigStep and sigOct values. The G, MUL 
and MAX lookup tables will be computed on-demand.

(9)

Lp[Ig ′ , j] = � max

g is STEP−OCT

where g ∈ [g ′, gj]

(

MULL[Ig ′ ,Kg ]

[

�L[Kg ,j]

]

+ L[gq, j]
)

if Ig ′ ∈ G[g][m] then sigStep(L[Ig ′ ,Kg ])⊙m = 1.
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Discussion
Asymptotic analysis of sparsified Four‑Russians.
We assume O(1)-time RAM access for log(n) bits. 
The calculation for column j can be broken down into 
LPK=[qgj ,j)

[i, j] and LPK=[0,qgj)
[i, j] for all i < j. The computa-

tion of
LP[qgj ,j)[[0, n], j] occurs when Kgroup Kgj is not full, and 

follows the Sparsification algorithm maximizing over  
STEP–OCT split points only. This reduces the compari-
sons made from O(n · q) to O(Lq̃) where q̃ < q is the total 
number OCT instances within the interval [qg,j). The 
computation of LP[0,qgj)[[0, n], j] employs Sparsified Four 
Russians speedup. The MUL table entries are created 
and references only for STEP–OCT submatrix vector 

combinations. This reduces the comparisons made to 
O(L̃Z̃).

The helper function complete is called O(n2/q) times 
for the entire algorithm. The complete function outer-
loop iterates at most O(q) times updating the lists of OCT 
and STEP split points, as well as sigOct and sigStep val-
ues. Overall the complete function takes O(q + x̃) where 
x̃ ≤ q2 is the number of STEP–OCT instance combina-
tions. The asymptotic runtime of the Sparsified Four-
Russian algorithm is

Asymptotic analysis of on‑demand lookup tables 
calculation
We compute the lookup tables G, MUL, and MAX on-
demand. For each vector L[Kg , j] containing an OCT 
instance (where m = sigOct(L[Kg , j])), if G[g][m] does not 
exist then we directly compute it. For the computation of 
a single entry into lookup table G, we iterate through 
O(L̃) submatrices and compute the dot product in O(q) 
time.2 In total, an update is called to lookup table G at 
most O(C̃ = min(2q , Z̃)) times. The entire G lookup table 
on-demand computation takes O(on-demandG) = O(L̃C̃ · q) 
or O(G) ≤ O

(

min(L̃2q , L̃Z̃) · q
)

≤ O
(

min
(

n2q

q , LZq

))

.
For each vector containing an OCT instance if an entry 

doesn’t exist in the lookup table MUL it is computed 
on-demand. Each entry takes O(L̃ · q2) time to compute. 
There are min(2q , Z̃) such computation. In total, lookup 
table MUL takes O(L̃q2 ·min(2q , Z̃))-time. Setting 
q = ǫ log n where ǫ ∈ (0, .5) the asymptotic run-time for 
on-demand computation is O(L̃Z̃).

The entire algorithm takes O(L̃Z̃) where LZ

log2 n
≤ L̃Z̃

≤ min
(

n3

log2 n
, LZ

)

.

Empirical results
We tested 20 randomly generated sequences for each size 
N = 64, 128, 256, 512.

The empirical testing results are given not in seconds 
but in the number of operations including both lookup 
table creation and split-point comparisons. We do so to 
abstract from the effect compiler optimizations. Note 
that the testing does not account for memory access 
time, or extend the algorithm to D > 2 scoring schemes 
(Table 1).

For N = 128 the Sparse Four-Russians(SFR) algorithm 
performs 25 % less comparisons than the Sparsified(SP) 
SSF algorithm and 80  % less comparison than the 

O(L̃Z̃)+ O

(

n2

q
· x̃

)

+ O
(

updating lookup tables on-demand
)

= O(L̃Z̃)

2  Using some word tricks the dot product could be computed in O(1)-time.
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Four-Russians (FR) algorithm. In all test cases, the Sparse 
Four-Russians performed better than the minimum of 
either method alone.

An O(n2/ log2(n)) simple parallel Four‑Russians RNA 
folding algorithm
Lets solve the recurrence relation (Eq. 1–3) in increasing 
index j order and then move up the column j computing 
one cell at a time in decreasing i order. Each cell L[i, j] is 
solved by calculating Eq. 1–3 for all i < k ≤ j.

Given this j, i, k order, let us reformulate the computa-
tion by moving up each column in O(n/q) q-size subcol-
umn vectors instead of n cells.

Utilizing n processors
Lets create a new process for each column j, creating n 
process in total. We can synchronously move up the 
matrix computing each column subvector such that on 
iteration d we compute L[Igj−d , j] for all j ∈ (0, n).

Invariant 1  Given gi and gj ∀i∈Igi∀k∈Kg
L[i, k] = L(si,k) . 

In other words, submatrix L[Igi ,Kg ] is computed. Simi-
larly L[Kg , j] is computed or ∀k∈Kg

L[k , j] = L(sk ,j).

Please note that the function complete assumes that  
L
p

K
[I , j] is computed, where K = {i, i + 1, . . . j − 2, j − 1} − K .

Replacing the max(Lp[Igi , j], L[Igi ,Kg ])⊗ L[Kg , j]) com-
putation with lookups into MUL and MAX tables would 
reduces the run-time for finding the solution matrix L to 
O(n2/log2n). As stated in "Extending to D-discrete vectors" 
section it is possible to create lookup tables on-demand and 
achieve a reduction in computation time of �(log2n) factor.

The preprocessing can also be achieve in paral-
lel reducing the asymptotic cost form O(n3/ log2 n) to 
O(n2/ log2 n). If entry MULL[Igi ,Kg ][�L[Kg ,j]] does not exist 
we compute L[Igi ,Kg ] ⊗ (0,�L[Kg ,j]) directly in O(q2).

There are O
(

n2

q2

)

 submatrices within L. For each sub-
matrix the maximum number of entries we compute for 
lookup table MUL is Dq−1. However, in each iteration at 
worse O(n) of the entries are computed simultaneously. In 
total, the asymptotic time bound to populate lookup table 

MUL is O





n2

q2
· Dq−1 · q2

n



 = O
�

n2·Dq

n

�

= O(n · Dq).

Based on Williams  [31] O(Dq) is bound by O(n/ log2 n) 
when setting q = ǫ log n. Hence, for the MUL lookup 
table the total asymptotic computation time is 
O(n · Dq) = O(n2/ log2 n), For the MAX table similarly 
the serial computation of O(D2qq) total time is reduced 
by a factor of n in the parallel case. The total computation 
time for the MAX table is therefore O(n/ log3 n).

Table 1  Number of all comparisons computed

Size O(n3) FR SP SFR

64 43,680 12,014 2733 1837

128 349,504 49,456 13,196 9982

256 2,796,160 346,692 79,544 41,393

512 22,500,863 5,746,853 650,691 503,425
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Parallel sparisified Four‑Russians single sequence folding 
algorithm
Let Zx be the number of OCT cells in column x. Let 
∀x∈[0,n]Zj ≥ Zx.

The parallel algorithm would take as long as would take 
as a it takes for the last processor to complete.

In order to extend the parallel Four-Russians single 
sequence folding algorithm to utilize the Sparsifica-
tion speedup we will limit the call to MUL table only if 
sigSTEP(L[Igi ,Kg ])⊙ sigOCT (L[Kg , j]) > 0. As result 
given Zj the total time to compute for processor j is 
O(L̃Z̃j) where Zj

log n
≤ Z̃j ≤ min

(

Zj ,
n

log n

)

.

Conclusion
This work combines the asymptotic speedup of Four-
Russians with the very practical speedup of Sparsification. 
The on-demand formulation of the Four-Russians not only 
removes all extraneous computation. This approach allows 
the Four-Russians SSF to achieve a speedup in practice for 
realistic scoring schemes. This also leads us to take advan-
tage of the sparsity properties. Through asymptotic analy-
sis and empirical testing on the base-pair maximization 
variant and a more biologically informative scoring scheme, 
we show that the Sparse Four-Russians framework is able 
to achieve a speedup on every problem instance, that is 
asymptotically never worse, and empirically better than 
achieved by the minimum of the two methods alone. We 
also showed that through some re-organization we could 
apply the Four-Russians speedup to parallel algorithm 
and achieve and asymptotic time of O(n2/ log2 n). The 
algorithm created here can be implemented in CUDA to 
compute on multiprocessor GPUs. Because the algorithm 
allows for memory cell independence one can apply mem-
ory and cache optimization without affecting the algorithm. 
The utility in this framework lies not only on its ability to 
speedup single sequence folding but its ability to speedup 
the family of RNA folding problems for which both Spar-
sification and Four-Russians have bene applied separately.

Future work in this area would be to examine the abil-
ity to sparsify memory [3], as Four-Russians at worst 
case requires an additional factor of 2log(n) in memory. 
Another open question is wether it is possible to apply 
the �(log3 n)  [5] speedup of boolean matrix multiplica-
tion to RNA folding.
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