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Abstract 

Background:  Given a gene family, the relations between genes (orthology/paralogy), are represented by a relation 
graph, where edges connect pairs of orthologous genes and “missing” edges represent paralogs. While a gene tree 
directly induces a relation graph, the converse is not always true. Indeed, a relation graph is not necessarily “satisfiable”, 
i.e. does not necessarily correspond to a gene tree. And even if that holds, it may not be “consistent”, i.e. the tree may 
not represent a true history in agreement with a species tree. Previous studies have addressed the problem of correct‑
ing a relation graph for satisfiability and consistency. Here we consider the weighted version of the problem, where a 
degree of confidence is assigned to each orthology or paralogy relation. We also consider a maximization variant of 
the unweighted version of the problem.

Results:  We provide complexity and algorithmic results for the approximation of the considered problems. We 
show that minimizing the correction of a weighted graph does not admit a constant factor approximation algorithm 
assuming the unique game conjecture, and we give an n-approximation algorithm, n being the number of vertices 
in the graph. We also provide polynomial time approximation schemes for the maximization variant for unweighted 
graphs.

Conclusions:  We provided complexity and algorithmic results for variants of the problem of correcting a rela‑
tion graph for satisfiability and consistency. For the maximization variants we were able to design polynomial time 
approximation schemes, while for the weighted minimization variants we were able to provide the first inapproxima‑
bility results.
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Background
Genes are the basic molecular units of heredity hold-
ing the information for producing all proteins required 
to build and maintain cells. They are the key for under-
standing genetic diversity, adaptation to environmental 
variation, drug resistance, and many other genetic fea-
tures. Therefore, a first step of most genomic studies is 
to group genes into families. Gene families are usually 
inferred from sequence similarity, the underlying idea 

being that similar sequences reflect homologous genes 
that have diverged from a common ancestral sequence.

However, homology alone is not sufficient to decipher 
the properties of genes. Given a gene family, it is impor-
tant to discriminate between two types of homologs: 
orthologs being gene copies originating from a speciation 
event, and paralogs originating from a duplication event. 
According to the orthology conjecture [1], orthologous 
genes are expected to be more similar in function than 
paralogs.

Various methods have been developed to discrimi-
nate between orthologous and paralogous genes. 
Tree-based methods consist in first constructing a 
phylogenetic tree for the gene family, and then, given 
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a species tree, applying a reconciliation approach for 
inferring speciation and duplication nodes  [2]. On the 
other hand, tree-free methods are based on gene clus-
tering according to sequence similarity (c.f. for example 
the COG database  [3], OrthoMCL  [4], InParanoid  [5], 
Proteinortho  [6]), synteny  [7, 8] or functional annota-
tion of genes  [9]. Results of these methods are pairwise 
orthology relations, or groups of orthologs, that can be 
represented as relation graphs, where vertices are genes 
and edges represent orthology relations between genes. 
Assuming a full inference of pairwise orthology relations, 
“missing” edges of the relation graph represent paral-
ogy. In addition, as different inference methods may lead 
to different predictions, instead of a yes or no orthology 
assignment, existing methods can rather motivate a way 
of assigning a score to a given relation [10], leading to a 
weighted relation graph. For example, orthology predic-
tions with OrthoMCL [4] are based on a weighted graph, 
where edge weights are related to the sequence similar-
ity score of the adjacent genes, while InParanoid [5] pro-
vides a confidence value that shows how closely related a 
paralog is to its “seed ortholog”. Surprisingly, as far as we 
know, weighted orthology/paralogy relation graphs have 
not been formally considered in the literature.

While a gene tree induces a set of relations betwen 
genes, the converse is not always true, as a set of rela-
tions may or may not represent a valid history for the 
gene family. Two underlying questions are: (1) is the set 
of relations “satisfiable” i.e. is there a tree, with internal 
nodes labeled as duplication or speciation, containing 
them all? (2) is the set of relations “S-consistent” with the 
known species tree S, i.e. is there a tree containing the 
relations that is a “valid” gene tree “in agreement” with S? 
Polynomial-time algorithms exist for deciding satisfiabil-
ity and S-consistency for a full [11–13] or partial [10] set 
of pairwise gene relations.

In this paper, we address both the weighted and 
unweighted variants of the full relation graph correc-
tion problem. First, for a full weighted relation graph 
R, we consider two minimization versions for the prob-
lem of correcting the graph by minimizing edit opera-
tions, i.e. adding or removing edges of minimum total 
weight, so that it represents a satisfiable or S-consistent 
set of relations. Then, we consider two maximization ver-
sions for the unweighted variant were we are given a full 
unweighted relation graph that has to be corrected with 
edit operations, so that the maximum number of rela-
tions is not modified.

In the unweighted case, the minimization variant of 
the satisfiability correction problem reduces to editing a 
minimum number of edges of R in order to make it P4
-free, which is known to be NP-hard [14]. In [13], an inte-
ger linear programming formulation is used to correct 

relation graphs of small size, which is also applicable to 
weighted graphs. In [15], the authors propose an approxi-
mation algorithm of factor 4�, where � is the maxi-
mum degree of the input graph. The algorithm, however, 
offers no guarantees in the case of weighted graphs, as 
there are weighted instances on which the correction is 
arbitrarily far from optimal. It is shown in  [16] that the 
minimum edge editing problem cannot be approximated 
within an “additive” factor of n2−ǫ, for any ǫ > 0. Yet, the 
authors give a class of polynomial time algorithms that 
are approximable within an additive factor of ǫn2, for any 
ǫ > 0. This implies a constant factor algorithm for graphs 
with an edit distance of �(n2), but offers no guarantee in 
the other cases. Moreover, this algorithm only applies to 
unweighted graphs, and does not consider that two genes 
from the same species must remain paralogs. Finally 
in  [14], parameterized versions of the algorithm are 
explored. As for the S-consistency correction problem, 
we proved in a previous paper  [17] that it is NP-hard, 
which is the only result so far.

We show in, “Hardness of approximation of minimum 
weighted editing for satisfiability and consistency” sec-
tion, that the weighted satisfiability and S-consistency 
problems are not approximable within a constant factor, 
assuming the unique games conjecture. We complement 
this result by showing in “A bounded approximation 
algorithm for minimum weighted editing for satisfiability 
and consistency” section that they can be approximated 
within a factor of n (the number of vertices of the rela-
tion graph). The maximization variants for unweighted 
graphs are then considered in “PTASs for maximum 
CoGraph editing and maximum consistency editing” sec-
tion. We show that a result in [16] implies a polynomial 
time approximation scheme (PTAS) for satisfiability. Fur-
thermore, we prove that, by applying more involved argu-
ments, a PTAS also exists for the S-consistency problem. 
We conclude the paper with some open problems.

Trees and orthology relations
A graph H is denoted H = (VH ,EH ), where VH is its set 
of vertices (or nodes if H is a tree) and EH its set of edges. 
If H is a tree, degree one nodes are leaves.

Trees
All considered trees are rooted and binary. Given a set X, 
a tree T for X is a tree whose leafset, which we denote by 
L(T ), is in bijection with X. Given an internal node u of 
T, the subtree rooted at u is denoted Tu and we call the 
leafset L(Tu) the clade of u. A node u is an ancestor of v 
if u is on the (inclusive) path between v and the root. If 
u and v are connected by an edge of T, then v is a direct 
descendant of u. We denote by ch(u) the set of direct 
descendants (children) of u. The lowest common ancestor 
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(lca) of u and v, denoted lcaT (u, v), is the ancestor com-
mon to both nodes that is the most distant from the root. 
We define lcaT (U) analogously for a set U ⊆ V (T ).

A species tree S for a species set � represents an 
ordered set of speciation events that have led to �: an 
internal node is an ancestral species at the moment of a 
speciation event, and its children are the new descendant 
species.

A gene family Ŵ is a set of genes accompanied with a 
function s : Ŵ → � mapping each gene to its corre-
sponding species. The evolutionary history of Ŵ can 
be represented as a node-labeled gene tree for Ŵ, where 
each internal node refers to an ancestral gene at the 
moment of an event (either speciation or duplica-
tion), and is labeled as a speciation (Spec) or duplica-
tion (Dup) accordingly. Formally, we call a DS-tree for 
Ŵ a pair (G, evG), where G is a tree with L(G) = Ŵ, and 
evG : VG \ L(G) → {Dup, Spec} is a function labeling 
each internal node of G as a duplication or a speciation. 
We may write ev instead of evG when the context is clear. 
For example, in Fig. 1, G1 and G2 are two DS-trees.

According to the Fitch [18] terminology, we say that two 
genes x, y of Ŵ are orthologous in G if ev(lcaG(x, y)) = Spec , 
and paralogous in G if ev(lcaG(x, y)) = Dup.

A DS-tree G for Ŵ does not necessarily represent 
a valid history. For this to hold, any speciation node 
of G should reflect a clustering of species “in agree-
ment” with S [10]. Formally G should be S-consistent, 
as defined below, where sG is the LCA-mapping func-
tion, mapping each gene, ancestral or extant, to a spe-
cies as follows: if g ∈ L(G), then sG(g) = s(g); otherwise, 
sG(g) = lcaS({s(g

′) : g ′ ∈ L(Gg )}).

Definition 1  Let S be a species tree and G be a DS-tree. 
Let v be an internal node of G such that ev(v) = Spec . 
Then the speciation node v, with children v1 and v2, is 
S-consistent iff none of sG(v1) and sG(v2) is an ancestor 
of the other. We say that G is S-consistent iff every specia-
tion node of G is S-consistent.

For example, in Fig. 1, G1 is not S-consistent as the root 
of G1 is not S-consistent.

Relation graphs
For a graph H = (VH ,EH ), we denote the complementary 
set of EH by EH = {{u, v} : u, v ∈ VH , {u, v} /∈ EH }. Let 
V ′ be a subset of VH. The subgraph of H induced by V ′, 
denoted H [V ′], is the subgraph of H with vertex-set V ′ 
having every edge {u, v} of H for u, v ∈ V ′. If I is another 
graph, we say H is I-free if there is no V ′ ⊆ VH such that 
H [V ′] is isomorphic to I.

A relation graph R on a gene family Ŵ is a graph with 
vertex set VR = Ŵ, in which we interpret each edge {u, v} 
of ER as an orthology relation between u and v, and each 
“missing” edge {u, v} ∈ ER, also called non-edge, as a paral-
ogy relation. Notice that if s(u) = s(v), then {u, v} must be 
a non-edge (u and v are paralogous). We denote n = |VR|.

A DS-tree G leads to a relation graph, denoted R(G), 
with vertex set L(G) and edge set corresponding to all 
gene pairs that are orthologous in G. Conversely, a rela-
tion graph R does not necessarily lead to a DS-tree. If this 
is the case, i.e. if there is a DS-tree G such that R(G) = R , 
then R is said satisfiable. As shown in  [12], a relation 
graph R is satisfiable if and only if R is P4-free, meaning 
that, for any four vertices of R, the induced graph is not 
a path of length 3 (number of edges). The P4-free graphs 
are sometimes called cographs. See Fig. 1 for an example.

As a DS-tree does not necessarily represent a true his-
tory for Ŵ, satisfiability of a relation graph does not ensure 
a possible translation in terms of a history for Ŵ. For this 
to hold, R should also be consistent with the species tree, 
according to the following definition.

Definition 2  Let S be a species tree. A relation graph R 
for Ŵ is S-consistent if and only if R is satisfiable by a DS-
tree G which is itself S-consistent.

Problem statements
We call a weight for a relation graph R = (VR,ER) a func-
tion w :

(VR
2

)

→ R
+ on its vertex pairs. Notice that w 

assigns a weight to both edges (orthologies) and non-
edges (paralogies). We shall assume that if s(u) = s(v) for 
two genes u and v, then {u, v} ∈ ER and w({u, v}) = ∞ . 
The weight function w is extended to any IR ⊆

(VR
2

)

 by 
defining w(IR) =

∑

{x,y}∈IR
w({x, y}).

S
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Fig. 1  S is the species tree for � = {a, b, c, d}. The internal nodes, representing ancestral species, are labeled by x, y and z. R is a relation graph on 
gene set Ŵ = {a1, a2, b1, c1, d1}. A gene name corresponds to the species it belongs to (e.g. s(a1) = a). R is not satisfiable as the set of vertices 
{c1, b1, d1, a2} induces a P4. R′ is a satisfiable relation graph obtained from R by inserting the edge {c1, d1}, and G1 is a DS-tree displaying every relation 
of R′ (each internal node v is labeled by sG1 (v)). However, G1 is not consistent with the species tree S. R′′ is another correction of R that is S-consistent, 
as the tree G2 displays the relations in R′′ and is S-consistent. Dup nodes in DS-trees are marked by a square; all other nodes are speciation nodes
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Given a relation graph R = (VR,ER), an edge-editing of 
R is a pair E∗

R = (E+
R ,E

−
R ) with E+

R ⊆ ER and E−
R ⊆ ER. We 

denote by R(E∗
R) the graph R(E∗

R) = (VR, (ER ∪ E+
R ) \ E

−
R ) . 

In other words, E+
R  (respectively E−

R ) denotes inserted 
(respec. removed) edges. Given a relation graph 
R′ = (VR′ ,ER′) computed from R by edge insertion and 
removal, the set of removed edges is E−

R = ER \ ER′, and 
the set of inserted edges is E+

R = ER′ \ ER. For example, 
for the graph R′ of Fig. 1, E+

R = {{c1, d1}} and E−
R = ∅. An 

edge-editing E∗
R is said P4-free if R(E∗

R) is itself P4-free.
The problems considered in “Hardness of approxima-

tion of minimum weighted editing for satisfiability and 
consistency” section and “A bounded approximation algo-
rithm for minimum weighted editing for satisfiability and 
consistency” section are the following. The first problem 
asks for a satisfiable relation graph, hence no species tree is 
considered, while the second asks for an S-consistent rela-
tion graph, hence the input contains also a species tree.

Minimum weighted editing for satisfiability (MinWES) 
Input:	� A relation graph R = (VR,ER) and a weight 

function w;
Output:	� A satisfiable relation graph R′ = (VR,ER′) , 

obtained from R by an edge-editing 
E∗
R = (E+

R ,E
−
R ) that minimizes w(E+

R )+ w(E−
R ).

Minimum weighted editing for consistency (MinWEC) 
Input:	� A relation graph R = (VR,ER), a weight func-

tion w and a species tree S for � (the set of spe-
cies containing the genes represented by R);

Output:	� An S-consistent relation graph R′ = (VR,ER′) , 
obtained from R by an edge-editing 
E∗
R = (E+

R ,E
−
R ) that minimizes w(E+

R )+ w(E−
R ).

Below is a formal statement of the corresponding maxi-
mization version of MinWES for unweighted graphs, 
considered in “PTASs for maximum CoGraph editing 
and maximum consistency editing” section. Remember 
that edges represent orthologies, while non-edges are 
paralogies. Maximizing conservation therefore requires 
accounting for both edges and non-edges.

Maximum editing for satisfiability (MaxES) 
Input:	� A relation graph R = (VR,ER);
Output:	� A satisfiable relation graph R′ = (VR,ER′) 

obtained from R by an edge-editing, such that 
its value |ER ∩ ER′ | + |(ER ∩ ER′)| is maximized.

Maximum editing for consistency (MaxEC) 
Input:	� A relation graph R = (VR,ER) for a gene family 

with genes belonging to genomes in �, a spe-
cies tree S for �;

Output:	� An S-consistent relation graph R′ = (VR,ER′) 
obtained from R by an edge-editing, such that 
its value |ER ∩ ER′ | + |(ER ∩ ER′)| is maximized.

Hardness of approximation of minimum weighted 
editing for satisfiability and consistency
We show that MinWES is unlikely to be approxima-
ble within a constant factor, by presenting a gap-pre-
serving reduction from Minimum Multi-Cut. First, 
we consider the variant of MinWES, called Minimum 
Weighted Removal for Satisfiability (Min-
WRS), where only edge removal is allowed, then we easily 
extend the result to MinWES.

Given a graph H = (VH ,EH ), and a set X ⊆
(VH

2

)

 (i.e. 
a set of pairs), Minimum Multi-Cut asks for a set E′

H 
of minimum cardinality such that each pair {vi, vj} ∈ X is 
disconnected in H ′ = (VH ,EH \ E′

H ).
Given an instance H = (VH ,EH ,X) of Minimum 

Multi-Cut, we construct an instance R = (VR,ER,w) 
of MinWRS as follows. The vertex set VR includes, 
for each vi ∈ VH, two vertices vi,R and v′i,R. That is, 
VR = {vi,R, v

′
i,R : vi ∈ VH }.

For any distinct x, y ∈ VR, we set s(x) �= s(y), and hence 
there are no “forced” paralogs. As for ER, it is defined as 
follows, where q = |VH |

5 + 1.

• • For each vi ∈ VH, define an edge {vi,R, v′i,R} in ER of 

weight q′ = q|EH | + 2

((

|VH |
2

)

− |EH |

)

;

• • For each {vi, vj} ∈ X, define an edge {vi,R, vj,R} in ER 
with weight q if {vi, vj} ∈ EH, and with weight 1 if 
{vi, vj} /∈ EH;

• • For each {vi, vj} /∈ X, define the edges {vi,R, v′j,R} and 
{v′i,R, vj,R} in ER, each with weight q / 2 if {vi, vj} ∈ EH, 
and with weight 1 if {vi, vj} /∈ EH.

For each {uR, vR} ∈ ER, {uR, vR} has weight q′. Notice how-
ever, that, since edge insertion is not allowed in Mini-
mum Weighted Co-Graph Deletion, the weight 
of {uR, vR} never contributes to the cost of a solution of 
Minimum Weighted Co-Graph Deletion.

We first show that there is a correspondance between 
solutions to the two problems on our constructed 
instances.

We first bound the number of edges of weight 1 in R.

Claim 1  Let H = (VH ,EH ,X) be an instance of Mini-
mum Multi-Cut and let R = (VR,ER,w) be the corre-
sponding instance of Minimum Weighted Co-Graph 

Deletion. Then, R contains at most 2
((

|V |
2

)

− |EH |

)

 
edges of weight 1.
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Proof  Consider the edges connecting vertices vi,R and 
vj,R; vi,R and vj,R are connected by an edge of weight 1 if 
and only if {vi, vj} /∈ EH and {vi, vj} ∈ X.

Consider the edges connecting vertices vi,R and v′j,R, v′i,R 
and vj,R. vi,R, v′j,R (and v′i,R,vj,R) are connected by an edge of 
weight 1 if {vi, vj} /∈ EH and {vi, vj} /∈ X.

Any other edge has weight >1, hence the lemma fol-
lows. � �

Now, we present the main results needed to prove the 
inapproximability of Minimum Weighted Co-Graph 
Deletion.

Lemma 1  Let H = (VH ,EH ,X) be an instance of Mini-
mum Multi-Cut and let R = (VR,ER,w) be the corre-
sponding instance of Minimum Weighted Co-Graph 
Deletion. Given a solution E′

H of Minimum Multi-Cut, 
we can compute in polynomial time a solution of Mini-
mum Weighted Co-Graph Deletion of weight at most 

q|E′
H | + 2

((

|VH |
2

)

− |EH |

)

.

Proof  Given a set E′ that defines a multicut in H, let 
VH ,1, . . . ,VH ,p be the sets of vertices of the connected 
components in the graph V ′

H = (V ′
H ,EH \ E′

H ).

We define a solution of Minimum Weighted Co-
Graph Deletion over instance R as follows. We con-
struct the partition VR,1, . . . ,VR,p of the vertices of R such 
that vj,R and v′j,R belong to set VR,i if and only if vj ∈ VH ,i. 
All edges having their endpoints in two distinct VR,i,VR,j 
are removed.

We claim that the computed graph R′ induced by the 
partition is P4-free. By construction, for each vj,R, v′j,R, vh,R, 
v′h,R that belong to VR,i, the edges {vj,R, v′h,R} and {v′j,R, vh,R} 
belong to ER (because {vj , vh} /∈ X). Moreover, there is no 
edge between vj,R and vh,R, nor between v′j,R and v′h,R. Thus 
any path on four vertices in the graph on vertex set Vi,R 
must be either of the form vj,Rv′h,Rvk ,Rv

′
ℓ,R, or of the form 

v′j,Rvh,Rv
′
k ,Rvℓ,R. In both cases, the endpoints of the path 

share an edge, and thus cannot induce a P4.
Now, consider the edges {vi, vj} ∈ E′

H. If {vi, vj} ∈ X , the 
corresponding solution of Minimum Weighted Co-
Graph Deletion removes an edge of weight q, namely 
{vi,R, vj,R}. If {vi, vj} /∈ X, the corresponding solution of 
Minimum Weighted Co-Graph Deletion removes 
two edges of weight q / 2, namely {vi,R, v′j,R} and {v′i,R, vj,R}.  
Hence those edges have a total weight q|E′

H |. Since at 

most 2
((

|VH |
2

)

− |EH |

)

 edges of weight 1 are removed 

(see Claim 1), we can conclude that the lemma holds. � �

Lemma 2  Let H = (VH ,EH ,X) be an instance 
of Minimum Multi-Cut and let R = (VR,ER,w) be 

the corresponding instance of Minimum Weighted 
Co-Graph Deletion. Given a solution R′ of Mini-
mum Weighted Co-Graph Deletion of weight at most 

qW + 2

((

|VH |
2

)

− |EH |

)

 for some integer W, we can 

compute in polynomial time a multicut E′
H of H of size at 

most W.

Proof  Consider a solution R′ = (VR,E
′
R,w) of 

Minimum Weighted Co-Graph Deletion 
over instance R = (VR,ER,w) of weight at most 

qW + 2

((

|VH |
2

)

− |EH |

)

, with W ≤ |EH |. First, notice 

that no edge {vi,R, v′i,R}, with 1 ≤ i ≤ |V |, is removed to 

obtain R′, since the weight of such an edge is greater than 

qW + 2

((

|VH |
2

)

− |EH |

)

.

Consider now two vertices v′i,R, v′j,R, such that, 
given the corresponding vertices vi, vj in H, we have 
{vi, vj} ∈ X. By construction there is a P4 in R, namely 
v′i,R, vi,R, vj,R, v

′
j,R. It follows that the edge {vi,R, vj,R} must 

be removed in R′ . Moreover, we claim that in R′, the ver-
tices v′i,R, v′j,R must be disconnected. Assume by contra-
diction that this does not hold, and that v′i,R, v′j,R belong 
to the same connected component of R′. Consider the 
shortest path P that connects vertices vi,R and vj,R in R′. 
Then P has length at least 2. Note that as P is a shortest 
path, it has no chord, i.e. non-consecutive vertices of P 
cannot share an edge.

Suppose that P does not include the vertex v′i,R. Then 
we can assume that vi,R is adjacent in P to a vertex v′t,R, 
since if it is adjacent to a vertex vq,R, then the vertices vi,R , 
v′i,R, vq,R, and v′q,R would induce a P4. Now, if v′t,R is adja-
cent to vj,R, then v′i,R, vi,R, v′t,R and vj,R induce a P4. If there 
is no such v′t,R, then P has length at least 3 and it must 
therefore contain an induced P4.

So suppose instead that P includes the vertex v′i,R. Since 
by construction v′i,R is not adjacent to vj,R and it is not 
adjacent to any v′t,R, with t �= i, while it is adjacent to vi,R , P 
has length at least 3, and again must have an induced P4.

We can conclude that when {vi, vj} ∈ X, the corre-
sponding vertices v′i,R, v′j,R belong to disconnected con-
nected components of R′. Hence we can compute a 
multi-cut of H as follows:

E′
H is a multi-cut, since each {vi, vj} ∈ X is disconnected. 

Now, recall that R′ is obtained by removing edges of 

E′
H = {{vi, vj} : {vi,R, vj,R}, of weight q,

or {vi,R, v
′
j,R}, {v

′
i,R, vj,R}, of weight

q

2
,

are removed in R′.}
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overall weight at most qW + 2

((

|VH |
2

)

− |EH |

)

. Since 

edge edge in E′
H corresponds to edges of overall weight q 

in R (an edge {vi,R, vj,R} of weight q if {vi, vj} ∈ X, or two 
edges of weight q  /  2, namely {vi,R, v′j,R} and {v′i,R, vj,R} if 
{vi, vj} /∈ X), we must have |E′

H | ≤ W . � �

Assuming the unique games conjecture, the proof of 
inapproximability of Minimum Weighted Co-Graph 
Deletion is deduced from the inapproximability of 
Minimum Multi-Cut [19].

Theorem 1  Minimum Weighted Co-Graph Deletion is 
not approximable within a constant factor assuming the 
unique games conjecture.

Proof  Given a graph H instance of Minimum Multi-
Cut and the corresponding instance R of Mini-
mum Weighted Co-Graph Deletion, denote by 
OPTM (APM, respectively) the value of an optimal solu-
tion (of an approximation solution, respectively) of 
Minimum Multi-Cut on instance H, and denote 
by OPTC (APC, respectively) the value of an opti-
mal solution (of an approximation solution, respec-
tively) of Minimum Weighted Co-Graph Dele-

tion on instance R. Define z = 2

((

|VH |
2

)

− |EH |

)

 . 

By Lemma  2, we assume that APC(R) ≥ APM(H)q, as 
there exists an algorithm that given a solution of Min-
imum Weighted Co-Graph Deletion of value 
APC(R) computes in polynomial time a solution of 
Minimum Multi-Cut having value at most APM(H) 
with APM(H)q ≤ APM(H)q + z ≤ APC(R). Also, by 
Lemma  1, we have OPTC(R) ≤ OPTM(H)q + z, as for 
any optimal solution of Minimum Multi-Cut of 
value OPTM(H)q, there is an algorithm that computes 
in polynomial time a solution of Minimum Weighted 
Co-Graph Deletion having value OPTC(R) with 
OPTC(R) ≤ OPTM(H)q + z.

We have that

where we assume OPTM(H) ≥ 1 for the second inequal-
ity (the case OPTM(H) = 0 can be checked in polynomial 
time). Since Minimum Multi-Cut is not approximable 
within a constant factor assuming the unique games con-
jecture [19], even on unweighted graphs, it follows that

on an infinity of instances of H for any constant α ≥ 1. 
As a consequence, for any constant α ≥ 1, an infinity of 
instances of R yield:

Since q = n5 + 1, APM(H) ≤ n2 and z ≤ n2, it follows 
that APM(H)z

OPTM(H)q+z ≤ 1/n. Combining the last two inequali-
ties, we have that

for any constant β ≥ 1, which concludes the proof.�  �

The result of Theorem  1 can be easily extended to 
Minimum Weighted Co-Graph Editing.

Corollary 1  Minimum Weighted Co-Graph Editing is 
not approximable within a constant factor assuming the 
unique games conjecture.

Proof  The result follows by a gap-preserving reduction 
similar to that for Minimum Weighted Co-Graph 
Deletion. Recall that for each pair {uR, vR} ∈ ER, a 
weight of q′ is associated with {uR, vR}. Consider a solu-
tion R′ of Minimum Weighted Co-Graph Edit-
ing on instance R that has cost not greater than 

qW +

((

|VH |
2

)

− |EH |

)

 +
(

|VH |
2

)

. It is easy to see 

that R′ is obtained without any edge insertion. � �

The inapproximability result for Minimum Weighted 
Co-Graph Editing is easily extended to MinWEC. 

APM(H)

OPTM(H)
≥ α

APC(R)

OPTC(R)
≥ α −

APM(H)z

OPTM(H)q + z

APC(R)

OPTC(R)
≥ α − 1/n ≥ β

APC(R)

OPTC(R)
≥

APM(H)q

OPTM(H)q + z
=

APM(H)q + APM(H)z − APM(H)z

OPTM(H)q + z

=
APM(H)q + APM(H)z

OPTM(H)q + z
−

APM(H)z

OPTM(H)q + z

≥
APM(H)q + APM(H)z

OPTM(H)q + OPTM(H)z
−

APM(H)z

OPTM(H)q + z

=
APM(H)(q + z)

OPTM(H)(q + z)
−

APM(H)z

OPTM(H)q + z

=
APM(H)

OPTM(H)
−

APM(H)z

OPTM(H)q + z
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This is achieved by defining a species tree S on VR such 
that the root of S is connected to two subtrees, one with 
leafset {vi,R : vi ∈ VH }, one with leafset {v′i,R : vi ∈ VH }, 
and showing that any solution to our instance of Mini-
mum Weighted Co-Graph Deletion must agree 
with this species tree.

Corollary 2  MinWEC is not approximable within a 
constant factor assuming the unique games conjecture.

Proof  The result follows by a gap-preserving reduction 
similar to that for Minimum Weighted Co-Graph 
Deletion and Minimum Weighted Co-Graph 
Editing. Define a species tree S on VR such that the 
root of S is connected to two subtrees, one with leafset 
{vi,R : vi ∈ VH }, one with leafset {v′i,R : vi ∈ VH }.

Consider the partition VR,1, . . . ,VR,p of the vertices 
of a solution R′ of Minimum Weighted Co-Graph 
Deletion and Minimum Weighted Co-Graph 
Editing. Each connected component VR,t that contains 
vertices vi,R, v′i,R, vj,R, v′j,R, contains only edges {vi,R, v′i,R}, 
{vj,R, v

′
j,R}, {vi,R, v

′
j,R}, {vj,R, v

′
i,R}.

For each set VR,i, we construct a tree GR,i by defin-
ing two subtrees G1

R,i and G2
R,i such that G1

R,i has leafset 
{vj,R : vj,R ∈ VR,i} and G2

R,i has leafset {v′j,R : v′j,R ∈ VR,i}. 
Each node of G1

R,i and G2
R,i is associated with a duplication. 

GR,i is obtained by joining G1
R,i and G2

R,i in a root, associ-
ated with a speciation. Finally, the subtrees GR,1, . . . ,GR,p 
are joined in a gene tree G by duplication nodes (with any 
topology). By construction, G is S-consistent, thus the 
hardness result can be extended to MinWEC.�  �

A bounded approximation algorithm for minimum 
weighted editing for satisfiability and consistency
While MinWES and MinWEC are not approximable 
within a constant factor, we show here that they can be 
approximated within factor n = |V (R)|, and we give the 
corresponding algorithms. Despite being a large approx-
imation factor, this is the best known bound so far and 
shows that the problems have polynomially bounded 
approximability. We first describe the approximation 
algorithm for MinWES.

Denote by R = (VR,ER) the complement of the graph 
R = (VR,ER). A well-known property of cographs is given 
by the following lemma.

Lemma 3   [20] A graph R is P4-free if and only if for any 
X ⊆ VR, one of R[X] or R[X] is disconnected.

This motivates a greedy min-cut approach for Min-
WES, performing an edge-editing of minimum weight 
disconnecting the graph or its complement, and iterating 

recursively on the resulting components. This is the main 
idea of Algorithm MinCut-Cograph-Editing 
below. Note that assuming forced paralogs have infinite 
weight, this algorithm will never make two genes from 
the same species orthologs.

More formally, let R = (VR,ER) be a rela-
tion graph accompanied with a weight func-
tion w. Define a cut C = {X ,Y } as a partition of VR 
with X and Y being non-empty sets, and denote 
ER(C) = {{x, y} ∈ ER : x ∈ X , y ∈ Y }. The weight of C is 
w(C) = w(ER(C)). The cut C is a minimum cut or MinCut 
if no other cut has a smaller weight w(C). Applying a cut C 
to R consists in removing all edges of ER(C) from R.

Algorithm MinCut-Cograph-Editing(R):
If R has at most 2 vertices Then Return;
Find a MinCut C = {X, Y } for R;
Find a MinCut Ĉ = {X̂, Ŷ } of R;
If w(C) < w(Ĉ) Then

Remove all edges between X and Y in R;
MinCut-Cograph-Editing(R[X]);
MinCut-Cograph-Editing(R[Y ]);

Else
Add all possible edges between X̂ and Ŷ in R;
MinCut-Cograph-Editing(R[X̂]);
MinCut-Cograph-Editing(R[Ŷ ]);

End If
End Algorithm

Complexity: A MinCut of a given graph of n verti-
ces and m edges can be found in time O(nm+ n2 log n) 
using the Stoer–Wagner algorithm  [21]. In the Min-
Cut-Cograph-Editing algorithm, MinCut is applied 
to both R and R. As at least one of these two graphs has 
�(n2) edges, the required time for MinCut is therefore 
O(n3). This step is repeated at most n times, hence the 
overall time complexity of MinCut-Cograph-Edit-
ing is O(n4).

The remaining of this section is dedicated to prov-
ing Theorem  2, which states that MinCut-Cograph-
Editing is an n-approximation algorithm. We denote 
by σR the minimum weight of a P4-free edge-editing of R. 
If X ⊆ VR, we denote σR[X] by σX.

Lemma 4  Let C be a minimum cut of R, and let Ĉ be a 
minimum cut of R. Then σR ≥ min{w(C),w(Ĉ)}.

Proof  Let E∗
R be a P4-free edge-editing of R. By 

Lemma  3, either R(E∗
R) or its complement is discon-

nected, implying that E∗
R must apply some cut on either R 

or R. This cut is at best a minimum cut. � �

Lemma 5  Let {X ,Y } be a partition of V. Then, 
σR ≥ σX + σY .



Page 8 of 15Dondi et al. Algorithms Mol Biol  (2017) 12:4 

Proof  Let E∗
R be a P4-free edge-editing of weight σR, 

and let R′ = R(E∗
R). Assume that E∗

R has a weight stricly 
smaller than σX + σY . Then, since R′[X] and R′[Y ] are 
P4-free, there must either be an edge-editing of R[X] of 
weight smaller than σX, or an edge-editing of R[Y] of 
weight smaller than σY , contradicting the definition of σX 
and σY .�  �

Theorem 2  MinCut-Cograph-Editing is an n fac-
tor approximation algorithm for MinWES.

Proof  Denote by β(R) the weight of the edge-editing 
found by the algorithm on R. We proceed by induction on 
n = |VR| to show that β(R) ≤ nσR. The statement is trivial 
for n ≤ 3 (as there is nothing to correct), so assume that 
the algorithm finds a solution of weight β(R) ≤ kσR for 
any graph of size at most k < n. The algorithm applies a 
minimum cut C = {X ,Y } on R or R, and proceeds recur-
sively on X and Y, with |X |, |Y | ≤ n− 1. By the induction 
hypothesis, we have

where the last inequality holds due to Lemmas 4 and  5. �

It is possible to show that the approximation factor 
of MinCut-Cograph-Editing is tight, as shown in 
Fig.  2. Suppose all weights are equal to one. Clearly, an 
optimal solution of weight 1 is obtained by removing 
the middle edge. However, a minimum cut {X ,Y } can be 
found by taking X as a single vertex of degree one, and Y 
as the rest. In this manner, the algorithm might remove 
up to n− 3 edges before H becomes P4-free, which is 
n− 3 times worse than optimal.

Notice however that a solution of MinCut-Cograph-
Editing on the example of Fig.  2 cannot be 2�(H) 
times worse than the optimal solution, where �(H) is 
the degree of H (by putting half the leaves left and the 
other half right). We do not know whether MinCut-
Cograph-Editing offers any guarantee in relation to 
�(H) or �(H).

By modifying MinCut-Cograph-Editing, it is pos-
sible to design an n factor approximation algorithm for 
MinWEC. The main difference with respect to MinCut-
Cograph-Editing, is that the algorithm considers a 
minimum cut on a subset of R and a cut on a subset of R 
induced by the species tree S.

We first provide the detailed MinCut-Cograph-
Editing-Cons algorithm, and show that it also is a 
n-factor approximation. Given a species tree S and a 
set Z ⊆ VR, let �(Z) = {s(x) : x ∈ Z}. Let S|�(Z) be 
the subtree of S restricted to �(Z) and let XS, YS be the 

β(R) ≤ |X |σX + |Y |σY + w(C) ≤ (n− 1)(σX + σY )+ w(C)

≤ (n− 1)σR + σR = nσR

clades of the left and right child, respectively, of the root 
of S|�(Z). Consider the sets X = {x : s(x) ∈ XS} and 
Y = {y : s(y) ∈ YS}, the cut CS(Z) on R[Z] is defined as 
CS(Z) = {XR,YR}. Observe that CS(Z) is the only pos-
sible cut on R that maintains S-consistency, as this cut 
corresponds to a speciation in a DS-tree, and speciations 
must separate genes according to S. Therefore, it suf-
fices to modify MinCut-Cograph-Editing by forc-
ing the cut Ĉ to be CS(Z). Call this modified algorithm 
MinCut-Cograph-Editing-Cons.

Algorithm MinCut-Cograph-Editing-Cons(R):
If R has at most 2 vertices Then Return;
Find a MinCut C = {X, Y } for R;
Let CS(VR) = {X̂, Ŷ };
If w(C) < w(CS(VR)) Then

Remove all edges between X and Y in R;
MinCut-Cograph-Editing-Cons(R[X]);
MinCut-Cograph-Editing-Cons(R[Y ]);

Else
Add all possible edges between X̂ and Ŷ in R;
MinCut-Cograph-Editing-Cons(R[X̂]);
MinCut-Cograph-Editing-Cons(R[Ŷ ]);

End If
End Algorithm

Theorem  3  MinCut-Cograph-Editing-Cons is 
an n factor approximation algorithm for MinWEC.

Proof  Denote by β(R) the weight of the edge-editing 
found by the algorithm on R. We proceed by induction 
on n = |VR| to show that β(R) ≤ nσR. The statement is 
trivial for n ≤ 2 (as there is nothing to correct), so assume 
that the algorithm finds a solution of weight β(R) ≤ kσR 
for any graph of size at most k < n.

The algorithm applies a cut C = {X ,Y } which is either 
a minimum cut on R or it is the cut CS(VR), and pro-
ceeds recursively on X and Y, with |X |, |Y | ≤ n− 1. By the 
induction hypothesis, we have

Now, similarly to Lemma  4, we have that w(C) ≤ σR . 
First, let G′ be the gene tree associated with a solution 

β(R) ≤ |X |σX + |Y |σY + w(C) ≤ (n− 1)(σX + σY )+ w(C)

... ...

Fig. 2  A graph R with all edges of weight 1
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of MinWEC over instance R. If C is a minimum cut on R, 
it holds due to the proof Lemma 4. If C is CS(VR), then 
notice that, in order to guarantee the consistency with S, 
the root of G′ must induce exactly the cut CS(VR).

Lemma 5 holds also for MinWEC, hence

thus concluding the proof. � �

PTASs for maximum CoGraph editing 
and maximum consistency editing
In this section, we consider the MaxES and the MaxEC 
problems. Although sharing the same objectives, the 
minimization and maximization variants are not equiva-
lent from an approximation point of view.

Given a relation graph R, the value of a solution R′ 
for MaxES (MaxEC, respectively) over instance R [over 
instance (R, S), respectively] is called the agreement value 
of R′ and it is denoted by A(R′,R). Moreover, given a gene 
tree G, we denote by A(G, R) the agreement between the 
relation graph associated with G and R.

Next, we give a bound on the agreement value returned 
by an optimal solution of MaxES and MaxEC.

Lemma 6  Given a relation graph R (a relation graph R 
and a species tree S, respectively), an optimal solution of 
MaxES over instance R [an optimal solution of MaxEC 
over instance (R, S), respectively] has an agreement value 
of at least n

2

8 .

Proof  Consider a relation graph R and a species tree 
S for the MaxEC problem. Let R′ = (V (R),∅) and 
R′′ =

(

V (R),
(V (R)

2

)

)

 be two solutions for MaxES over 
instance R [for MaxEC over instance (R, S), respectively]. 
It is easy to see that R′ and R′′ are both feasible solu-
tions of MaxES and of MaxEC. Since for each {u, v}, with 
u, v ∈ V , u �= v, either one of R′ or R′′ agrees with R, it 
holds

Then at least one of R′, R′′ must have an agreement 

value of at least 12

(

n
2

)

, hence an optimal solution of 

MaxES and MaxEC has an agreement value of at least 
1
2

(

n
2

)

≥ n2

8 . � �

Since it possible to compute an optimal solution of 
MaxES with additive cost εn2, for each ε > 0 [16], it fol-
lows that MaxES admits a PTAS.

Let OPT(R) be the value of an optimal solution on 
R, and let c be such that OPT (R) = cn2. The additive 

β(R) ≤ |X |σX + |Y |σY + w(C) ≤ (n− 1)(σX + σY )+ w(C)

≤ (n− 1)σR + σR = nσR

A(R,R′)+ A(R,R′′) =

(

n
2

)

εn2 approximation algorithm for cograph editing  [16] 
yields a solution of value (c − ε)n2. As c ≥ 1/8 by 
Lemma  6, ε can be adjusted so that, for any 0 < ε′ < 1, 
(c − ε)n2 ≥ (1− ε′)cn2, hence yielding a PTAS. In the 
more general case, this algorithm does not ensure that 
genes from the same species remain paralogs. How-
ever, the authors of  [16] claim that their approxima-
tion algorithm applies to any hereditary graph property 
(i.e. preserved after vertex-deletion), which holds for 
satisfiability.

A PTAS for MaxEC
The PTAS for MaxES does not guarantee that the 
returned relation graph R′ (and its corresponding gene 
tree G′) is S-consistent with the given species tree S. In 
this section, we present a PTAS for MaxEC based on 
smooth-polynomial integer programming  [22], a tech-
nique that has been applied to design PTAS for problems 
like maximum quartet consistency  [23] or maximum 
consensus clustering [24].

As for maximum quartet consistency, the MaxEC 
problem is reduced to the assignment of leaves in Ŵ to 
a tree, and the resulting tree is then used to to recon-
struct a gene tree G′ that is consistent with S and whose 
relation graph requires at most εn2 modifications with 
respect to the original graph. In order to guarantee the 
S-consistency of the reconstructed gene tree, we need 
several technical arguments that are not used for maxi-
mum quartet consistency. Recall that we are consider-
ing binary trees.

Before giving the details, we present an overview of 
the PTAS. First, in “The compressed tree Gk” section, we 
show that starting from a gene tree G′ we can compute 
a compressed tree Gk that has at most k internal nodes 
and at most k leaves, where k > 0 is a constant. In order 
to construct such a compressed tree, first in “The unla-
beled compressed tree Tk” section we compute an unla-
beled compressed tree Tk, and then in “A PTAS of MaxLA 
by smooth polynomial integer programming” section we 
compute a compressed tree Gk from Tk by using smooth-
polynomial integer programming. Finally, we show in 
“Building a feasible solution” section how to reconstruct 
an S-consistent gene tree from Gk.

The compressed tree Gk

First, we will focus on the compressed tree, and we show 
that, given an optimal solution R′ of MaxEC, there exists a 
compressed tree that respects a (large) subset of the spe-
ciation/duplication relations for R′.

Consider an optimal solution R′ of MaxEC, and let 
(G′, evG′) be a DS-tree, where G′ is the gene tree cor-
responding to R′. Recall that each internal node of G′ is 
associated by evG′ either with a duplication (Dup) or with 
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a speciation (Spec). We present the formal definition of 
compressed tree Gk associated with (G′, evG′) (see Fig. 3).

Definition 3  Given a constant k > 0 and a DS-tree 
(G′, evG′), a compressed tree Gk associated with (G′, evG′) 
is a tree that has at most k internal nodes and at most k 
leaves, which are called leaf-sets. An internal node v can 
be a regular internal node or can belong to a two-set 
internal node 〈u, v〉 such that v ∈ ch(u), and both u and 
v have exactly one leaf-set as a child. The two-set inter-
nal nodes of Gk are disjoint, that is 〈u, v〉 and 〈v,w〉 cannot 
be two-set internal nodes of Gk. Moreover, the following 
properties hold:

• • the leaf-sets of Gk induce a partition of Ŵ and each 
leaf-set contains at most 8n / k elements of Ŵ

• • each internal node of Gk is associated with two pos-
sible events, Dup or Spec, by the function evGk

• • let Iv1, Iv2 be two leaf-sets connected to nodes u1 and 
u2, respectively, such that 〈u1,u2〉 is not a two-set 
internal node, let l1 ∈ Iv1, l2 ∈ Iv2, and x = lcaG′(l1, l2) 
and y = evGk (lcaGk (Iv1 , Iv2)), then evG′(x) = evGk (y).

Note that a leaf-set Iv of Gk is both a set of leaves of 
G′ , and a leaf of Gk. It will sometimes be useful to clarify 
which one we wish to refer to, and so we denote by L(Iv) 
the set of leaves that belong to Iv.

Now, we provide a constructive proof that shows that, 
starting from a solution R′ (whose corresponding gene 
tree is G′) of MaxEC over instance (R, S), there exists such 
a compressed tree Gk.

Consider the following algorithm. First, the algorithm 
initializes Gk to G′ and all internal nodes are unmarked. 
Then, the algorithm traverses G′ and construct the 
tree Gk as described in Algorithm Compressed  
Tree (G′).

Algorithm Compressed Tree (G ):
Every node of G is unmarked;
traverse G from the leaves;
While there exists an unmarked vertex v of G

If Gv contains at least 8n/k unassigned leaves has no marked vertex Then
Define a corresponding node vk of Gk

Let {y, z} = ch(v), and define the two children Iy and Iz of vk

Assign all the leaves of Gy to Iy, and all the leaves of Gz to Iz
Every vertex of Gv is marked, and evGk (vk) = evG (v)

Else If Gv contains at least 8n/k unassigned leaves and has some marked vertex y or
v is the least common ancestor of two marked internal nodes y and z Then

Define a corresponding node vk of Gk

If there exists a set W of internal nodes between v and a marked node q ∈ {y, z} in Gv Then
define a two-set internal node v1, v2 and two leaf-sets Iz1 and Iz2 in Gk

Izi is the leaf-set connected to vi, i = 1, 2;
For ALl w ∈ W , consider an unassigned leaf l of Gw

If ev(lcaG (l, y)) = Spec Then
assign l to Iz2
Else assign l to Iz1

End If
End For
connect vk to v1, v2 to the node qk corresponding to q

Else connect vk to the nodes yk and zk corresponding to y and z
End If
Every unmarked vertex of Gv is marked and evGk (vk) = evG (v)

Define a new leaf-set Iv containing the unassigned leaves of Gv

/* Notice that |Iv| < 8n/k */
Connect Iv to vk;

End While
End Algorithm
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When the algorithm stops it follows that each leaf-set has 
size at most 8n / k. Notice that, given a two-set internal node 
〈v1, v2〉, the leaves assigned to the leaf-sets Iz1, Iz2 connected 
to v1 and v2 are considered as a single leaf-set with reference 
to the relation between elements in L(Iz1) ∪ L(Iz2).

Next, we show that the algorithm returns a compressed 
tree Gk, with at most k internals node and k leaf-sets.

Lemma 7  Given a gene tree G′, Algorithm Algorithm 
Compressed Tree (G′) returns a tree Gk, with at most k 
internal nodes and k leaf-sets.

Proof  First, consider the set of regular nodes of Gk. 
Consider the set V k

1  of those nodes of Gk that the algo-
rithm defines because the subtree rooted at one of such 
nodes contains at least 8n / k unassigned leaves. It follows 
that at most k / 8 such nodes are chosen.

Consider the set V k
2  of nodes of Gk defined as internal 

nodes because they are the least common ancestor of two 
internal nodes of V k

1 . Now, if we restrict Gk to V k
1 ∪ V k

2 , 
we obtain a tree having at most k / 8 leaves, as the leaves 
by construction are only nodes in V k

1 , where each internal 
node, except for the root, has degree at least three. Hence 
|V k

2 | ≤ |V k
1 | ≤ k/8.

Let v and z be two nodes in V k
1 ∪ V k

2 , such that z is an 
ancestor of v in Gk, and there are no other ancestor of 
v in Gk that belongs to V k

1 ∪ V k
2 . It follows that, by con-

struction, at most one two-set internal node on the path 
between v and z is defined in Gk. Hence at most two 
internal nodes are defined on the path between v and z in 
Gk, and since |V k

1 ∪ V k
2 | ≤ k/4, it follows that Gk contains 

at most k / 4 two-set internal nodes. Thus Gk consists of 
at most k/4 + k/2 = (3/4)k internal nodes.

Now, consider the defined leaf-sets. For each two-set 
internal node 〈v1, v2〉, there exists at most two leaf-sets 
connected with one of 〈v1, v2〉, hence at most k  /  2 leaf-
sets. For each of the k / 4 internal node v ∈ V k

1 ∪ V k
2 , the 

leaves assigned to leaf-set connected to v are at most two, 
as G′ is binary. Hence there exists hence at most k / 2 leaf-
sets connected to internal nodes of v ∈ V k

1 ∪ V k
2 . Hence, 

the number of leaf-set is bounded by k/2+ k/2 = k. � �

In order to prove that Gk is a compressed tree, in addi-
tion to Lemma 7 we need the following result.

Lemma 8  Given a gene tree G′ and a species tree S, let 
Gk be the tree computed by Algorithm Algorithm Com-
pressed Tree (G′). Given two distinct leaf-sets Iu and Iw 
of Gk connected to the internal nodes z and v, such that 
〈z, v〉 is not a two-set internal node, let l1 ∈ L(Iu) and 
l2 ∈ L(Iw). Let xk = lcaGk (Iu, Iw) and x = lcaG′(l1, l2). 
Then evGk (xk) = evG′(x).

Proof  Let lcaGk (Iu, Iw) = xk. Assume that Iu and Iw are 
connected to the same internal node of Gk (which must 
be xk). Then when xk is defined by Algorithm Algo-
rithm Compressed Tree (G′), its event is the same as 
the corresponding node x of G′. Assume that Iu and Iw are 
connected to different internal nodes of Gk, uk and wk , 
respectively, corresponding to node u and w of G′. Con-
sider x = lcaG′(u,w) then Algorithm Algorithm Com-
pressed Tree (G′) defines a corresponding node xk in Gk 
such that evGk (xk) = evG′(x).
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Fig. 3  A compressed tree Gk computed from a gene tree G′. Leaf-sets are represented with triangles
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Assume that xk belongs to a two-set internal node 
〈z, v〉 . Then, by construction, exactly one of Iu, Iw (w.l.o.g. 
Iu) must be a leaf-set which is a child of xk, and exactly 
one of Iu, Iw (w.l.o.g. Iw) is a leaf-set connected to a strict 
descendant c of xk, such that c �= z, v. Let y = lcaG′(l1, l2) , 
for a leaf l1 in L(Iu) and a leaf l2 in L(Iw). By construction, 
l1 ∈ Iu only if evGk (xk) = evG′(y), thus concluding the 
proof. � �

Lemmas 7 and 8 implies that Algorithm Algorithm 
Compressed Tree (G′) constructs a compressed gene tree 
Gk, as by construction the leaf-sets induce a partition of Ŵ.

Next, we show a lower bound on the agreement value 
of an optimal assignment of leaves to the leaf-sets Iv. We 
denote by A(Gk ,R) (the agreement between R and Gk) as 
the agreement for each pair of leaves l1, l2 ∈ Ŵ that belong 
to two distinct leaf-sets Iu and Iw of Gk connected to the 
internal nodes u and v, such that 〈u, v〉 is not a two-set 
internal node (notice that u and v may be the same node).

Lemma 9  Given an optimal solution G∗ of MaxEC 
over instance (R,  S) and a constant k > 0, let Gk be 
the compressed tree computed starting from G∗. Then 
A(Gk ,R) ≥ A(G∗,R)− 64n2

k
.

Proof  Consider an optimal solution G∗ of MaxEC over 
instance (R,  S) and the compressed tree Gk constructed 
from G∗. From Lemma 8, the pairs of leaves that belong 
to different leaf-sets (not connected to the same two-set 
internal node) have the same relations in G∗ and in Gk.

Consider the leaves of a same leaf-set Iv or of two leaf-
sets Iw and Iu which are connected to the same two-set 
internal node. Since |Iv| ≤ 8n

k  and |Iw ∪ Iu| ≤
8n
k , the num-

ber of relations between two leaves belonging to a com-
mon leaf-set is at most 64n

2

k2
. Since there are at most k 

leaf-sets, the overall number of relations between pairs 
of leaves in Gk with respect to G∗ are at most 64n

2

k
, hence 

A(Gk ,R) ≥ A(G∗,R)− 64n2

k
.�  �

The unlabeled compressed tree Tk

The tree Gk described above is of course not known, and 
it needs to be found. In this subsection we introduce the 
unlabeled compressed tree Tk that is used to construct 
the compressed tree Gk. An unlabeled compressed tree 
Tk is a compressed tree whose leaf-sets are empty. Here 
we introduce some properties of Tk and we reduce the 
MaxEC problem to a second problem, called MaxLA (to 
be defined later). The PTAS iterates through the possible 
unlabeled compressed trees Tk. In particular, the PTAS 
iterates through (1) the structure of Tk, (2) the events 
associated with internal nodes of Tk, and (3) a set of 
labels that are allowed to be assigned to a leaf-set.

First, consider the structure of Tk. Since by Lemma 7 
Gk consists of at most k internal nodes and k leaf-sets, 
it follows that there are at most 24k2 possible topolo-
gies for the unlabeled compressed tree Tk. Indeed, the 
adjacency matrix of Tk has size 4k2, and the possible 
adjacency matrices are at most 24k2. Moreover, for each 
topology, we define in time O(2k) the two-set internal 
nodes of Tk.

Now, consider the events associated with the internal 
nodes of Tk. For each unlabeled compressed tree Tk, the 
events associated with the internal nodes of Tk are at 
most 2k (two possible cases, Dup or Spec, for each of the 
k internal nodes). Overall we iterate though O(24k

2
) pos-

sible unlabeled compressed tree Tk.
Consider now an unlabeled compressed tree Tk. In 

order to ensure that the gene tree G′ constructed from 
Tk is S-consistent with the given species tree S, we must 
ensure that the speciation nodes of G′ are consistent with 
S. We define a mapping sTk of the nodes of Tk, except the 
leaf-nodes connected to two-set internal nodes, to the 
nodes of S so that the mapping is feasible, that is the fol-
lowing conditions hold:

• • if v is an ancestor of u in Tk, then sTk (v) is an ances-
tor (not necessarily proper) of sTk (u)

• • if v is an ancestor of u in Tk and evTk (v) = Spec, then 
sTk (v) is a proper ancestor of sTk (u)

Based on the mapping sTk, define for each leaf-set Iv, the 
allowed set A(Iv) of labels that can be assigned to a leaf-
set Iv. If Iv is a leaf-set not connected to a two-set internal 
node:

If Iv is a leaf-set connected to an internal node u, with 
〈u,w〉 a two-set internal node (recall that evTk (u) = Dup):

If Iv is a leaf-set connected to a two-set internal node 
u, with 〈w,u〉 a two-set internal node (recall that 
evTk (u) = Spec), such that z is the only child of u in Tk 
which is an internal node:

Since Tk contains at most 2k nodes, the set of the fea-
sible mappings sTk are at most O(n2k). Moreover, once 
the mapping sTk is computed, A(Iv) can be computed in 
O(nk) time.

Finally, for each set leaf-set Iv, we assign one leaf 
(denoted by P(Iv)) of A(Iv) to Iv, in time O(nk). These 
leaves are called preassigned leaves and are assigned 
such that for each internal node x of Tk, the lca mapping 
of the preassigned leaves maps x to a node y of S such 

A(Iv) = {l:l ∈ L(Sx) with x = sTk (Iv)}

A(Iv) = {l : l ∈ L(Sx) with x = sTk (u)}

A(Iv) = {l : l ∈ L(Sx) \ L(Sy), with x = sTk (u) and y = sTk (z)}
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that y = sTk (x). Notice that, given an optimal solution of 
MaxEC,there exists a feasible mapping with associated 
A(Iv) and P(Iv).

Now, we a able to define the MaxLA problem we will 
solve to compute the PTAS.

Maximum leaf assignment: (MaxLA) 
Input:	� an unlabeled compressed tree Tk with a fea-

sible mapping sTk , a set of preassigned leaves 
P(Iv), and a set A(Iv), for each leaf-set Iv, a set 
Ŵ, a relation graph R, a specie tree S;

Output:	� a compressed tree Gk obtained from Tk by 
assigning leaves of Ŵ to the leaf-set of Tk , 
where for each leaf-set Iv only leaves of A(Iv) 
are assigned to Iv, such that, A(Gk ,R) is maxi-
mized and each speciation node of Gk is 
S-consistent.

By Lemma 9, it follows that an optimal solu-
tion of MaxLA has a an agreement value of at least 
A(G∗,R)− 64n2

k
, where G∗ is the optimal solution of 

MaxEC.

A PTAS of MaxLA by smooth polynomial integer 
programming
Now, we present a PTAS for MaxLA. Consider an unla-
beled compressed tree Tk, with the corresponding 
allowed sets A(Iv) and preassigned leaves P(Iv). We start 
by introducing the smooth polynomial integer program-
ming technique [22].

A polynomial having degree c is called q-smooth, for a 
constant q > 0, if the coefficients of each degree-ℓ mono-
mial belongs to the interval [−qnc−ℓ, qnc−ℓ], for each ℓ 
with 1 ≤ ℓ ≤ c.

First, we define some constants:

• • given a leaf-set Iv of Tk and ℓ ∈ Ŵ, a(Iv , l) = 1 if 
l ∈ A(Iv) and 0 otherwise

• • given two leaf-sets Iv, Iw of Tk, r(Iv , Iw) is equal to 1 
if lcaTk (Iv , Iw) is a speciation, else (if lcaTk (Iv , Iw) is a 
duplication) r(Iv , Iw) is equal to 0

• • given two leaf-sets Iv, Iw of Tk, t(Iv , Iw) is a constant 
equal to 0 if Iv and Iw are connected to the same two-
set internal node, else it is equal to 1

• • given l1, l2 ∈ Ŵ, e(l1, l2) = 1 if l1l2 ∈ E(R) and 
e(l1, l2) = 0 otherwise

For each leaf-set Iv of Tk and each leaf l ∈ Ŵ, define a var-
iable xIv ,l that has value 1 if l is assigned to Iv, else is 0 
(notice that xIv ,l = 1 if l is a leaf preassigned to Iv). Given 
l1, l2 ∈ Ŵ, define

Now, assume that xIv ,l1 = 1 and xIw ,l2 = 1, where 
l1 ∈ A(Iv), l2 ∈ A(Iw), l1, l2 do not belong to the same 
two-set internal node and t(Iv , Iw) = 1; it holds that 
p(l1, l2) = 1 if and only if (1) the lca of Iv and Iw is a speci-
ation (hence r(Iv , Iw) = 1) and l1 and l2 are connected by 
an edge in R (hence e(l1, l2) = 1) or (2) the lca of Iv and Iw 
is a duplication (hence r(Iv , Iw) = 0) and there is no edge 
between l1 and l2 in R (hence e(l1, l2) = 0).

Finally define p(x) as follows:

The polynomial integer programming is defined as 
follows

The polynomial p(x) is 1-smooth.
Consider a solution for the smooth polynomial integer 

programming, given the correct unlabeled compressed 
tree Tk, the correct allowed sets A(Iv) and the correct sets 
of preassigned leaves P(Iv). For each ε, there is a polyno-
mial time algorithm that produces a 0–1 assignment x to 
the leafset of Tk (hence a compressed tree Gk), such that 
p(x) ≥ OPT − εn2, where OPT is the maximum value of 
the smooth polynomial integer programming [22, 23].

Now, consider the labels assigned to different sets Iv. By 
Lemma 9, we have that the agreement between Gk and R 
is at least n

2

8 − 64n2

k
. By Lemma  6, A(G∗,R) ≥ n2

8 , where 
G∗ is an optimal solution of MaxEC, hence it holds

for a constant c ≥ 0. By choosing ε sufficiently small, and 
k sufficiently large, the PTAS for MaxLA follows.

Now, what we have to show is that, starting from a 
solution Gk of MaxLA, it is possible to construct in pol-
ynomial time a gene tree G′ such that G′ is S-consistent 
and it has an agreement value not smaller than that of Gk.

Building a feasible solution
Consider a compressed tree Gk returned by the smooth 
polynomial integer programming. Next we show how to 
reconstruct a gene tree G′ which is consistent with S.

p(l1, l2) =
∑

Iv �=Iw

xIv ,l1a(Iv , l1)xIw ,l2a(Iw , l2)r(Iv , Iw)e(l1, l2)t(Iv , Iw)

+ xIv ,l1a(Iv , l)xIw ,l2a(Iw , l2)(1− r(Iv , Iw))(1− e(l1, l2))t(Iv , Iw)

p(x) =
∑

l1,l2∈L

p(l1, l2)

p(x) is maximixed

∑

v

xIv ,l = 1 ∀l ∈ L

∑

l

xIv ,l ≤ 8n/k

A(Gk
,R) ≥ A(G∗

,R)− εn2 −
64n2

k
= A(G∗

,R)

(

1−
ε

c
−

1

ck

)
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First, we consider only the set Ŵ′ of leaves l ∈ Ŵ that are 
assigned to a leaf-set Iv, with l ∈ A(Iv). Notice indeed that 
if a leaf is assigned to a leaf-set Iv with l /∈ A(Iv), then it 
will give a contribution 0 in the smooth polynomial inte-
ger program, as a(Iv , l1) = 0, hence p(l1, l2) = 0, for each 
other leaf in l2 ∈ Ŵ. In this case, we construct a gene tree 
G′ only for the set of leaves Ŵ′, then we construct a new 
gene tree G∗ by joining G′ and a subtree G′′ over leafset 
Ŵ \ Ŵ′ such that the internal nodes of G′′ and the root of 
G∗ are all associated with a duplication.

We focus now on the set of labels Ŵ′ and assume that no 
leaf l is assigned to a leaf-set Iv such that l /∈ A(Iv). Start-
ing from Gk we construct in polynomial time the corre-
sponding gene tree G′. G′ is computed by replacing each 
leaf-set Iv of Gk with a subtree labeled by the set L(Iv) of 
leaves that belong to Iv (see Fig. 4).

Consider the tree Gk, a leaf set Iz of Gk connected to 
a node u of Gk and the set L(Iz) of leaves assigned to Iz. 
We replace Iz by a subtree T ′ isomorphic to S|L(Iz); each 
internal node of T ′ is labeled as Dup. Notice that the root 
of T ′ is connected to u.

As a last step, if d > 1 copies of a label l belongs to a 
leaf set Iv, then we construct a subtree with d leaves all 
labeled by l, whose internal nodes are all associated with 
duplications.

We prove that the gene tree G′ constructed is 
S-consistent.

Lemma 10  The tree G′ computed starting from Gk is 
S-consistent.

Proof  In order to ensure the S-consistency of 
G′ , we must prove that for each node v′ of G′ with 

evG′(v′) = Spec, each child of v′ is mapped to a proper 
descendant of sG′(v′).

Consider a node v′ of G′ corresponding to an internal 
node v of Gk such that evG′(v′) = Spec and evGk (v) = Spec 
and v is not part of a two-set internal node. We claim 
that v′ represents a speciation with respect to the species 
tree S. Let ch(v′) be the set of children of v′. Assume that 
sG′(v′) = x′, and that sG′(w′) = x, for some w′ ∈ ch(v′) . 
We show that x is a proper descendant of x′. Assume 
to the contrary that x and x′ are the same node. We 
claim that there exists a leaf l that is assigned to Iz, with 
l /∈ A(Iz), for some leaf-set of Gk

w, where w is the node of 
Gk corresponding to w′. If the claim holds, then by con-
struction a(Iz , l) = 0 and this would contradict our ear-
lier remark on such nodes not belonging to Ŵ′.

Hence, we must prove the claim: if x and x′ are the 
same node of S, then there exists a leaf l ∈ Ŵ and a leaf-
set Iz in Gk

w, such that l is assigned to Iz, with l /∈ A(Iz) . 
Assume that this is not the case. Since v is a speciation 
in Gk, it follows that the preassigned leaves define a 
mapping sGk of v and w in two different nodes of S. Let 
sGk

(w) = y, where y is a proper descendant of x′. Since 
sG′(v′) = sG′(w′), it follows that there exists a leaf l of Ŵ 
not in L(Sz) that is assigned to a leaf-set Iz in Gk

w, other-
wise w′ would be mapped in y. Hence the claim holds.

Consider now the case that v belongs to a two-set inter-
nal node 〈u, v〉. Since 〈u, v〉 is a two-set internal node, 
evGk (v) = Spec and evGk (u) = Dup. Moreover, let Iz be 
the leafset connected to v. Let z′ be the root of the sub-
tree of G′ isomorphic to S|L(Iz) that replaced the Iz leaf-
set. Note that z′ is a child of v′. Let q′ be the other child of 
v′, and let q be the node of Gk corresponding to q′.
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Similarly to the previous case if sG′(v′) = sG′(z′) or 
sG′(v′) = sG′(q′), then we claim that there exists a leaf l 
that is assigned to Iw with l /∈ A(Iw) for either Iw = Iz or 
for some leaf-set Iw in Gk

q. In order to prove the claim, 
first notice that, by definition, the set A(Iz) contains only 
leaves of L(Sx) \ L(Sy), where x and y are the nodes of 
S where v and q are mapped by sGk. Therefore, if sG′(z′) 
is not a proper descendant of x, there must be a leaf 
l /∈ A(Iz) assigned to Iz. Similarly, if sG′(q′) is not a proper 
descendant of x, because sGk (q) = y is a proper descend-
ant of x, there must be a leaf l assigned to Iw in Gk

q such 
that l /∈ A(Iw) (otherwise, q′ would be mapped to y). We 
can conclude that the lemma holds.�  �

Conclusion
We considered the minimization weighted and maximiza-
tion unweighted variants of the problems of editing a rela-
tion graph for satisfiability and consistency. We provided 
complexity and algorithmic results for these variants. We 
showed that the problems that ask for the minimization of 
corrections on a weighted graph do not admit a constant 
factor approximation algorithm assuming the unique 
game conjecture and we gave an n-approximation algo-
rithm, n being the number of vertices in the graph. We 
then provided polynomial time approximation schemes 
for the maximization variants of for unweighted graphs.

For future investigations, there are several interesting 
problems both from a theoretical and experimental point 
of view. First, from a theoretical point of view, it is open 
whether the minimization variant on unweighted graphs 
is approximable within constant factor or not. Moreover, 
another interesting direction would be to study whether 
it is possible to close the gap between the inapproxima-
bility result we have proved and the n-approximation 
algorithm.

From an experimental point of view, the main open 
problem is to test our approach to weighted graphs, and 
in particular to give a definition of weights that inte-
grate those defined in different methods for orthology 
detection.
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