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Abstract 

Background:  Combinatorial works on genome rearrangements have so far ignored the influence of intergene sizes, 
i.e. the number of nucleotides between consecutive genes, although it was recently shown decisive for the accuracy 
of inference methods (Biller et al. in Genome Biol Evol 8:1427–39, 2016; Biller et al. in Beckmann A, Bienvenu L, Jonoska 
N, editors. Proceedings of Pursuit of the Universal-12th conference on computability in Europe, CiE 2016, Lecture 
notes in computer science, vol 9709, Paris, France, June 27–July 1, 2016. Berlin: Springer, p. 35–44, 2016). In this line, we 
define a new genome rearrangement model called wDCJ, a generalization of the well-known double cut and join (or 
DCJ) operation that modifies both the gene order and the intergene size distribution of a genome.

Results:  We first provide a generic formula for the wDCJ distance between two genomes, and show that computing 
this distance is strongly NP-complete. We then propose an approximation algorithm of ratio 4/3, and two exact ones: 
a fixed-parameter tractable (FPT) algorithm and an integer linear programming (ILP) formulation.

Conclusions:  We provide theoretical and empirical bounds on the expected growth of the parameter at the center 
of our FPT and ILP algorithms, assuming a probabilistic model of evolution under wDCJ, which shows that both these 
algorithms should run reasonably fast in practice.
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Background
General context
Mathematical models for genome evolution by 
rearrangements have defined a genome as a linear or cir-
cular ordering of genes1  [1]. These orderings have first 
been seen as (possibly signed) permutations, or strings if 
duplicate genes are present, or disjoint paths and cycles in 
graphs in order to allow multiple chromosomes. However, 
the organization of a genome is not entirely subsumed in 
gene orders. In particular, consecutive genes are separated 
by an intergenic region, and intergenic regions have 
diverse sizes  [2]. Besides, it was recently shown that 

1  The word gene is as usual in genome rearrangement studies taken in a lib-
eral meaning, as any segment of DNA, computed from homologous genes or 
synteny blocks, which is not touched by a rearrangement in the considered 
history.

integrating intergene sizes in the models radically changes 
the distance estimations between genomes, as usual 
rearrangement distance estimators ignoring intergene 
sizes do not estimate well on realistic data [3, 4]. We thus 
propose to re-examine the standard models and 
algorithms in this light. A first step is to define and 
compute standard distances, such as double cut and join 
(or DCJ)  [5], taking into account intergene sizes. In this 
setting, two genomes are considered, which are composed 
of gene orders and intergene sizes. One is transformed 
into the other by wDCJ operations, where additionally the 
sizes of the intergenes it affects can be modified.
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Genomes and rearrangements
Given a set V of vertices such that |V | = 2n, we define a 
genome g as a set of n disjoint edges, i.e. a perfect match-
ing on V. A genome is weighted if each edge e of g is 
assigned an integer weight w(e) ≥ 0, and we define W(g) 
as the sum of all weights of the edges of g. The union of 
two genomes g1 and g2 on the same set V thus forms a 
set of disjoint even size cycles called the breakpoint graph 
BG(g1, g2) of g1 and g2, in which each cycle is alternat-
ing, i.e. is composed of edges alternately belonging to g1 
and g2. Note that in the rest of the paper, we will be only 
interested in evenly weighted genomes, i.e. genomes g1 
and g2 such that W (g1) = W (g2).

A Double cut-and-join (DCJ)  [5] is an operation on an 
unweighted genome  g, which transforms it into another 
genome g ′ by deleting two edges ab and cd and by add-
ing either (i) edges ac and bd, or (ii) edges ad and bc. If g 
is weighted, the operation we introduce in this paper is 
called wDCJ: wDCJ is a DCJ that additionally modifies the 
weights of the resulting genome in the following way: if we 
are in case (i), (1) any edge but ac and bd is assigned the 
same weight as in g, and (2) w(ac) and w(bd) are assigned 
arbitrary non negative integer weights, with the constraint 
that w(ac)+ w(bd) = w(ab)+ w(cd). If we are in case (ii), 
a similar rule applies by replacing ac by ad and bd by bc. 
Note that wDCJ clearly generalizes the usual DCJ, since 
any unweighted genome g can be seen as a weighted one in 
which w(e) = 0 for any edge e in g.

Motivation for these definitions
This representation of a genome supposes that each ver-
tex is a gene extremity (a gene being a segment, it has two 
extremities, which explains the even number of vertices), 
and an edge means that two gene extremities are contigu-
ous on a chromosome. This representation generalizes 
signed permutations, and allows for an arbitrary number 
of circular and linear chromosomes. The fact that there 
should be n edges in a genome means that chromosomes 
are circular, or that extremities of linear chromosomes 
are not in the vertex set. It is possible to suppose so when 
the genomes we compare are co-tailed, i.e. the same 
gene extremities are extremities of chromosomes in both 
genomes. In this way, a wDCJ on a circular (resp. co-tailed) 
genome always yields a circular (resp. co-tailed) genome, 
which, in our terminology, just means that a weighted per-
fect matching stays a weighted perfect matching through 
wDCJ. So all along this paper we suppose that we are in the 
particular case of classical genomic studies where genomes 
are co-tailed or circular. Each edge represents an inter-
genic region. Weights on edges are intergene sizes, that is, 
the number of nucleotides separating two genes. The way 
weights are distributed after a wDCJ models a breakage 
inside an intergene between two nucleotides.

Statement of the problem
Given two evenly weighted genomes g1 and g2 on the same 
set V of 2n vertices, a sequence of wDCJ that transforms 
g1 into g2 is called a wDCJ sorting scenario. Note that 
any sequence transforming g1 into g2 can be easily 
transformed into a sequence of same length transforming 
g2 into g1, as the problem is fully symmetric. Thus, in the 
following, we will always suppose that g2 is fixed and that 
the wDCJ are applied on g1. The wDCJ distance between 
g1 and g2, denoted wDCJ (g1, g2), is defined as the number 
of wDCJ of a shortest wDCJ sorting scenario. Note that 
when genomes are unweighted, computing the usual DCJ 
distance is tractable, as DCJ (g1, g2) = n− c, where c is 
the number of cycles of BG(g1, g2)  [5]. The problem we 
consider in this paper, that we denote by wDCJ-dist, is 
the following: given two evenly weighted genomes g1 and 
g2 defined on the same set V of 2n vertices, determine 
wDCJ (g1, g2).

We need further notations. The imbalance of a cycle 
C in BG(g1, g2) is denoted I(C), and is defined as follows: 
I(C) = w1(C)− w2(C), where w1(C) (resp. w2(C)) is the 
sum of the weights of the edges of C which belong to 
g1 (resp. g2). A cycle C of the breakpoint graph is said 
to be balanced if I(C) = 0, and unbalanced otherwise. 
We will denote by Cu the set of unbalanced cycles in 
BG(g1, g2), and by nu = |Cu| its cardinality. Similarly, nb 
denotes the number of balanced cycles in BG(g1, g2), 
and c = nu + nb denotes the (total) number of cycles in 
BG(g1, g2).

A problem P is said to be fixed-parameter tractable 
(or FPT) with respect to a parameter k if it can be solved 
exactly in O(f (k) · poly(n)) time, where f is any comput-
able function, n is the size of the input, and poly(n) is a pol-
ynomial function of n. FPT algorithms are usually sought 
for NP-hard problems: if P is proved to be FPT in k, then 
the exponential part of the running time for solving P is 
confined to parameter k. Hence, if k is small in practice, 
P can still be solved exactly in reasonable time. Note also 
that the running time O(f (k) · poly(n)) is often written 
O∗(f (k)), where the polynomial factor is omitted.

Related works
Several generalizations or variants of standard genome 
rearrangement models integrate more realistic features in 
order to be closer to real genome evolution. It concerns, 
among others, models where inversions are considered, 
that are weighted by their length or symmetry around 
a replication origin  [6], by the proximity of their 
extremities in the cell  [7], or by their use of hot regions 
for rearrangement breakages [8]. Genome rearrangement 
taking into account intergenic sizes have been introduced 
in [3]. Their ability to capture realistic features has been 
demonstrated in [3, 4], while a variant of the wDCJ 
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distance has been recently published  [9]. The model 
in  [9] is however different from ours, as it allows indels 
and uses a different distance definition. The present 
article is an extended version of  [10] that includes full 
proofs, improves the approximation ratio for wDCJ-dist 
and considers several parameters for the FPT complexity.

Our results
In this paper, we explore the algorithmic properties of 
wDCJ-dist. We first provide the main properties of 
(optimal) wDCJ sorting scenarios in “Main properties 
of sorting by wDCJ”. We then show in “Algorithmic 
aspects of wDCJ-dist’’ that the wDCJ-dist problem is 
strongly NP-complete, 4/3 approximable, and we provide 
two exact algorithms, in the form of an FPT algorithm 
and an ILP (Integer Linear Programming) formulation. 
By simulations and analytic studies on a probabilistic 
model of genome evolution, in “A probabilistic model 
of evolution by wDCJ” we bound the parameter at the 
center of both our FPT and ILP algorithms, and conclude 
that they should run reasonably fast in practice.

Main properties of sorting by wDCJ
The present section is devoted to providing properties of 
any (optimal) wDCJ sorting scenario. These properties 
mainly concern the way the breakpoint graph evolves, 
whenever one or several wDCJ is/are applied. These will 
lead to a closed-form expression for the wDCJ distance 
(Theorem 7). Moreover, they will also be essential in the 
algorithmic study of the wDCJ-dist problem that will be 
developed in “Main properties of sorting by wDCJ’’. We 
first show the following lemma.

Lemma 1  Let C be a balanced cycle of some break-
point graph BG(g1, g2). Then there exist three consecu-
tive edges e, f, g in C such that (i) e and g belong to g1 and 
(ii) w(e)+ w(g) ≥ w(f ).

Proof  Suppose, aiming at a contradiction, that for any 
three consecutive edges e,  f, g in C with e, g ∈ E(g1), we 
have w(e)+ w(g) < w(f ). Summing this inequality over 
all such triplets of consecutive edges of C, we obtain the 
following inequality: 2 · w1(C) < w2(C). Since C is bal-
anced, by definition we have w1(C)− w2(C) = 0 . Hence 
we obtain w1(C) < 0, a contradiction since all edge 
weights are non negative by definition.�  �

Note that any wDCJ can act on the number of cycles of 
the breakpoint graph in only three possible ways: either 
this number is increased by one (cycle split), decreased 
by one (cycle merge), or remains the same (cycle freeze). 
We now show that if a breakpoint graph only contains 

balanced cycles, then any optimal wDCJ sorting scenario 
only uses cycle splits.

Proposition 2  Let BG(g1, g2) be a breakpoint graph 
that contains balanced cycles only – in which case c = nb. 
Then wDCJ (g1, g2) = n− nb.

Proof  First note that for any two genomes g1 and g2 , 
we have wDCJ (g1, g2) ≥ n− c, because the number 
of cycles can increase by at most one after each wDCJ. 
In our case, c = nb, thus it suffices to show here that 
wDCJ (g1, g2) ≤ n− nb to conclude. We will show that 
whenever g1 �= g2, there always exists a wDCJ transform-
ing g1 into g ′

1
 such that (i)  BG(g ′

1
, g2) only contains bal-

anced cycles and (ii)  n′b = nb + 1, where n′b is the num-
ber of cycles in BG(g ′

1
, g2). For this, assume g1 �= g2  ; then 

there exists a balanced cycle C of (even) length m ≥ 4 in 
BG(g1, g2). By Lemma  1, we know there exist in C three 
consecutive edges e, f, g such that w(e)+ w(g) ≥ w(f ). Let 
e = ab, f = bc and g = cd . The wDCJ we apply is the fol-
lowing: cut ab and cd, then join ad and bc. This transforms 
C into a new cycle C ′ whose length is m− 2, and creates 
a new 2-cycle C ′′ whose endpoints are b and c. The newly 
created edge bc is assigned a weight equal to w(f), which is 
possible since by Lemma 1, w(ab)+ w(cd) ≥ w(f ). More-
over, by definition of a wDCJ, the weight of the newly cre-
ated edge ad satisfies w(ad) = w(e)+ w(g)− w(f ). Thus, 
by Lemma  1, w(ad) ≥ 0. Finally, because C and C ′′ are 
balanced, and because w1(C) = w1(C

′)+ w1(C
′′) [resp. 

w2(C) = w2(C
′)+ w2(C

′′)], necessarily C ′ is balanced too.
Thus, since such a wDCJ keeps all the cycles balanced 

while increasing the number of cycles by one, we can 
apply it iteratively until we reach the point where all 
cycles are of length 2, i.e. the two genomes are equal. 
This shows that wDCJ (g1, g2) ≤ n− nb, and the result is 
proved.�  �

In the following, we are interested in the sequences of 
two wDCJ formed by a cycle split s directly followed by a 
cycle merge m, to the exception of df-sequences (for dou-
ble-freeze), which is the special case where s is applied on 
a cycle C (forming cycles Ca and Cb) and m merges back 
Ca and Cb to give a new cycle C ′ built on the same set of 
vertices as C. The name derives from the fact that a df-
sequence acts as a freeze, except that it can involve up to 
four edges in the cycle, as opposed to only two edges for 
a freeze.

Proposition 3  In a wDCJ sorting scenario, if there 
is a sequence of two operations formed by a cycle split s 
directly followed by a cycle merge m that is not a df-
sequence, then there exists a wDCJ sorting scenario of 
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same length where s and m are replaced by a cycle merge 
m′ followed by a cycle split s′.

Proof  Let s and m be two consecutive wDCJ in a sort-
ing scenario that do not form a df-sequence, where s 
is a split, m is a merge, and s is applied before m. Let 
also G (resp. G′) be the breakpoint graph before s (resp. 
after m) is applied. We will show that there always exist 
two wDCJ m′ and s′, such that (i) m′ is a cycle merge, 
(ii)  s′ is a cycle split and (iii)  starting from G, apply-
ing m′ then s′ gives G′. First, if none of the two cycles 
produced by s is used by m, then the two wDCJ are 
independent, and it suffices to set m′ = m and s′ = s to 
conclude.

Now suppose one of the two cycles produced by s 
is involved in m. Let C1 denote the cycle on which s is 
applied, and let us assume s cuts ab and cd, of respec-
tive weights w1 and w2, and joins ac and bd, of respec-
tive weights w′

1
 and w′

2
 — thus w1 + w2 = w′

1
+ w′

2
  (a). 

We will denote by Ca (resp. Cb) the two cycles obtained 
by s from C1  ; see Fig.   1 for an illustration. Now let 
us consider m. Wlog, let us suppose that m acts on 
Cb and another cycle C2 �= Ca (since df-sequences are 
excluded), in order to produce cycle C3. It is easy to see 
that if m cuts an edge different from bd in Cb, then s and 
m are two independent wDCJ, and thus can be safely 
swapped. Thus we now assume that m cuts bd. Suppose 
the edge that is cut in C2 is ef, of weight w3, and that 
the joins are edges bf and de, of respective weights w′

3
 

and w′
4
. We thus have w′

3
+ w′

4
= w′

2
+ w3 (b). Moreover, 

adding (a) and (b) gives w1 + w2 + w3 = w′
1
+ w′

3
+ w′

4
 

(c). Now let us show that there exists a scenario that 
allows to obtain Ca and C3 from C1 and C2, which begins 
by a merge followed by a split. For this, we consider two 
cases:

• • w1 + w3 ≥ w′
3
 [see Fig.  1(i)]: m′ consists in cutting 

ab from C1 and ef from C2, then forming ae and 
bf, so as to obtain a unique cycle C. Note that C 
now contains edges cd (of weight w2), bf (of weight 
w′
3
 ) and ae (of weight w1 + w3 − w′

3
, which is non 

negative by hypothesis). Then, s′ is defined as 
follows: cut ae and cd, form edges ac, de. Finally, 
note that assigning w′

1
 to ac and w′

4
 to de is possible, 

since ae is of weight w1 + w3 − w′
3
, cd is of weight 

w2, and since w1 + w3 − w′
3
+ w2 = w′

1
+ w′

4
 by (c).

• • w1 + w3 < w′
3
 [see Fig.  1(ii)]. Consider the fol-

lowing merge m′: cut edges cd and ef, and form 
the edges de of weight w′

4
, and cf of weight 

w = w2 + w3 − w′
4
. This merge is feasible because 

w ≥ 0: indeed, by hypothesis w1 + w3 < w′
3
, i.e. 

w1 + w2 + w3 < w2 + w′
3
, which by (c) implies 

w′
1
+ w′

4
< w2. Thus w′

4
< w2, and consequently 

w > w3 ≥ 0. Now let s′ be as follows: cut ab (of 
weight w1) and cf (of weight w = w2 + w3 − w′

4
 ) 

to form edges ac and bf of respective weights 
w′
1
 and w′

3
. Note that s′ is always feasible since 

w1 + w = w1 + w2 + w3 − w′
4
= w′

1
+ w′

3
 by (c).

In all cases, it is always possible to obtain G′, starting 
from G, using a merge m′ followed by a split s′, rather 
than s followed by m, and the result is proved.�  �

Fig. 1  Two different scenarios that lead to G′ starting from G: (downward) a split s followed by a merge m ; (rightward) a merge m′ followed by a split 
s
′
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Proposition 4  In an optimal wDCJ sorting scenario, no 
cycle freeze or df-sequence occurs.

Proof  Suppose a wDCJ sorting scenario contains at least 
one cycle freeze or df-sequence, and let us consider the last 
such event f that appears in it. We will show that there also 
exists a sorting scenario that does not contain f, and whose 
length is decreased by at least one. For this, note that the 
sequence of wDCJ that follow f, say S, is only composed of 
cycle splits and merges which do not form df-sequences. 
By Proposition 3, in S any split that precedes a merge can 
be replaced by a merge that precedes a split, in such a way 
that the new scenario is a sorting one, and of same length. 
By iterating this process, we end up with a sequence S ′ in 
which, after f, we operate a series M of merges, followed by 
a series S of splits. Let GM be the breakpoint graph obtained 
after all M merges are applied. If a cycle was unbalanced 
in GM, any split would leave at least one unbalanced cycle, 
and it would be impossible to finish the sorting by apply-
ing the splits in S. Thus GM must contain only balanced 
cycles. Recall that f acts inside a given cycle C, while main-
taining its imbalance I(C) unchanged. C may be iteratively 
merged with other cycles during M, but we know that, in 
GM , the cycle C ′ that finally “contains” C is balanced. Thus, 
if we remove f from the scenario, the breakpoint graph G′

M 
we obtain only differs from GM by the fact that C ′ is now 
replaced by another cycle C ′′, which contains the same ver-
tices and is balanced. However, by Proposition 2, we know 
that G′

M can be optimally sorted using the same number of 
splits as GM, which allows us to conclude that there exists a 
shorter sorting scenario that does not use f.� �

Proposition 5  Any wDCJ sorting scenario can be trans-
formed into another wDCJ sorting scenario of same or 
shorter length, and in which any cycle merge occurs before 
any cycle split.

Proof  By Proposition  4, we can transform any sorting 
scenario into one of same or shorter length that contains 
no cycle freeze nor df-sequence. Moreover, by Propo-
sition  3, if there exist two consecutive wDCJ which are 
respectively a cycle split and a cycle merge, they can be 
replaced by a cycle merge followed by a cycle split, lead-
ing to a scenario that remains sorting and of same length. 
Thus, it is possible to iterate such an operation until no 
cycle split is directly followed by a cycle merge, i.e. all 
merges are performed before all splits.� �

Proposition 6  In an optimal wDCJ sorting scenario, no 
balanced cycle is ever merged.

Proof  We know that no optimal wDCJ scenario con-
tains a cycle freeze or a df-sequence (Proposition 4). We 

also can assume that the scenario is such that all merges 
appear before all splits (Proposition  5). Let M (resp. S) 
be the sequence of merges (resp. splits) in this scenario. 
Let us suppose that at least one balanced cycle is merged 
in this scenario, and let us observe the last such merge 
m. Among the two cycles that are merged during m, 
at least one, say C1, is balanced. Let us call C ′

1
 the cycle 

that “contains” C1 after M is applied, and let GM be the 
breakpoint graph obtained after M is applied. We know 
that GM only contains balanced cycles, as no split can 
generate two balanced cycles from an unbalanced one. 
In particular, C ′

1
 is balanced. Let c denote the number 

of cycles in GM. We know by Proposition 2 that it takes 
exactly n− c wDCJ to sort GM, leading to a scenario of 
length l = |M| + n− c. Now, if we remove m from M 
and look at the graph G′

M obtained after all merges are 
applied, G′

M contains the same cycles as GM, except that 
C ′
1
 is now “replaced” by two balanced cycles C ′′

1
 and C1, 

where the vertices of C ′
1
 are the same as the ones from C ′′

1
 

and C1. Thus, by Proposition 2, it takes exactly n− (c + 1) 
wDCJ to sort G′

M, which leads to a scenario of length 
l′ = |M| − 1+ n− (c + 1) = l − 2 and contradicts the 
optimality of the initial scenario. Hence m does not hap-
pen in an optimal wDCJ sorting scenario, and the propo-
sition is proved.�  �

Based on the above results, we are now able to derive 
a formula for the wDCJ distance, which is somewhat 
similar to the “classical” DCJ distance formula [5].

Theorem  7  Let BG(g1, g2) be the breakpoint graph of 
two genomes g1 and g2, and let c be the number of cycles 
in BG(g1, g2). Then wDCJ (g1, g2) = n− c + 2m, where m 
is the minimum number of cycle merges needed to obtain 
a set of balanced cycles from the unbalanced cycles of 
BG(g1, g2).

Proof  By the previous study, we know that there exists 
an optimal wDCJ scenario without cycle freezes or df-
sequences, and in which merges occur before splits 
(Propositions 4,  5). We also know that before the splits 
start, the graph GM we obtain is a collection of balanced 
cycles, and that the split sequence that follows is optimal 
and only creates balanced cycles (Proposition 2). Thus the 
optimal distance is obtained when the merges are as few 
as possible. By Proposition 6, we know that no balanced 
cycle is ever used in a cycle merge in an optimal scenario. 
Hence an optimal sequence of merges consists in creating 
balanced cycles from the unbalanced cycles of BG(g1, g2) 
only, using a minimum number m of merges. Alto-
gether, we have (i)  m merges that lead to c −m cycles, 
then (ii) n− (c −m) splits by Proposition  2. Hence the  
result.�  �
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Algorithmic aspects of wDCJ‑dist
Based on the properties of a(n optimal) wDCJ sorting sce-
nario given in “Main properties of sorting by wDCJ’’, we 
are now able to provide algorithmic results concerning 
the wDCJ-dist problem.

Complexity of wDCJ‑dist
The computational complexity of wDCJ-dist is given 
by the following theorem. As there are numerical values 
in the input of wDCJ-dist, the complexity has to be 
established in a weak or strong form, i.e. considering 
numbers in the input in binary or unary notation.

Theorem  8  The wDCJ-dist problem is strongly NP- 
complete.

Proof  The proof is by reduction from the strongly NP-
complete 3-Partition problem  [11], whose instance 
is a multiset A = {a1, a2 . . . a3n} of 3n positive integers 
such that (i) 

∑3n
i=1 ai = B · n and (ii)  B

4
< ai <

B
2
 for any 

1 ≤ i ≤ 3n, and where the question is whether one can 
partition A into n multisets A1 . . .An, such that for each 
1 ≤ i ≤ n, 

∑
aj∈Ai

aj = B. Given any instance A of 3-Par-
tition, we construct two genomes g1 and g2 as follows: 
g1 and g2 are built on a vertex set V of cardinality 8n, and 
consist of the same perfect matching. Thus BG(g1, g2) 
is composed of 4n trivial cycles, that is cycles of length 2, 
say C1,C2 . . .C4n. The only difference between g1 and g2 
thus lies on the weights of their edges. For any 1 ≤ i ≤ 4n,  
let e1i  (resp. e2i ) be the edge from Ci that belongs to g1 
(resp. g2). The weight we give to each edge is the follow-
ing: for any 1 ≤ i ≤ 3n, w(e1i ) = ai and w(e2i ) = 0; for any 
3n+ 1 ≤ i ≤ 4n, w(e1i ) = 0 and w(e2i ) = B. As a conse-
quence, the imbalance of each cycle is I(Ci) = ai for any 
1 ≤ i ≤ 3n, and I(Ci) = −B for any 3n+ 1 ≤ i ≤ 4n. Now 
we will prove the following equivalence: 3-Partition is 
satisfied iff wDCJ (g1, g2) ≤ 6n.
(⇒) Suppose there exists a partition A1 . . .An of A such 

that for each 1 ≤ i ≤ n, 
∑

aj∈Ai
aj = B. For any 1 ≤ i ≤ n , 

let Ai = {ai1 , ai2 , ai3}. Then, for any 1 ≤ i ≤ n, we merge 
cycles Ci1, Ci2 and Ci3, then apply a third merge with C3n+i.  
For each 1 ≤ i ≤ n, these three merges lead to a bal-
anced cycle, since after the two first merges, the obtained 
weight is ai1 + ai2 + ai3 = B. After these 3n merges (in 
total) have been applied, we obtain n balanced cycles, 
from which 4n− n = 3n splits suffice to end the sorting, 
as stated by Proposition 2. Thus, altogether we have used 
6n wDCJ, and consequently wDCJ (g1, g2) ≤ 6n.
(⇐) Suppose that wDCJ (g1, g2) ≤ 6n. Recall that in 

the breakpoint graph BG(g1, g2), we have c = 4n cycles 
and 8n vertices. Thus, by Theorem  7, we know that 
wDCJ (g1, g2) = 4n− 4n+ 2m = 2m, where m is the 
smallest number of merges that are necessary to obtain 

a set of balanced cycles from BG(g1, g2). Since we sup-
pose wDCJ (g1, g2) ≤ 6n, we conclude that m ≤ 3n. Oth-
erwise stated, the number of balanced cycles we obtain 
after the merges cannot be less than n, because we start 
with 4n cycles and apply at most 3n merges. However, 
at least four cycles from C1,C2 . . .C4n must be merged 
in order to obtain a single balanced cycle: at least three 
from C1,C2 . . .C3n (since any ai satisfies B

4
< ai <

B
2
 by 

definition), and at least one from C3n+1,C3n+2 . . .C4n (in 
order to end up with an imbalance equal to zero). Thus 
any balanced cycle is obtained using exactly four cycles 
(and thus three merges), which in turn implies that there 
exists a way to partition the multiset A into A1 . . .An 
in such a way that for any 1 ≤ i ≤ n, (

∑
aj∈Ai

)− B = 0,  
which positively answers the 3-Partition problem. � �

Approximating wDCJ‑dist
Since wDCJ-dist is NP-complete, we now look for algo-
rithms that approximately compute the wDCJ distance. 
We first begin by the following discussion: let g1 and g2 be 
two evenly weighted genomes, where Cu = {C1,C2 . . .Cnu} 
is the set of unbalanced cycles in BG(g1, g2). It can be seen 
that any optimal solution for wDCJ-dist will be obtained 
by merging a maximum number of pairs of cycles {Ci,Cj} 
from Cu such that I(Ci)+ I(Cj) = 0, because each such pair 
represents two unbalanced cycles that become balanced 
when merged. Let S2 = {Ci1 ,Ci2 . . .Cin2

} be a maximum 
cardinality subset of Cu such that I(Cij )+ I(Cij+1

) = 0 for 
any odd j, 1 ≤ j < n2: S2 thus contains a maximum num-
ber of cycles that become balanced when merged by pairs. 
Note that S2 can be easily computed by a greedy algorithm 
that iteratively searches for a number and its opposite 
among the imbalances in Cu. Now, C′u = Cu \ S2 needs to 
be considered. It would be tempting to go one step further 
by trying to extract from C′u a maximum number of triplets 
of cycles whose imbalances sum to zero. This leads us to 
define the following problem:

Max‑Zero‑Sum‑Triplets (MZS3)
Instance: A multiset P = {p1, p2 . . . pn} of numbers 
pi ∈ Z

∗ such that for any 1 ≤ i, j ≤ n, pi + pj �= 0.
Output: A maximum cardinality set P ′ of non intersect-
ing triplets from P, such that each sums to zero.

Note that the multiset P in the definition of MZS3 cor-
responds to the multiset of imbalances of C′u in wDCJ-
dist. The next two propositions (Propositions  9,   10) 
consider resp. the computational complexity and approx-
imability of MZS3. The latter will be helpful for devising 
an approximation algorithm for wDCJ-dist, as shown in 
Theorem 11 below.

Proposition 9  The MZS3 problem is strongly NP- 
complete.
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Proof  The proof is by reduction from Numerical 
3-Dimensional Matching (or N3DM), a decision prob-
lem defined as follows: given three multisets of posi-
tive integers W,  X and Y containing m elements each, 
and a positive integer b, does there exist a set of triplets 
T ⊆ W × X × Y  in which every integer from W,  X,  Y 
appears in exactly one triplet from T, and such that for 
every triplet {w, x, y} ∈ T , w + x + y = b? The N3DM 
problem has been proved to be strongly NP-complete 
in [11]. Note that, in addition, we can always assume that 
any element s in W, X or Y satisfies s < b, otherwise the 
answer to N3DM is clearly negative.

Given a set S of integers and an integer p, we denote 
by S + p (resp. S − p) the set containing all ele-
ments of S to which p has been added (resp. sub-
tracted). Given any instance I = {W ,X ,Y , b} of 
N3DM, we construct the following instance of MZS3: 
I ′ = P = (W + b) ∪ (X + 3b) ∪ (Y − 5b). Note that P 
contains n = 3m elements that all strictly lie between 
−5b and 4b  ; thus the input size of I ′ does not exceed a 
constant times the input size of I. Note also that no two 
elements s, t ∈ P are such that s + t = 0, because each 
negative (resp. positive) element in P is strictly less than 
−4b (resp. than 4b).

We now claim that the answer to N3DM on I is positive 
iff MZS3 outputs exactly m = n

3
 independent triplets, 

each summing to zero.
(⇒) Suppose the answer to N3DM on I is positive, and let 

T be the output set. The answer to MZS3 is constructed as 
follows: for any triplet {w, x, y} that sums to zero in T, add 
{w + b, x + 3b, y− 5b} to P ′. Since T covers all elements 
from W,  X and Y exactly once, then P ′ contains exactly 
m = n

3
 non intersecting triplets. Besides, each triplet sums 

to (w + b)+ (x + 3b)+ (y− 5b) = (x + y+ w)− b = 0 
since x + y+ w = b by assumption.

(⇐) Suppose there exist n
3
 non intersecting triplets 

{fi, gi, hi} in P, 1 ≤ i ≤ n
3
 such that fi + gi + hi = 0. Our 

goal is to show that (wlog) fi ∈ W + b, gi ∈ X + 3b and 
hi ∈ Y − 5b. As mentioned above, we can assume that 
any element in W, X, Y strictly lies between 0 and b. Thus 
we have the following set of inequalities:

• • any element w ∈ (W + b) satisfies b < w < 2b

• • any element x ∈ (X + 3b) satisfies 3b < x < 4b

• • any element y ∈ (Y − 5b) satisfies −5b < y < −4b

It can be seen from the above inequalities that any tri-
plet that sums to zero must take one value in each of 
the sets (W + b), (X + 3b) and (Y − 5b) (otherwise 
the sum is either strictly negative or strictly positive). 
Thus, for each {fi, gi, hi} returned by MZS3, we add 
{f ′i , g ′i , h′i} = {(fi − b), (gi − 3b), (hi + 5b)} to T. We now 
claim that T is a positive solution to N3DM: each triplet 

{f ′i , g ′i , h′i} is taken from W × X × Y , T covers each ele-
ment of W, X and Y exactly once, and for any 1 ≤ i ≤ n

3
 , 

f ′i + g ′i + h′i = b since fi + gi + hi = 0.� �

Proposition 10  The MZS3 problem is 1
3
-approximable.

Proof  The approximation algorithm we provide here is a 
simple greedy algorithm we will call A, which repeats the 
following computation until P is empty: for each num-
ber x in P, find two numbers y and z in P \ {x} such that 
y+ z = −x. If such numbers exist, add triplet {x, y, z} to 
the output set P ′ and remove x, y and z from P; otherwise 
remove x from P. We claim that A approximates MZS3 
within a ratio of 1

3
. For this, consider an optimal solu-

tion, say Opt={t1, t2 . . . tm} consisting of m independent 
triplets from P such that each sums to zero, and let us 
compare it to a solution Sol = {s1, s2 . . . sk} returned by 
A. First, note that any ti, 1 ≤ i ≤ m necessarily intersects 
with an sj, 1 ≤ j ≤ m, otherwise ti would have been found 
by A, a contradiction. Moreover, any element of a triplet 
ti from Opt is present in at most one triplet from Sol. 
Now, it is easy to see that necessarily m ≤ 3k, since for 
any 1 ≤ i ≤ m, the three elements of a ti intersect with at 
least one and at most three different sjs. Thus A achieves 
the sought approximation ratio of 1

3
.� �

Theorem 11  The w problem is DCJ-dist4
3
-approximable.

Proof  Our approximation algorithm A′ considers the 
set Cu of unbalanced cycles and does the following: 
(a)  find a maximum number of pairs of cycles whose 
imbalances sum to zero, and merge them by pairs, 
(b) among the remaining unbalanced cycles, find a max-
imum number of triplets of cycles whose imbalances 
sum to zero and merge them three by three, (c) merge 
the remaining unbalanced cycles into a unique (bal-
anced) cycle. Once this is done, all cycles are balanced, 
and we know there exists an optimal way to obtain n 
balanced trivial cycles from this point (see Proposi-
tion  2). We note n2 (resp. n3) the number of cycles 
involved in the pairs (resp. triplets) of (a) [resp. (b)]. As 
previously discussed, n2 can easily be computed, and 
n3 is obtained by solving MZS3. We know that MZS3 
is NP-complete (Proposition  9), and more importantly 
that MZS3 is 1

3
-approximable (Proposition 10) ; in other 

words, step (b) of algorithm A′ finds n′
3
≥ n3

3
 (otherwise 

stated, n′
3
= n3

3
+ x with x ≥ 0 ) cycles that become bal-

anced when merged by triplets. We will show in the rest 
of the proof that A′ approximates wDCJ (g1, g2) within 
ratio 4

3
.

First let us estimate the number mA′ of 
merges operated by A′. It can be seen that 
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mA′ = n2
2
+ 2n3

9
+ 2x

3
+ (nu − n2 − (

n3
3
+ x)− 1) , and  

that after these merges have been done, we are left 
with c′ = nb + n2

2
+ n3

9
+ x

3
+ 1 balanced cycles. 

Thus, by Proposition  2, the number of splits sA′ 
that follow satisfies sA′ = n− c′, and the total num-
ber of wDCJ operated by A′, say dcjA′, satisfies 
dcjA′ = mA′ + sA′ = n− nb + n3

9
+ x

3
+ (nu − n2 − n3

3
 

 −x − 2) . In other words, since x ≥ 0, we have that 
dcjA′ ≤ n− nb + nu − n2 − 2n3

9
 [inequality  (I1)]. Now 

let us observe an optimal sorting scenario of length 
wDCJ (g1, g2), which, as we know by the results in “Main 
properties of sorting by wDCJ’’, can be assumed to con-
tain mopt merges followed by sopt splits. In any optimal 
scenario, the best case is when all of the n2 cycles are 
merged by pairs, all of the n3 cycles are merged by tri-
plets, and the rest is merged four by four, which leads to 
mopt ≥ n2

2
+ 2n3

3
+ 3(nu−n2−n3)

4
. In that case, we obtain 

c′opt ≤ nb + n2
2
+ n3

3
+ nu−n2−n3

4
 balanced cycles, lead-

ing to sopt = n− c′opt ≥ n− nb − n2
2
− n3

3
− nu−n2−n3

4
 

subsequent splits. Altogether, we conclude that 
wDCJ (g1, g2) = mopt + sopt ≥ n− nb + n3

3
+ nu−n2−n3

2
  , 

that is wDCJ (g1, g2) ≥ n− nb + nu
2
− n2

2
− n3

6
 

[inequality (I2)].
Our goal is now to show that dcjA′ ≤ 4

3
· wDCJ (g1, g2) . 

For this, it suffices to show that 4 · wDCJ (g1, g2)

−3 · dcjA′ ≥ 0. Because of inequalities  (I1) and  (I2)  
above, 4 · wDCJ (g1, g2)− 3 · dcjA′ ≥ 0 is satisfied  
whenever S ≥ 0, where S = 4 · (n− nb + nu

2
− n2

2
− n3

6
)

−3 · (n− nb + nu − n2 − 2n3
9
). It can be easily seen 

that S = n− nb − nu + n2. Note that we always have 
n ≥ nb + nu since n is the maximum possible number of 
cycles in BG(g1, g2)  ; besides, n2 ≥ 0 by definition. Thus 
we conclude that S ≥ 0, which in turn guarantees that our 
algorithm A′ approximates wDCJ-dist within the sought 
ratio of 4

3
.� �

FPT issues concerning wDCJ‑dist
Recall first that by Theorem  7, for any genomes g1 and 
g2 , wDCJ (g1, g2) = n− c + 2m, where m is the minimum 
number of cycle merges needed to obtain a set of 
balanced cycles from the unbalanced cycles of BG(g1, g2) . 
The NP-completeness of wDCJ-dist thus comes from 
the fact that computing m is hard, since n and c can be 
computed polynomially from g1 and g2. Computing m is 
actually closely related to the following problem:

Max‑Zero‑Sum‑Partition (MZSP)
Instance: A multiset S = {s1, s2 . . . sn} of numbers si ∈ Z

∗ 
s.t. 

∑n
i=1 si = 0.

Output: A maximum cardinality partition {S1, S2 . . . Sp} 
of S such that 

∑
sj∈Si sj = 0 for every 1 ≤ i ≤ p.

Indeed, let Cu = {C1,C2 . . .Cnu} be the set of 
unbalanced cycles in BG(g1, g2). If S represents the 

multiset of imbalances of cycles in Cu, then the parti-
tion {S1, S2 . . . Sp} of S returned by MZSP implies that 
for every 1 ≤ i ≤ p, |Si| − 1 cycles merges will be oper-
ated in order to end up with p balanced cycles. Thus, a 
total of 

∑p
i=1

(|Si| − 1) = nu − p merges will be used. 
In other words, the minimum number of cycle merges m 
in the expression wDCJ (g1, g2) = n− c + 2m satisfies 
m = nu − p, where p is the number of subsets of S returned 
by MZSP. Note that MZSP is clearly NP-hard, since other-
wise we could compute wDCJ (g1, g2) = n− c + 2(nu − p) 
in polynomial-time, a contradiction to Theorem 8.

A classical parameter to consider when studying FPT 
issues for a given minimization problem is the “size of the 
solution”. In our case, it is thus legitimate to ask whether 
wDCJ-dist is FPT in wDCJ (g1, g2). However, it can be 
seen that wDCJ (g1, g2) ≥ m since n− c is always positive, 
and that m ≥ nu

2
 since all cycles in Cu are unbalanced 

and it takes at least two unbalanced cycles (thus at least 
one merge) to create a balanced one. Thus, proving that 
wDCJ-dist is FPT in nu, as done in Theorem 12 below, 
comes as a stronger result.

Theorem 12  The wDCJ-dist problem can be solved in 
O∗(3nu), where nu is the number of unbalanced cycles in 
BG(g1, g2).

Proof  By Theorem  7 and the above discussion, it suf-
fices to show that MZSP is FPT in n = |S|, and more 
precisely can be solved in O∗(3n), to conclude. Indeed, 
if this is the case, then replacing S by the multiset of 
imbalances of cycles in Cu in  MZSP (thus with n = nu) 
allows us to compute m, and thus wDCJ (g1, g2), in time 
O∗(3nu). Note first that MZSP is clearly FPT in n, just by 
brute-force generating all possible partitions of S, testing 
whether it is a valid solution for MZSP, and keeping one 
of maximum cardinality among these. The fact that the 
complexity of the problem can be reduced to O∗(3n) is 
by adapting the Held-Karp Dynamic Programming algo-
rithm [12, 13], which we briefly describe here. The main 
idea is to fill a dynamic programming table D(T, U), for 
any non-intersecting subsets T and U of S, where D(T, U) 
is defined as the maximum number of subsets summing 
to zero in a partition of T ∪ U , with the additional con-
straint that all elements of T belong to the same subset. 
The number p that corresponds to a solution of MZSP is 
thus given by D(∅,S). For any nonempty subset X ⊆ S, 
we let s(X) =

∑
si∈X si. Table D is initialized as follows: 

D(∅, ∅) = 0, D(T , ∅) = −∞ for any T �= ∅ such that 
s(T ) �= 0, and D(T ,U) = 1+ D(∅,U) for any T �= ∅ such 
that s(T ) = 0. Finally, the main rule for filling D is

D(T ,U) = max
u∈U

D(T ∪ {u},U \ {u})
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It can be seen that computing any entry in table D is 
achievable in polynomial time, and that the number 
of entries is 3n. Indeed, any given element of S appears 
either in T, in U, or in S \ (T ∪ U): this can be seen as a 
partition of S into three subsets, and 3n such partitions 
exist. Altogether, we have that p is computable in O∗(3n) 
– and this is also the case for the corresponding partition 
{S1, S2 . . . Sp} of S, that can be retrieved by a backward 
search in D.� �

An integer linear programming for solving wDCJ‑dist
The ILP we propose here actually consists in solving 
the MZSP problem. Once this is done, the number p of 
sets in the output partition is easily retrieved, as well as 
wDCJ (g1, g2) since wDCJ (g1, g2) = n− c + 2(nu − p), as 
discussed before Theorem 12. We also recall that p ≤ nu

2
 , 

since it takes at least two unbalanced cycles to create a 
balanced one.

Our ILP formulation is given in Fig.   2 and described 
hereafter: we first define binary variables xi,j, for 
1 ≤ i ≤ nu and 1 ≤ j ≤ nu

2
, that will be set to 1 if the 

unbalanced cycle Ci ∈ Cu belongs to subset Cj, and 
0 otherwise. The binary variables pi, 1 ≤ i ≤ nu

2
, will 

simply indicate whether Ci is “used” in the solution, i.e 
pi = 1 if Ci �= ∅, and 0 otherwise. In our ILP formulation, 
(2) ensures that each unbalanced cycle is assigned to 
exactly one subset Ci; (3) requires that the sum of the 
imbalances of the cycles from Ci is equal to zero. Finally, 
(4) ensures that a subset Ci is marked as unused if no 
unbalanced cycle has been assigned to it. Moreover, since 
the objective is to maximize the number of non-empty 
subsets, pi will necessarily be set to 1 whenever Ci �= ∅. 
Note that the size of the above ILP depends only on nu, as 
it contains �(n2u) variables and �(nu) constraints.

A probabilistic model of evolution by wDCJ
In this section, we define a model of evolution by wDCJ, 
in order to derive theoretical and empirical bounds for 
the parameter nu on which both the FPT and ILP algo-
rithms depend. The model is a Markov chain on all 

weighted genomes (that is, all weighted perfect match-
ings) on 2n vertices. Transitions are wDCJ, such that 
from one state, two distinct edges ab and cd are chosen 
uniformly at random, and replaced by either ac and bd 
or by ad and cb (with probability 0.5 each). Weights of 
the new edges are computed by drawing two numbers 
x and y uniformly at random in respectively [0,  w(ab)] 
and [0,  w(cd)], and assigning x + y to one edge, and 
w(ab)+ w(cd)− x − y to the other (with probability 0.5 
each).

Proposition 13  The equilibrium distribution of this 
Markov chain is such that a genome has a probability 
proportional to the product of the weights on its edges.

Proof  Define � as the probability distribution over the 
space of all genomes, such that for a genome g, �(g) is 
proportional to �e∈E(g)w(e). Let P(g1, g2) be the transi-
tion probability in the Markov chain between weighted 
genomes g1 and g2. We have that P(g1, g2) = 0 unless 
g1 and g2 differ only by two edges, say ab and cd in 
g1 and ac and bd in g2. In that case, suppose wlog that 
w(ab) < w(cd) and that w(ac) = x + y, where x and y are 
the numbers drawn by the model. We have two cases. 
If w(ac) < w(ab), then P(g1, g2) ∼ w(ac)/(w(ab)w(cd)) 
because there are exactly w(ac) combinations of x and 
y which can transform g1 into g2, over a total num-
ber of possibilities (w(ab)w(cd)); by the same reason-
ing, P(g2, g1) ∼ 1/w(cd), and if w(ac) > w(ab), then 
P(g1, g2) ∼ 1/w(bd) and P(g2, g1) ∼ w(ab)/(w(ac)w(bd)) . 
In all cases, �(g1)P(g1, g2) = �(g2)P(g2, g1), hence � is 
the equilibrium distribution of the Markov chain.� �

As a consequence, the weight distributions follow 
a symmetric Dirichlet law with parameter α = 2. It is 
possible to draw a genome at random in the equilibrium 
distribution by drawing a perfect matching uniformly at 
random and distributing its weights with a Gamma law of 
parameters 1 and 2.

We first prove a theoretical bound on the number of 
expected unbalanced cycles, and then show by simula-
tions that this number probably stays far under this theo-
retical bound on evolutionary experiments.

Theorem  14  Given a weighted genome g1 with nedges, 
if k random wDCJ are applied tog1 to give a weighted 
genome g2, then the expected number of unbalanced cycles 
in BG(g1, g2) satisfies E(nu) = O(k/

√
n).

Proof  In this proof, for simplicity, let us redefine the size 
of a cycle as half the number of its edges. Let n+u  (resp. n−u  ) 
be the number of unbalanced cycles of size greater than 
or equal to (resp. strictly less than) 

√
n. We thus have Fig. 2  ILP description for the computation of parameter p
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nu = n+u + n−u . We will prove that (i)  n+u ≤ k/
√
n and 

(ii) E(n−u ) = O(k/
√
n).

First, if the breakpoint graph contains u unbalanced 
cycles of size at least s, then the number k of wDCJ is 
at least us. Indeed, by Theorem  7 the wDCJ distance 
is at least n− c + u, and as n ≥ us + (c − u), we have 
k ≥ us + (c − u)− c + u = us. As a consequence, 
k ≥ n+u ·

√
n, and (i) is proved.

Second, any unbalanced cycle of size strictly less than s 
is the product of a cycle split. Given a cycle C of size r > s 
with r �= 2s, there are r possible wDCJ which can split C 
and produce one cycle of size s. If r = 2s, there are r / 2 
possible splits which result in 2 cycles of size s. So there 
are O(sr) ways of splitting C and obtaining an unbal-
anced cycle of size less than s. If we sum over all cycles, 
this makes O(sn) ways because the sum of the sizes of all 
cycles is bounded by n. As there are O(n2) possible wDCJ 
in total, the probability to split a cycle of size r and obtain 
an unbalanced cycle of size less than s at a certain point 
of a scenario is O(s/n). If we sum over all the scenarios of 
k wDCJ, this makes an expected number of unbalanced 
cycles in O(ks/n), which implies (ii) since s <

√
n.� �

We simulated a genome evolution with n = 1000, and 
the weights on a genome drawn from the above discussed 
equilibrium distribution. Then we applied k=10,000 
wDCJ, and we measured the value of nu on the way. As 
shown in Fig.  3 (up to k = 2000 for readability), nu does 
not asymptotically grow with k (in the whole simulation a 

maximum of 13 was reached for k around 5500, while the 
mean does not grow up to k=10,000). This tends to show 
that the theoretical bound given in Theorem 14 is far from 
being reached in reality, and that parameter nu is very low 
is this model. We actually conjecture that the expected 
number E(nu) = o(n) and in particular does not depend 
on k. Nevertheless, this shows that, in practice, both the 
FPT and ILP algorithms from the previous section should 
run in reasonable time on this type of instances. As an 
illustration, we ran the ILP algorithm described in Fig.  2 
on a set of 10,000 instances generated as described above. 
For each of these instances, the execution time on a stand-
ard computer never exceeded 8 ms.

As a side remark, we note that the model presented 
here is different from the one used in Biller et al.  [3], in 
which rearrangements are drawn with a probability pro-
portional to the product of the weights of the involved 
edges. We checked that the behavior concerning nu was 
the same in both models  ; however, we were unable to 
adapt proof of Theorem 14 to that case.

Conclusion and perspectives
We made a few steps in the combinatorial study of rear-
rangement operations which depend on and affect inter-
gene sizes. We leave open many problems and extensions 
based on this study. First, we would like to raise the two 
following algorithmic questions: is wDCJ-dist APX-
hard? Can we improve the O∗(3nu) time complexity to 
solve wDCJ-dist? Second, the applicability of our model 
to biological data lacks additional flexibility, thus we sug-
gest two (non exclusive) possible extensions: (a)  give 
a weight to every wDCJ, e.g. a function of the weights 
of the involved edges; (b) instead of assuming that the 
total intergene size is conservative (which is not the case 
in biological data), consider a model in which intergene 
size may be altered by deletions, insertions and duplica-
tions—note that such a study is initiated in  [9]. Third, 
generalizing the model to non co-tailed genomes (in our 
terminology, matchings that are not perfect) remains an 
open problem. It is clearly NP-complete, as it general-
izes our model, but other algorithmic questions, such as 
approximability and fixed-parameter tractability, remain 
to be answered. Statistical problems are also numer-
ous in this field. A first obvious question would be to 
improve the bound of Theorem 14, as it seems far from 
being tight when compared to simulations. Finally, we 
note that the present study compares two genomes with 
equal gene content, whereas realistic situations concern 
an arbitrary number of genomes with unequal gene con-
tent. This calls for extending the present work to more 
general models.
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