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Abstract 

Background:  Semi-labeled trees generalize ordinary phylogenetic trees, allowing internal nodes to be labeled by 
higher-order taxa. Taxonomies are examples of semi-labeled trees. Suppose we are given collection P of semi-labeled 
trees over various subsets of a set of taxa. The ancestral compatibility problem asks whether there is a semi-labeled 
tree that respects the clusterings and the ancestor/descendant relationships implied by the trees in P. The running 
time and space usage of the best previous algorithm for testing ancestral compatibility depend on the degrees of the 
nodes in the trees in P.

Results:  We give a algorithm for the ancestral compatibility problem that runs in O(MP log2MP ) time and uses 
O(MP ) space, where MP is the total number of nodes and edges in the trees in P.

Conclusions:  Taxonomies enable researchers to expand greatly the taxonomic coverage of their phylogenetic analy‑
ses. The running time of our method does not depend on the degrees of the nodes in the trees in P. This characteris‑
tic is important when taxonomies—which can have nodes of high degree—are used.
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Introduction
In the tree compatibility problem, we are given a collec-
tion P = {T1, T2, . . . , Tk} of rooted phylogenetic trees 
with partially overlapping taxon sets. P is called a pro-
file and the trees in P are the input trees. The question 
is whether there exists a tree T  whose taxon set is the 
union of the taxon sets of the input trees, such that T  
exhibits the clusterings implied by the input trees. That 
is, if two taxa are together in a subtree of some input tree, 
then they must also be together in some subtree of T . 
The tree compatibility problem has been studied for over 
three decades [1–4].

In the original version of the tree compatibility prob-
lem, only the leaves of the input trees are labeled. Here we 
study a generalization, called ancestral compatibility, in 
which taxa may be nested. That is, the internal nodes may 
also be labeled; these labels represent higher-order taxa, 
which are, in effect, sets of taxa. Thus, for example, an 

input tree may contain the taxon Glycine max (soybean) 
nested within a subtree whose root is labeled Fabaceae 
(the legumes), itself nested within an Angiosperm sub-
tree. Note that leaves themselves may be labeled by 
higher-order taxa. The question now is whether there is 
a tree T  whose taxon set is the union of the taxon sets 
of the input trees, such that T  exhibits not only the clus-
terings among the taxa, but also the ancestor/descendant 
relationships among taxa in the input trees. Our main 
result is a O(MP log2MP) algorithm for the compatibility 
problem for trees with nested taxa, where MP is the total 
number of nodes and edges in the trees in P.

Background
The tree compatibility problem is a basic special case of 
the supertree problem. A supertree method is a way to 
synthesize a collection of phylogenetic trees with partially 
overlapping taxon sets into a single supertree that rep-
resents the information in the input trees. The supertree 
approach, proposed in the early 90s [5, 6], has been used 
successfully to build large-scale phylogenies [7].

The original supertree methods were limited to input 
trees where only the leaves are labeled. Page [8] was 
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among the first to note the need to handle phylogenies 
where internal nodes are labeled, and taxa are nested. 
A major motivation is the desire to incorporate taxono-
mies as input trees in large-scale supertree analyses, as 
way to circumvent one of the obstacles to building com-
prehensive phylogenies: the limited taxonomic overlap 
among different phylogenetic studies [9]. Taxonomies 
group organisms according to a system of taxonomic 
rank (e.g., family, genus, and species); two examples are 
the NCBI taxonomy [10] and the Angiosperm taxonomy 
[11]. Taxonomies spanning a broad range of taxa provide 
structure and completeness that might be hard to obtain 
otherwise. A recent example of the utility of taxonomies 
is the Open Tree of Life, a draft phylogeny for over 2.3 
million species [12].

Taxonomies are not, strictly speaking, phylogenies. In 
particular, their internal nodes and some of their leaves are 
labeled with higher-order taxa. Nevertheless, taxonomies 
have many of the same mathematical characteristics as 
phylogenies. Indeed, both phylogenies and taxonomies are 
semi-labeled trees [13, 14]. We will use this term through-
out the rest of the paper to refer to trees with nested taxa.

The fastest previous algorithm for testing ances-
tral compatibility, based on earlier work by Daniel and 
Semple [15], is due to Berry and Semple [16]. Their 
algorithm runs in O

(

log2 n · τP

)

 time using O(τP) 
space. Here, n is the number of distinct taxa in P and 
τP =

∑k
i=1

∑

v∈I(Ti)
d(v)2, where I(Ti) is the set of inter-

nal nodes of Ti, for each i ∈ {1, . . . , k}, and d(v) is the 
degree of node v. While the algorithm is polynomial, 
its dependence on node degrees is problematic: semi-
labeled trees can be highly unresolved (i.e., contain nodes 
of high degree), especially if they are taxonomies.

Our contributions
As stated earlier, our main result is an algorithm to test 
ancestral compatibility that runs in O(MP log2MP) time, 
using O(MP) space. These bounds are independent of the 
degrees of the nodes of the input trees, a valuable char-
acteristic for large datasets that include taxonomies. To 
achieve our result, we extend ideas from our recent algo-
rithm for testing the compatibility of ordinary phyloge-
netic trees [2]. As in that algorithm, a central notion in the 
current paper is the display graph of profile P, denoted 
HP. This is the graph obtained from the disjoint union 
of the trees in P by identifying nodes that have the same 
label (see the section titled  "Testing ancestral compatibil-
ity"). The term “display graph” was introduced by Bryant 
and Lagergren [17], but similar ideas have been used else-
where. In particular, the display graph is closely related 
to Berry and Semple’s restricted descendancy graph [16], 
a mixed graph whose directed edges correspond to the 
(undirected) edges of HP and whose undirected edges 

have no correspondence in HP. The second kind of edges 
are the major component of the τP term in the time and 
space complexity of Berry and Semple’s algorithm. The 
absence of such edges makes HP significantly smaller than 
the restricted descendancy graph. Display graphs also 
bear some relation to tree alignment graphs [18].

Here, we exploit the display graph more extensively 
than in our previous work. Although the display graph of 
a collection of semi-labeled trees is more complex than 
that of a collection of ordinary phylogenies, we are able to 
extend several of the key ideas—notably, that of a semi-
universal label—to the general setting of semi-labeled 
trees. As in [2], the implementation relies on a dynamic 
graph data structure, but it requires a more careful amor-
tized analysis based on a weighing scheme.

Contents
This paper has five sections, in addition to this introduc-
tion. The section titled "Preliminaries" presents basic 
definitions regarding graphs, semi-labeled trees, and 
ancestral compatibility. The section titled  "The display 
graph" introduces the display graph and discusses its 
properties. The section titled  "Testing ancestral com-
patibility" presents BuildNT, our algorithm for testing 
ancestral compatibility. We first present the algorithm 
recursively, and then show how to transform it into an 
iterative algorithm, BuildNTN, that is easier to imple-
ment. We also give an example of the execution of 
BuildNTN. The "Implementation" section gives the imple-
mentation details for BuildNTN. The "Discussion" section 
gives some concluding remarks.

Preliminaries
For each positive integer r, [r] denotes the set {1, . . . , r}.

Graph notation
Let G be a graph. V(G) and E(G) denote the node and 
edge sets of G. The degree of a node v ∈ V (G) is the 
number of edges incident on v. A tree is an acyclic con-
nected graph. In this paper, all trees are assumed to be 
rooted. For a tree T, r(T) denotes the root of T. Suppose 
u, v ∈ V (T ). Then, u is an ancestor of v in T, denoted 
u ≤T v, if u lies on the path from v to r(T) in T. If u ≤T v, 
then v is a descendant of u. Node u is a proper descendant 
of v if u is a descendant of v and v �= u. If {u, v} ∈ E(T ) 
and u ≤T v, then u is the parent of v and v is a child of u. 
If neither u ≤T v nor v ≤T u hold, then we write u ‖T v 
and say that u and v are not comparable in T.

Semi‑labeled trees
A semi-labeled tree is a pair T = (T ,φ) where T is a 
tree and φ is a mapping from a set L(T ) to V(T) such 
that, for every node v ∈ V (T ) of degree at most two, 
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v ∈ φ(L(T )) . L(T ) is the label set of T  and φ is the labe-
ling function of T .

For every node v ∈ V (T ), φ−1(v) denotes the (possibly 
empty) subset of L(T ) whose elements map into v; these 
elements as the labels of v (thus, each label is a taxon). If 
φ−1(v) �= ∅, then v is labeled; otherwise, v is unlabeled. 
Note that, by definition, every leaf in a semi-labeled tree 
is labeled. Further, any node, including the root, that has 
a single child must be labeled. Nodes with two or more 
children may be labeled or unlabeled. A semi-labeled tree 
T = (T ,φ) is singularly labeled if every node in T has 
at most one label; T  is fully labeled if every node in T is 
labeled.

Semi-labeled trees, also known as X-trees, generalize 
ordinary phylogenetic trees, also known as phylogenetic 
X-trees [14]. An ordinary phylogenetic tree is a semi-
labeled tree T = (T ,φ) where r(T) has degree at least 
two and φ is a bijection from L(T ) into leaf set of T (thus, 
internal nodes are not labeled).

Let T = (T ,φ) be a semi-labeled tree and let ℓ and ℓ′ 
be two labels in L(T ). If φ(ℓ) ≤T φ(ℓ′), then we write 
ℓ ≤T ℓ′, and say that ℓ′ is a descendant of ℓ in T  and that 
ℓ is an ancestor of ℓ′. We write ℓ <T ℓ′ if φ(ℓ′) is a proper 
descendant of φ(ℓ). If φ(ℓ) �T φ(ℓ′), then we write ℓ �T ℓ′ 
and say that ℓ and ℓ′ are not comparable in T . If T  is fully 
labeled and φ(ℓ) is the parent of φ(ℓ′) in T, then ℓ is the 
parent of ℓ′ in T  and ℓ′ is a child of ℓ in T ; two labels with 
the same parent are siblings.

Two semi-labelled trees T = (T ,φ) and T ′ = (T ′,φ′) are 
isomorphic if there exists a bijection ψ : V (T ) → V (T ′) 
such that φ′ = ψ ◦ φ and, for any two nodes u, v ∈ V (T ), 
(u, v) ∈ E(T ) if and only (ψ(u),ψ(v)) ∈ E(T ′).

Let T = (T ,φ) be a semi-labeled tree. For each 
u ∈ V (T ), X(u) denotes the set of all labels in the subtree 
of T rooted at u; that is, X(u) =

⋃

v:u≤T v
φ−1(v). X(u) is 

called a cluster of T. Cl(T ) denotes the set of all clusters 
of T . It is well known [14, Theorem  3.5.2] that a semi-
labeled tree T  is completely determined by Cl(T ). That 
is, if Cl(T ) = Cl(T ′) for some other semi-labeled tree T ′, 
then T  is isomorphic to T ′.

Suppose A ⊆ L(T ) for a semi-labeled tree 
T = (T ,φ). The restriction of T  to A, denoted 
T |A, is the semi-labeled tree whose cluster set is 
Cl(T |A) = {X ∩ A : X ∈ Cl(T ) and X ∩ A �= ∅}. Intui-
tively, T |A is obtained from the minimal rooted subtree of 
T that connects the nodes in φ(A) by suppressing all verti-
ces of degree two that are not in φ(A).

Let T = (T ,φ) and T ′ = (T ′,φ′) be semi-labeled trees 
such that L(T ′) ⊆ L(T ). T  ancestrally displays T ′ if 
Cl(T ′) ⊆ Cl(T |L(T ′)). Equivalently, T  ancestrally dis-
plays T ′ if T ′ can be obtained from T |L(T ′) by contract-
ing edges, and, for any ℓ1, ℓ2 ∈ L(T ′),

(i)	  if ℓ1 <T ′ ℓ2, then ℓ1 <T ℓ2, and
(ii)	 if ℓ1 �T ′ ℓ2, then ℓ1 ‖T ℓ2.

The notion of “ancestrally displays” for semi-labeled trees 
generalizes the well-known notion of “displays” for ordi-
nary phylogenetic trees [14].

For a semi-labelled tree T , let us define D(T ) and N (T ) 
as follows.

Note that D(T ) consists of ordered pairs, while N (T ) 
consists of unordered pairs.

Lemma 1  (Bordewich et  al. [13]) Let T  and T ′ be 
semi-labelled trees such that L(T ′) ⊆ L(T ). Then T  
ancestrally displays T ′ if and only if D(T ′) ⊆ D(T ) and 
N (T ′) ⊆ N (T ).

Profiles and ancestral compatibility
Throughout the rest of this paper P = {T1, T2, . . . , Tk} 
denotes a set where, for each i ∈ [k], Ti = (Ti,φi) is a 
semi-labeled tree. We refer to P as a profile, and write 
L(P) to denote 

⋃

i∈[k] L(Ti), the label set of P. Figure  1 
shows a profile where L(P) = {a, b, c, d, e, f , g , h, i}. We 
write V (P) for 

⋃

i∈[k] V (Ti) and E(P) for 
⋃

i∈[k] E(Ti), The 
size of P is MP = |V (P)| + |E(P)|.
P is ancestrally compatible if there is a rooted semi-

labeled tree T  that ancestrally displays each of the trees 
in P. If T  exists, we say that T  ancestrally displays P (see 
Fig. 2).

Given a subset X of L(P), the restriction of P to X, 
denoted P|X, is the profile defined as

The proof of the following lemma is straightforward.

Lemma 2  Suppose P is ancestrally compatible and 
let T  be a tree that ancestrally displays P. Then, for any 
X ⊆ L(P), T |X ancestrally displays P|X.

D(T ) = {(ℓ, ℓ′) : ℓ, ℓ′ ∈ L(T ) and ℓ <T ℓ′}

N (T ) = {{ℓ, ℓ′} : ℓ, ℓ′ ∈ L(T ) and ℓ �T ℓ′}

P|X = {T1|X ∩ L(T1), T2|X ∩ L(T2), . . . , Tk |X ∩ L(Tk)}.

e h i

f

a

g

db c

g

b c d e f

a

1 2
3

4

Fig. 1  A profile P = {T1,T2,T3}—trees are ordered left-to-right. The 
letters are the original labels; grey numbers are labels added to make 
the trees fully labeled (Adapted from [16])
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For technical reasons, fully labeled trees are easier 
to handle than those that are not. Suppose P contains 
trees that are not fully labeled. We can convert P into 
an equivalent profile P ′ of fully-labeled trees as follows. 
For each i ∈ [k], let li be the number of unlabeled nodes 
in Ti. Create a set L′ of n′ =

∑

i∈[k] li labels such that 
L′ ∩ L(P) = ∅. For each i ∈ [k] and each v ∈ V (Ti) such 
that φ−1

i (v) = ∅, make φ−1
i (v) = {ℓ}, where ℓ is a distinct 

element from L′. We refer to P ′ as the profile obtained by 
adding distinct new labels to P (see Fig. 1).

Lemma 3  (Daniel and Semple [15]) Let P ′ be the pro-
file obtained by adding distinct new labels to P. Then, P is 
ancestrally compatible if and only if P ′ is ancestrally com-
patible. Further, if T  is a semi-labeled phylogenetic tree 
that ancestrally displays P ′, then T  ancestrally displays P.

From this point forward, we make the following 
assumption.

Assumption 1  For each i ∈ [k], Ti is fully and singularly 
labeled.

By Lemma 3, no generality is lost in assuming that all 
trees in P are fully labeled. The assumption that the trees 
are singularly labeled is inessential; it is only for clar-
ity. Note that, even with the latter assumption, a tree 
that ancestrally displays P is not necessarily singularly 
labeled. Figure 2 illustrates this fact.

The display graph
The display graph of a profile P, denoted HP, is the graph 
obtained from the disjoint union of the underlying trees 
T1,T2, . . . ,Tk by identifying nodes that have the same 
label. Multiple edges between the same pair of nodes are 
replaced by a single edge. See Fig. 3.
HP has O(MP) nodes and edges, and can be con-

structed in O(MP) time. By Assumption 1, there is a 
bijection between the labels in L(P) and the nodes of 
HP. Thus, from this point forward, we refer to the nodes 
of HP by their labels. It is easy to see that if HP is not 
connected, then P decomposes into label-disjoint sub-
profiles, and that P is compatible if and only if each sub-
profile is compatible. Thus, without loss of generality, we 
shall assume the following.

Assumption 2  HP is connected.

Positions
Our compatibility algorithm processes the trees in P from 
the top down, starting at the roots. We refer to the set 
of nodes in P currently being considered as a “position”. 
The algorithm advances from the current position to the 

next by replacing certain nodes in the current position 
by their children. Formally, a position (for P) is a vector 
U = (U(1),U(2), . . . ,U(k)), where U(i) ⊆ L(Ti), for each 
i ∈ [k]. Since labels may be shared among trees, we may 
have U(i) ∩U(j) �= ∅, for i, j ∈ [k] with i �= j. For each 
i ∈ [k], let Desci(U) = {ℓ : ℓ′ ≤Ti ℓ, for some ℓ′ ∈ U(i)}, 
and let DescP(U) =

⋃

i∈[k]Desci(U).

A position U is valid if, for each i ∈ [k],

(V1)	 if |U(i)| ≥ 2, then the elements of U(i) are sib-
lings in Ti and

(V2)	 Desci(U) = DescP(U) ∩ L(Ti).

Lemma 4  For any valid position U,

Proof  By (V2), we have that Ti|Desci(U) and 
Ti|DescP(U) ∩ L(Ti) are isomorphic, for each i ∈ [k]. The 
lemma then follows from the definition of P|DescP(U) . 
� �

For any valid position U, HP(U) denotes the subgraph 
of HP induced by DescP(U).

P|DescP (U) = {T1|Desc1(U),T2|Desc1(U), . . . ,Tk |Desck (U)}.

b c d e

fa,4

1,2

g

h i

3

Fig. 2  A tree T  that ancestrally displays the profile of Fig. 1 (Adapted 
from [16])
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1 2

3

4

Fig. 3  The display graph HP for the profile of Fig. 1
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Observation 1  For any valid position U, HP(U) is 
the subgraph of HP obtained by deleting all labels in 
V (HP) \ DescP(U), along with all incident edges.

A valid position of special interest to us is Uroot, the 
root position, defined as follows.

That is, for each i ∈ [k], Uroot(i) is a singleton containing 
only the label of r(Ti). In Fig. 3, Uroot = ({1}, {2}, {g}). It 
is straightforward to verify that Uroot is indeed valid, that 
DescP(Uroot) = L(P), and that HP(Uroot) = HP.

Semi‑universal labels
Let U be a valid position, and let ℓ be a label in U. Then, ℓ 
is semi-universal in U if U(i) = {ℓ}, for every i ∈ [k] such 
that ℓ ∈ L(Ti). In Fig. 3, labels 1 and 2 are semi-universal 
in Uroot, but g is not, since g is in both L(T2) and L(T3), 
but Uroot(2) �= {g}.

The term “semi-universal”, borrowed from Pe’er et  al. 
[19], derives from the following fact. Suppose that P is 
ancestrally compatible, that T  is a tree that ancestrally 
displays P, and that ℓ is a semi-universal label for some 
valid position U. Then, as we shall see, ℓ must label the 
root uℓ of a subtree of T  that contains all the descend-
ants of ℓ in Ti, for every i such that ℓ ∈ L(Ti). The quali-
fier “semi” is because this subtree may also contain labels 
that do not descend from ℓ in any input tree, but descend 
instead from some other semi-universal label ℓ′ in U. In 
this case, ℓ′ also labels uℓ. We exploit this property of 
semi-universal labels in our ancestral compatibility algo-
rithm and its proof of correctness (see "Testing ancestral 
compatibility").

For each label ℓ ∈ L(P), let kℓ denote the number of 
input trees that contain label ℓ. We can obtain kℓ for every 
ℓ ∈ L(P) in O(MP) time during the construction of HP.

Lemma 5  Let U = (U(1), . . . ,U(k)) be a valid position. 
Then, label ℓ is semi-universal in U if the cardinality of the 
set Jℓ = {i ∈ [k] : U(i) = {ℓ}} equals kℓ.

Proof  By definition, U(i) = {ℓ}, for every i ∈ Jℓ. Since 
|Jℓ| = kℓ, the lemma follows. � �

Successor positions
For every i ∈ [k] and every ℓ ∈ L(Ti), let Chi(ℓ) denote 
the set of children of ℓ in L(Ti). For a subset A of L(Ti) , 
let Chi(A) =

⋃

ℓ∈A Chi(ℓ). Let U be a valid posi-
tion, and S be the set of semi-universal labels in U. 
The successor of U with respect to S is the position 
U ′ = (U ′(1),U ′(2), . . . ,U ′(k)), where, for each i ∈ [k], 
U ′(i) is defined as follows.

(1)Uroot = (φ−1
i (r(T1)),φ

−1
i (r(T2)), . . . ,φ

−1
i (r(Tk))).

In Fig.  3, the set of semi-universal labels in Uroot is 
S = {1, 2}. Since Ch1(1) = {3, f } and Ch2(2) = {e, f , g}, 
the successor of Uroot is U ′

root = ({3, f }, {e, f , g}, {g}).

Observation 2  Let U be a valid position, and let U ′ be 
the successor of U with respect to the set S of semi-uni-
versal labels in U. Then, HP(U

′) can be obtained from 
HP(U) by doing the following for each ℓ ∈ S: (1) for each 
i ∈ [k] such that U(i) = {ℓ}, delete all edges between ℓ and 
Chi(ℓ); (2) delete ℓ.

Let U be a valid position, and W be a sub-
set of DescP(U). Then, U|W denotes the position 
(U(1) ∩W ,U(2) ∩W , . . . ,U(k) ∩W ). In Fig.  3, the 
components of HP(U

′), where U ′ is the successor of 
Uroot, are W1 = {3, 4, a, b, c, d, e, g} and W2 = {f , h, i}. 
Thus, U ′|W1 = ({3}, {e, g}, {g}) and U ′|W2 = ({f }, {f },∅). 
We have the following result.

Lemma 6  Let U be a valid position, and S be the set of 
all semi-universal labels in U. Let U ′ be the successor of U 
with respect to S, and let W1,W2, . . . ,Wp be the label sets 
of the connected components of HP(U

′). Then, U ′|Wj is a 
valid position, for each j ∈ [p].

Proof  It suffices to argue that U ′ satisfies conditions 
(V1) and (V2). The lemma then follows from the fact that 
the connected components of HP(U

′) are label-disjoint.

U ′ must satisfy condition (V1), since U does. 
Suppose ℓ ∈ S. Then, for each i ∈ [k] such that 
ℓ ∈ L(Ti), Desci(U

′) = Desci(U) \ {ℓ} and 
DescP(U

′) ∩ L(Ti) = (DescP(U) ∩ L(Ti)) \ {ℓ}. Thus, 
since (V2) holds for U, it also holds for U ′. �

Testing ancestral compatibility
Overview of the algorithm
BuildNT (Algorithm 1) is our algorithm for testing com-
patibility of semi-labeled trees. Its argument, U, is a valid 
position in P such that HP(U) is connected. BuildNT 
relies on the fact—proved later, in Theorem  1—that if 
P|DescP(U) is compatible, then U must contain a non-
empty set S of semi-universal labels. If such a set S exists, 
the algorithm replaces U by its successor U ′ with respect 
to S. It then processes each connected component of 
HP(U

′) recursively, to determine if the associated sub-
profile is compatible. If all the recursive calls are success-
ful, then their results are combined into a supertree for 
P|DescP(U).

U ′(i) =

{

Chi(ℓ) if U(i) = {ℓ}, for some ℓ ∈ S,
U(i) otherwise.
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In detail, BuildNT proceeds as follows. Line 1 computes 
the set S of semi-universal labels in U. If S is empty, then, 
P|DescP(U) is incompatible, and, thus, so is P. This fact 
is reported in Line 3. Line 4 creates a tentative root rU , 
labeled by S, for the tree TU for L(U). Line 5 checks if S 
contains exactly one label ℓ, with no proper descendants. 
If so, by the connectivity assumption, ℓ must be the sole 
member of DescP(U); that is, L(U) = ℓ . Therefore, Line 
6 simply returns the tree with a single node, labeled by 
S = {ℓ}. Line 7 updates U, replacing it by its successor 
with respect to S. Let W1,W2, . . . ,Wp be the connected 
components of HP(U) after updating U. By Lemma 
6, U |Wj is a valid position, for each j ∈ [p]. Lines 8–12 
recursively invoke BuildNT on U |Wj for each j ∈ [p], 
to determine if there is a tree tj that ancestrally displays 
P|DescP(U ∩Wj). If any subproblem is incompatible, 
Line 12 reports that P is incompatible. Otherwise, Line 
13 returns the tree obtained by making the tjs the sub-
trees of root rU. 

Next, we argue the correctness of BuildNT.

Correctness

Lemma 7  Let U be a valid position in P. If BuildNT(U) 
returns a tree TU, then TU is a phylogenetic tree such that 
L(TU ) = L(U).

Proof  We use induction on |L(U)|. The base case, 
where |L(U)| = 1, is handled by Lines 5–6. In this case, 
S = L(U) = {ℓ} and BuildNT(U) correctly returns the 
tree consisting of a single node, labeled by {ℓ}. Otherwise, 
let W1, . . . ,Wp be the connected components of HP(U) 
in step 8. Since BuildNT(U) returns tree TU, it must be 
the case that, for each j ∈ [p], the result tj returned by 
the recursive call to BuildNT(U |Wj) in Line 10 is a tree. 
Since |S| ≥ 1, we have |L(Wj)| < |L(U)|, for each j ∈ [p]. 

Thus, we can assume inductively that tj is a phylogenetic 
tree for L(Wj). Since S ∪

⋃

j∈[p] L(Wj) = L(U), the tree 
returned in Line 13 is a phylogeny with species set L(U). 
� �

Theorem  1  Let P = {T1, T2, . . . , Tk} be a profile and 
let Urootbe the root position, as defined in Eq. (1).  Then, 
BuildNT(Uroot) returns either (i) a semi-labeled tree T  
that ancestrally displays P, if P is ancestrally compatible, 
or (ii) incompatible otherwise.

Proof  BuildNT(Uroot) either returns a tree or incompat-
ible. We consider each case separately.

(i)	 Suppose that BuildNT(Uroot) returns a semi-labeled 
tree T . By Lemma 7, L(T ) = L(P). We prove that 
T  ancestrally displays P. By Lemma 1, it suffices to 
show that D(Ti) ⊆ D(T ) and N (Ti) ⊆ N (T ), for 

each i ∈ [k] . Consider any (ℓ, ℓ′) ∈ D(Ti). Then, ℓ 
has a child ℓ′′ in Ti such that ℓ′′ ≤Ti ℓ

′ —note that we 
may have ℓ′′ = ℓ. There must be a recursive call to 
BuildNT(U), for some valid position U, where ℓ is the 
set S of semi-universal labels obtained in Line 1. By 
Observation 2, label ℓ′′, and thus ℓ′, both lie in one of 
the connected components of the graph obtained by 
deleting all labels in S, including ℓ, and their incident 
edges from HP(U). It now follows from the construc-
tion of T  that (ℓ, ℓ′) ∈ D(T ). Thus, D(Ti) ⊆ D(T ). 
Now, consider any {ℓ, ℓ′} ∈ N (Ti). Let v be the lowest 
common ancestor of φi(ℓ) and φi(ℓ′) in Ti and let ℓv 
be the label of v. Then, ℓv has a pair of children, ℓ1 and 
ℓ2 say, in Ti such that ℓ1 ≤Ti ℓ, and ℓ2 ≤Ti ℓ

′. Because 
BuildNT(Uroot) returns a tree, there are recursive calls 
BuildNT(U1) and BuildNT(U2) for valid positions U1 
and U2 such that ℓ1 is semi-universal for U1 and ℓ2 is 
semi-universal for U2. We must have U1 �= U2; other-
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wise, |U1(i)| = |U2(i)| ≥ 2, and, thus, neither ℓ1 nor 
ℓ2 is semi-universal, a contradiction. Further, it fol-
lows from the construction of T  that we must have 
DescP(U1) ∩ DescP(U2) = ∅. Hence, ℓ �T ℓ′, and, 
therefore, {ℓ, ℓ′} ∈ N (T ).

(ii)	Asssume, by way of contradiction, that BuildNT(Uroot) 
returns incompatible, but that P is ancestrally compat-
ible. By assumption, there exists a semi-labeled tree T  
that ancestrally displays P. Since BuildNT(Uroot) returns 
incompatible, there is a recursive call to BuildNT(U) for 
some valid position U such that U has no semi-univer-
sal label, and the set S of Line 1 is empty. By Lemma 2, 
T |DescP(U) ancestrally displays P|DescP(U). 
Thus, by Lemma 4, T |DescP(U) ancestrally displays 
Ti|Desci(U) , for every i ∈ [k]. Let ℓ be any label in the 
label set of the root of T |DescP(U). Then, for each 
i ∈ [k] such that ℓ ∈ L(Ti), ℓ must be the label of the root 
of Ti|Desci(U). Thus, for each such i, U(i) = {ℓ}. Hence, 
ℓ is semi-universal in U, a contradiction.

�  �

L(U) in the supertree. The body of the loop closely fol-
lows the steps performed by a call to BuildNT(U). Line 
5 computes the set S of semi-universal labels in U. If S is 
empty, the algorithm reports that P is incompatible and 
terminates (Lines 6–7). The algorithm then creates a ten-
tative root rU labeled by S for the tree TU for L(U), and 
links rU to its parent (Line 8). If S consists of exactly one 
element that has no proper descendants, we skip the rest 
of the current iteration of the while loop, and continue to 
the next iteration (Lines 9–10). Line 11 replaces U by its 
successor with respect to S. Lines 13–14 enqueue each of 
U |W1,U |W2, . . . ,U |Wp, along with rU, for processing in 
a subsequent iteration. If the while loop terminates with-
out any incompatibility being detected, the algorithm 
returns the tree with root rUroot. 

Although the order in which BuildNTN processes 
connected components differs from that of BuildNT —
breadth-first instead of depth-first—, it is straightforward 

An iterative version
We now present BuildNTN (Algorithm  2), an iterative 
version of BuildNT, which lends itself naturally to an 
efficient implementation. BuildNTN performs a breadth-
first traversal of BuildNT’s recursion tree, using a first-in 
first-out queue Q that stores pairs of the form (U , pred), 
where U is a valid position in P and pred is a reference to 
the parent of the node corresponding to U in the super-
tree built so far. BuildNTN simulates recursive calls in 
BuildNT by enqueuing pairs corresponding to subprob-
lems. We explain this in more detail next.
BuildNTN initializes its queue to contain the starting 

position, Uroot, with a null parent. It then proceeds to 
the while loop of Lines 3–14. Each iteration of the loop 
starts by dequeuing a valid position U, along with a ref-
erence pred to the potential parent for the subtree for 

to see that the effect is equivalent, and the proof of cor-
rectness of BuildNT (Theorem 1) applies to BuildNTN as 
well. We thus state the following without proof.

Theorem  2  Let P = {T1, T2, . . . , Tk} be a profile. Then, 
BuildNTN(P) returns either (i) a semi-labeled tree T  that 
ancestrally displays P, if P is ancestrally compatible, or 
(ii) incompatible otherwise.

Let Q be BuildNTN’s first-in first-out queue. In the rest 
of the paper, we will say that a valid position U is in Q 
if (U , pred) ∈ Q, for some pred. Let HQ be the subgraph 
of HP induced by 

⋃

{Desc(U) : U is in Q}. By Observa-
tion 1, HQ is obtained from HP through edge and node 
deletions.
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Lemma 8  At the start of any iteration of BuildNTN

’s while loop, the set of connected components of HQ is 
{V (HP(U)) : U is in Q}.

Proof  The property holds at the outset, since, by 
Assumption 2, HP = HP(Uroot) is a connected graph, and 
the only element of Q is (Uroot,null). Assume that the 
property holds at the beginning of iteration l. Let (U , pred) 
be the element dequeued from Q in Line 4. Then, HP(U) 
is connected. In place of (U , pred), Lines 13–14 enqueue 
(U |Wj , rU ), for each j ∈ [p], where, by construction, 
HP(U |Wj) is a connected component of HP(U). Thus, the 
property holds at the beginning of iteration l + 1.�  �

In other words, Lemma 8 states that each iteration of 
BuildNTN(P) deals with a subgraph of HP, whose con-
nected components are in one-to-one correspondence 
with the valid positions stored in Q. This is illustrated by 
the next example.

An example
Figures 4, 5, 6, 7 and 8 illustrate the execution of BuildNTN 
on the profile P = (T1, T2, T3) of Fig. 1. The figures show 
how the graph HQ —initially equal to HP = HP(Uroot) 
(Fig. 3)—evolves as its edges and nodes are deleted.

In each figure, HQ is shown on the left and the current 
supertree is shown on the right. For brevity, the figures 
only exhibit the state of HQ and the supertree after all 
the nodes at each level are generated. The various valid 
positions processed by BuildNTN(P) are denoted by Uα , 
for different subscripts α; Sα denotes the semi-universal 
labels in Uα, and U ′

α denotes the successor of Uα with 
respect to Sα. We write Lα as an abbreviation for L(Uα) 
The root of the tree for Lα is rUα and is labeled by Sα.

Initially, Q = ((Uroot,null)). In what follows, the ele-
ments of Q are listed from front to rear.

Level 0. Refer to Fig. 4. As seen earlier, the set of semi-
universal labels of Uroot is Sroot = {1, 2}. Thus, HP(U

′
root) 

has two components W1 and W2. Let U1 = U ′
root|W1 and 

U2 = U ′
root|W2. Then,

After level 0 is processed, Q = ((U1, rUroot ), (U2, rUroot )). 
Thus, the roots of the subtrees for L1 and L2 will be chil-
dren of rUroot.

Level 1. Refer to Fig.  5. We have S1 = {3}, so HP(U
′
1) 

has two components W11 and W12. Let U11 = U ′
1|W11 and 

U12 = U ′
1|W12. Then,

We have S2 = {f }, so HP(U
′
2) has two components W21 

and W22. Let U21 = U ′
2|W21 and U22 = U ′

2|W22. Then,

U1 = ({3}, {e, g}, {g}) and U2 = ({f }, {f }, ∅).

U11 = ({a, d}, {g}, {g}) and U12 = ({e}, {e}, ∅).

After level 1 is processed, 
Q = ((U11, r1), (U12, r1), (U21, r2), (U22, r2)).

Level 2. Refer to Fig. 6. We have S11 = {g}, so HP(U
′
11) 

has two components W111 and W112. Let U111 = U ′
11|W111 

and U112 = U ′
11|W112. Then,

The only semi-universal labels in U12, U21, and U22 
are, respectively, e, h, and i. Since none of these labels 
have proper descendants, each of them is a leaf in the 
supertree.

After level 2 is processed, Q = ((U111, r11), (U112, r11)).
Level 3. Refer to Fig.  7. We have S111 = {4, a}, so 

HP(U
′
111) has two components W1111 and W1112. Let 

U1111 = U ′
111|W1111 and U1112 = U ′

111|W1112. Then,

U21 = (∅, {h}, ∅) and U21 = (∅, {i}, ∅).

U111 = ({a}, {a}, {4}) and U112 = (∅, {d}, {d}).

U1111 = ({b}, ∅, {b}) and U1112 = ({c}, ∅, {c}).

b c ed

g

h i

f
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3

4

1,2U1

U2 L2L1

Fig. 4  After generating all supertree nodes in level 0
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Fig. 6  After generating all supertree nodes in level 2
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The only semi-universal label in U112 is d. Since d has 
no proper descendants, it becomes a leaf in the supertree.

After level 3 is processed, 
Q = ((U1111, r111), (U1112, r111)).

Level 4. Refer to Fig. 8. The only semi-universal labels 
in U1111 and U1112 are, respectively, b and c. Since neither 
of these labels have proper descendants, each of them is a 
leaf in the supertree.

After level 4 is processed, Q is empty, and BuildNTN(P) 
terminates.

Implementation
Here we prove the following result.

Theorem  3  There is an algorithm that, given a pro-
file P of rooted trees, runs in O(MP log2MP) time, and 
either returns a tree that displays P, if P is compatible, or 
reports that is P is incompatible otherwise.

We prove this theorem by showing how to implement 
BuildNTN so that the algorithm runs in O(MP log2MP) 
on any profile P.

As in the section titled  "An iterative version", let HQ 
denote the subgraph of HP associated with the valid posi-
tions in BuildNTN’s queue. By Lemma 8, each valid posi-
tion U in Q corresponds to one connected component of 
HQ —namely Desc(U) —and vice-versa. We use this fact 
in the implementation of BuildNTN: alongside each valid 
position U in Q, we also store a reference to the respec-
tive connected component, together with additional 
information, described next, to quickly identify semi-uni-
versal labels.

Let U be any valid set in Q, let Y = V (HP(U)) be the 
corresponding connected component of HQ, and let ℓ be 
any label in Y. Our implementation maintains the follow-
ing data fields.

• • Let JU = {i ∈ [k] : U(i) �= ∅}. Then, Y .map is 
a map from JU to L(U), where, for each i ∈ JU, 
Y .map(i) = U(i).

• • For each ℓ ∈ Y , ℓ.count equals the cardinality of the 
set {i ∈ [k] : Y .map(i) = {ℓ}}. (Recall that kℓ is the 
number of input trees that contain ℓ.).

• • Y .exposed, a set consisting of all i ∈ [k] such 
that Y .map(i) = {ℓ} for some ℓ ∈ Y  such that 
ℓ.count = kℓ.

• • Y .weight, which equals 
∑

ℓ∈Y kℓ. This field is 
needed for technical reasons, to be explained later.

For the purpose of analysis, we assume that the exposed 
fields are represented as balanced binary search trees 
(BSTs), which ensures O(log k) = O(logMP) time per 
access and update. The map fields are also implemented 
using BSTs. We store the set JU = {i ∈ [k] : U(i) �= ∅} 
as a BST, enabling is to determine in O(log k) time if an 
index i is in JU, and, if this is the case, to access Y .map(i) . 
The latter is also stored as a BST, allowing us to search 
and update Y .map(i) in O(log |U(i)|) = O(logMP) time. 
Note that, in practice, hashing may be a better alternative 
for both exposed and map fields, as it offers expected 
constant time performance per operation.

The data fields listed above allow us to efficiently 
retrieve the set S of semi-universal labels in U, as 
needed in line 5 of BuildNTN(P). Indeed, suppose that 
U is the valid position extracted from Q at the begin-
ning of an iteration of the while loop of Lines 3–14, 
and that Y = V (HP(U)). Then, by Lemma 5, we have 
S = {v ∈ Y .map(i) : i ∈ Y .exposed}. What remains is to 
devise an efficient way to update these fields for each of 
the connected components of HP(U) created by replac-
ing U with its successor in Line 11.

Let U ′ be the value of U after Line 11; thus, U ′ is the suc-
cessor of U. By Observation 2, HP(U

′) is obtained from 
HP(U) through edge and node deletions. We need to

(a)	Generate the new connected components resulting 
from these deletions, and

(b)	Produce the required map, count, and exposed data 
fields for the various connected components.

We accomplish (a) using the dynamic graph connectiv-
ity data structure of Holm et  al. [20], which we refer to 
as HDT. HDT allows us to maintain the list of nodes in 
each component, as well as the number of these nodes so 
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that, if we start with no edges in a graph with N nodes, 
the amortized cost of each update is O(log2N ). Since HP 
has O(MP) nodes, each update takes O(log2MP) time. 
The total number of edge and node deletions performed 
by BuildNTN(P) —including all deletions in the intera-
tions—is at most the total number of edges and nodes 
in HP, which is O(MP). HDT allows us to maintain con-
nectivity information throughout the entire algorithm 
in O(MP log2MP) time, which is within the time bound 
claimed in Theorem 3.

For part (b), we need to augment HDT in order to 
maintain the the required data fields for the various con-
nected components created during edge and node dele-
tion. In the next subsections, we describe how to do this. 
We begin by explaining how to initialize all the required 
data fields for HP = HP(Uroot).

Initializing the data fields
Graph HP(Uroot) has a single connected component, 
Yroot = L(P), which is the entire vertex set of the graph. 
We initialize the data fields as follows.

• • For each i ∈ [k], Yroot.map(i) = {r(Ti)}. This takes 
O(k) time.

• • Yroot.weight =
∑

ℓ∈L(P) kℓ. This takes O(MP) time.

We initialize the count fields in O(MP) time as follows:

1.	 Set ℓ.count to 0 for all ℓ ∈ L(P).
2.	 For each i ∈ [k], do the following.

(a)	 Let ρi denote the label of r(Ti).
(b)	 Increment ρi.count by one.

Once the count fields are initialized, it is easy to initial-
ize Yroot.exposed in O(k) time. Thus, we can initialize all 
the required fields in O(MP) time.

Maintaining the data fields
Suppose that all data fields fields are correctly computed 
for every connected component that is in Q at the begin-
ning of an iteration of the while loop in 3–14 of BuildNTN . 
We now show how to generate the same fields efficiently 
for the new connected components created by Line 11.

Computing successor positions
Let U be the valid position extracted from Q at the begin-
ning of an iteration of BuildNTN’s while loop, and let 
Y = V (Desc(U)) be the associated connected compo-
nent. Assume all the data fields for Y have been correctly 
computed. To obtain the successor of U in Line 11 of 
BuildNTN, we perform the following steps.

1.	 Identify the set S of semi-universal labels 
in U. As we saw, this set is given by 
S = {ℓ ∈ Y .map(i) : i ∈ Y .exposed}.

2.	 Set Y .map(i) = ∅, for every i ∈ Y .exposed.
3.	 Make Y .exposed = ∅.
4.	 For each ℓ ∈ S and each i such that ℓ ∈ L(Ti), do the 

following.

•	 If Chi(ℓ) �= ∅, replace Y .map(i) by Chi(ℓ). If Chi(ℓ) 
is a singleton set {α}, increment α.count by one. If 
α.count = kℓ, add i to Y .exposed.

• 	 Otherwise, Y .map(i) is undefined.

5.	 For each label ℓ in S, delete the edges incident on ℓ 
and then ℓ itself, updating the data fields as necessary 
after each deletion.

The total number of operations on map and exposed 
fields in Steps 1–4 is O(

∑

ℓ∈S kℓ). Since each label becomes 
semi-universal at most once, the total number of operations 
on map fields over the entire execution of BuildNTN(P) is 
O(

∑

ℓ∈L(P) kℓ), which is O(MP). The same bound holds for 
updates to count and exposed fields.

Next let us focus on how to handle the deletion of a sin-
gle edge in Step 5.

Deleting an edge
To delete an edge between ℓ and a child α of ℓ, we pro-
ceed as follows.

1.	 Delete (ℓ,α), querying HDT to determine whether this 
disconnects Y.

•	 If Y remains connected, skip the next steps and pro-
ceed directly to the next child of ℓ.

• 	 Otherwise, Y is split into two components, Y1 and Y2.

2.	 Update Y1.weight and Y2.weight.
3.	 Identify which of Y1 and Y2 has the smaller weight 

field. Without loss of generality, assume that 
Y1.weight ≤ Y2.weight.

4.	 Initialize Y1.map and Y1.exposed to null.
5.	 Initialize Y2.map and Y2.exposed to Y .map and 

Y .exposed, respectively.
6.	 For each label β in Y1, perform the following steps for 

each i such that β ∈ L(Ti).

(a)	 Delete β from Y2.map(i) and add β to Y1.map(i).
(b)	 Adjust count and exposed fields as necessary.

The connectivity test in Step 1 is done by querying HDT. 
Steps 3–5 are trivial. We thus focus on Steps 2 and 6.
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To perform Step 2, we use the well-known tech-
nique of scanning the smaller component [21]. We 
first consult HDT to determine which of Y1 or Y2 
has fewer nodes. Assume, without loss of general-
ity, that |Y1| ≤ |Y2|. We initialize Y1.weight to 0 and 
Y2.weight to Y .weight. We then scan the labels 
of Y1, incrementing Y1.weight by kℓ for each label 
ℓ ∈ Y1. When the scan of Y1 is complete, we make 
Y2.weight = Y2.weight− Y1.weight. We claim that 
any label ℓ ∈ L(P) is scanned O(logMP) times over the 
entire execution of BuildNTN(P). To verify this, let 
N (ℓ) be the number of nodes in the connected com-
ponent containing ℓ. Suppose that, initially, N (ℓ) = N  . 
Then, the rth time we scan ℓ, N (ℓ) ≤ N/2r. Thus, ℓ 
is scanned O(logN ) times. The claim follows, since 
N = O(MP). Therefore, the total number of updates 
over all labels is O(MP logMP).

Each execution of Step 6(a) updates each of Y1.map(i) 
and Y2.map(i) once. Step 6(b) is more complex, but can 
also be accomplished with O(1) data field updates. We 
omit the (tedious) details. In summary, each execution 
of step 6 for some β ∈ L(P) performs O(kβ) data field 
updates.

Let us track the number of data field updates in Step 
6 that can be attributed to some specific label β ∈ L(P) 
over the entire execution of BuildNTN(P). Let wr(β) 
be the weight of the connected component contain-
ing β at the beginning of Step 6, on the rth time that β 
is considered in that step. Thus, w0(β) ≤

∑

ℓ∈L(P) kℓ. We 
claim that wr(β) ≤ w0(β)/2

r. The reason is that we only 
consider β if (a) β is contained in one of the two com-
ponents that result from deleting an edge in step 1 and 
(b) the component containing β has the smaller weight. 
Hence, the number of times β is considered in step 6 over 
the entire execution of BuildNTN(P) is O(logw0(β)) , 
which is O(logMP), since w0(β) = O(MP). Therefore, 
the total number of data field updates in Step 6, over all 
labels in L(P) considered throughout the entire execu-
tion of BuildNTN(P), is O(logMP ·

∑

ℓ∈L(P) kℓ), which is 
O(MP logMP).

Summary
Let us review the running times of each aspect of our 
implementation of BuildNTN.

• • Initializing the data structures. This has two parts.

•	 Setting up the HDT data structure for HP. This takes 
O(MP log2MP) time.

• 	 Initializing the data fields for the single connected 
component of HP. This takes O(MP) time.

• • Maintaining the data structures. This also has two parts.

•	 Updating the HDT data structure. There are O(MP) 
edge and node deletions, at an amortized cost of 
O(log2MP) per deletion, yielding a total time of 
O(MP log2MP).

• 	 Maintaining the relevant data fields for the connected 
components. We have seen that the total number of 
updates is O(MP logMP). Assume, conservatively, 
that each update can be done in O(logMP) time. 
Then, this part takes a total of O(MP log2MP) over 
the entire execution of BuildNTN.

We conclude that the total running time of BuildNTN(P) 
is O(MP log2MP), completing the proof of Theorem 3.

Discussion
Like our earlier algorithm for compatibility of ordinary 
phylogenetic trees, the more general algorithm presented 
here, BuildNTN, is a polylogarithmic factor away from 
optimality (a trivial lower bound is �(MP), the time to 
read the input). BuildNTN has a linear-space implemen-
tation, using the results of Thorup [22]. A question to be 
investigated next is the performance of the algorithm on 
real data. Another important issue is integrating our algo-
rithm into a synthesis method that deals with incompatible 
profiles.
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