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Abstract 

Background:  Mixtures of beta distributions are a flexible tool for modeling data with values on the unit interval, such 
as methylation levels. However, maximum likelihood parameter estimation with beta distributions suffers from prob-
lems because of singularities in the log-likelihood function if some observations take the values 0 or 1.

Methods:  While ad-hoc corrections have been proposed to mitigate this problem, we propose a different approach 
to parameter estimation for beta mixtures where such problems do not arise in the first place. Our algorithm com-
bines latent variables with the method of moments instead of maximum likelihood, which has computational advan-
tages over the popular EM algorithm.

Results:  As an application, we demonstrate that methylation state classification is more accurate when using adap-
tive thresholds from beta mixtures than non-adaptive thresholds on observed methylation levels. We also demon-
strate that we can accurately infer the number of mixture components.

Conclusions:  The hybrid algorithm between likelihood-based component un-mixing and moment-based param-
eter estimation is a robust and efficient method for beta mixture estimation. We provide an implementation of the 
method (“betamix”) as open source software under the MIT license.
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Background
The beta distribution is a continuous probability distri-
bution that takes values in the unit interval [0, 1]. It has 
been used in several bioinformatics applications [1] to 
model data that naturally takes values between 0 and 1, 
such as relative frequencies, probabilities, absolute cor-
relation coefficients, or DNA methylation levels of CpG 
dinucleotides or longer genomic regions. One of the most 
prominent applications is the estimation of false discov-
ery rates (FDRs) from p-value distributions after multiple 
tests by fitting a beta-uniform mixture (BUM, [2]). By lin-
ear scaling, beta distributions can be used to model any 
quantity that takes values in a finite interval [L,U ] ⊂ R.

The beta distribution has two parameters α > 0 and 
β > 0 and can take a variety of shapes depending on 
whether 0 < α < 1 or α = 1 or α > 1 and 0 < β < 1 or 
β = 1 or β > 1; see Fig.   1. The beta probability density 
on [0, 1] is

and Ŵ refers to the gamma function 
Ŵ(z) =

∫∞
0 xz−1 e−x dx with Ŵ(n) = (n− 1)! for positive 

integers  n. It can be verified that 
∫ 1
0 bα,β(x) dx = 1. For 

α = β = 1, we obtain the uniform distribution. Section 
“Preliminaries: Beta distributions” has more details.

(1)

bα,β(x) =
1

B(α,β)
· xα−1 · (1− x)β−1

,

where B(α,β) =
Ŵ(α)Ŵ(β)

Ŵ(α + β)
,
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While a single beta distribution can take a variety of 
shapes, mixtures of beta distributions are even more flex-
ible. Such a mixture has the general form

where c is the number of components, the πj are called 
mixture coefficients satisfying 

∑

j πj = 1 and πj ≥ 0, and 
the αj ,βj are called component parameters. Together, we 
refer to all of these as model parameters and abbreviate 
them as θ. The number of components c is often assumed 
to be a given constant and not part of the parameters to 
be estimated.

The parameter estimation problem consists of esti-
mating θ from n  usually independent observed samples 
(x1, . . . , xn) such that the observations are well explained 
by the resulting distribution.

Maximum likelihood (ML) estimation (MLE) is a fre-
quently used paradigm, consisting of the following opti-
mization problem.

(2)fθ (x) =

c
∑

j=1

πj · bαj ,βj (x) ,

(3)

Given (x1, . . . , xn), maximize L(θ) :=

n
∏

i=1

fθ (xi),

or equivalently, L(θ) :=

n
∑

i=1

ln fθ (xi).

As we show below in “Preliminaries: Maximum likeli-
hood estimation for Beta distributions”, MLE has sig-
nificant disadvantages for beta distributions. The main 
problem is that the likelihood function is not finite (for 
almost all parameter values) if any of the observed data-
points are xi = 0 or xi = 1.

For mixture distributions, MLE frequently results in a 
non-concave problem with many local maxima, and one 
uses heuristics that return a local optimum from given 
starting parameters. A popular and successful method 
for parameter optimization in mixtures is the expectation 
maximization (EM) algorithm [3] that iteratively solves 
an (easier) ML problem on each estimated component 
and then re-estimates which datapoints belong to which 
component. We review the basic EM algorithm below in 
the Section “Preliminaries: The EM algorithm for beta 
mixture distributions”.

Because already MLE for a single beta distribution is 
problematic, EM does not work for beta mixtures, unless 
ad-hoc corrections are made. We therefore propose a 
new algorithm for parameter estimation in beta mixtures 
that we call iterated method of moments. The method is 
presented in below in the Section “The iterated method 
of moments”.

Our main motivation for this work stems from the anal-
ysis of methylation level data in differentially methylated 
regions between individuals, not cell types or conditions; 
see Section “Application: classification of methylation 

Fig. 1  Different shapes of beta distributions depending on parameters α and β
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states”. Our evaluation therefore focuses on the benefits 
of beta mixture modeling and parameter estimation 
using our algorithm for methylation state classification 
from simulated methylation level data.

Preliminaries
Beta distributions
The beta distribution with parameters α > 0 and β > 0 is 
a continuous probability distribution on the unit interval 
[0, 1] whose density is given by Eq. (1).

If X is a random variable with a beta distribution, then 
its expected value µ and variance σ 2 are

where φ = α + β is often called a precision parameter; 
large values indicate that the distribution is concentrated. 
Conversely, the parameters α and β may be expressed in 
terms of µ and σ 2: First, compute

The textbook by Karl Bury [4] has more details about 
moments and other properties of beta distributions and 
other distributions used in engineering.

Maximum likelihood estimation for Beta distributions
The estimation of parameters in a parameterized distri-
bution from n  independent samples usually follows the 
maximum likelihood (ML) paradigm. If θ represents the 
parameters and fθ (x) is the probability density of a single 
observation, the goal is to find θ∗ that maximizes L(θ) as 
defined in Eq. (3).

Writing γ (y) := lnŴ(y), the beta log-likelihood is

The optimality conditions dL/dα = 0 and dL/dβ = 0 
must be solved numerically and iteratively because the 
parameters appear in the logarithm of the gamma func-
tion. In comparison to a mixture of Gaussians where 
analytical formulas exist for the ML estimators, this 
is inconvenient, but the main problem is a different 
one. The log-likelihood function is not well defined for 
α �= 1 if any of the observations are xi = 0, or for β �= 1 
if any  xi = 1. Indeed, several implementations of ML 
estimators for beta distributions (e.g. the R package 
betareg, see below) throw errors then.

(4)
µ := E[X] =

α

α + β
,

σ 2 := Var[X] =
µ(1− µ)

α + β + 1
=

µ(1− µ)

1+ φ
,

(5)

φ =
µ(1− µ)

σ 2
− 1 ; then α = µφ , β = (1− µ)φ .

(6)

L(α,β) = n(γ (α + β)− γ (α)− γ (β))+ (α − 1)

·
∑

i

ln xi + (β − 1) ·
∑

i

ln(1− xi) .

Note that, in theory, there is no problem, because 
x ∈ {0, 1} is an event of probability zero if the data are 
truly generated by a beta distribution. Real data, however, 
in particular observed methylation levels, may very well 
take these values. This article’s main motivation is the 
desire to work with observations of x = 0 and x = 1 in a 
principled way.

The above problem with MLE for beta distributions has 
been noted previously, but, to our knowledge, not explic-
itly attacked. We here discuss the work-arounds of which 
we are aware.

Reducing the interval
A typical ad-hoc solution is to linearly rescale the unit 
interval [0, 1] to a smaller sub-interval [ε, 1− ε] for some 
small ε > 0 or to simply replace values < ε by ε and val-
ues > 1− ε by 1− ε, such that, in both cases, the result-
ing adjusted observations are in [ε, 1− ε].

A simple example, which has to our knowledge not 
been presented before, will show that the resulting 
parameter estimates depend strongly on the choice of ε in 
the ML paradigm. Consider 20 observations, 10 of them 
at x = 0, the remaining ten at x = 0.01, . . . , 0.10. For dif-
ferent values of 0 < ε < 0.01, replace the ten zeros by ε 
and compute the ML estimates of α and β. We used the R 
package betareg1 [5], which performs numerical ML 
estimation of logit(µ) and ln(φ), where 
logit(µ) = ln(µ/(1− µ)). We then used Eq.  (5) to com-
pute ML estimates of α and β. We additionally used our 
iterated method of moments approach (presented in the 
remainder of this article) with the same varying ε. In con-
trast to MLE, our approach also works with ε = 0. The 
resulting estimates for α and β are shown in Fig.  2: not 
only is our approach able to directly use ε = 0; it is also 
insensitive to the choice of ε for small ε > 0.

Using a different objective function
MLE is not the only way to parameter estimation. 
A more robust way for beta distributions may be to 
consider the cumulative distribution function (cdf ) 
Fθ (x) :=

∫ x
0 fθ (y) dy and compare it with the empirical 

distribution function F̂(x), the fraction of observations 
≤ x. One can then choose the parameters θ such that a 
given distance measure between these functions, such as 
the Kolmogorov–Smirnov distance

is minimized. This optimization has to be per-
formed numerically. We are not aware of specific 

1  https://cran.r-project.org/web/packages/betareg/betareg.pdf.

(7)dKS(Fθ , F̂) := max
x

|Fθ (x)− F̂(x)|

https://cran.r-project.org/web/packages/betareg/betareg.pdf
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implementations of this method for beta distributions or 
beta mixtures. In this work, we opted for a more direct 
approach based on the density function.

Using explicit finite‑sample models
As we stated above, in theory, observations of X = 0 or 
X = 1 happen with probability zero if X has a continu-
ous beta distribution. These observations do happen in 
reality because either the beta assumption is wrong, or 
we neglected the fact that the observation comes from 
a finite-precision observation. For methylation level 
data, the following model may be a more accurate rep-
resentation of the data: To obtain a given datapoint xi, 
first choose the true methylation level pi from the beta 
distribution with parameters α,β. Then choose the 
observation xi from the binomial distribution with suc-
cess probability pi and sample size ni. The parameter ni 
controls the granularity of the observation, and it may be 
different for each  i. In our application setting, pi would 
be the true methylation level of a specific CpG dinucleo-
tide in individual i, and xi would be the observed meth-
ylation level with sequencing coverage ni. This richer 
model captures the relationships between parameters 
and observations much better, but the estimation pro-
cess also becomes more complex, especially if the ni are 
not available.

Summary
While MLE is known to be statistically efficient for cor-
rect data, its results may be sensitive to perturbations 
of the data. For modeling with beta distributions in par-
ticular, the problems of MLE are severe: The likelihood 
function is not well defined for reasonable datasets that 
occur in practice, and the solution depends strongly on 

ad-hoc parameters introduced to rectify the first prob-
lem. Alternative models turn out to be computationally 
more expensive. Before we can introduce our solution to 
these problems, we first discuss parameter estimation in 
mixture models.

The EM algorithm for beta mixture distributions
For parameters θ of mixture models, including each com-
ponent’s parameters and the mixture coefficients, the 
log-likelihood function L(θ) =

∑n
i=1 ln fθ (xi), with fθ (xi) 

as in Eq.  (2), frequently has many local maxima; and a 
globally optimal solution is difficult to compute.

The EM algorithm [3] is a general iterative method 
for ML parameter estimation with incomplete data. In 
mixture models, the “missing” data is the information 
which sample belongs to which component. However, 
this information can be estimated (given initial param-
eter estimates) in the E-step (expectation step) and then 
used to derive better parameter estimates by ML for each 
component separately in the M-step (maximization step). 
Generally, EM converges to a local optimum of the log-
likelihood function [6].

E‑step
To estimate the expected responsibility Wi,j of each com-
ponent  j for each data point  xi, the component’s rela-
tive probability at that data point is computed, such that 
∑

j Wi,j = 1 for all  i. Averaged responsibility weights 
yield new mixture coefficients π+

j .

M‑step
Using the responsibility weights Wi,j, the components are 
unmixed, and a separate (weighted) sample is obtained 
for each component, so their parameters can be esti-
mated independently by MLE. The new mixture coeffi-
cients’ ML estimates π+

j  in Eq. (8) are indeed the averages 
of the responsibility weights over all samples.

Initialization and termination
EM requires initial parameters before starting with an 
E-step. The resulting local optimum depends on these 
initial parameters. It is therefore common to choose the 
initial parameters either based on additional information 
(e.g., one component with small values, one with large 
values), or to re-start EM with different random initiali-
zations. Convergence is detected by monitoring relative 
changes among the log-likelihood or among parameters 
between iterations and stopping when these changes are 
below a given tolerance.

(8)

Wi,j =
πj bαj ,βj (xi)

∑

k πk bαk ,βk (xi)
and π+

j =
1

n

n
∑

i=1

Wi,j .

Fig. 2  Estimated parameter values α (blue) and β (red) from a dataset 
consisting of the ten observations 0.01, . . . , 0.10 and 10 observations 
of ε for varying values of ε. Estimation was done using MLE (dot-
ted lines) as implemented in the R package betareg and by our 
(moment-based) method (solid lines).
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Properties and problems with beta mixtures
One of the main reasons why the EM algorithm is pre-
dominantly used in practice for mixture estimation is the 
availability of an objective function (the log-likelihood). 
By Jensen’s inequality, it increases in each EM iteration, 
and when it stops increasing, a stationary point has been 
reached [6]. Locally optimal solutions obtained by two 
runs with different initializations can be objectively and 
globally compared by comparing their log-likelihood 
values.

In beta mixtures, there are several problems with the 
EM algorithm. First, the responsibility weights Wi,j are 
not well defined for xi = 0 or xi = 1 because of the sin-
gularities in the likelihood function, as described above. 
Second, the M-step cannot be carried out if the data 
contains any such point for the same reason. Third, even 
if all xi ∈ ]0, 1[, the resulting mixtures are sensitive to 
perturbations of the data. Fourth, because each M-step 
already involves a numerical iterative maximization, the 
computational burden over several EM iterations is sig-
nificant. We now propose a computationally lightweight 
algorithm for parameter estimation in beta mixtures that 
does not suffer from these drawbacks.

The iterated method of moments
With the necessary preliminaries in place, the main idea 
behind our algorithm can be stated briefly before we dis-
cuss the details.

From initial parameters, we proceed iteratively as in the 
EM framework and alternate between an E-step, which 
is a small modification of EM’s E-step, and a parameter 
estimation step, which is not based on the ML paradigm 
but on Pearson’s method of moments until a stationary 
point is reached [7].

To estimate Q  free parameters, the method of 
moments’ approach is to choose Q moments of the distri-
bution, express them through the parameters and equate 
them to the corresponding Q sample moments. This usu-
ally amounts to solving a system of Q non-linear equa-
tions. In simple cases, e.g., for expectation and variance 
of a single Gaussian distribution, the resulting estimates 
agree with the ML estimates. Generally, this need not be 
the case.

The method of moments has been applied directly to 
mixture distributions. For example, a mixture of two one-
dimensional Gaussians has Q = 5 parameters: two means 
µ1,µ2, two variances σ 2

1 , σ
2
2  and the weight π1 of the first 

component. Thus one needs to choose five moments, say 
mk := E[Xk ] for k = 1, . . . , 5 and solve the correspond-
ing relationships. Solving these equations for many com-
ponents (or in high dimensions) seems daunting, even 
numerically. Also it is not clear whether there is always a 
unique solution.

For a single beta distribution, however, α and β are eas-
ily estimated from sample mean and variance by Eq. (5), 
using sample moments instead of true values. Thus, 
to avoid the problems of MLE in beta distributions, we 
replace the likelihood maximization step (M-step) in 
EM by a method of moments estimation step (MM-step) 
using expectation and variance.

We thus combine the idea of using latent responsibil-
ity weights from EM with moment-based estimation, but 
avoid the problems of pure moment-based estimation 
(large non-linear equation systems). It may seem surpris-
ing that nobody appears to have done this before, but one 
reason may be the lack of an objective function, as we 
discuss further below.

Initialization
A general reasonable strategy for beta mixtures is to 
let each component focus on a certain sub-interval of 
the unit interval. With c components, we start with one 
component responsible for values around k/(c − 1) for 
each k = 0, . . . , c − 1. The expectation and variance of 
the component near k/(c − 1) is initially estimated from 
the corresponding sample moments of all data points in 
the interval [(k − 1)/(c − 1), (k + 1)/(c − 1)] ∩ [0, 1]. (If 
an interval contains no data, the component is removed 
from the model.) Initial mixture coefficients are esti-
mated proportionally to the number of data points in that 
interval.

A second common strategy are randomized start 
parameters. Instead of using purely uniform random 
choices, more advanced methods are available, e.g. the D2

-weighted initialization used by k-means++ [8]. We here 
adapted this idea. Let X ⊂ [0, 1] be the set of different 
data values. Let Y ⊂ X be the set of chosen component 
centers, initially Y = {}. Let DY (x) := miny∈Y |x − y| 
be the shortest distance of x to any already chosen data 
point. The initialization then consists of the following 
steps.

1.	 Choose the first point y uniformly at random from X; 
set Y := {y}.

2.	 Repeat until |Y | = c: Choose y ∈ X \ Y  with prob-
ability proportional to DY (y)

2; then set Y := Y ∪ {y}.
3.	 Sort Y such that y1 < · · · < yc.
4.	 Expectation and variance of component j = 1, . . . , c 

are initially estimated from the corresponding 
sample moments of all data points in the interval 
[yj − 0.5, yj + 0.5].

EM-like algorithms are usually repeatedly executed with 
different random initializations, and the parameters with 
the best locally optimal log-likelihood are finally returned 
as the result.
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E‑step
The E-step is essentially the same as for EM, except that 
we assign weights explicitly to data points xi = 0 and 
xi = 1.

Let j0 be the component index j with the smallest αj. If 
there is more than one, choose the one with the largest 
βj . The j0 component takes full responsibility for all i with 
xi = 0, i.e., Wi,j0 = 1 and Wi,j = 0 for j �= j0. Similarly, let 
j1 be the component index j with the smallest βj (among 
several ones, the one with the largest αj). For all  i with 
xi = 1, set Wi,j1 = 1 and Wi,j = 0 for j �= j1.

MM‑step
The MM-step estimates mean and variance of each com-
ponent j by responsibility-weighted sample moments,

Then αj and βj are computed according to Eq. (5) and new 
mixture coefficients according to Eq. (8).

Termination
Let θq be any real-valued parameter to be estimated and 
Tq a given threshold for θq. After each MM-step, we com-
pare θq (old value) and θ+q  (updated value) by the relative 
change κq := |θ+q − θq|/max

(

|θ+q |, |θq|
)

. (If θ+q = θq = 0 , 
we set κq := 0.) We say that θq is stationary if κq < Tq . 
The algorithm terminates when all parameters are 
stationary.

Properties
The proposed hybrid method does not have a natural 
objective function that can be maximized. Therefore we 
cannot make statements about improvement of such 
a function, nor can we directly compare two solutions 
from different initializations by objective function values. 
It also makes no sense to talk about “local optima”, but, 
similar to the EM algorithm, there may be several sta-
tionary points. We have not yet established whether the 
method always converges. On the other hand, we have 
the following desirable property.

Lemma 1  In each MM-step, before updating the com-
ponent weights, the expectation of the estimated density 
equals the sample mean. In particular, this is true at a 
stationary point.

Proof  For a density f we write E[f ] for its 
expectation 

∫

x · f (x) dx. For the mixture den-
sity  (2), we have by linearity of expectation that 

(9)
µj =

∑

n

i=1 Wij · xi
∑

n

i=1 Wij

=

∑

n

i=1 Wij · xi

n · πj

,

σ 2
j =

∑

n

i=1 Wij · (xi − µj)
2

n · πj

.

E[fθ ] =
∑

j πj E[bαj ,βj ] =
∑

j πj µj. Using  (9) for µj , 
this is equal to 1

n

∑

j

∑

i Wij xi =
1
n

∑

i xi, because 
∑

j Wij = 1 for each  j. Thus E[fθ ] equals the sample 
mean.�  �

Different objective functions may be substituted for 
the log-likelihood to compare different stationary points, 
such as the previously mentioned Kolmogorov–Smirnov 
distance dKS from Eq. (7). While we do not use it for opti-
mization directly (our approach is more lightweight), we 
can use it to evaluate different stationary points and to 
estimate the number of necesssary components to repre-
sent the data.

Estimating the number of components
The method described so far works for a given and fixed 
number of components, similarly to the EM algorithm. 
When the true number of components is unknown, the 
algorithm has to estimate this number by comparing 
goodness of fit between the estimated beta mixture and 
the given data, taking into account the model complex-
ity (number of parameters). Usually the Akaike informa-
tion criterion (AIC) [9] or Bayesian information criterion 
(BIC) [10] are minimized for this purpose,

where L∗ is the maximized log-likelihood value, k is the 
number of free model parameters and n is the sample 
size. Both criteria favor a good fit but penalize many 
parameters (complex models with many components). 
Since our approach is not based on likelihoods, we can-
not apply these criteria.

Instead, we use the Kolmogorov–Smirnov distance dKS 
from Eq.  (7) to measure the fit between the estimated 
mixture cumulative distribution function (cdf ), evaluated 
numerically at each data point, and the empirical cumu-
lative distribution function from the data. Naturally, dKS 
is a decreasing function of the number of components. 
We fit models with an increasing number of components 
and stop once dKS drops below a given threshold. Note 
that for fixed sample size n, the distance dKS can be con-
verted into a p-value of the Kolmogorov–Smirnov test 
and vice versa [11].

Application: classification of methylation states
Motivation
We are interested in explaining differences in methyla-
tion levels of genomic regions between individuals by 
genetic variation and would like to find single nucleotide 
variants (SNVs) whose state correlates well with meth-
ylation state. In a diploid genome, we expect the meth-
ylation level of a homogeneously methylated region in 

(10)AIC = 2k − 2L∗, BIC = k ln(n)− 2L∗
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a homogeneous collection of cells to be (close to) 0, 0.5 
or 1, and the state of the corresponding region may be 
called unmethylated, semi-methylated or fully methyl-
ated, respectively.

When we measure the methylation level of each 
CpG dinucleotide in the genome, for example by whole 
genome bisulfite sequencing (WGBS)  [12], we observe 
fractions M/(M + U) from numbers  M and  U of reads 
that indicate methylated and unmethylated cytosines, 
respectively, at each CpG dinucleotide. These observed 
fractions differ from the true methylation levels for sev-
eral reasons: incomplete bisulfite conversion, sequencing 
errors, read mapping errors, sampling variance due to a 
finite number of reads, an inhomogeneous collection of 
cells being sequenced, the region being heterogeneously 
methylated, and others.

Therefore we model the observed methylation level by 
a probability distribution depending on the methylation 
state. The overall distribution of the observations is cap-
tured by a three-component beta mixture model with one 
component representing values close to zero (unmethyl-
ated), one component close to 1/2 (semi-methylated), 
and one component close to 1 (fully methylated).

Thus the problem is as follows. After seeing n observed 
methylation levels (x1, . . . , xn), find the originating meth-
ylation state for each xi. This is frequently done using rea-
sonable fixed cut-off values (that do not depend on the 
data), e.g. calling values below 0.25 unmethylated, values 
between 0.25 and 0.75 semi-methylated and values above 
0.75 fully methylated [13]. One may leave xi unassigned if 
the value is too close to one of the cut-off values.

An interesting question is whether choosing thresh-
olds adaptively based on the observed sample is advan-
tageous in some sense. Depending on the components’ 
parameters, the value range of the components may over-
lap, and perfect separation may not be possible based on 
the value of xi. Good strategies should be based on the 
component weights Wij, assigning component j∗(i) := 
argmaxj   Wij to xi. We may refuse to make an assign-
ment if there is no clearly dominating component, e.g., 
if W ∗

i := maxj Wij < T , or if W ∗
i −W

(2)
i < T  for a given 

threshold T, where W (2)
i  is the second largest weight 

among the Wij.

Simulation and fitting for class assignment
We investigate the advantages of beta mixture modeling 
by simulation. In the following, let U be a uniform ran-
dom number from [0, 1].

We generate two datasets, each consisting of 1000 
three-component mixtures. In the first (second) dataset, 
we generate 200 (1000) samples per mixture.

To generate a mixture model, we first pick mixture 
coefficients π = (π1,π2,π3) by drawing U1,U2,U3, 

computing s :=
∑

j Uj and setting πj := Uj/s. This does 
not generate a uniform element of the probability sim-
plex, but induces a bias towards distributions where all 
components have similar coefficients, which is reason-
able for the intended application. The first component 
represents the unmethylated state; therefore we choose 
an α ≤ 1 and a β > 1 by drawing U1,U2 and setting 
α := U1 and β := 1/U2. The third component represents 
the fully methylated state and is generated symmetrically 
to the first one. The second component represents the 
semi-methylated state (0.5) and should have large enough 
approximately equal α and β. We draw U1,U2 and define 
γ := 5/min{U1,U2}. We draw V uniformly between 0.9 
and 1.1 and set α := γV  and β := γ /V .

To draw a single random sample x from a mixture dis-
tribution, we first draw the component  j according to π 
and then value x from the beta distribution with param-
eters αj ,βj. After drawing n = 200 (dataset 1) or n = 1000 
(dataset 2) samples, we modify the result as follows. For 
each mixture sample from dataset  1, we set the three 
smallest values to 0.0 and the three largest values to 1.0. 
In dataset  2, we proceed similarly with the 10 smallest 
and largest values.

We use the algorithm as described above to fit a three 
component mixture model, with a slightly different ini-
tialization. The first component is estimated from the 
samples in [0,  0.25], the second one from the samples 
in [0.25,  0.75] and the third one from the samples in 
[0.75, 1]. The first (last) component is enforced to be fall-
ing (rising) by setting α1 = 0.8 (β3 = 0.8) if it is initially 
estimated larger.

Figure  3 shows examples of generated mixture mod-
els, sampled data and fitted models. The examples have 
been chosen to convey a representative impression of 
the variety of generated models, from well separated 
components to close-to-uniform distributions in which 
the components are difficult to separate. Overall, fitting 
works well (better for n = 1000 than for n = 200), but 
our formal evaluation concerns whether we can infer the 
methylation state.

Evaluation of class assignment rules
Given the samples (x1, . . . , xn) and the information which 
component Ji generated which observation xi, we evalu-
ate different procedures:

1.	 Fixed intervals with a slack parameter 0 ≤ s ≤ 0.25

: point x is assigned to the leftmost component 
if x ∈ [0, 0.25− s], to the middle component if 
x ∈]0.25+ s, 0.75− s] and to the right component if 
x ∈]0.75+ s, 1]. The remaining points are left unas-
signed. For each value of s, we obtain the number 
of assigned points N(s) and the number of correctly 
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assigned points C(s) ≤ N (s). We plot the fraction 
of correct points C(s)/n and the precision C(s)/N(s) 
against the fraction of assigned points N(s)/n for dif-
ferent s ≥ 0.

2.	 Choosing the component with the largest responsi-
bility weight, ignoring points when the weight is low: 
point xi is assigned to component j∗ with maximal 
responsibility W ∗

i = Wij∗, unless Wij∗ < t for a given 
threshold 0 ≤ t ≤ 1, in which case it is left unas-
signed. We examine the resulting numbers C(t) and 
N(t) as for the previous procedure.

3.	 Choosing the component with the largest responsi-
bility weight, ignoring points when the distance to the 
second largest weight is low: as before, but we leave 
points xi unassigned if they satisfy W ∗

i −W
(2)
i < t.

4.	 Repeating 2. and 3. with the EM algorithm instead of 
our algorithm would be interesting, but for all reason-
able choices of ε (recall that we have to replace xi = 0 
by ε and xi = 1 by 1− ε for EM to have a well-defined 
log-likelihood function), we could not get the imple-
mentation in betareg to converge; it exited with the 
message “no convergence to a suitable mixture”.

Figure 4 shows examples (the same as in Fig. 3) of the 
performance of each rule (rule 1: blue; rule 2: red; rule 3: 
magenta) in terms of N/n against C/n (fraction correct: 
solid) and C/N (precision: dashed). If a red or magenta 
curve is predominantly above the corresponding blue 
curve, using beta mixture modeling is advantageous for 

this dataset. Mixture modeling fails in particular for the 
example in the upper right panel. Considering the cor-
responding data in Fig.   3, the distribution is close to 
uniform except at the extremes, and indeed this is the 
prototypical case where beta mixtures do more harm 
than they help.

We are interested in the average performance over the 
simulated 1000 mixtures in dataset 1 (n = 200) and data-
set 2 (n = 1000). As the magenta and red curve never dif-
fered by much, we computed the (signed) area between 
the solid red and blue curve in Fig. 4 for each of the 1000 
mixtures. Positive values indicate that the red curve (clas-
sification by mixture modeling) is better. For dataset  1, 
we obtain a positive sign in 654/1000 cases (+), a nega-
tive sign in 337/1000 cases (−) and absolute differences 
of at most 10−6 in 9/1000 cases  (0). For dataset  2, the 
numbers are 810/1000 (+), 186/1000 (−) and 4/1000 (0). 
Figure 5 shows histograms of the magnitudes of the area 
between curves. While there are more instances with 
benefits for mixture modeling, the averages (−0.0046 
for dataset  1; +0.0073 for dataset  2) do not reflect this 
because of a small number of strong outliers on the nega-
tive side. Without analyzing each instance separately 
here, we identified the main cause for this behavior as 
close-to-uniformly distributed data, similar to the exam-
ple in the upper right panel in Figs.  3 and  4, for which 
appropriate (but incorrect) parameters are found. In fact, 
a single beta distribution with α < 0 and β < 0 would 
fit that data reasonably well, and the three-component 

Fig. 3  Examples of generated three-component beta mixtures (green solid lines), data samples (blue histograms) and fitted mixture models (blue 
solid lines). Dashed lines show estimated weighted component densities (green: unmethylated; red: semi-methylated; magenta: fully methylated). Top 
row: examples with n = 200 samples; bottom row: n = 1000
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model is not well identifiable. Of course, such a situation 
can be diagnosed by computing the distance between the 
sample and uniform distribution, and one can fall back to 
fixed thresholds.

Simulation and fitting for estimating the number 
of components
To evaluate the component estimation algorithm, we 
simulate datasets with one to five components with 

n = 1000 samples. We simulate two different kinds of 
datasets, both using the method of picking the mixture 
coefficients π as described before.

Independent simulation
For the dirst kind of data, we choose components inde-
pendently from each other. This frequently leads to 
datasets that can be effectively described by fewer com-
ponents than the number used to generate the dataset. 

Fig. 4  Performance of several classification rules. Shown is the fraction of called classes N/n (i.e., data points for which a decision was made) on the 
x-axis against the fraction of correct classes C/n (solid lines) and against the precision C/N (dashed lines) on the y-axis for three decision rules (blue: 
fixed intervals; red: highest weight with weight threshold; magenta: highest weight with gap threshold). The datasets are in the same layout as in 
Fig. 3

Fig. 5  Signed areas between the red curve and the blue curve in Fig. 4 for all 1000 simulated mixtures in dataset 1 (left; 200 samples each) and in 
dataset 2 (right; 1000 samples each)
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Let E be a standard exponentially distributed random 
variable with density function f (x) = e−x. The param-
eters are chosen for each component  j independently by 
choosing α = Ej,1 and β = 1− Ej,2 from independent 
exponentials. (If β < 0, we re-draw.)

Realistic simulation
We simulate more realistic and separable data by a sec-
ond approach. The intention is to generate mixtures 
whose components are approximately equally distributed 
on the unit interval, such that each component slightly 
overlaps with its neighbors.

To generate a set of data points we pick an interval 
I = [E1, 1− E2] with exponentially distributed bor-
ders. (If 1− E2 < E1, or if the interval is too small to 
admit c components with sufficient distance from each 
other, we re-draw.) For each component  j we uniformly 
choose a point µj ∈ I. We repeat this step if the dis-
tance between any two µ values is smaller than 0.2. Sort 
the values such that E1 < µ1 < · · · < µc < 1− E2. Let 
dj := min[{|µi − µj| : i �= j} ∪ {E1, 1− E2}]. Then we 
set σj = 1/4dj. Now µ and σ serve as mean and standard 
deviation for each component to generate its parameters 
αj and βj by Eq. (5).

Evaluation of component estimation
We estimate the number of components as described 
above with a dKS threshold corresponding to a p-value 
of ≥ 0.5 of the corresponding Kolmogorov–Smirnov 
test (as the fit becomes better with more components, 
the p-value is increasing). (The choice of 0.5 as a p-value 
threshold is somewhat arbitrary; it was chosen because 
it shows that there is clearly no significant deviation 

between the fitted mixture and the empirical cdf from 
the data; see below for the influence of this choice.) We 
compare the true simulated number of components to 
the estimated number for 1000 datasets of 1000 points 
each, generated by (a) independent simulation and (b) 
realistic simulation. Figure  6 shows the resulting confu-
sion matrix. Near-perfect estimation would show as a 
strong diagonal. We see that we under-estimate the num-
ber of components on the independently generated data, 
especially for higher numbers of components. This is 
expected since the components of the independent sim-
ulation often overlap and result in relatively flat mixture 
densities that cannot be well separated. For the data from 
the realistic stimualtions, we can see a strong diagonal: 
Our algorithm rarely over- or underestimates the num-
ber of components if the components are separable. For 
both kinds of datasets, our method rarely overestimates 
the number of components.

Choice of p‑value threshold
In principle, we can argue for any “non-significant” 
p-value threshold. Choosing a low threshold would yield 
mixtures with fewer components, hence increase under-
estimations but reduce overestimations. Choosing a 
high threshold would do the opposite. By systematically 
varying the threshold we can examine whether there is 
an optimal threshold, maximizing the number of cor-
rect component estimations. Figure 7 shows the fraction 
of both under- and overestimations for both datasets (I: 
independent, blue; R: realistic, brown), as well as the total 
error rate (sum of under- and overestimation rates) for 
varying p-value threshold. We see that the error rate is 
generally higher in the independent model (I) because we 

Independent Simulation Realistic Simulation

Fig. 6  Comparison of the real number of components (x-axis) and the estimated number of components (y-axis) by our algorithm. Simulations 
consisted of 1000 datasets with 1000 data points each. Each column of each matrix sums to 1000; row sums are variable
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systematically underestimate the true number of compo-
nents (see above); this is true for any reasonable thresh-
old ≤ 0.9. We also see that both total error curves have 
a flat valley between 0.4 and 0.6 (or even 0.2 and 0.8), so 
choosing any threshold in this range is close to optimal; 
we chose 0.5 because it is “least complex” in the sense of 
Occam’s Razor.

Discussion and conclusion
Maximum likelihood estimation in beta mixture mod-
els suffers from two drawbacks: the inability to directly 
use 0/1 observations, and the sensitivity of estimates to 
ad-hoc parameters introduced to mitigate the first prob-
lem. We presented an alternative parameter estimation 
algorithm for mixture models. The algorithm is based 
on a hybrid approach between maximum likelihood (for 
computing responsibility weights) and the method of 
moments; it follows the iterative framework of the EM 
algorithm. For mixtures of beta distributions, it does not 
suffer from the problems introduced by ML-only meth-
ods. Our approach is computationally simpler and faster 
than numerical ML estimation in beta distributions. 
Although we established a desirable invariant of the sta-
tionary points, other theoretical properties of the algo-
rithm remain to be investigated. In particular, how can 
stationary points be characterized?

With a simulation study based on realistic param-
eter settings, we showed that beta mixture modeling is 
often beneficial when attempting to infer an underlying 
single nucleotide variant state from observed methyla-
tion levels, in comparison to the standard non-adaptive 

threshold approach. Mixture modeling failed when the 
samples were close to a uniform distribution without 
clearly separated components. In practice, we can detect 
such cases before applying mixture models and fall back 
to simple thresholding.

We also showed that for reasonably separated com-
ponents, our method often infers the correct number of 
components. As the log-likelihood is not available for 
comparing different parameter sets (the value would be 
±∞), we used the surrogate Kolmogorov–Smirnov (KS) 
distance between the estimated cumulative distribu-
tion function (cdf ) and the empirical cdf. We showed 
that using any p-value threshold close to 0.5 for the cor-
responding KS test yields both good and robust results. 
Under-estimation is common if the data has low com-
plexity (flat histograms) and can be effectively described 
with fewer components.

A comparison of our algorithm with the EM algorithm 
(from the betareg package) failed because the EM 
algorithm did not converge and exited with errors (how-
ever, we did not attempt to provide our own implementa-
tion). We hope that our method will be widely adopted 
in the future for other problems involving beta mixtures 
because of its computational advantages, and we intend 
to further characterize its properties.
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